

# Course 395: Machine Learning - Lectures

Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

➤ Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)

# ***Output Weights Update Rule: Example***

---

- Update rule for output units:  $\Delta w_{kj} = -\eta \frac{\partial E}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k} y_j$
- Error function  $E = \frac{1}{2} \sum_{k=1}^K (t_k - o_k)^2$
- $\frac{\partial E}{\partial o_k} = -(t_k - o_k)$
- $\frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k} = \sigma(\text{net}_k)(1 - \sigma(\text{net}_k)) = o_k(1 - o_k)$   
when  $\sigma$  is sigmoid

# ***Output Weights Update Rule: Example***

---

- $\Delta w_{kj} = -\eta \frac{\partial E}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k} y_j = \eta(t_k - o_k)o_k(1 - o_k)y_j$
- When the output is 0 or 1 then  $\Delta w$  is 0 as well
- No matter if our prediction is right or wrong  $\Delta w$  will be 0 if the output is either 0 or 1
- When the output activation function is sigmoid it is not a good idea to use the quadratic error function
- See <http://neuralnetworksanddeeplearning.com/chap3.html>

# Cross Entropy Error as Error Function

---

- A good error function when the output activation functions are sigmoid is the binary cross entropy defined as follows:

$$E = -\sum_{k=1}^K (t_k \ln o_k + (1-t_k) \ln(1-o_k))$$

- $\Delta w_{kj} = -\eta \frac{\partial E}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k} y_j$
- $\frac{\partial E}{\partial o_k} = \frac{o_k - t_k}{o_k(1-o_k)}$
- $\frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k} = \sigma(\text{net}_k)(1 - \sigma(\text{net}_k)) = o_k(1 - o_k)$

# Cross Entropy Error as Error Function

---

- $\Delta w_{kj} = -\eta \frac{\partial E}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k} y_j$
- $\Delta w_{kj} = -\eta \frac{o_k - t_k}{o_k(1-o_k)} o_k(1 - o_k) y_j = \eta(t_k - o_k) y_j$
- The higher the error the higher the weight update

# Softmax output activation functions

---

- A popular output activation function for classification is  
softmax 
$$o_k = \frac{e^{net_k}}{\sum_k e^{net_k}}$$
- The output can be interpreted as a discrete probability distribution
- The right error function is the negative log likelihood cost  
$$E = - \sum_k t_k \ln o_k$$
- Target vectors =  $[0 \ 0 \ 1 \ \dots \ 0]$   $\rightarrow E = -\ln o_L$  where L is the position of the active target, i.e., it is 1.

# ***Output activation functions: Summary***

---

- For each output activation function the right error function should be selected
- Sigmoid → Cross entropy error (useful for classification)
- Softmax → negative log likelihood cost (useful for classification)
- Both combinations work well for classification problems, Softmax has the advantage of producing a discrete probability distribution over the outputs
- Linear → Quadratic loss (useful for regression)

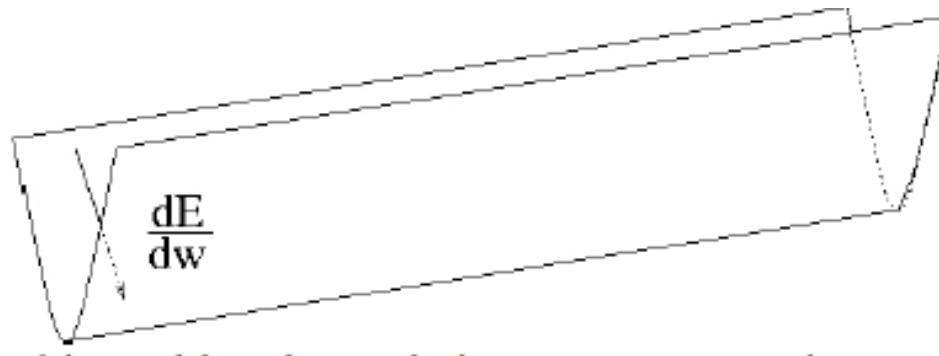
# ***SGD with momentum***

---

- Standard backpropagation

$$w_i \leftarrow w_i + \Delta w_i \quad \Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

- If the error surface is a long and narrow valley, gradient descent goes quickly down the valley walls, but very slowly along the valley floor.



From <https://www.cs.toronto.edu/~hinton/csc2515/notes/lec6tutorial.pdf>

# ***SGD with momentum***

---

- Standard backpropagation

$$w_i \leftarrow w_i + \Delta w_i \quad \Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

- Backpropagation with momentum

$$\Delta w_i(t) = \mu \Delta w_i(t-1) + (1 - \mu) \left( -\eta \frac{\partial E}{\partial w_i(t)} \right) \text{ OR}$$

$$\Delta w_i(t) = \mu \Delta w_i(t-1) + \left( -\eta \frac{\partial E}{\partial w_i(t)} \right)$$

- $\mu$  = momentum constant, usually 0.9, 0.95
- It is like giving momentum to the weights
- We do not take into account only the local gradient but also recent trends in the error surface

# *Other Training Algorithms*

---

- Adam (usually works quite well)
- Adagrad
- Adadelta
- RMSprop
- Nesterov momentum
- ...and others

# **Learning Rate Decay**

---

- In the beginning weights are random so we need large weight updates, then as training progresses we need smaller and smaller updates.
- It's a good idea to start with a “high” (depends on the problem/dataset) learning rate and decay it slowly.
- Typical values for initial learning rate, 0.1, 0.01. It's problem dependent
- Step decay: Reduce the learning rate by some factor every few epochs, e.g., divide by 2 every 50 epochs

# Learning Rate Decay

---

- Keep learning rate constant for T epochs and then decrease as follows:  $lr_t = \frac{lr_0 * T}{\max(t, T)}$
- Keep learning rate constant for T epochs and then decrease as follows:  $lr_t = lr_{t-1} * scalingFactor$  (e.g. 0.99)
- Decrease as follows:  $lr_t = \frac{lr_0}{1 + \frac{t}{T}}$ , T is the epoch where the learning rate is halved
- You can think of many other ways to decay the learning rate

# **Momentum**

---

- It's usually a good practice to increase the momentum during training.
- Typically the initial value is 0.5 and the final value is 0.9, 0.95
- Increase is usually linear
- It's also common to start increasing the momentum when the learning rate starts decreasing.

# Weight Initialisation

---

- We said we start with random weights...but how?
- Some of the most common weight initialisation techniques are the following:
  1. Sample from a gaussian distribution, we need to define mean (usually 0) and standard deviation (e.g. 0.1 or 0.01)
  2. Sample from a uniform distribution, we need to define the range  $[-b, b]$
  3. Sparse initialisation: Use gaussian/uniform distributions to initialise weights and then set most of them to 0. You need to define sparsity level, e.g. 0.8 (80% weights in each layer are set to 0).

