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Course 395: Machine Learning – Lectures

• Lecture 1-2: Concept Learning (M. Pantic)

• Lecture 3-4: Decision Trees & CBC Intro (M. Pantic)

• Lecture 5-6: Artificial Neural Networks (S. Zafeiriou)

• Lecture 7-8: Instance Based Learning (M. Pantic)

• Lecture 9-10: Genetic Algorithms (M. Pantic)

• Lecture 11-12: Evaluating Hypotheses (M.F. Valstar)

• Lecture 13-14: Bayesian Learning (S. Zafeiriou)

• Lecture 15-16: Bayesian Learning (S. Zafeiriou)

• Lecture 17-18: Inductive Logic Programming (S. Muggleton)


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Evaluating Hypothesis – Lecture Overview

• Measures of classification accuracy
– Classification Error Rate
– Cross Validation
– Recall, Precision, Confusion Matrix
– Receiver Operator Curves, two-alternative forced choice

• Estimating hypothesis accuracy
– Sample Error vs. True Error
– Confidence Intervals

• Sampling Theory Basics
– Binomial and Normal Distributions
– Mean and Variance
– One-sided vs. Two-sided Bounds

• Comparing Hypotheses
– t-test
– Analysis of Variance (ANOVA) test
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• Common performance measure for classification problems
– Success: instance’s class is predicted correctly (True Positives (TP) /

Negatives (TN))
– Error: instance’s class is predicted incorrectly (False Positives (FP)

/Negatives (FN))
– Classification error rate: proportion of instances misclassified over the

whole set of instances.

• Classification Error Rate on the Training Set can be too optimistic!
– Unbalanced data sets

• Randomly split data into training and test sets (e.g. 2/3 for train, 1/3
for test)

The test data must not be used in any way to train the classifier!

Classification Measures – Error Rate
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Classification Measures – Training/Test Sets

• For large datasets, a single split is usually sufficient. 
• For smaller datasets, rely on cross validation
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Cross Validation - Overfitting

• Given a hypothesis space H, h   H overfits the training data if
        h’   H such that h has smaller error over the training

examples, but h’ has smaller error than h over the entire
distribution of instances.

!

!!
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Cross Validation - Overfitting

• Overfitting can occur when:
– Learning is performed for too long (e.g. in Neural Networks)
– The examples in the training set are not representative of all

possible situations (is usually the case! )
• The model is adjusted to uninformative features in the training set that

have no causal relation to the true underlying target function!
• Cross Validation:

– Leave one example out
– Leave one attribute out
– Leave n% out
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Cross Validation

Total error estimate:

• Training Data segments between different folds should never overlap!
• Training and test data in the same fold should never overlap!
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Cross Validation

• Split the data into training and test sets in a repeated fashion.
• Estimate the total error as the average of each fold error.

Total error estimate:

+
-
+
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Classification Measures – Unbalanced Sets

• Even with cross validation, the classification rate can be misleading!
– Balanced set: equal number of positive / negative examples

Classifier TP TN FP FN Rec.
Rate

A 25 25 25 25 50%

B 37 37 13 13 74%

–  Unbalanced set: unequal number of positive / negative examples
Classifier TP TN FP FN Rec.

Rate

A 25 75 75 25 50%

B 0 150 0 50 75%

Classifier B cannot classify any positive examples!
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Classification Measures – Recall / Precision rates

• For the positive class:
– Classifier A: Recall = 50%, Precision = 25%
– Classifier B: Recall =   0%, Precision =   0%

B classifier is useless!!

• More insight over a classifier’s behaviour. 
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Classification Measures – F Measure

• Comparing different approaches is difficult when using two
evaluation measures (e.g. Recall and Precision)

• F-measure combines recall and precision into a single measure:

! 

f" = 1+ "2( )
P# R

"2 # P( ) + R
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Classification Measures – ROC curves

• Can be achieved by e.g. varying decision threshold of a classifier
• Area under the curve is an often used measure of goodness
• Two-forced alternative choice (2AFC) score is an easy to compute

approximation of the area under the ROC curve

Receiver Operator Characteristic (ROC) curves plot true positive
rates against  false positive rates
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Classification Measures – Confusion Matrix

• A visualization tool used to present the results attained by a learner.
• Easy to see if the system is commonly mislabelling one class as another.

           Predicted
True

A B C

A 5 3 0

B 2 3 1

C 0 2 11

What are the recall and precision rates per class of this classifier?

Recall 5/8 3/6 11/13

Precision 5/7 3/8 11/12
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Estimating accuracy of classification measures

• We want to know how well a machine learner, which learned the
hypothesis h as the approximation of the target function V, performs
in terms of classifying a novel, unseen example correctly.

