
 Stavros Petridis Machine Learning (course 395)

Course 395: Machine Learning - Lectures
 Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)



 Stavros Petridis Machine Learning (course 395)

Output Weights Update Rule: Example

• Update rule for output units: Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗

• Error function

•
𝜕𝐸

𝜕𝑜𝑘
= −(𝑡𝑘 − 𝑜𝑘)

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘 = 𝜊𝑘 1 − 𝜊𝑘

 when σ is sigmoid

  


K

k kk otE
1

2

2

1

 Stavros Petridis Machine Learning (course 395)

Output Weights Update Rule: Example

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗 = 𝜂 𝑡𝑘 − 𝑜𝑘 𝜊𝑘 1 − 𝜊𝑘 𝑦𝑗

• When the output is 0 or 1 then Δw is 0 as well

• No matter if our prediction is right or wrong Δw will be 0

 if the output is either 0 or 1

• When the output activation function is sigmoid it is not a good

 idea to use the quadratic error function

• See http://neuralnetworksanddeeplearning.com/chap3.html

 Stavros Petridis Machine Learning (course 395)

Cross Entropy Error as Error Function

• A good error function when the output activation functions are

sigmoid is the binary cross entropy defined as follows:

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗

•
𝜕𝐸

𝜕𝑜𝑘
=
𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘 = 𝜊𝑘 1 − 𝜊𝑘

  


K

k kkkk ototE
1

)1ln()1(ln

 Stavros Petridis Machine Learning (course 395)

Cross Entropy Error as Error Function

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗

• Δ𝑤𝑘𝑗 = −𝜂
𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)
𝜊𝑘 1 − 𝜊𝑘 𝑦𝑗= 𝜂(𝑡𝑘 − 𝑜𝑘) 𝑦𝑗

• The higher the error the higher the weight update

 Stavros Petridis Machine Learning (course 395)

Softmax output activation functions

• A popular output activation function for classification is

softmax 𝑜𝑘 =
𝑒𝑛𝑒𝑡𝑘

 𝑒𝑛𝑒𝑡𝑘𝑘

• The output can be interpreted as a discrete probability

distribution

• The right error function is the negative log likelihood cost

 E = − 𝑡𝑘𝑙𝑛𝑜𝑘𝑘

• Target vectors = [0 0 1 … 0]  E = −𝑙𝑛𝑜𝐿 where L is the

position of the active target, i.e., it is 1.

 Stavros Petridis Machine Learning (course 395)

Output activation functions: Summary

• For each output activation function the right error function

should be selected

• Sigmoid  Cross entropy error (useful for classification)

• Softmax  negative log likelihood cost (useful for

classification)

• Both combinations work well for classification problems,

Softmax has the advantage of producing a discrete probability

distribution over the outputs

• Linear  Quadratic loss (useful for regression)

 Stavros Petridis Machine Learning (course 395)

SGD with momentum

iii www 
i

i
w

E
w




 

• Standard backpropagation

• If the error surface is a long and narrow valley, gradient

 descent goes quickly down the valley walls, but very slowly

 along the valley floor.

From https://www.cs.toronto.edu/~hinton/csc2515/notes/lec6tutorial.pdf

 Stavros Petridis Machine Learning (course 395)

SGD with momentum

• Backpropagation with momentum

iii www 
i

i
w

E
w




 

• Standard backpropagation

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + (1 − 𝜇) −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)
 OR

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)

• 𝜇 = momentum constant, usually 0.9, 0.95

• It is like giving momentum to the weights

• We do not take into account only the local gradient but

also recent trends in the error surface

 Stavros Petridis Machine Learning (course 395)

Other Training Algorithms

• Adam (usually works quite well)

• Adagrad

• Adadelta

• RMSprop

• Nesterov momentum

• …and others

 Stavros Petridis Machine Learning (course 395)

Learning Rate Decay

• In the beginning weights are random so we need large weight

updates, then as training progresses we need smaller and

smaller updates.

• It’s a good idea to start with a “high” (depends on the

problem/dataset) learning rate and decay it slowly.