# Weight Initialisation

---

4. Glorot Initialisation: Sample from a gaussian distribution with 0 mean and st. dev. =  $\sqrt{2/(n1 + n2)}$ 
  - $n1, n2$  are the number of neurons in the previous and next layers, respectively.
  - Glorot, Bengio, Understanding the difficulty of training deep feedforward neural networks, JMLR, 2010

# Weight Initialisation

---

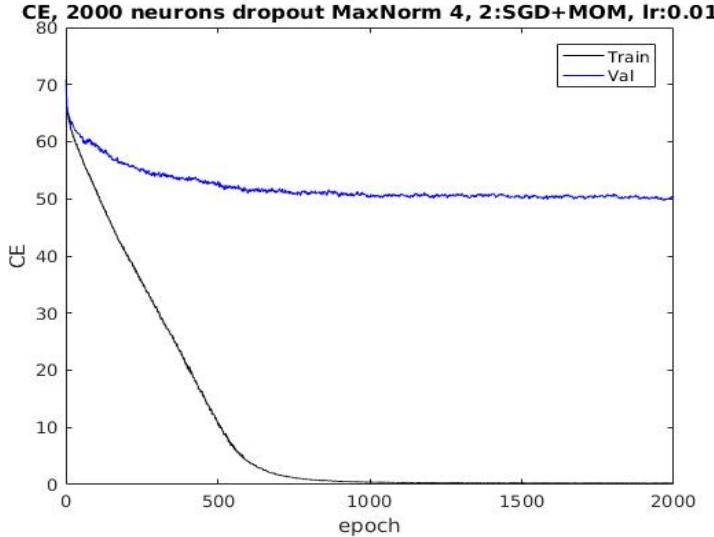
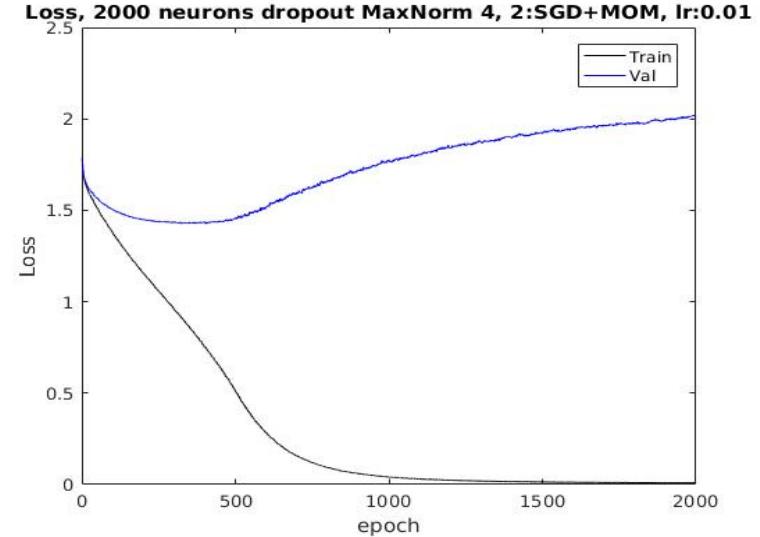
5. He Initialisation: Sample from a gaussian distribution with 0 mean and st. dev. =  $\sqrt{2/n_1}$ 
  - $n_1$  is the number of inputs to the neuron (i.e. the size of the previous layer).
  - Designed for neurons which use ReLu as activation functions.
  - He et al., Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, ICCV 2015
6. You can find many other approaches in the literature

# ***Ways to avoid overfitting***

---

- Early stopping (see slide 55, part 1)
- L1 Regularisation
- L2 Regularisation
- Dropout
- Max-norm Constraint
- Data augmentation

# Early Stopping



- Early stopping: should we use loss or Classification error?
- It's common that classification error can go down while the loss goes up!

# **L2 Regularisation**

---

- $E = E_0 + \lambda \sum_{all\ weights} w^2$
- $E_0$  is the original error function, e.g., quadratic loss, negative log-likelihood
- It is NOT applied to the bias
- We wish to minimise the original error function ( $E_0$ )
- We also wish to penalise large weights, keep the weights small (second term)
- Small  $\lambda \rightarrow$  we prefer to minimise  $E_0$
- Large  $\lambda \rightarrow$  we prefer small weights

# ***L1 Regularisation***

---

- $E = E_0 + \lambda \sum_{all\ weights} |w|$
- $E_0$  is the original error function, e.g., quadratic loss, negative log-likelihood
- It is NOT applied to the bias
- We wish to minimise the original error function ( $E_0$ )
- We also wish to penalise large weights, keep the weights small (second term)
- Small  $\lambda \rightarrow$  we prefer to minimise  $E_0$
- Large  $\lambda \rightarrow$  we prefer small weights

# ***L1/L2 Regularisation***

---

- So what's the difference between L1 and L2 regularisation?
- L2:  $\frac{\partial E}{\partial w} = \frac{\partial E_0}{\partial w} + \lambda w \rightarrow \Delta w = -\eta \frac{\partial E_0}{\partial w} - \eta \lambda w$
- L1:  $\frac{\partial E}{\partial w} = \frac{\partial E_0}{\partial w} + \lambda sign(w) \rightarrow \Delta w = -\eta \frac{\partial E_0}{\partial w} - \eta \lambda sign(w)$
- L1: The weights shrink by a constant amount towards 0
- L2: The weights shrink by an amount proportional to w
- L1 drives small weights to zero

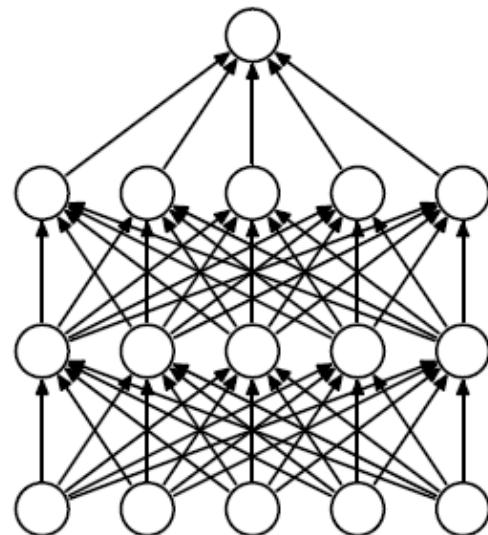
# ***L1/L2 Regularisation***

---

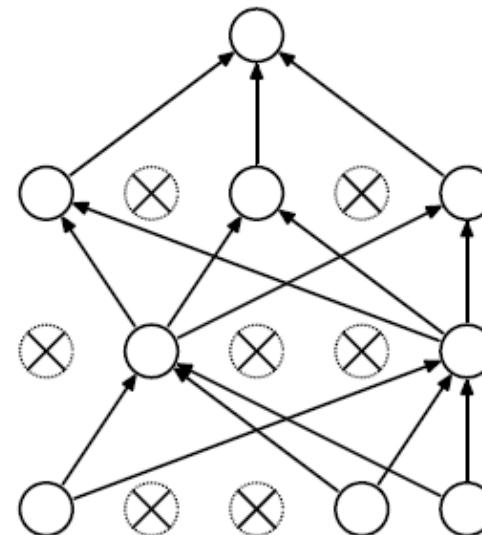
- Why small weights prevent overfitting?
- When weights are 0 or close to zero this equivalent to removing the corresponding connection between the neurons
- Simpler architecture → avoids overfitting
- Network has the right capacity
- It is like we start with a high capacity (complex) network until we find a network with the right capacity for the problem

# Dropout

- We don't modify the error function but the network itself
- During training neurons are randomly dropped out
- The probability that a neuron is present is  $p$



(a) Standard Neural Net

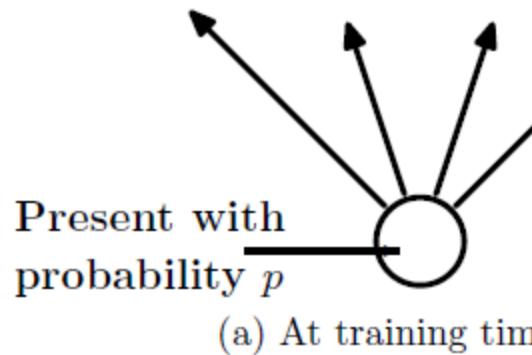
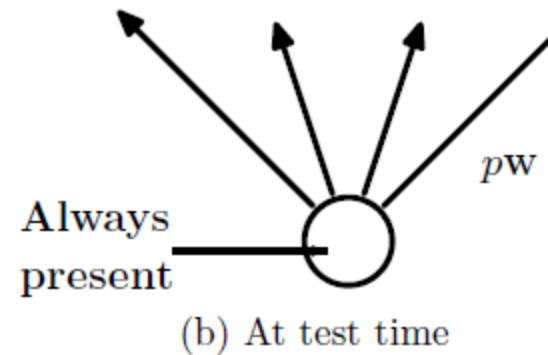


(b) After applying dropout.

