
 
 

 

 

Machine Learning 
 

(course 395) 
 
 
 
 
 
 

Introduction to Machine Learning  

& 

Case-Based Reasoning 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Maja Pantic 
 

 



 
 



 1

Prologue 
 
 
 
These notes refer to the course of Machine Learning (course 395), Computing Department, 
Imperial College London. The goal of this syllabus is to summarize the basics of machine 
learning and to provide a detailed explanation of case-based reasoning. 
 
 
Part 1: Introduction to Machine Learning 
 
This chapter introduces the term “machine learning” and defines what do we mean while 
using this term. This is a very short summary of the work of Mitchell [8]. 
 
 
Part 2: Case-based Reasoning 
 
This chapter discusses Case-Based Reasoning. This is an adaptation of the work of Pantic 
[10]. 
 
 
 



 2

 
 



 3

1. Introduction to Machine Learning 
 
 
This chapter is concerned with the term “machine-learning” and defines what do we mean 
while using this term. It also provides a short overview of a number of well-known learning 
paradigms. For a more profound discussion about different learning algorithms, theoretical 
results, and applications, the reader is referred to [8]. 
 
 

1.1 What does the term “machine learning” denote? 
 
Machine learning is inherently a multidisciplinary field. It draws on results from research 
fields as diverse as: 
• Artificial Intelligence: AI forms a theoretical and methodological basis for learning 

symbolic representations of concepts, learning in terms of classification and pattern 
recognition problems, and learning by using prior knowledge together with training data as 
a guideline. 

• Bayesian methods: the Bayes’ theorem forms the basis for calculating probabilities of 
hypotheses, the basis of the naïve Bayes classifier, and the basis of algorithms for 
estimating values of unobserved variables. 

• Computational complexity theory: This theory imposes the theoretical bounds on the 
inherent complexity of different learning tasks measured in terms of computational effort, 
number of training examples, number of mistakes, etc. 

• Control theory: This theory forms the theoretical foundation of procedures that learn to 
control processes in order to optimize predefined objectives and to predict the next state of 
the process they are controlling. 

• Information theory: Measures of entropy and optimal codes are germane and central to the 
issue of delimiting optimal training sequences for encoding a hypothesis. 

• Philosophy: Philosophical argumentations like “the simplest hypothesis is the best” 
underlie the reasoning process of machine learning algorithms. 

• Psychology: The view on human reasoning and problem-solving initiated many machine 
learning models (e.g., see the discussion on Case-Based Reasoning in chapter 2). 

• Neurobiology: Information processing found in biological organisms motivated Artificial 
Neural Network models of learning (see chapter 4 in [8]). 

 
As delimited by the definition given by Mitchell [8], a computer program is said to learn from 
experience E with respect to some class of tasks T and performance measure P if its 
performance at tasks in T, as measured by P, improves with experience E. For example, an 
automated facial expression classifier which classifies facial expressions in terms of user-
defined interpretation labels (e.g., [11]), improves its performance as measured by its ability 
to accomplish user-defined interpretations at the class of tasks involving classification of 
facial expressions, through experience obtained by interacting with the user on the meanings 
that he/she associates with different facial expressions. In general, in a well-defined learning 
problem, these three features must be identified (i.e. the class of tasks T, the measure of 
performance to be improved P, and the source of experience E). Once the learning problem is 
defined, the next step in designing a learning system is to delimit exactly:  
• the type of knowledge to be learned,  



 4

• the representation of this target knowledge (i.e. the definition of target function to be 
learned, which when utilized will produce for any instance of a new problem as input a 
trace of its solution as output), and  

• the learning mechanism to apply.  
 
Different target knowledge (hypotheses space) representations are appropriate for learning 
different kinds of target functions. For each of these hypothesis representations, the 
corresponding learning algorithm takes advantage of a different underlying structure to 
organize the search through the hypotheses space. Therefore, deciding about the issues listed 
above involves searching a very large space of alternative approaches to determine the one 
that best fits the defined learning problem. In order to decide a machine learning algorithm 
which will perform best for the given problem and the given target function, it is useful to 
analyze the relationships between the size of the hypotheses space, the completeness of it, the 
number of training examples available, the prior knowledge held by the learner, and the 
confidence we can have that a hypothesis that is consistent with the training data will 
correctly generalize to unseen examples. 
 
Though, generally, learning is considered as one of the basic facets of intelligence, not all AI 
techniques are capable of learning. Expert systems are an obvious example, at least in their 
most common form (see chapter 2 in [9]).  
 
 

1.2 The primary machine learning approaches and algorithms 
 
Decision Trees 
Decision tree learning is one of the most widely used and practical methods for inductive 
inference. It is a method for approximation of discrete-valued functions, in which a tree 
represents the learned function. A decision tree is in a nutshell a discrete value functional 
mapping, a classifier. Each node in the decision tree specifies a test of some attribute of the 
query instance, and each branch descending from that node corresponds to one of the possible 
values for this attribute. An instance is classified by starting at the root node of the tree, 
testing the attribute specified by this node, then moving down the tree branch corresponding 
to the value of the attribute. This process is repeated for the sub-tree rooted at the new node as 
long as it takes to reach the appropriate leaf node, then returning the classification associated 
with this leaf. Several algorithms are available that can be used to construct a tree based on 
some data set. A typical example is the ID3 algorithm proposed in [13]. This is a greedy 
search algorithm that constructs the tree recursively and chooses at each step the attribute to 
be tested so that the separation of the data examples is optimal. This decision-tree learning 
method searches a complete hypothesis space (i.e. the space of all possible decision trees) 
and, thus, avoids difficulties of restricted hypothesis spaces (i.e. that the target function might 
not be present in the hypothesis space). Its inductive bias is a preference for small trees over 
large trees. Experiments that compare decision-tree learning and other learning methods can 
be found in numerous papers, for example, in [5] and [17]. 
 
Artificial Neural Networks 
Artificial Neural Networks (ANNs) provide a general, practical method for learning real-
valued, discrete-valued, and vector-valued target functions from examples. Algorithms such 
as backpropagation use gradient descent to tune network parameters to best fit a training set of 
input-output pairs. ANN learning is robust to errors in the training data and has been 



 5

successfully applied to problems such as interpreting visual scenes, speech recognition, etc. 
(see chapter 4 in [8]). 
 
