Course 395: Machine Learning - Lectures
Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)
Lecture 5-6: Evaluating Hypotheses (S. Petridis)
Lecture 7-8: Artificial Neural Networks | (S. Petridis)
> Lecture 9-10: Artificial Neural Networks 11 (S. Petridis)
Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)
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Output Weights Update Rule: Example

J0E do(nety)
doy Onety °J

Update rule for output units: Awy; = —n

« Error function E = %Z:_l(tk —0,)

OE

* Gor —(t, — o)
do(nety)
. = g(net,)(1 — a(nety) ) = 0x(1 — 0y)
dnety,

when o Is sigmoid
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Output Weights Update Rule: Example

J0E do(nety)
doj OJdnety

) Awkj = -1 Yj = n(tx — 0x)or (1 — 0k))’j

* When the output is 0 or 1 then Aw iIs 0 as well
« No matter if our prediction is right or wrong Aw will be 0

If the output is either O or 1

« \When the output activation function is sigmoid it is not a good
Idea to use the quadratic error function

 See http://neuralnetworksanddeeplearning.com/chap3.html
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Cross Entropy Error as Error Function

A good error function when the output activation functions are
sigmoid is the binary cross entropy defined as follows:

E= _Z:ﬂ(tk Ino, +(1-t,)In(L-0,))

__ OE Odo(netg)
naok onety, Yj

® AWVk]

OE 0—t
e — — k k

doy 0r(1—o0p)

do(nety)

* omer. o(net,)(1 — a(nety) ) = 0, (1 — o)
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Cross Entropy Error as Error Function

__ OE Odo(netg)
naok onety, Yj

° AWk] =

Ok—Lk

e Awy; = —1 e (1—00) 0k (1 — 0 )y;=n(tx — 0k) ¥;

« The higher the error the higher the weight update
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Softmax output activation functions

A popular output activation function for classification is

enetk

Zk enetk

softmax o, =

« The output can be interpreted as a discrete probability
distribution

« The right error function is the negative log likelihood cost
E=-— Zk Ly, lTlOk

o Target vectors=[001 ... 0] 2 E = —Ilno; where L is the
position of the active target, i.e., it is 1.
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Output activation functions: Summary

 For each output activation function the right error function
should be selected

 Sigmoid - Cross entropy error (useful for classification)

« Softmax > negative log likelihood cost (useful for
classification)

« Both combinations work well for classification problems,
Softmax has the advantage of producing a discrete probability
distribution over the outputs

 Linear - Quadratic loss (useful for regression)
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SGD with momentum

 Standard backpropagation

oE
W, <— W, + AW, AW, = -1 —
oW

« |f the error surface is a long and narrow valley, gradient
descent goes quickly down the valley walls, but very slowly
along the valley floor.

4—‘—’_’_;__; ':_:

From https://www.cs.toronto.edu/~hinton/csc2515/notes/lec6tutorial.pdf
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SGD with momentum

 Standard backpropagation

W, <— W, + AW, Aw. :—UE

« Backpropagation with morrilentum
OE
Aw(t) = pAwy(t = 1) + (1 = ) (-1 5= ) OR

OE
Aw(t) = pdwy(t = 1) + (15,7 )

e 4 = momentum constant, usually 0.9,0.95
* ltis like giving momentum to the weights

« \We do not take into account only the local gradient but
also recent trends in the error surface
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Other Training Algorithms

Adam (usually works quite well)
Adagrad

Adadelta

RMSprop

Nesterov momentum

...and others
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Learning Rate Decay

In the beginning weights are random so we need large weight
updates, then as training progresses we need smaller and
smaller updates.

It’s a good 1dea to start with a “high” (depends on the
problem/dataset) learning rate and decay it slowly.