From Dropout: A simple way to prevent neural networks from overfitting by Srivastava et al., JMLR 2014

# Dropout

- Dropout prevents overfitting because it provides a way of approximately combining exponentially many different neural network architectures.
- Typical values for  $p$ : 0.8/0.5 for input/hidden neurons
- At test time the outgoing weights of a neuron are multiplied by  $p$



From Dropout: A simple way to prevent neural networks from overfitting by Srivastava et al., JMLR 2014

# ***Dropout - Tips***

---

- If a network with  $n$  neurons in the hidden layer works well for a given task then a good dropout network should have  $n/p$  neurons.
- Dropout introduces a significant amount of noise in the gradients, a lot of gradients cancel each other → you should use higher learning rate (and maybe higher momentum)
- More epochs are needed
- The above heuristics do not always work!

# Max-Norm Regularisation

---

- Constrain the norm of the incoming weight vector at each hidden unit to be upper bounded by a fixed constant  $c$ .
- Weight vector length:  $L = \sqrt{{w_{j1}}^2 + {w_{j2}}^2 + \dots + {w_{jN}}^2}$
- $w_{ji}$  corresponds to incoming weights to neuron  $j$  from the  $N$  neurons of the previous layer
- If  $L > c$  then multiply all the incoming weights by  $c/L$
- The new vector length is  $c$
- Another approach to keep the weights small
- Usually used in combination with dropout

# ***Data Augmentation***

---

- One of the best ways to avoid overfitting is more data
- So we can artificially generate more data, usually a bit noisy, so we introduce more variation
- We should apply operations that correspond to real-world variations.
- For images: flip left-right, rotate, translate, etc

# Data Normalisation

---

- It is not desirable that some inputs are orders of magnitude larger than other inputs
- Map each input  $x(i)$  to  $[-1/0, +1]$
- Min value is mapped to  $-1/0$
- Max value is mapped to  $1$

# Data Normalisation

---

- Standardize inputs to mean=0 and 1 std. dev.=1

$$y = \frac{x - x_{mean}}{x_{std}}$$

- Useful for continuous inputs/targets
- It's called z-normalisation
- Scaling is needed if inputs take very different values. If e.g., they are in the range [-3, 3] then scaling is probably not needed

# Data Normalisation

---

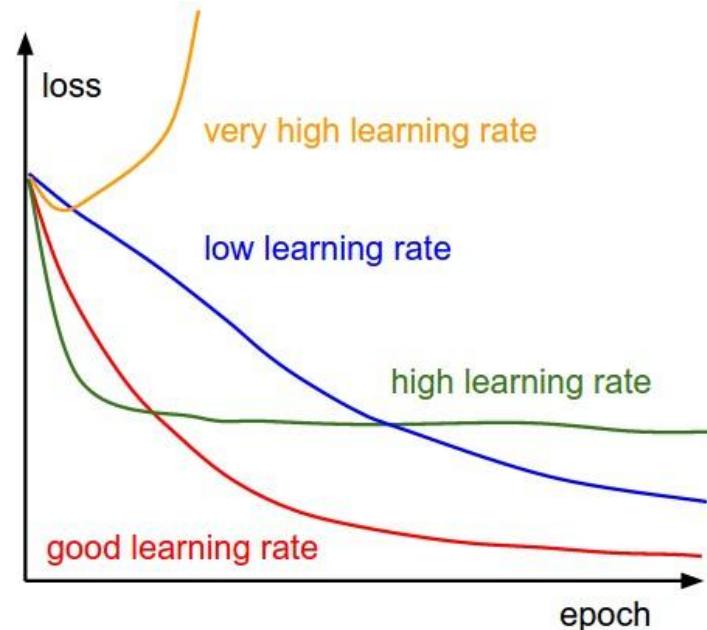
- $x_{mean}, x_{std}$  are computed on the training set and then applied to the validation and test sets.
- It is not correct to normalise each set separately.

# Image Normalisation

---

- When the input data are images then you can simply remove the mean image computed on the training set.
- Alternatively, you can compute the mean and standard deviation of all the pixels in each image and z-normalise each image independently.

# Monitoring the learning process



- If loss increases or oscillates then the learning rate is too high
- If loss goes down slowly the the learning rate is low

From <http://cs231n.github.io/neural-networks-3/>

- Find a learning rate value at which the loss on the training data immediately begins to decrease.
- It's a good idea to turn off regularisation at this point

# ***Monitoring the learning process***

## ***Other tips***

---

- Compute the mean and standard deviation of hidden neurons activations for all examples in a mini-batch
- They should be different than 0 (this is important when ReLu is used since the neurons can easily die)
- For each layer compute the norm of the weights and the norm of the weight updates  $\Delta w$ .
- The ratio  $\text{norm}(\Delta w) / \text{norm}(w)$  should be  $0.01 - 0.0001$
- If ratio is significantly different then something could be wrong

# ***Hyperparameter Optimisation***

---

- Once a good initial learning rate value is found then we can optimise the hyperparameters on the validation set
- Network architecture: number of layers, number of neurons per layer.
- Learning rate: when to start decaying, type of decay
- Regularisation: type of regularisation, values for regularisation parameters
- Training algorithm, SGD+Momentum, Adam, RMSprop
- Maybe we wish to optimise again the initial learning rate

# **(Hyper)Parameters / Weights**

---

- (Hyper)Parameters are what the user specifies, e.g. number of hidden neurons, learning rate, number of epochs etc
- They need to be optimised
- Weights: They are also parameters but they are optimised automatically via gradient descent