• We want to assess the confidence that we can have in this
classification measure.

Problem: we always have too little data!
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Sample error & true error – True error

• The True error of hypothesis h is the probability that it will
misclassify a randomly drawn example x from distribution D:

( ) ( ) ( )[ ]xhxVherror
D

!" Pr

• However, we cannot measure the true error. We can only
estimate errorD by the Sample error errors
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Sample error & true error – Sample error
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• Given a set S of n elements drawn i.i.d. from distribution D we
empirically find the Sample error, a measure for the error of hypothesis
h as:

• Drawing n instances independently, identically distributed (i.i.d)
means:
• drawing an instance does not influence the probability that another
instance will be drawn next
• instances are drawn using the same underlying probability
distribution D

• The function                   equals 1 if the hypothesis of an instance does
not equal the target function of the same instance (i.e., makes an error)
and is 0 otherwise

( ) ( )( )xhxV ,!
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Confidence interval - Theory

Given a sample S of cardinality n >= 30 on which hypothesis h
makes r errors, we can say that:

1. The most probable value of errorD(h) is errors(h)
2. With N % confidence, the true error lies in the interval:
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Sampling theory - Basics

To evaluate machine learning techniques, we rely heavily on
probability theory. In the next slides, basic knowledge of
probability theory, including the terms mean, standard
deviation, probability density function (pdf) and the concept of
a Bernoulli trial are considered known.
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Sampling theory – Mean, Std, Bernouilli

Given a random variable Y with a sequence of instances y1…yn,

• The expected or mean value of Y is:

• The variance of Y is:

• The standard deviation of Y is:                     , and is the expected error in using
a single observation of Y to estimate its mean.

• A Bernoulli trial is a trial with a binary outcome, for which the probability that
the outcome is 1 equals p (think of a coin toss of an old warped coin with the
probability of throwing heads being p).

• A Bernoulli experiment is a number of Bernoulli trials performed after each
other. These trials are i.i.d. by definition.
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Sampling theory - Binomial distribution

Let us run k Bernoulli experiments, each time counting the number
of errors r made by h on a sample Si, |Si|= n.
If k becomes large, the distribution of errorSi(h) looks like:

This is called a Binomial distribution. The graph is an example of a pdf.
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Sampling theory - Normal distribution

• The Normal or Gaussian
distribution is a very well
known and much used
distribution. Its probability
density function looks like a
bell.

• The Normal distribution has many useful properties. It is fully described
by it’s mean and variance and is easy to use in calculations.

• The good thing: given enough experiments, a Binomial distribution
converges to a Normal distribution.
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Confidence interval - Theory

Given a sample S of cardinality n >= 30 on which hypothesis h
makes r errors, we can say that:

1. The most probable value of errorD(h) is errors(h)
2. With N % confidence, the true error lies in the interval:
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Confidence interval – zN
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Confidence interval – example (1)

Consider the following example:

• A classifier has a 13% chance of making an error
• A sample S containing 100 instances is drawn
• We can now compute, that with 90% confidence we can say that the

true error lies in the interval,
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Confidence interval – example (2)

Given the following extract from a scientific paper on multimodal
emotion recognition:

For the Face modality, what is n? What is errors(h)? 

Exercise: compute the 95% confidence interval for this error.
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Confidence interval – example (3)

Given that errors(h)=0.22 and n= 50, and zN=1.96 for N = 95, we can
now say that with 95% probability errorD(h) will lie in the interval:
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What will happen when              ?!"n

However, we are not only uncertain about the quality of
errorS(h), but also about how well S represents D!!!
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Sampling theory - Two sided/one sided bounds

• Using the symmetry property of a normal distribution, we now
find that errorD(h) <= U=0.34 with confidence (100-
a/2)=97.5%.

• We might be interested not in a confidence interval with both an
upper and a lower bound,  but instead in the upper or lower limit
only. For instance, what is the probability that errorD(h) is at
most U.

• In the confidence interval example, we found that with
(100-a)=95% confidence

( ) UherrorL
D

=!!= 34.011.0
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Sampling theory - Two sided/one sided bounds

• The confidence of  L<=Y<=U can be found as: ( )!
U

L

YPr

• In this case the confidence for Y lying in this interval is 80%
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Sampling theory - Two sided/one sided bounds

• The confidence of  Y<=U can be found as: ( )!
"#

U

YPr

• In this case the confidence for Y being smaller than U is 90%
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Comparing hypotheses - Ideal case
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We want to estimate the difference in errors d made by
hypotheses h1 and h2, tested on samples S1 and S2

The estimator we choose for this problem is:
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Comparing hypotheses – ideal case
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• As both errorS1(h1) and errorS2(h2) follow approximately a Normal
distribution, so will d. Also, the variance of d is the sum of the
variances of errorS1(h1) and errorS2(h2):

• Now we can find the N% confidence interval for the error difference d:
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T-test

• Assess whether the means of two distributions are statistically different
from each other.