Learning set of rules 
One of the most expressive and human readable representations of a learned target function is 
a set of if-then rules that jointly define the function. One way to learn sets of rules is to learn a 
decision tree first, then translate the tree into an equivalent set of rules; one rule for each leaf 
node in the tree. A quite successful method for converting the learned tree into a set of rules is 
a technique called rule post pruning used by the C4.5 algorithm [13], which represents an 
extension of the original ID3 algorithm. 
Another way to convert a tree into a set of rules is to apply a sequential covering algorithm 
for learning sets of rules based upon the strategy of learning one rule, removing the data it 
covers and then iterating this process. To elaborate, given a LSR (learn-single-rule) 
subroutine, invoke it on all the available training examples, remove any positive examples 
covered by the rule it learns, then invoke it again to learn a second rule based on the 
remaining training examples. Thus, a sequential covering algorithm sequentially learns a set 
of (disjunctive) rules that together cover the full set of positive examples. Because this 
algorithm carries out a greedy search, so it formulizes a sequence of rules without 
backtracking, the smallest or best set of rules that cover the training examples is not 
necessarily found. A prototypical sequential covering algorithm is the general-to-specific 
beam search which searches through the space of possible rules maintaining k best 
candidates, then generates descendents for each of these k best candidates, and again reduces 
the resulting set to k most promising members. This algorithm has been used by the CN2 
program [4]. Many variations on this approach have been explored [8]. 
 
Inductive Logic Programming 
The previous subsection discussed algorithms for learning sets of propositional (i.e. variable-
free) rules. This subsection is considered with learning rules that contain variables, in 
particular, learning first-order Horn theories. Inductive learning of first-order rules is also 
referred to as Inductive Logic Programming (ILP), because this process can be viewed as 
automatically inferring PROLOG1 programs from examples. A variety of algorithms has been 
proposed for learning first-order rules. A typical example is FOIL, which is an extension of 
the sequential covering algorithms to first-order representations. 
Another approach to inductive logic programming is inverse deduction, which is based upon 
the simple observation that induction is just the inverse of deduction. In other words, the 
problem of induction is to find a hypothesis h that satisfies the constraint (∀〈xi, f(xi)〉∈D) (B 
∧ h ∧ xi) ⌐ f(xi), where B is general background information, x1…xn are descriptions of the 
instances in the training data D, f(x1)…f(xn) are the target values of the training instances, and 
expression Z ⌐ C is read “C follows deductively from Z”. A prototypical algorithm based 
upon inverse deduction principle is CIGOL, introduced by Muggleton and Buntine in 1988, 
which uses the inverse resolution, an operator that is the inverse of the deductive resolution 
operator, introduced by Robinson in 1965, and commonly used for mechanical theorem 
proving.  
 
Instance-Based Learning 
In contrast to learning methods that construct a general, explicit description of the target 
function when training examples are provided, instance-based learning methods simply store 

                                                 
1 PROLOG is a general purpose, Turing-equivalent programming language in which programs are expressed as 
collections of Horn clauses. 



 6

the training examples. Generalizing beyond these examples is postponed until a new instance 
must be classified: given a new instance, its relations to the already stored examples are 
examined in order to assign a target function value (the classification) for the new instance. 
Due to this property, instance-based learning methods are also called lazy learning methods, 
as opposed to the eager learning methods represented by all other learning algorithms 
discussed in this section. Examples of instance-based learning include nearest-neighbor 
learning and locally weighted regression methods. Instance-based learning also includes case-
based reasoning methods that use more complex, symbolic representations for instances. An 
overview of the topic can be found in [8]. A survey of methods for locally weighted 
regression is given in [3]. Chapter 2 of this syllabus provides a detailed discussion on case-
based reasoning. 
A key advantage of instance-based learning as a delayed, or lazy, learning method is that 
instead of estimating the target function once for the entire instance space, these methods can 
estimate it locally and differently for each new instance to be classified. Yet, these methods 
are at a disadvantage because of their computation and memory/storage requirements. 
 
Genetic Algorithms 
Genetic Algorithms (GA) are optimization techniques providing an approach to learning that 
is based loosely on simulated evolution. One thing that distinguishes GA from other 
optimization algorithms is that GA simultaneously work on large sets (populations) of 
possible solutions. The search for an appropriate hypothesis begins with a population of initial 
hypotheses. Members of the current population give rise to the next generation population by 
means of operations such as random mutation and crossover, which are patterned after 
biological evolution processes. At each iteration, the hypotheses in the current population are 
evaluated relative to a given measure of fitness and the most fit members of the population are 
selected to produce new offspring that replace the least fit members of the population. To 
elaborate, the learning task of GA is to find the optimal hypothesis according to the 
predefined fitness function. 
Evolution-based computational approaches have been explored since the early days of 
computer science. Evolutionary programming as a method for finite-state machine evolution 
has been developed by Folgel and colleagues in 1966. Genetic algorithms have been first 
introduced by Holland in 1962. An overview of the subject can be found in [8] and [9]. GA 
are especially suited to tasks in which hypotheses are complex (e.g. sets of rules for robot 
control, sets of optimal routes, etc.) and in which the objective to be optimized may be an 
indirect function of the hypotheses. A variant of GA is genetic programming, in which the 
hypotheses being manipulated are computer programs rather than bit strings2. Genetic 
programming has been demonstrated to learn programs for tasks such as simulated robot 
control and recognizing objects in visual scenes (including human facial expressions). 
 
Reinforcement Learning 
Reinforcement learning addresses the question of how an autonomous agent (see syllabus on 
Intelligent Agents and Multi Agent Systems), which senses and acts in its environment, can 
learn to choose optimal actions to accomplish its goals. This generic problem covers learning 
tasks such as to control CAM tools and robots, to optimize operations in factories, to search 
Internet, to play board games, etc. In a nutshell, reinforcement learning is reward hunting. 
Namely, each time a given agent performs an action in its environment, a trainer may provide 
a reward or penalty to indicate the desirability of the resulting state; the goal of the agent is to 
learn an action policy that maximizes the total reward it will receive from any starting state. 
                                                 
2 Though hypotheses may be represented by symbolic expressions or even computer programs, they are usually 
described by bit strings. The interpretation of these bit strings depends on the actual application.  