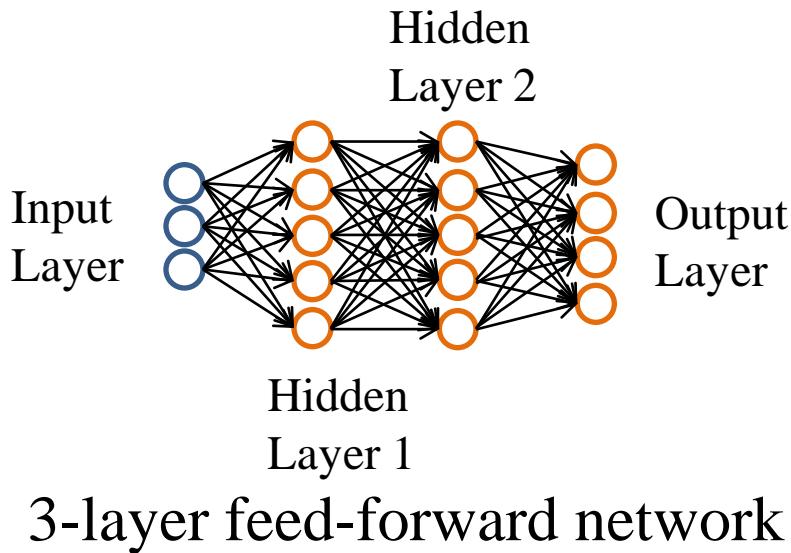
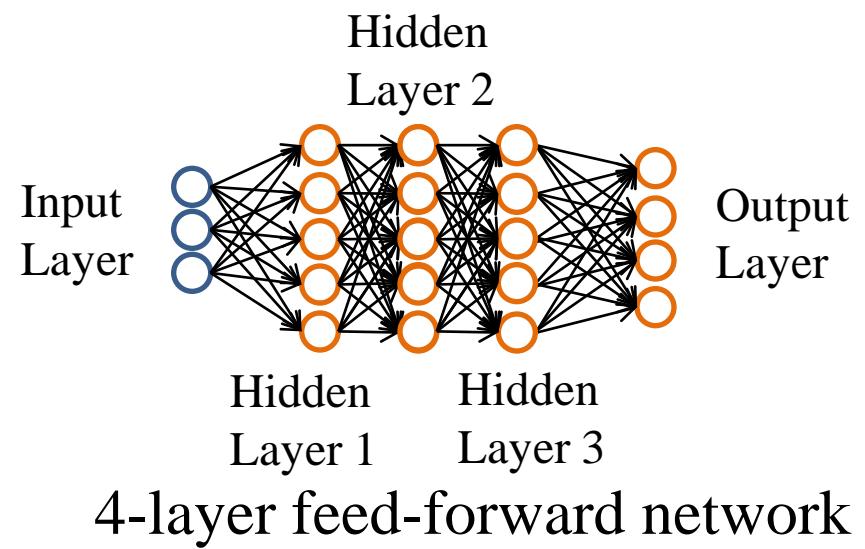
# Vanishing/Exploding gradient

---

$$\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} = -\eta \delta_j x_i \text{ where } \delta_j = \sum_{k=1}^K (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j}$$

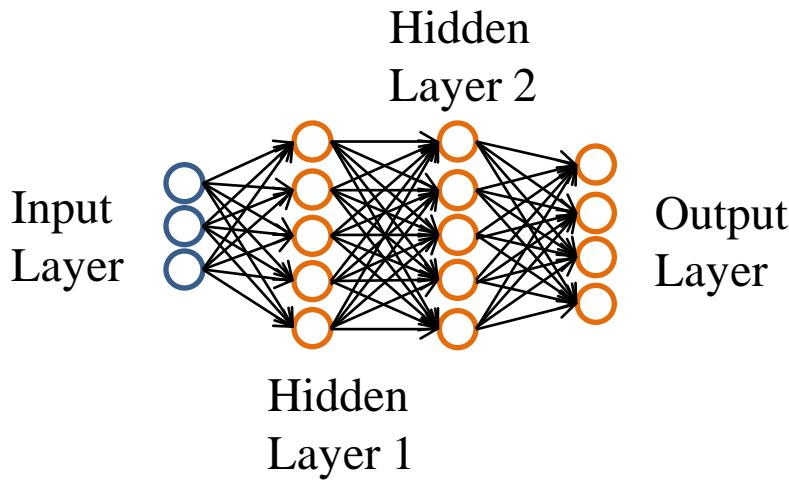
- As we backpropagate through many layers:
  1. If the weights are small  $\rightarrow \delta_i$  shrink exponentially
  2. If the weights are big  $\rightarrow \delta_i$  grow exponentially
- So either the network stops learning (case 1) or becomes unstable (case 2)
- That is why it is not possible to train deep networks with backpropagation

# Deep NNs

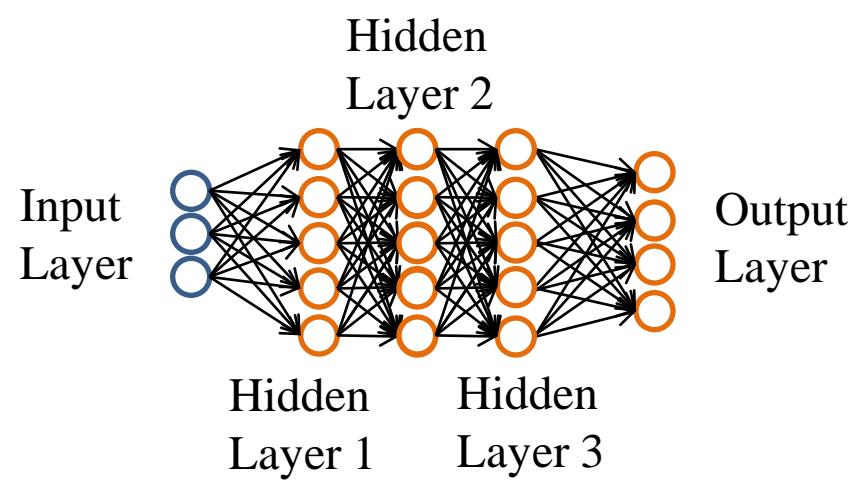


- Two ways to train
- A lot of data (data augmentation), ReLu, dropout etc
- Pre-training

# Deep NNs



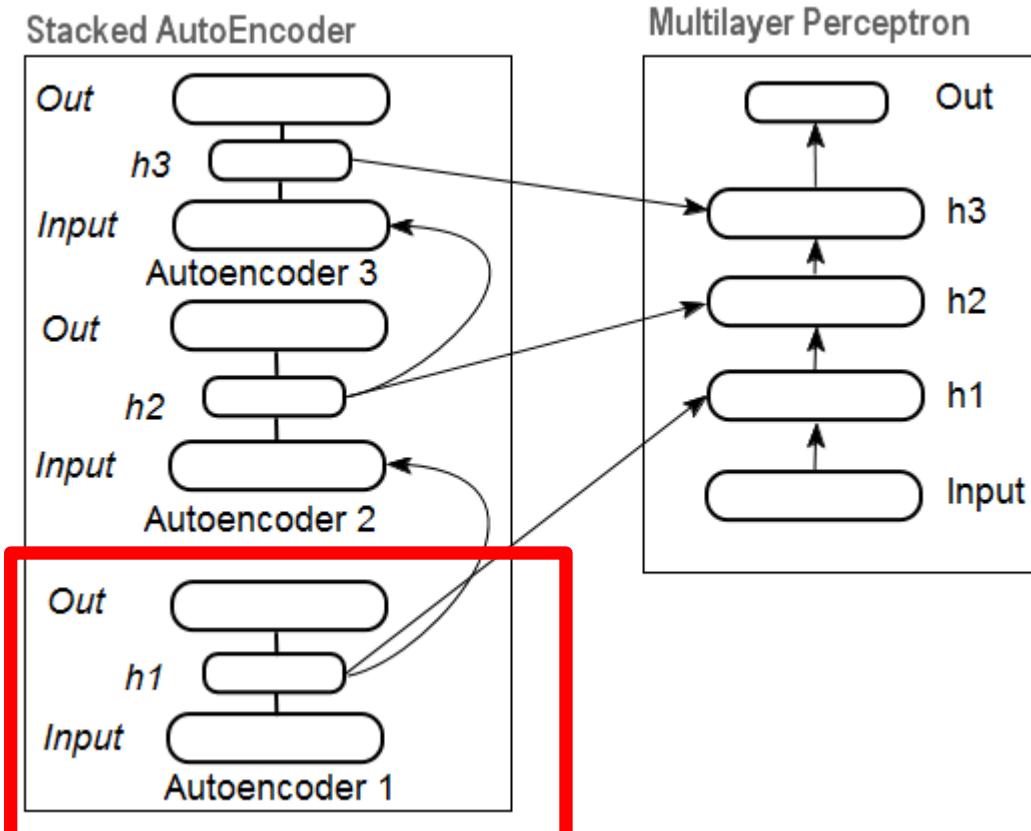
3-layer feed-forward network



4-layer feed-forward network

- There is a pre-training phase where weights are initialised to a good starting point.
- Pre-training is performed per layer using Restricted Boltzmann Machines or Stacked Denoising Autoencoders
- Then backpropagation is used to fine-tune the weights starting from a good initialisation point.