Typical values for 1nitial learning rate, 0.1, 0.01. It’s problem
dependent

Step decay: Reduce the learning rate by some factor every few
epochs, e.g., divide by 2 every 50 epochs
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Learning Rate Decay

Keep learning rate constant for T epochs and then decrease as
lro*T

max(t,T)

follows:lr; =

Keep learning rate constant for T epochs and then decrease as
follows: lry =lry_, * scalingFactor (e.g. 0.99)

Decrease as follows: Ir; = % , T Is the epoch where the
T

learning rate iIs halved

You can think of many other ways to decay the learning rate
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Momentum

It’s usually a good practice to increase the momentum during
training.

Typically the initial value is 0.5 and the final value is 0.9, 0.95
Increase is usually linear

It’s also common to start increasing the momentum when the
learning rate starts decreasing.
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Weight Initialisation

» We said we start with random weights...but how?

« Some of the most common weight initialisation
techniques are the following:

1. Sample from a gaussian distribution, we need to define mean
(usually 0) and standard deviation (e.g. 0.1 or 0.01)

2. Sample from a uniform distribution, we need to define the
range [-b,b]

3. Sparse initialisation: Use gaussian/uniform distributions to
Initialise weights and then set most of them to 0. You need to
define sparsity level, e.g. 0.8 (80% weights in each layer are
set to 0).
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Weight Initialisation

4. Glorot Initialisation: Sample from a gaussian distribution
with 0 mean and st. dev. = ,/2/(n1 + n2)
- n1, n2 are the number of neurons in the previous and next
layers, respectively.
- Glorot, Bengio, Understanding the difficulty of training
deep feedforward neural networks, JIMLR, 2010
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Weight Initialisation

5. He Initialisation: Sample from a gaussian distribution with 0

mean and st. dev. =,/2/n1

- nl is the number of inputs to the neuron (i.e. the size of the
previous layer).

- Designed for neurons which use RelLu as activation
functions.

- He et al., Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification, ICCV 2015

6. You can find many other approaches in the literature
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Ways to avoid overfitting

Early stopping (see slide 55, part 1)

L1 Regularisation

« L2 Regularisation

* Dropout

« Max-norm Constraint

« Data augmentation
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Early Stopping

csEd 2000 neurons dropout MaxNorm 4, 2:5GD+MOM, Ir:0.01 Lozsss, 2000 neurons dropout MaxNorm 4, 2:5GD+MOM, Ir:0.01
— Train —Train
70+ —Val ] —Val

P =]
60

50

Loss

&8 a0t

30r

20 +

10

0 ! L .
0 500 1000 1500 2000 0 500 1000 1500 2000

epoch epoch

 Early stopping: should we use loss or Classification error?

* It’s common that classification error can go down
while the loss goes up!
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L2 Regularisation

E = EO + Azall Weightst

E, is the original error function, e.g., quadratic loss,
negative log-likelihood

It is NOT applied to the bias
We wish to minimise the original error function (E,)

We also wish to penalise large weights, keep the weights
small (second term)

Small A - we prefer to minimise E|,

Large A - we prefer small weights
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L1 Regularisation

E=Ey+ A2 Weights 4

E, is the original error function, e.g., quadratic loss,
negative log-likelihood

It is NOT applied to the bias
We wish to minimise the original error function (E,)

We also wish to penalise large weights, keep the weights
small (second term)

Small A - we prefer to minimise E|,

Large A = we prefer small weights
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L1/L2 Regularisation

 So what’s the difference between L1 and L2
regularisation?

0E _ dE, 6E0

¢ L2: o =5t Aw 2 Aw = -1 —= 777\W
OE 6E0
o L1: o =5 T Asign(w) 2Aw = —17 — — nAsign(w)

« L1: The weights shrink by a constant amount towards O
« L2: The weights shrink by an amount proportional to w

L1 drives small weights to zero
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L1/L2 Regularisation

« Why small weights prevent overfitting?