 7

The reinforcement learning methodology fits a problem setting known as a Markov decision 
process, in which the outcome of applying any action to any state depends only on this action 
and this state as opposed to being dependent on preceding actions or states. A prototypical 
reinforcement learning algorithm is Q-learning, in which the agent learns the evaluation 
function Q(s, a) representing the maximum expected, cumulative reward the agent can 
achieve by applying action a to state s. Watkins introduced Q learning in 1989 with the goal 
of acquiring optimal policies when the reward and action transition functions are unknown. 
Recently a survey of the related methods has been is given by Sutton and Barto [18]. 
 
 
1.3 Vantages and disadvantages of machine learning 
 
The major vantage of a learning system is its ability to adapt to a changing environment. Of 
course, the existing machine-learning techniques are still far from enabling computers to learn 
nearly as well as people. Yet algorithms have been invented that are effective for certain types 
of learning tasks. In the late 90s, a formalized theoretical foundation of learning was 
established [8], and many practical computer programs have been developed to enable 
different types of learning. Machine learning algorithms have proven to be of great practical 
value, especially in: 
• Data mining problems concerning large databases that may contain valuable implicit 

regularities that can be discovered automatically (for an overview of this topic, the reader 
is referred to the special issue on Intelligent Information Retrieval of the IEEE Intelligent 
Systems and Their Applications, vol. 14, no. 4, pp. 30-70). 

• Poorly understood domains where humans might not have well-established, generic 
knowledge needed to develop effective algorithms (e.g. in learning to play games or in 
learning to interpret human facial expressions in terms of emotions). 

• Domains where the program must dynamically adapt to changing conditions (e.g. see the 
special issue on Self-adaptive Software of the IEEE Intelligent Systems and Their 
Applications, vol. 14, no. 3, pp. 26-63). 

 
However, most of the machine-learning algorithms require a special training phase whenever 
information is extracted (knowledge generalization), which makes on-line adaptation 
(sustained learning) difficult. Virtually all techniques discussed in this section (except 
instance-based learning) are not well suited for on-line learning. Hence, learning in dynamic 
environments is cumbersome (if possible at all) for most machine-learning methods. Another 
common problem is that, in general, machine-learning techniques are data oriented: they 
model the relationships contained in the training data set. In turn, if the employed training 
data set is not a representative selection from the problem domain, the resulting model may 
differ from actual problem domain. This limitation of machine learning methods is aided and 
abetted by the fact that most of them do not allow the use of a priori knowledge. Finally, 
machine-learning algorithms have difficulties in handling noise. Though many of them have 
some special provisions to prevent noise fitting, these may have a side effect of ignoring 
seldom occurring but possibly important features of the problem domain. 
 
 



 8

 
 



 9

2. Case-Based Reasoning 
 
 
During the 70s and 80s, one of the most visible developments in AI research was the 
emergence of rule-based expert systems (RBES). These programs were applied to more and 
more problem domains requiring extensive knowledge for very specific and rather critical 
tasks including hardware troubleshooting, geological exploration and medical diagnosis. In 
general, the RBES should be based upon a deep, explicit, causal model of the problem domain 
knowledge that enables them to reason using first principles. But whether the knowledge is 
shallow or deep, an explicit model of the domain must still be elicited and implemented. 
Hence, despite their success in many sectors, developers of RBES have met several critical 
problems. These can be summarized as proposed by Schank [16]: 
1. Difficult and time-consuming construction of the intended knowledge base due to 

complex and time-consuming expert knowledge elicitation. This is especially the case 
with problem domains covering a broad range of knowledge. 

2. Incapability of dealing with problems that are not explicitly covered by the utilized rule 
base. In general, rule-based expert systems are useful if the built-in knowledge is well 
formalized, circumscribed, established and stable. 

3. If no learning facility is built into a rule-based expert system, any addition to the existing 
program requires a programmer intervention. 

 
Solutions to these problems have been sought through better elicitation techniques and tools, 
improved development paradigms, knowledge modeling languages and ontologies, and 
advanced techniques and tools for maintaining systems. However, in the past decade an 
alternative reasoning paradigm and computational problem-solving method attracted a great 
deal of attention: Case-Based Reasoning (CBR) solves new problems by adapting previously 
successful solutions to similar problems. CBR draws attention because it seems to address the 
problems outlined above directly [19]: 
• CBR does not require an explicit domain model and so elicitation becomes a task of 

gathering case histories. 
• Implementation is reduced to identifying significant features that describe a case, an easier 

task than creating an explicit model. 
• CBR systems can learn by acquiring new knowledge as cases. This and the application of 

database techniques makes the maintenance of large volumes of information easier. 
 
The work of Roger Schank [15], [16], is widely held to be the origin of CBR. He proposed a 
different view on model-based reasoning inspired by human reasoning and memory 
organization. Schank suggests that our knowledge about the world is mainly organized as 
memory packets holding together particular episodes from our lives that were significant 
enough to remember. These memory organization packets (MOPs) and their elements are not 
isolated but interconnected by our expectations as to the normal progress of events (called 
scripts by Schank). In turn, there is a hierarchy of MOPs in which “big” MOPs share “small” 
MOPs. If a MOP contains a situation where some problem was successfully solved and the 
person finds himself in a similar situation, the previous experience is recollected and the 
person can try to follow the same steps in order to reach a solution. Thus, rather than 
following a general set of rules, reapplying previously successful solution schemes in a new 
but similar context solves the newly encountered problems. Using these observations about 
human reasoning process Schank proposed memory-based reasoning model and memory-
based expert systems [16] , which are characterized as follows: 



 10

• The utilized knowledge base is derived primarily from enumeration of specific cases or 
experiences. This is founded upon the observation that human experts are much more 
capable of recalling experiences than of articulating internal rules. 