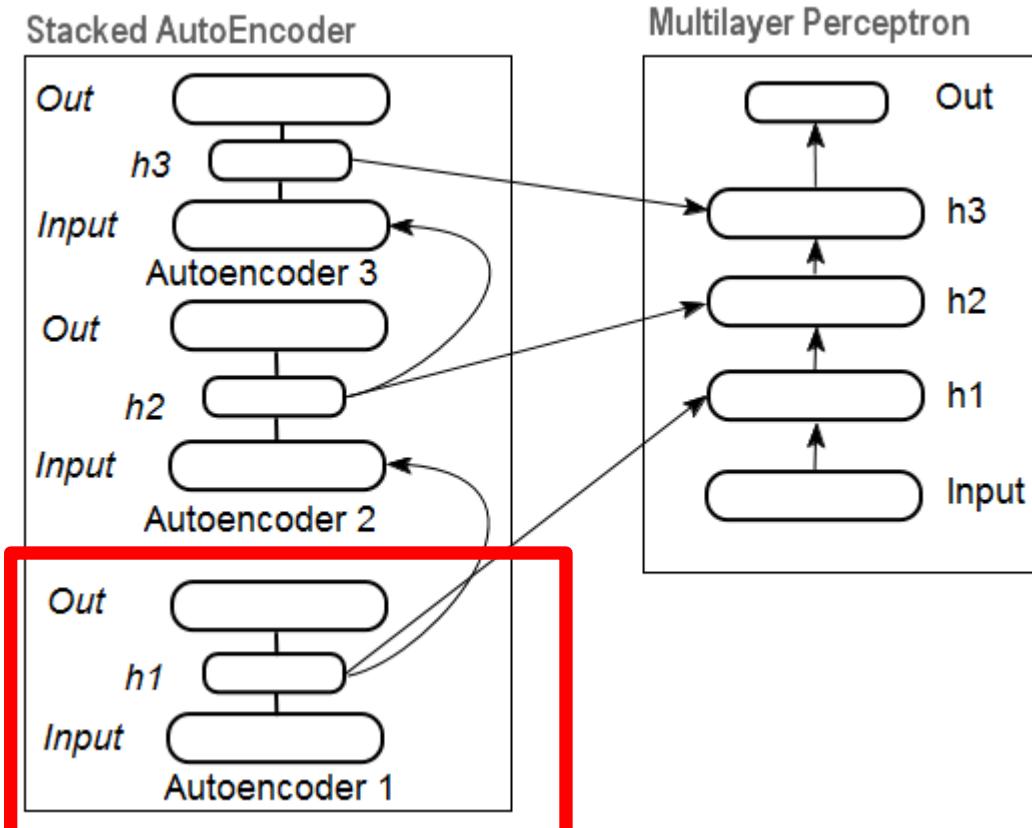
# Stacked Denoising Autoencoder



- Train a network to reproduce its input
- This network is called an Autoencoder (AE)
- The idea is that the middle layer represents the main variations in the data
- The problem is that the AE may simply learn the identity function

From [https://www.mql5.com/en/articles/1103#2\\_2](https://www.mql5.com/en/articles/1103#2_2)

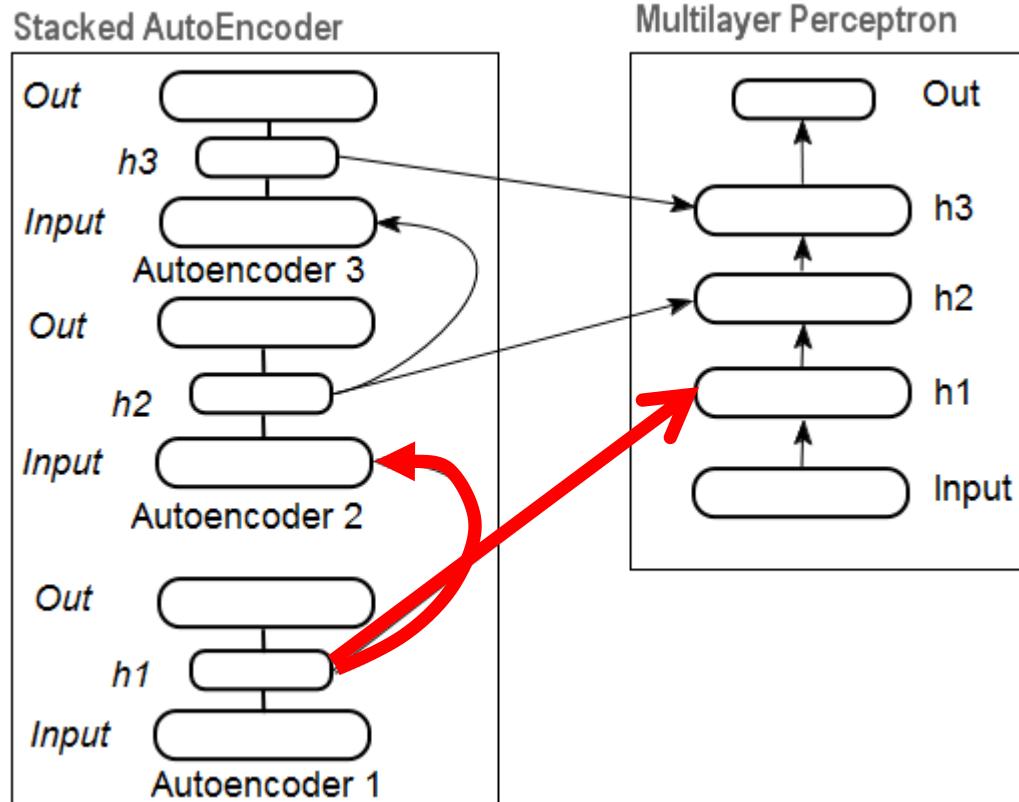
# Stacked Denoising Autoencoder



- Denoising AE: we add noise to the input so the network learns to reconstruct (output) the “denoised” input
- We usually set as many as half of the inputs to 0
- The network tries to reconstruct the input and undo the effect of noise
- The hidden layer is “forced” to learn the main variations in the data

From [https://www.mql5.com/en/articles/1103#2\\_2](https://www.mql5.com/en/articles/1103#2_2)