« When weights are 0 or close to zero this equivalent to
removing the corresponding connection between the
neurons

 Simpler architecture - avoids overfitting
* Network has the right capacity

« It is like we start with a high capacity (complex) network
until we find a network with the right capacity for the
problem
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Dropout

* We don’t modify the error function but the network 1itself
 During training neurons are randomly dropped out

* The probability that a neuron is present is p

XS
’)’_: PSS

O
7\
-

Y
%..

%
W ’*'f'q?
(KR
s
A

(a) Standard Neural Net

From Dropout: A simple way to prevent neural networks from
overfitting by Srivastava et al., JMLR 2014
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Dropout

» Dropout prevents overfitting because it provides a way
of approximately combining exponentially many
different neural network architectures.

» Typical values for p: 0.8/0.5 for input/hidden neurons

At test time the outgoing weights of a neuron are
multiplied by p

Always
present

Present with

probability p
a) At training time b) At test time
{ & o r

From Dropout: A simple way to prevent neural networks from
overfitting by Srivastava et al., JMLR 2014
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Dropout - Tips

If a network with n neurons in the hidden layer works
well for a given task then a good dropout network should
have n/p neurons.

 Dropout introduces a significant amount of noise in the
gradients, a lot of gradients cancel each other = you
should use higher learning rate (and maybe higher
momentum)

« More epochs are needed

 The above heuristics do not always work!
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Max-Norm Regularisation

 Constrain the norm of the incoming weight vector at each
hidden unit to be upper bounded by a fixed constant c.

« Weight vector length: L = ijlz + Wit +.. +wiy?

e wj; corresponds to incoming weights to neuron j from the
N neurons of the previous layer

 |f L > c then multiply all the incoming weights by c¢/L

* The new vector length is c
 Another approach to keep the weights small
 Usually used in combination with dropout
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Data Augmentation

 One of the best ways to avoid overfitting is more data

« S0 we can artificially generate more data, usually a bit
noisy, so we introduce more variation

« We should apply operations that correspond to real-world
variations.

 For images: flip left-right, rotate, translate, etc
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Data Normalisation

It Is not desirable that some inputs are orders of magnitude
larger than other inputs

Map each input x(i) to [-1/0, +1]
Min value is mapped to -1/0

Max value is mapped to 1
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Data Normalisation

Standardize inputs to mean=0 and 1 std. dev.=1

y — X—Xmean
Xstd

Useful for continuous inputs/targets

It’s called z-normalisation

Scaling is needed if inputs take very different values. If e.g.,
they are in the range [-3, 3] then scaling is probably not needed
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Data Normalisation

* Xmean Xstq are computed on the training set and then
applied to the validation and test sets.

* [t Is not correct to normalise each set separately.
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Image Normalisation

« When the input data are images then you can simply
remove the mean image computed on the training set.

 Alternatively, you can compute the mean and
standard deviation of all the pixels in each image and

z-normalise each image independently.
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Monitoring the learning process

* |If loss increases or oscillates
N then the learning rate is too
low learning rate hlgh

high | ing rate
e + If loss goes down slowly the
e " the learning rate is low

>

good learning rate

epoch
From http://cs231n.github.io/neural-networks-3/

* Find a learning rate value at which the loss on the training data
Immediately begins to decrease.
* It’s a good idea to turn off regularisation at this point
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Monitoring the learning process
Other tips

« Compute the mean and standard deviation of hidden
neurons activations for all examples in a mini-batch

« They should be different than 0 (this is important when
ReLu is used since the neurons can easily die)

 For each layer compute the norm of the weights and the
norm of the weight updates Aw.

* The ratio norm(Aw) / norm(w) should be 0.01 — 0.0001

o If ratio is significantly different then something could be
wrong
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Hyperparameter Optimisation

Once a good initial learning rate value is found then we
can optimise the hyperparameters on the validation set

Network architecture: number of layers, number of neurons
per layer.