• As problems are presented to a memory-based expert system to which no specific case or 
rule can match exactly, the system can reason from more general similarities to come up 
with an answer. This is founded upon the generalization power of human reasoning. In 
general, we are reminded of something by the similarity, but the retrieval can be also based 
on differences. Furthermore, the retrieval is almost never full breadth and is highly context 
dependent. The reason for not performing an exhaustive recall is not only due to the 
cumbersomeness of such a task but also due to the organizations of MOPs: once we focus 
on some MOP it is very easy to recall other MOPs related to it by some features.  

• The memory of experiences utilized by the system is changed and augmented by each 
additional case that is presented. A cornerstone of the memory-based model of reasoning is 
automatic learning: the system should remember the problems that it has encountered and 
use that information to solve future problems. This is founded upon the capability of the 
human brain to merge the progress of events seamlessly into the previously developed 
scripts of events. 

 
The area of AI concerned with case-based reasoning puts Schank’s memory-based reasoning 
model in practice. In a nutshell, CBR is reasoning by remembering: previously solved 
problems (cases) are used to suggest solutions for novel but similar problems. Kolodner [6] 
lists four assumptions about the world around us that represent the basis of the CBR approach: 
1. Regularity: the same actions executed under the same conditions will tend to have the 

same or similar outcomes. 
2. Typicality: experiences tend to repeat themselves. 
3. Consistency: small changes in the situation require merely small changes in the 

interpretation and in the solution. 
4. Adaptability: when things repeat, the differences tend to be small, and the small 

differences are easy to compensate for. 
 

Fig. 1 illustrates how the assumptions listed 
above are used to solve problems in CBR. 
Once the currently encountered problem is 
described in terms of previously solved 
problems, the most similar solved problem 
can be found. The solution to this problem 
might be directly applicable to the current 
problem but, usually, some adaptation is 
required. The adaptation will be based upon 
the differences between the current problem 
and the problem that served to retrieve the 
solution. Once the solution to the new 
problem has been verified as correct, a link 
between it and the description of the problem 
will be created and this additional problem-
solution pair (case) will be used to solve new 
problems in the future. Adding of new cases 
will improve results of a CBR system by 
filling the problem space more densely. 

 

Problem space Solution space 

Fig.1: Problem solving using CBR



 11

 

2.1 The CBR working cycle 
 
In the problem solving illustrated in Fig. 1 and explained above, the following steps were 
taken: describing the current problem, searching for a similar previously solved problem, 
retrieving the solution to it, adapting the solution to the current problem, verifying the 
solution, and storing the newly solved problem. In turn, since the newly found solution may 
be used for solving future problems, the process illustrated in Fig. 1 denotes, in fact, the CBR 
working cycle. 
 
According to Kolodner, the CBR working cycle can be described best in terms of four 
processing stages: 
1. Case retrieval: after the problem situation has been assessed, the best matching case is 

searched in the case base and an approximate solution is retrieved. 
2. Case adaptation: the retrieved solution is adapted to fit better the new problem. 
3. Solution evaluation: the adapted solution can be evaluated either before the solution is 

applied to the problem or after the solution has been applied. In any case, if the 
accomplished result is not satisfactory, the retrieved solution must be adapted again or 
more cases should be retrieved.  

4. Case-base updating: If the solution was verified as correct, the new case may be added to 
the case base. 

 
Aamodt and Plaza [1] give a slightly different scheme of the CBR working cycle comprising 
the four REs (Fig. 2): 
1. RETRIEVE the most similar case(s); 
2. REUSE the case(s) to attempt to solve the current problem; 
3. REVISE the proposed solution if necessary; 
4. RETAIN the new solution as a part of a new case. 
 
 

 
 

RETRIEVE

RETAIN 

REVISE

R 
E 
U 
S 
E

Problem 

Confirmed 
Solution

Proposed 
Solution

Fig. 2: The CBR cycle



 12

Although they use different terminologies, the CBR working cycles denoted above are 
essentially the same. A new problem is matched against the cases furnishing the case base and 
one or more similar cases are retrieved. A solution suggested by the matching cases is then 
reused. Unless the retrieved case is a close match, the solution will probably have to be 
revised (adapted) and tested (evaluated) for success, producing a new case that can be 
retained ensuing, consequently, update of the case base. 
 
 

2.2 Types of knowledge in CBR 
 
CBR systems make use of many types of knowledge about the problem domain for which 
they are designed. Richter identifies four knowledge containers [14]: the vocabulary, 
similarity measures, adaptation knowledge, and cases themselves. The first three containers 
usually represent general knowledge about the problem domain. If there are any exceptions 
from this knowledge, they are commonly handled by appropriate cases. 
 
Vocabulary includes the knowledge necessary for choosing the features utilised to describe 
the cases. Case features have to be specified so that they satisfy both: (i) being helpful in 
retrieving other cases, which contain useful solutions to similar problems, and (ii) being 
discriminative enough to prevent retrieval of too different cases, which could lead to false 
solutions and/or reduced performance. A thorough comprehension of the problem domain is 
necessary to be able to choose which of all problem parameters are the best as case features. 
In addition, either the vocabulary should be chosen such that it anticipates future expansion of 
the case base, or the system should be developed such that it alleviates automatic expansion of 
the vocabulary. Otherwise, it may be impossible to represent new problem features, which 
will then either be mapped to the available descriptors or be ignored, probably leading in both 
cases to wrong solutions. 
 
Similarity measures include the knowledge about the similarity measure itself and the 
knowledge used to choose the most efficient organisation of the employed case base and the 
most appropriate case-retrieval method. For any given problem, there are many possible 
similarity measures that can be used. Hence, choosing the best among the available 
possibilities and implementing the chosen similarity measure efficiently exacts sound 
knowledge of the problem domain. This is especially important for classification problems 
involving complex structured cases since the value of the similarity can be used as a basis for 
automatic classification. As far as the organisation of the employed case base and the retrieval 
algorithm are concerned, a balance has to be found between case-memory models that 
preserve the semantic richness of cases and methods that simplify the access and retrieval of 
relevant cases. In general, knowledge about cases can be used to choose the organisational 
structure of the case base such that the cases can be accurately and efficiently retrieved. 
 