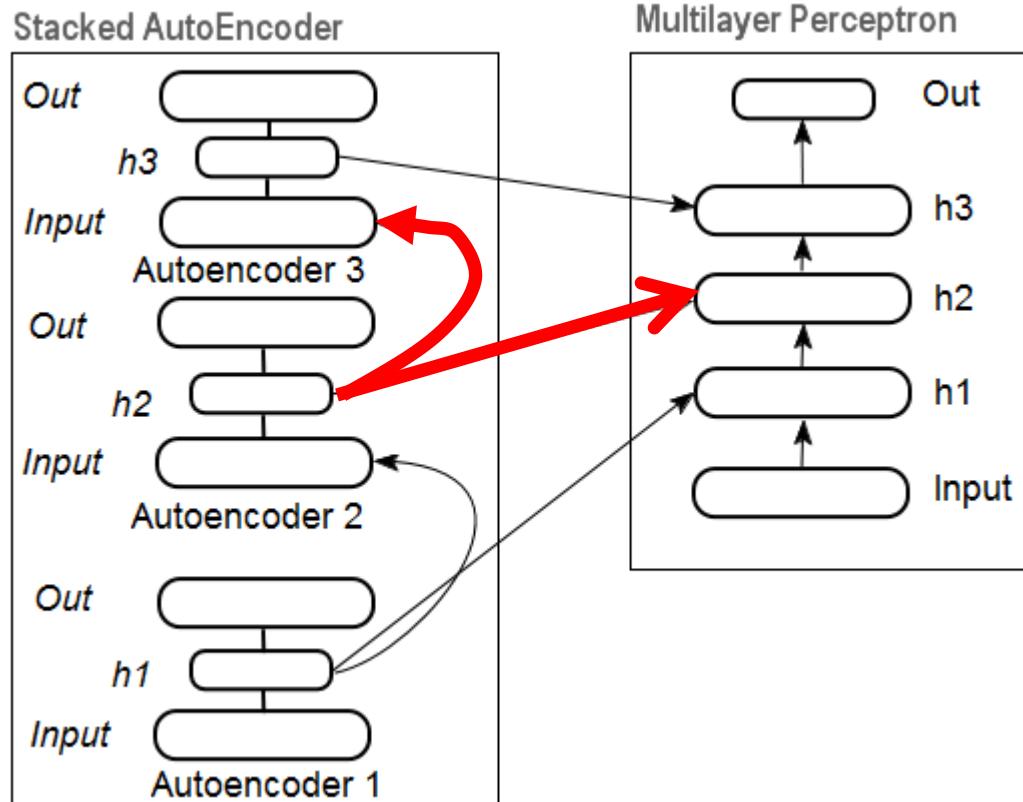
# Stacked Denoising Autoencoder



- The hidden layer weights of the AE are copied to the feed-forward NN
- The output of the hidden layer is used as input for the 2<sup>nd</sup> AE
- Noise is added to this new input and the 2<sup>nd</sup> AE learns to “denoise” its input

From [https://www.mql5.com/en/articles/1103#2\\_2](https://www.mql5.com/en/articles/1103#2_2)

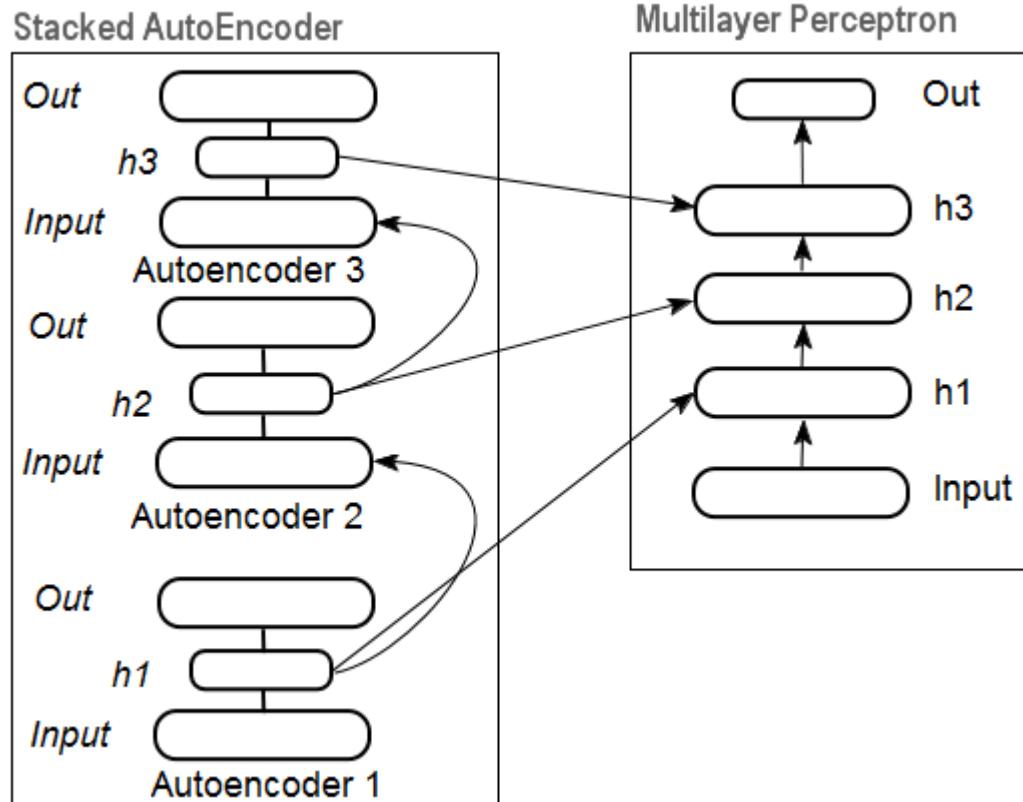
# Stacked Denoising Autoencoder



- The hidden layer weights of the 2<sup>nd</sup> AE are copied to the feed-forward NN
- The output of the hidden layer is used as input for the 3<sup>rd</sup> AE
- Using this approach we can add as many as layers as we want

From [https://www.mql5.com/en/articles/1103#2\\_2](https://www.mql5.com/en/articles/1103#2_2)

# Stacked Denoising Autoencoder

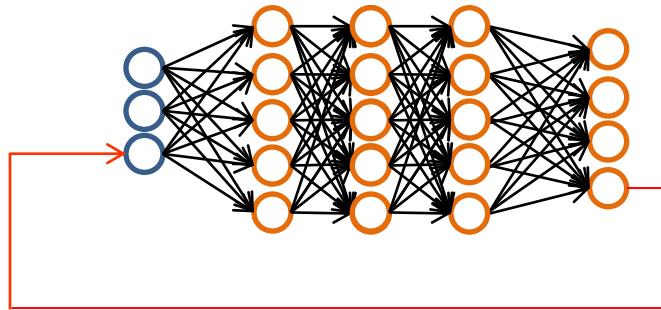


- This approach is used to initialise the NN
- This is called pre-training
- It results in good initialisation of the weights
- Then we fine-tune the network using stochastic gradient descent

From [https://www.mql5.com/en/articles/1103#2\\_2](https://www.mql5.com/en/articles/1103#2_2)

# Deep Networks for Time Series

- Deep feedforward NNs are good at various tasks but not at handling time series data
- Recurrent Neural Networks are suitable for time series
- They also suffer from the vanishing gradient problem