 Learning rate: when to start decaying, type of decay

 Regularisation: type of regularisation, values for
regularisation parameters

 Training algorithm, SGD+Momentum, Adam, RMSprop

« Maybe we wish to optimise again the initial learning rate
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(Hyper)Parameters / Weights

* (Hyper)Parameters are what the user specifies, e.qg.
number of hidden neurons, learning rate, number of
epochs etc

« They need to be optimised

« \Weights: They are also parameters but they are optimised
automatically via gradient descent
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Vanishing/Exploding gradient

0E K da(net;)
iji: —nm = —116]-xi where 6] = zkzl(é'kwkj) (’)net]

« As we backpropagate through many layers:

1. If the weights are small -> §; shrink exponentially

2. If the weights are big -> §; grow exponentially

 So either the network stops learning (case 1) or becomes
unstable (case 2)

« That is why it iIs not possible to train deep networks with
backpropagation
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Deep NNS

Hidden Hidden

Output
Layer
Hidden Hidden
Layer 1 Layer1  Layer3
3-layer feed-forward network 4-layer feed-forward network

e Two ways to train

« Aot of data (data augmentation), RelLu, dropout etc

* Pre-training
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Deep NNS

Hidden Hidden

Hidden Hidden
Layer 1 Layer1  Layer3

3-layer feed-forward network 4-layer feed-forward network

* There is a pre-training phase where weights are initialised to a
good starting point.

 Pre-training is performed per layer using Restricted Boltzmann Machines
or Stacked Denoising Autoencoders

« Then backpropagation is used to fine-tune the weights starting from a good
Initialisation point.
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Stacked Denoising Autoencoder

Stacked AutoEncoder

out (. )

hSC::)\

Input  (
Autoencoder 3

out ( )

h2
Input (.

Autoencoder 2

Autoencoder 1

W

Multilayer Perceptron

(_T_) out

) h3

‘-i(

A °

) h2

) hi

+
A,

( ) Input

From https://www.mql5.com/en/articles/1103#2 2
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Train a network to reproduce
Its Input

This network is called an
Autoencoder (AE)

The 1dea Is that the middle
layer represents the main
variations in the data

The problem is that the AE
may simply learn the identity
function
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Stacked Denoising Autoencoder

Stacked AutoEncoder

out (. )

Input  (
Autoencoder 3

out ( )

h2
Input (.

Autoencoder 2

Autoencoder 1

hSC::)\

W

Multilayer Perceptron

(_T_) out

—( ) h3
_»( : ) h2
) hi
A 4
( ) Input

From https://www.mql5.com/en/articles/1103#2 2
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* Denoising AE: we add noise
to the input so the network
learns to reconstruct (output)
the “denoised” input

« We usually set as many as
half of the inputs to O

* The network tries to
reconstruct the input and undo
the effect of noise

* The hidden layer 1s “forced”
to learn the main variations in
the data
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Stacked Denoising Autoencoder

Stacked AutoEncoder

out (. )

hSC::)\

Input  (
Autoencoder 3

out ( )

h2
Input (.
Autoencoder 2

)

Out (

h1

Input  ( )
Autcencoder 1

Multilayer Perceptron

(_T_) out |*
—( ) ha
_»( : ) h2

t ) hi

f

)Input.

From https://www.mql5.com/en/articles/1103#2 2
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The hidden layer weights of
the AE are copied to the feed-
forward NN

The output of the hidden layer
is used as input for the 24 AE

Noise is added to this new
input and the 2"d AE learns
to “denoise” its input
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Stacked Denoising Autoencoder

Stacked AutoEncoder Multilayer Perceptron
[

out ( ) Out

i CO— |
Input  ( > ) h3

Autoencoder 3 4 ) ho
out ( ) 7 .

h2 /v( ; ) ht
Input (.