Adaptation knowledge includes the knowledge necessary for implementing the adaptation and 
evaluation stages of the CBR working cycle. Generally, the adaptation stage requires 
knowledge about how differences in problems affect the solutions. This knowledge is usually 
coded in explicit rules. Yet, since for many problem domains, this is the most difficult 
knowledge to acquire, the adaptation is frequently left to the user of the system. This is 
especially the case when mistakes made by the system are expensive effecting the reliability 
of the system and, in turn, the user’s confidence in it. Usually, before applying a new solution 
for solving a problem, its correctness has to be evaluated. The knowledge required for the 
evaluation stage concerns estimating the significance of differences and similarities between 



 13

the situations. Thus, this type of knowledge can be viewed as an extension and refinement of 
the knowledge furnishing the similarity measures container. 
 
Cases contain knowledge about solved problem instances and, in many CBR systems, this 
represents the knowledge that the system acquires during use. What the cases will contain is 
mainly determined by the chosen vocabulary. Sometimes the employed case base is initialized 
with carefully selected cases that provide a problem domain coverage that is as even as 
possible (e.g., this is the case with the Facial Expression Analyzer described in [11]). This is 
commonly the case when the necessary adaptation stage is to be kept simple, yielding 
manageable system maintenance. Anyhow, new cases will usually be added during use. Yet, it 
is often unwise to store all the solved problems as cases. Large case bases may have high 
memory/storage requirements, may impose long retrieval times and, in turn, may reduce the 
system’s performance. Therefore, heuristics should be specified for determining the useful 
cases to be stored in the case base. 
 
 

2.3 Case representation 
 
A case is a contextualized piece of knowledge representing an experience. It contains the past 
lesson that is the content of the case and the context in which the lesson can be used. In 
general, a case comprises a: 
• Problem description, which depicts the state of the world when the case occurred; 
• Problem solution which states the derived solution to that problem; and/or 
• Outcome, which describes the state of the world after the case occurred. 
 
Cases that comprise problems and their solutions can be used to derive solutions to new 
problems, whereas cases comprising problems and outcomes can be used to evaluate new 
situations. If such cases contain solutions in addition, they can be used to evaluate the 
outcome of proposed solutions and prevent potential problems. The more information is 
stored, the more useful the case can be. Yet entering all available information makes the 
system more complex and, in turn, more difficult to use. Due to these reasons, most of the 
CBR systems are limited to storing only problem descriptions and solutions. 
 
The problem description essentially contains as much data about the problem and its context 
as necessary for an efficient and accurate case retrieval. Principally, it is useful to store 
retrieval statistics like the number of times the case was retrieved and the average match 
value. These statistics may be valuable for handling the case base: for prioritising cases, for 
pruning the case base by removing seldom used cases, and generally for maintenance of the 
case base. 
 
The problem solution can be either atomic or compound. Atomic solutions are typical for 
CBR systems used for diagnosis or for classification in general. Compound solutions can be 
found for instance in CBR systems utilised for planning or design. A compound solution may 
be composed of a sequence of actions, an arrangement of components, etc. For example, in 
the case of the Facial Expression Analyzer reported in [11], compound solutions consist of 
multiple, user-defined, facial-expression interpretation labels. The main use of a solution is to 
serve as a starting point for educing new solutions. Therefore, the way a solution is derived 
may be of equal importance as that of the solution itself. 
 



 14

Cases can be represented as simple feature vectors, or they can be represented using any AI 
representational formalism such as frames, objects, predicates, semantic nets, or rules. The 
choice of particular representational formalism is largely determined by the information to be 
stored within a case. Cases can be monolithic or compound. Individual parts of compound 
cases can be processed or used separately. For example, a problem can be solved by reusing 
partial solutions from several compound cases, like explained in [11]. Most representational 
formalisms are proprietary for the more complex cases. Nevertheless, there is a lack of 
consensus within the CBR community as to exactly what information should be stored within 
a case and, in turn, which representational formalism should be used. However, two pragmatic 
measures can be taken into account in deciding both the information to be stored in a case and 
the appropriate representational formalism: the intended functionality and the ease of 
acquisition of the information represented in the case. 
 
Finally, cases are the basis of any CBR system: a system without cases would not be a case-
based system. Yet, a system using only cases and no other explicit knowledge (not even in the 
similarity measures) is difficult to distinguish from a nearest-neighbour classifier or a 
database retrieval system. In other words, such a system does not exploit the full 
generalisation power of CBR, resulting usually in poor system performance due to inefficient 
retrieval based upon case-by-case search of the whole case base. 
 
 

2.4 Indexing 
 
Within the CBR community, an explicit formal specification (i.e. ontology) of what the terms 
“indices” and “indexing” actually mean in terms of a CBR system has not been established 
yet. Kolodner identifies indexing with an accessibility problem [6], that is, with the whole set 
of issues inherent in setting up the case base and its retrieval process so that the right cases are 
retrieved at the right time. Thus, case indexing involves assigning indices to cases to facilitate 
their retrieval. CBR researches proposed several guidelines on indexing [19]. Indexes should 
be: 
• predictive of the case relevance; 
• recognisable in the sense that it should be understandable why they are used; 
• abstract enough to allow for widening the future use of the case base;  
• concrete (discriminative) enough to facilitate efficient and accurate retrieval. 
 
Both manual and automated methods are used nowadays to select indices. Choosing indices 
manually involves deciding the purpose of a case with respect to the aims of the user and 
deciding under which circumstances the case will be useful. Kolodner claims that people tend 
to be better at choosing the indices than automatic algorithms. Anyhow, there is an ever 
increasing number of automated indexing methods. For a review of these the reader is referred 
to [19]. For an example of an automatic indexing algorithm performing indexing cases by 
(case) features that tend to be predictive across the entire problem domain, the reader is 
referred to [11]. 
 
Indices do not have to be rigid; they may change during use of the system. In fact, changing 
the indexes is one way of learning. Changes may be made if, for instance, a wrong case was 
retrieved or an entirely novel problem situation is encountered. Changes may involve 
changing weights (importance/priority) of the features, changing or adding features, changing 



 15

or adding pointers to other cases in the case base, etc. Similarly to selecting/generating the 
indexes, changing the indexes can be done either manually or automatically. 
 