Consider the distributions as the classification errors of  two different classifiers,
derived by cross-validation. Are the means of the distributions enough to say that

one of the classifiers is better?
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T-test

threshold

T distribution• The t test is a test on the null
hypothesis

      H0 : the means  of the distributions
are the same, against the alternative
hypothesis

      Hα : at least two means of
distributions are unequal.
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T-test:
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If the calculated t value is above the threshold chosen for statistical significance then the 
null hypothesis that the two groups do not differ is rejected in favour of the alternative 
hypothesis,  which typically states that the groups do differ. 

T-test

• Significance level α%: α times out of 100 you would find a statistically significant
difference between the distributions even if there was none. It essentially defines
our tolerance level.

• Degrees of
freedom: Sum of
samples in the
two groups - 2
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T-test – MATLAB

• performs a T-test of the hypothesis that two  independent samples, in
the vectors X and Y, come from distributions with equal means, and
returns the result of the test in H.

• H==0 indicates that the null hypothesis ("means are equal") cannot
be rejected at the α% significance level.

• H==1 indicates that the null hypothesis can be rejected at the α%
level.  The data are assumed to come from normal distributions with
unknown, but equal, variances.  X and Y can have different lengths.

H = TTEST2(X,Y,ALPHA) 
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Analysis of Variance (ANOVA) test

• Similar to t-test, but compares several distribution simultaneously.
Notation:

– g is the number of groups we want to compare.
– µ1, µ2,…, µg are the means of the distributions we want to compare.
– n1, n2,…, ng are the sample sizes
–                      are the sample means
– σ1, σ2,…, σg are the sample standard deviations

• The ANOVA test is a test on the null hypothesis H0 : the means of the
distributions are the same, against the alternative hypothesis Hα :at least
two means are unequal.

gYYY ...,
,2,1
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Analysis of Variance (ANOVA) test

• Basic principle : compute two different estimates of the population
variance:
– The within groups estimate pools together the sums of squares of the

observations about their means:
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– The between groups estimate, calculated with reference to the grand mean,
that is, the mean of  all the observations pooled together:
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 only a good estimate of the sample variance if the null hypothesis is
true

 only then will the grand mean be a good estimate of mean of each
group.
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Analysis of Variance (ANOVA) test
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• The ANOVA F test statistic is the ratio of the between estimate and the within
estimate:
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• When the null hypothesis is false, the between estimate tends to overestimate the
population variance, so it tends to be larger than the within estimate.  Then, the F
test statistic tends to be considerably larger than 1.

• The ANOVA test has an F probability distribution function as its sampling
distribution.  It has two degrees of freedom that determine its exact shape:
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F0 FCRIT

Analysis of Variance (ANOVA) test

•H0: All Equal
•H1: Not All Equal

There is evidence that at least one distribution
differs from the rest.

1−α =
0.05

i
µ

If  F>FCRIT  :

The shaded area of
the graph indicates
the rejection region
at the α significance
level
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Analysis of Variance (ANOVA) test - MATLAB

•  performs a one-way ANOVA for comparing the means of two or more groups of
data. It returns the p-value for the null hypothesis that the means of the groups are
equal.

• If X is a matrix, ANOVA1 treats each column as a separate group, and determines
whether the population means of the columns are equal.

P = ANOVA1(X)
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Given  a set of i.i.d. random variables Y1...Yn governed
by an arbitrary pdf with mean µ and finite variance σ2.
Define the sample mean

Then, as           , the distribution governing

approaches a standard Normal distribution.

Sampling theory - Central limit theorem
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The Central Limit theorem states that,
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Course 395: Machine Learning – Lectures

• Lecture 1-2: Concept Learning (M. Pantic)

• Lecture 3-4: Decision Trees & CBC Intro (M. Pantic)

• Lecture 5-6: Artificial Neural Networks (S. Zafeiriou)

• Lecture 7-8: Instance Based Learning (M. Pantic)

• Lecture 9-10: Genetic Algorithms (M. Pantic)

• Lecture 11-12: Evaluating Hypotheses (M.F. Valstar)

• Lecture 13-14: Bayesian Learning (S. Zafeiriou)

• Lecture 15-16: Bayesian Learning (S. Zafeiriou)

• Lecture 17-18: Inductive Logic Programming (S. Muggleton)
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