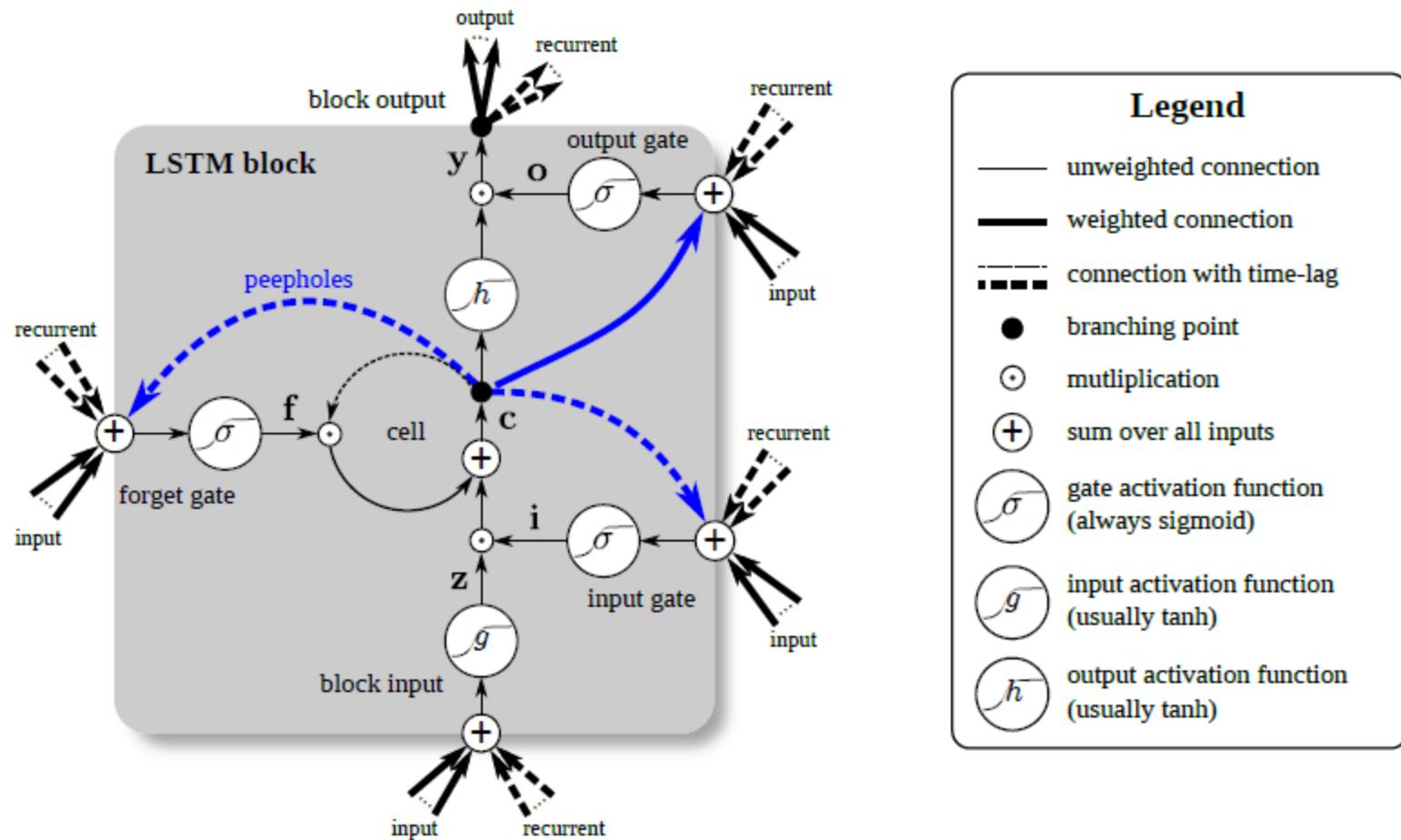


# LSTMs

---

- A type of recurrent network that can be effectively trained is the Long-Short Term Memory Recurrent Neural Network (LSTM-RNN). Introduced in 1990s
- We replace the neuron with a memory cell
- There are input, output and forget gates which control when information flows in / out of the cell and when to reset the state of the cell

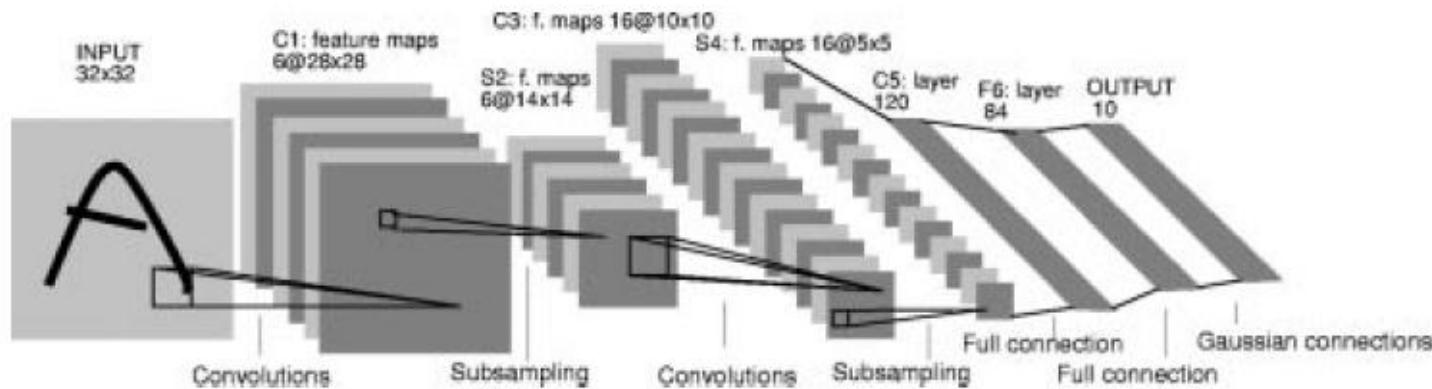
# LSTMs



From LSTM: A search space odyssey by Greff et al., arXiv Mar 2015

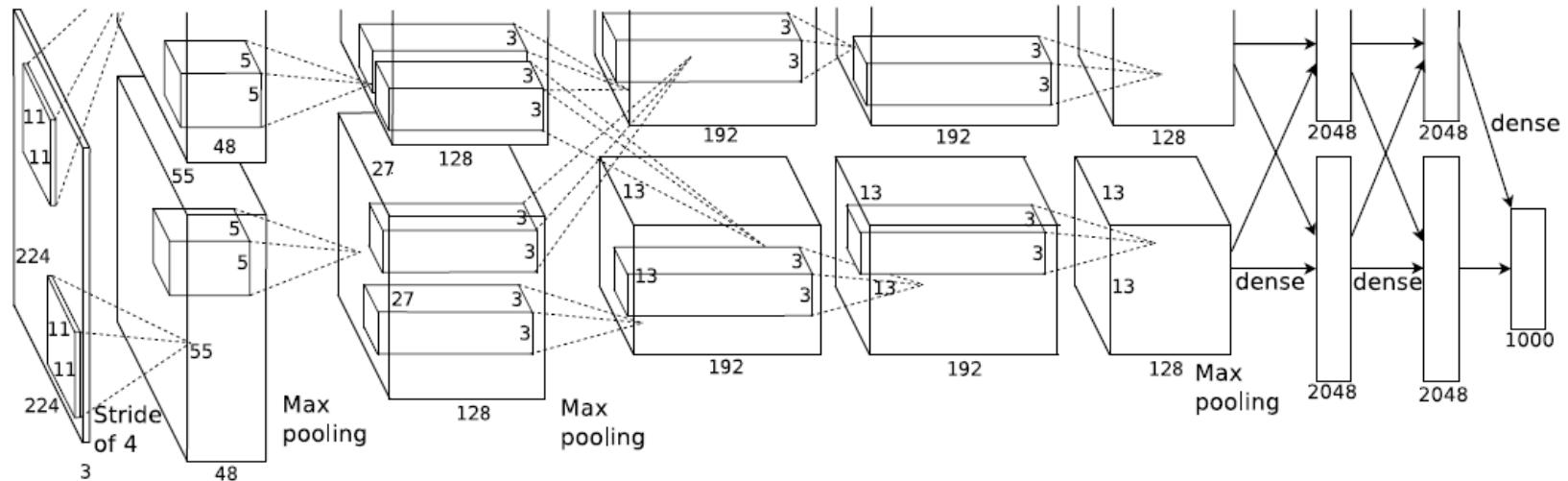
# Convolutional Neural Networks

- Convolutional Neural Networks (CNNs) have been very successful in computer vision
- First version was introduced in 1980s (neocognitron)
- Improved by LeCun et al., “Gradient-Based Learning Applied to Document Recognition”, Proc. IEEE, 1998