 

2.5 Case base organization 
 
Case storage is an important aspect in designing efficient CBR system, in that it should reflect 
the conceptual view of what is represented in the case and take into account the indexes that 
characterise the case. As already mentioned above, the case base should be organised into a 
manageable structure that supports efficient and accurate search and retrieval methods. 
Accurate retrieval guarantees that the best matching case will be retrieved, and efficient 
retrieval guarantees that cases will be retrieved fast enough for acceptable system response 
times. These two factors are inversely proportional: it is easy to guarantee accurate retrieval at 
the expense of efficiency (e.g. by matching all the cases) and easy to have fast retrieval if only 
a fraction of the employed case base is searched (possibly missing some examples). Hence, a 
good case-base organisation and a good retrieval algorithm are the ones which yield the best 
compromise between accuracy and efficiency of the retrieval algorithm. 
 
In general, three main approaches to case-base organisation can be distinguished: flat 
organisation, clustered organisation, and hierarchical organisation. Also a combination of 
these methods within the same case base is possible. 
 
Flat organisation is the simplest case-base organisation that yields a straightforward flat 
structure of the case base. Though advantageous due to its simplicity and facile case 
addition/deletion, a flat case-base organisation imposes, in general, case retrieval based upon 
a case-by-case search of the whole case base. Hence, for medium and large case bases, this 
leads to time-consuming retrieval, yielding an inefficient CBR system. 
 
Clustered organisation, originating in the dynamic memory model initially proposed by 
Schank [15], is the type of case-base organisation in which cases are stored in clusters of 
similar cases. The grouping of cases may be based on their mutual similarity (like in the case 
of the dynamic memory of experiences used by Pantic [10], [11]) or on the similarity to some 
prototypical cases. The advantage of this organisation is that the selection of the clusters to be 
matched is rather easy, as it is based upon the indexes and/or prototypical cases characterising 
the clusters. A disadvantage is that it needs a more complex algorithm for case addition/ 
deletion than a flat organised case base. 
 
Hierarchical organisation, originating in the category-exemplar memory model of Porter and 
Bareiss [12], is the case-base organisation that is generally obtained when cases that share the 
same features are grouped together. The case memory is a network structure of categories, 
semantic relations, cases, and index pointers. Each case is associated with a category, while 
the categories are inter-linked within a semantic network containing the features and 
intermediate states referred to by other terms. Different case features are assigned different 
importance in describing the membership of a case to a category. It is important to note that 
this importance assignment is static; if it changes, the case-base hierarchy has to be redefined. 
A new case is stored by searching for a matching case and by establishing the relevant feature 
indexes. If a case is found with only minor differences to the new case, the new case is 
usually not retained. In turn, a hierarchical case-base organisation facilitates fast and accurate 
case retrieval. However, its higher complexity implies a rather cumbersome case 



 16

addition/deletion, potentially involving expensive case-base reorganisation and an inapt case-
base evaluation and maintenance. 
 
 

2.6 Retrieval 
 
Given a description of a problem, a retrieval algorithm should retrieve cases that are most 
similar to the problem or situation currently presented to the pertinent CBR system. The 
retrieval algorithm relies on the indices and the organisation of the case memory to direct the 
search to case(s) potentially useful for solving the currently encountered problem. 
 
The issue of choosing the best matching cases can be referred to as analogy drawing, that is, 
comparing cases in order to determine the degree of similarity between them. Many retrieval 
algorithms have been proposed in the literature up to date: induction search (e.g., ID3, [13]), 
nearest neighbour search, serial search, hierarchical search, parallel search, etc. (for examples, 
see [8]). 
 
The simplest form of retrieval is the 1st-nearest-neighbour search of the case base, which 
performs similarity matching on all the cases in the case base and returns just one best match 
[8]. It is to be expected that this method implies long retrieval times, especially in the case of 
large case bases. Therefore, cases are usually preselected prior to similarity matching. Cases 
can be preselected using a simpler similarity measure; commonly, this is done using the 
indexing structure of the case base. A typical problem with preselection concerns handling a 
situation where no best match has been found in the preselected set of cases; since 
preselection is merely approximate, there is a possibility that amongst the non-selected cases a 
better match can be found. 
 
Another way of speeding up the retrieval is to employ ranking of cases. The simplest ranking 
method concerns exploiting the retrieval statistics for cases in the case base. The frequently 
retrieved cases can be considered as prototypical cases and probably should be matched first. 
Another ranking method is applicable to the clustered case-base organisation. It concerns 
matching the current case to the clusters’ prototypes and then searching the matching clusters 
in the order determined by the degree of similarity between the matching clusters’ prototypes 
and the current case. 
 
The retrieval may result in retrieving single or multiple best match cases. In general, the 
retrieval mechanism tends to be simpler and faster if: (i) a larger number of possibly similar 
cases are retrieved, (ii) all of them are used to find solutions, and then (iii) the best solution is 
chosen. In this case, the retrieval algorithm itself may be less selective (and, therefore, simpler 
and faster) since the usefulness of the retrieved cases is to be determined in succeeding 
processing phases. 
 
Finally, a way of speeding up the retrieval is to do it in parallel. A parallel search of the case 
base is realisable since case matching does not require exchange of much information 
between the parallel running processes. Thus, the speed gain scales up with the number of 
processing units. While the implementation of parallel retrieval is simple for flat and clustered 
case bases, it is rather difficult for hierarchical case bases. Though bringing significant speed 
gains, parallel retrieval is usually accompanied by an increase in implementation costs and 
software complexity. 
 



 17

 

2.7 Adaptation 
 
Generally, once a matching case is retrieved, it will not correspond to exactly the same 
problem as the problem for which the solution is currently being sought. Consequently, the 
solution belonging to the retrieved case may not be optimal for the problem presently 
encountered and, therefore, it should be adapted. Adaptation looks for prominent differences 
between the retrieved case and the current case, and then (most commonly) applies a formulae 
or a set of rules to account for those differences when suggesting a solution. In general, there 
are two kinds of adaptation in CBR [19]: 
1. Structural adaptation applies adaptation rules directly to the solution stored in cases. If 

the solution comprises a single value or a collection of independent values, structural 
adaptation can include modifying certain parameters in the appropriate direction, 
interpolating between several retrieved cases, voting, etc. However, if there are 
interdependencies between the components of the solution, structural adaptation requires a 
thorough comprehension and a well-defined model of the problem domain. 