Autoencoder 2 / ( ) Input g
Out (. )

h1
Input (. )

Autoencoder 1

From https://www.mql5.com/en/articles/1103#2 2
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The hidden layer weights of
the 2" AE are copied
to the feed-forward NN

The output of the hidden layer
is used as input for the 3" AE

Using this approach we can
add as many as layers as we
want
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Stacked Denoising Autoencoder

Stacked AutoEncoder

out (. )
s C ) —

Input  (
Autoencoder 3

out ( )
h2

Input (.
Autoencoder 2

Out ( )
h1

Input  ( )

Multilayer Perceptron

7

(_T_) out

—( ) h3

(. : )2 |°

/,( ) ht e
( ) Input

Autoencoder 1

From https://www.mql5.com/en/articles/1103#2 2
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This approach is used to
Initialise the NN

This is called pre-training

It results in good Initialisation
of the weights

Then we fine-tune the network
using stochastic gradient
descent
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Deep Networks for Time Series

« Deep feedforward NNs are good at various tasks but
not at handling time series data

 Recurrent Neural Networks are suitable for time series

« They also suffer from the vanishing gradient problem
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LSTMS

» Atype of recurrent network that can be effectively trained is the
Long-Short Term Memory Recurrent Neural Network (LSTM-

RNN). Introduced in 1990s

* \We replace the neuron with a memory cell

« There are input, output and forget gates which control when

Information flows in / out of the cell and when to reset the state
of the cell
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LSTMS

block output Legend

LSTM block y

unweighted connection

weighted connection

peepholes connection with time-lag

input
branching point

mutliplication

sum over all inputs

gate activation function
(always sigmoid)

forget gate
input

input activation function

(usually tanh)
input

output activation function

QIOIOLLE

block input
(usually tanh)
M A
t".'r
_ '
mput recurrent

From LSTM: A search space odyssey by Greff et al., arXiv Mar 2015
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Convolutional Neural Networks

Convolutional Neural Networks (CNNSs) have been very
successful in computer vision

First version was introduced in 1980s (neocognitron)

Improved by LeCun et al., “Gradient-Based Learning Applied to
Document Recognition”, Proc. IEEE, 1998

. C3: 1, maps 16@&10x10
C1: featurs maps S4 1. m 1665

INPUTY &GP 28x28 s
o . maps
BEIANIT | g

ING2

G5 oyt pg e  OUTPUT
20 Vel

Gaussian connectons
Conveiutions Subsampling Convolytions  Subsampling Full connecticn
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Convolutional Neural Networks

Became popular in 2012 after winning the ImageNet competition

“ImageNet Classification with Deep Convolutional Neural
Networks”, by Krizhevsky et al., NIPS 2012

Tricks: Data augmentation, Dropout, ReLu + GPUs

224 P e Ll 3]_ | EN L[ 3| . A
— 23 -t » »
\ = . Fy N ‘ 3‘ 135 13 dense dense
N f 3|\ 1000
i1 192 192 128 Max L] L
224\ Max 128 Max pooling 2048 2048
pooling pooling
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Convolutional Neural Networks

* [t’s a deep network = many layers
« Each layer is either a convolutional layer or subsampling layer

 Final layers are fully connected layers

W i -'.:'.\ _?, ? p=l 3 e g y
192 192 128 2048 2048 \dense
27 128 — —
R AV E R 13 13
224 g | 3]_ : -
e 13 R e

224\

1000

192 192 128 Max
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ImageNet Competition —

Object Classification

Candle

_Oyster Cannon  Spider Web

Object Scale
Stocking

-
Number of Instances A\

Lizard

Compass Racket
Eheiich ) 8

Image Clutter ‘ /

Canoe

Pill BottleHorse-cart _Monkey

Deformability

Low High

_Skewdriver HatchetPool Table Leopard

Amount of Texture V”

4—»
Mug Tank Ant Red Wine
4—»

Jigsaw Puzzle  Foreland Bell

Lion

Shape Distinctiveness

Orange

Real-world Size

Low High

 Classification of 1000+ objects
 State-of-the-art before 2012: ~26%
* New state-of-the-art in 2012 with deep networks: ~15%
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