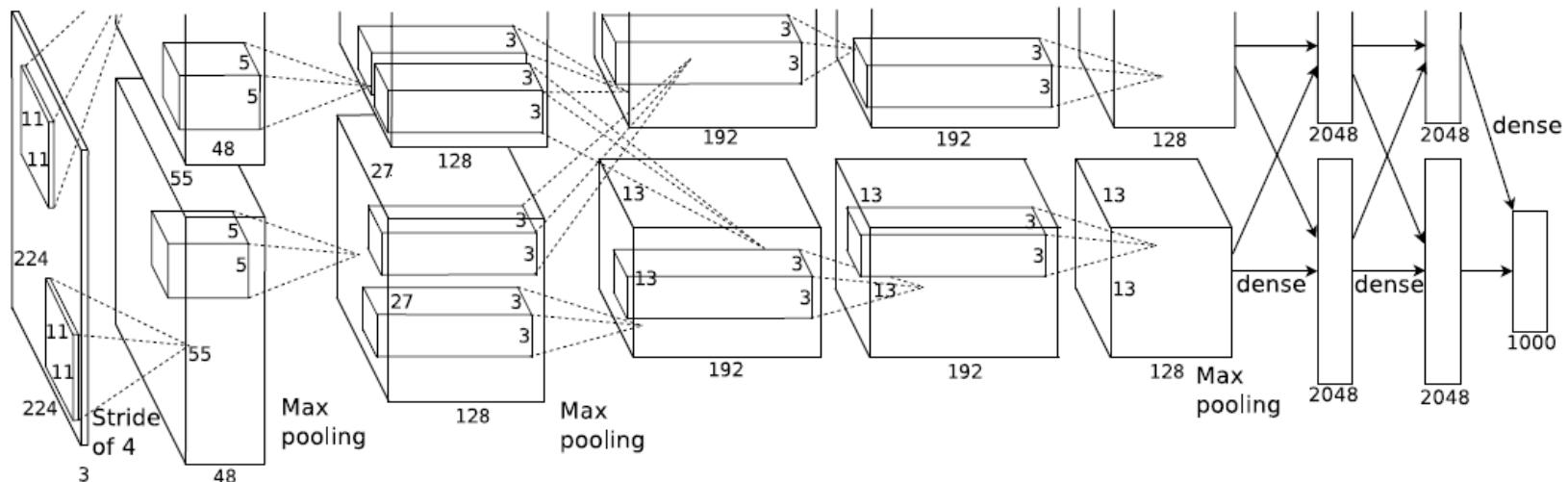
# Convolutional Neural Networks

- Became popular in 2012 after winning the ImageNet competition
- “ImageNet Classification with Deep Convolutional Neural Networks”, by Krizhevsky et al., NIPS 2012
- Tricks: Data augmentation, Dropout, ReLu + GPUs

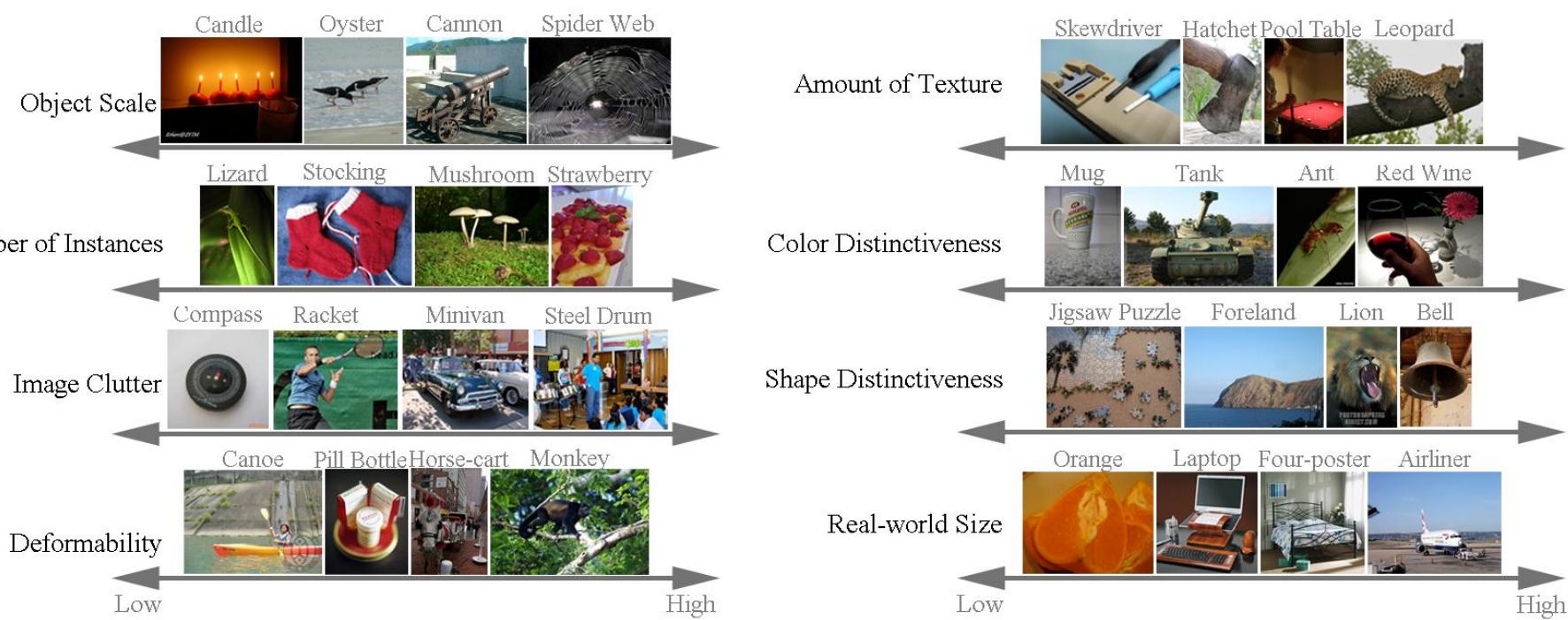


# Convolutional Neural Networks

- It's a deep network = many layers
- Each layer is either a convolutional layer or subsampling layer
- Final layers are fully connected layers



# ImageNet Competition – Object Classification



- Classification of 1000+ objects
- State-of-the-art before 2012: ~26%
- New state-of-the-art in 2012 with deep networks: ~15%