2. Derivational adaptation reuses algorithms, methods, or rules that generated the original 
solution to produce a new solution to the problem currently presented to the system. 
Hence, derivational adaptation requires the planning sequence that begot a solution to be 
stored in memory along with that solution. This kind of adaptation, sometimes referred to 
as reinstantiation, can only be used for problem domains that are well understood. 

 
An ideal set of rules must be able to generate complete solutions from scratch, and an 
effective and efficient CBR system may need both structural adaptation rules to adapt poorly 
understood solutions and derivational mechanisms to adapt solutions of cases that are well 
understood. However, one should be aware that complex adaptation procedures make the 
system more complex but not necessarily more powerful. Complex adaptation procedures 
make it more difficult to build and maintain CBR systems and may also reduce system 
reliability and, in turn, user’s confidence in the system if faulty adaptations are encountered 
due to, for example, incompleteness of the adaptation knowledge, which is the most difficult 
kind of knowledge to acquire [7]. Therefore, in many CBR systems, adaptation is done by the 
user rather than by the system. Mark et al. report that in a well-designed system, the users do 
not perceive “manual” adaptation as something negative [7]. 
 
 

2.8 Vantages and limitations of CBR 
 
CBR is a lazy problem-solving method and shares many characteristics with other lazy 
problem-solving methods, including advantages and disadvantages. Aha [2] defines the 
peculiarities of lazy problem-solving methods in terms of three Ds: 
• Defer: lazy problem solvers simply store the presented data and generalizing beyond these 

data is postponed until an explicit request is made. 
• Data-driven: lazy problem solvers respond to a given request by combining information 

from the stored data. 
• Discard: lazy problem solvers dismiss any temporary (intermediate) result obtained 

during the problem solving process. 
 
Unlike lazy problem solvers, eager problem-solving methods try to extract as much 
information as possible from the presented data and then to discard the data prior to the actual 



 18

problem solving. An example of a lazy problem solver is a CBR classifier, while an ANN 
classifier is an example of an eager problem solver. Eager algorithms can be referred to as 
knowledge compilers, as opposed to lazy algorithms, which perform run-time knowledge 
interpretation. This is the key difference between lazy and eager problem solvers, which can 
also be explained by the following: 
• Lazy methods can consider the current query instance x when deciding how to generalise 

beyond the training data (which have already been presented). 
• Eager methods cannot, because their global approximation to the target function has 

already been chosen by the time they observe the current query instance x. 
 
To summarise, lazy methods have the option of selecting a different hypothesis or local 
approximation to the target function for each presented query instance. Eager methods using 
the same hypothesis space are more restricted because they must choose their approximation 
before the presented queries are observed. Consequently, a lazy method will generally require 
less computation during training, but more computation when it must generalise from training 
data by choosing a hypothesis based on the training examples near the currently presented 
query. 
 
The benefits of CBR as a lazy problem-solving method are: 
• Ease of knowledge elicitation: Lazy methods, in general, can utilise easily available cases 

or problem instances instead of rules that are difficult to extract. So, classical knowledge 
engineering is replaced by case acquisition and structuring [2]. 

• Absence of problem-solving bias: Because cases are stored in a “raw” form, they can be 
used for multiple problem-solving purposes. This in contrast to eager methods, which can 
be used merely for the purpose for which the knowledge has already been compiled. 

• Incremental learning: A CBR system can be put into operation with a minimal set of 
solved cases furnishing the case base. The case base will be filled with new cases as the 
system is used, increasing the system’s problem-solving ability. Besides simple 
augmentation of the case base, new indexes and clusters/categories can be created and the 
existing ones can be changed. This in contrast to virtually all machine-learning methods 
(see part 1 of this syllabus), which require a special training period whenever information 
extraction (knowledge generalisation) is performed. Hence, dynamic on-line adaptation to 
a non-rigid environment is possible [8]. 

• Suitability for complex and not-fully formalised solution spaces: CBR systems can be 
applied to an incomplete model of problem domain; implementation involves both to 
identify relevant case features and to furnish, possibly a partial case base, with proper 
cases. In general, because they can handle them more easily, lazy approaches are often 
more appropriate for complex solution spaces than eager approaches, which replace the 
presented data with abstractions obtained by generalisation. 

• Suitability for sequential problem solving: Sequential tasks, like these encountered in 
reinforcement learning problems, benefit from the storage of history in the form of a 
sequence of states or procedures. Such a storage is facilitated by lazy approaches. 

• Ease of explanation: The results of a CBR system can be justified based upon the 
similarity of the current problem to the retrieved case(s). Because solutions generated by 
CBR are easily traceable to precedent cases, it is also easier to analyse failures of the 
system. As noted by Watson and Marir [19], the explanations provided based upon 
individual and generalised cases tend to be more satisfactory than explanations generated 
by chains of rules. 

• Ease of maintenance: This is particularly due to the fact that CBR systems can adapt to 
many changes in the problem domain and the pertinent environment, merely by acquiring 



 19

new cases. This eliminates some need for maintenance; only the case base(s) needs to be 
maintained. 

 
Major disadvantages of lazy problem solvers are their memory requirements and time-
consuming execution due the processing necessary to answer the queries. The limitations of 
CBR can be summarised as follows: 
• Handling large case bases: High memory/storage requirements and time-consuming 

retrieval accompany CBR systems utilising large case bases. Although the order of both is 
at most linear with the number of cases, these problems usually lead to increased 
construction costs and reduced system performance. Yet, these problems are less and less 
significant as the hardware components become faster and cheaper. 

• Dynamic problem domains: CBR systems may have difficulties in handling dynamic 
problem domains, where they may be unable to follow a shift in the way problems are 
solved, since they are usually strongly biased towards what has already worked. This may 
result in an outdated case base. 

• Handling noisy data: Parts of the problem situation may be irrelevant to the problem 
itself. Unsuccessful assessment of such noise present in a problem situation currently 
imposed on a CBR system may result in the same problem being unnecessarily stored 
numerous times in the case base because of the difference due to the noise. In turn this 
implies inefficient storage and retrieval of cases. 

• Fully automatic operation: In a typical CBR system, the problem domain is usually not 
fully covered. Hence, some problem situations can occur for which the system has no 
solution. In such situations, CBR systems commonly expect input from the user. 

 
 

2.9 CBR application domains 
 
Although CBR is a relatively new AI methodology, numerous successful applications exist in 
the academic as well as in the commercial domain. Already in 1994, Watson and Marir 
reported over 100 commercially available CBR applications [19]. The domains of these 
numerous CBR systems reported in the literature are the following: 
• Interpretation as a process of evaluating situations/problems in some context (e.g., HYPO 

for interpretation of patent laws proposed in 1991, KICS for interpretation of building 
regulations proposed in 1994, LISSA for interpretation of non-destructive test 
measurements proposed in 1999). 

• Classification as a process of explaining a number of encountered symptoms (e.g., 
CASEY for classification of auditory impairments proposed in 1989, CASCADE for 
classification of software failures proposed in 1992, PAKAR for causal classification of 
building defects proposed in 1994, ISFER for classification of facial expressions into user-
defined interpretation categories proposed in [10]). 

• Design as a process of satisfying a number of posed constraints (e.g., JULIA for meal 
planning proposed in 1992, Déjà Vu for control-software production proposed in 1996, 
CLAVIER for design of optimal layouts of composite airplane parts proposed in 1996, 
EADOCS for aircraft panels design proposed 1997). 

• Planning as a process of arranging a sequence of actions in time (e.g., BOLERO for 
building diagnostic plans for medical patients proposed in 1993, TOTLEC for 
manufacturing planning proposed in 1993). 

• Advising as a process of resolving diagnosed problems (e.g., DECIDER for advising 
students proposed in 1987, HOMER – a CAD/CAM help desk proposed in 1998). 



 20

 



 21

References 
 
[1] A. Aamodt and E. Plaza, “CBR: foundational issues, methodological variations and 

system approaches”, AI Communications, vol. 7, no. 1, pp. 39-59, 1994. 
[2] D.W. Aha, “The omnipresence of case-based reasoning in science and application”, 

Knowledge-Based Systems, vol. 11, no. 5-6, pp. 261-273, 1998. 
[3] C.G. Atkeson, A.W. Moore and S. Schaal, “Locally Weighted Learning”, Artificial 

Intelligence Review, vol. 11, pp. 11-73, 1997. 
[4] P. Clark and R. Niblett, “The CN2 induction algorithm”, Machine Learning, vol. 3, pp. 

261-284, 1989. 
[5] T. Dietterich, H. Hild, and G. Bakiri, “A comparison of ID3 and backpropagation for 

English text-to-speech mapping”, Machine Learning, vol. 18, no. 1, pp. 51-80, 1995. 
[6] J. Kolodner, “Making the implicit explicit: Clarifying the principles of case-based 

reasoning”, Case-Based Reasoning: Experiences, Lessons & Future Directions, D.B. 
Leake, (Ed.), pp. 349-370, AAAI Press, Menlo Park, USA, 1996. 

[7] W. Mark, E. Simoudis and D. Hinkle, “Case-based reasoning: Expectations and results”, 
Case-Based Reasoning: Experiences, Lessons & Future Directions, D.B. Leake, (Ed.), 
pp. 269-294, AAAI Press, Menlo Park, USA, 1996. 

[8] T.M.. Mitchell, Machine Learning. Singapore: McGraw-Hill Companies Inc., 1997. 
[9] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems. Essex, UK: 

Addison Wesley, 2nd edition, 2004. 
[10] M. Pantic, Facial Expression Analysis by Computational Intelligence Techniques. PhD 

thesis, Delft University of Technology, 2001. 
[11] M. Pantic and L.J.M. Rothkrantz, “Case-based reasoning for user-profiled recognition of 

emotions from face images”, Proc. IEEE Int’l Conf. Multimedia and Expo, 2004. 
[12] B.W. Porter and E.R. Bareiss, “PROTOS: Experiment in knowledge acquisition for 

heuristic classification tasks”, Proc. 1st Int’l Meeting on Advances in Learning, pp. 159-
174, 1986. 

[13] J.R. Quinlan, Programs for Machine Learning. San Mateo, USA: Morgan Kaufmann, 
1993. 

[14] M.M. Richter, “On the notion of similarity in case-based reasoning”, Mathematical and 
Statistical Methods in Artificial Intelligence, G. della Riccia, R. Kruse, R. Viertl, (Eds.), 
pp. 171-184. Heidelberg, Germany: Springer-Verlag, 1995. 

[15] R.C. Schank, Dynamic memory: A theory of reminding and learning in computers and 
people. Cambridge, UK: Cambridge University Press, 1982. 

[16] R.C. Schank, Memory-based expert systems. Technical Report (# AFOSR. TR. 84-
0814), Yale University, New Haven, USA, 1984. 

[17] N. Sebe, M.S. Lew, I. Cohen, Y. Sun, T. Gevers and T.S. Huang, “Authentic Facial 
Expression Analysis”, Proc. IEEE Int’l Conf. Face and Gesture Recognition, pp. 517-
522, 2004. 

[18] R.S. Sutton and A.G. Barto, Reinforcement learning: An introduction. Cambridge, USA: 
MIT Press, 1998. 

[19] I. Watson and F. Marir, “Case-base reasoning: A review”, The Knowledge Engineering 
Review, vol. 9, no. 4, pp. 327-354, 1994. 

 


	Machine Learning
	Introduction to Machine Learning
	&
	Case-Based Reasoning
	
	Prologue

	Part 1: Introduction to Machine Learning
	Part 2: Case-based Reasoning
	Introduction to Machine Learning
	What does the term “machine learning” denote?
	The primary machine learning approaches and algorithms
	Vantages and disadvantages of machine learning

	Case-Based Reasoning
	The CBR working cycle
	Types of knowledge in CBR
	Case representation
	Indexing
	Case base organization
	Retrieval
	Adaptation
	Vantages and limitations of CBR
	CBR application domains

	References