• Typical values for initial learning rate, 0.1, 0.01. It’s problem

dependent

• Step decay: Reduce the learning rate by some factor every few

epochs, e.g., divide by 2 every 50 epochs

 Stavros Petridis Machine Learning (course 395)

Learning Rate Decay

• Keep learning rate constant for T epochs and then decrease as

follows:𝑙𝑟𝑡 =
𝑙𝑟0∗𝑇

max (𝑡,𝑇)

• Keep learning rate constant for T epochs and then decrease as

follows: 𝑙𝑟𝑡 =𝑙𝑟𝑡−1 ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 (e.g. 0.99)

• Decrease as follows: 𝑙𝑟𝑡 =
𝑙𝑟0

1+
𝑡

𝑇

 , T is the epoch where the

learning rate is halved

• You can think of many other ways to decay the learning rate

 Stavros Petridis Machine Learning (course 395)

Momentum

• It’s usually a good practice to increase the momentum during

training.

• Typically the initial value is 0.5 and the final value is 0.9, 0.95

• Increase is usually linear

• It’s also common to start increasing the momentum when the

learning rate starts decreasing.

 Stavros Petridis Machine Learning (course 395)

Weight Initialisation

• We said we start with random weights…but how?

• Some of the most common weight initialisation

techniques are the following:

1. Sample from a gaussian distribution, we need to define mean

(usually 0) and standard deviation (e.g. 0.1 or 0.01)

2. Sample from a uniform distribution, we need to define the

range [-b,b]

3. Sparse initialisation: Use gaussian/uniform distributions to

initialise weights and then set most of them to 0. You need to

define sparsity level, e.g. 0.8 (80% weights in each layer are

set to 0).

 Stavros Petridis Machine Learning (course 395)

Weight Initialisation

4. Glorot Initialisation: Sample from a gaussian distribution

with 0 mean and st. dev. = 2/(𝑛1 + 𝑛2)

 - n1, n2 are the number of neurons in the previous and next

 layers, respectively.

 - Glorot, Bengio, Understanding the difficulty of training

 deep feedforward neural networks, JMLR, 2010

 Stavros Petridis Machine Learning (course 395)

Weight Initialisation

5. He Initialisation: Sample from a gaussian distribution with 0

mean and st. dev. = 2/𝑛1

 - n1 is the number of inputs to the neuron (i.e. the size of the

 previous layer).

 - Designed for neurons which use ReLu as activation

 functions.

 - He et al., Delving Deep into Rectifiers: Surpassing Human-

 Level Performance on ImageNet Classification, ICCV 2015

6. You can find many other approaches in the literature

 Stavros Petridis Machine Learning (course 395)

Ways to avoid overfitting

• Early stopping (see slide 55, part 1)

• L1 Regularisation

• L2 Regularisation

• Dropout

• Max-norm Constraint

• Data augmentation

 Stavros Petridis Machine Learning (course 395)

Early Stopping

• Early stopping: should we use loss or Classification error?

• It’s common that classification error can go down

 while the loss goes up!

 Stavros Petridis Machine Learning (course 395)

L2 Regularisation

• 𝐸 = 𝐸0 + 𝜆 𝑤2𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠

• 𝐸0 is the original error function, e.g., quadratic loss,

negative log-likelihood

• It is NOT applied to the bias

• We wish to minimise the original error function (𝐸0)

• We also wish to penalise large weights, keep the weights

small (second term)

• Small 𝜆  we prefer to minimise 𝐸0

• Large 𝜆  we prefer small weights

 Stavros Petridis Machine Learning (course 395)

L1 Regularisation

• 𝐸 = 𝐸0 + 𝜆 |𝑤|𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠

• 𝐸0 is the original error function, e.g., quadratic loss,

negative log-likelihood

• It is NOT applied to the bias

• We wish to minimise the original error function (𝐸0)

• We also wish to penalise large weights, keep the weights

small (second term)

• Small 𝜆  we prefer to minimise 𝐸0

• Large 𝜆  we prefer small weights

 Stavros Petridis Machine Learning (course 395)

L1/L2 Regularisation

• So what’s the difference between L1 and L2

regularisation?

• L2:
𝜕𝐸

𝜕𝑤
=
𝜕𝐸0

𝜕𝑤
+ λ𝑤 Δ𝑤 = −𝜂

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑤

• L1:
𝜕𝐸

𝜕𝑤
=
𝜕𝐸0

𝜕𝑤
+ λ𝑠𝑖𝑔𝑛(𝑤) Δ𝑤 = −𝜂

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑠𝑖𝑔𝑛(𝑤)

• L1: The weights shrink by a constant amount towards 0

• L2: The weights shrink by an amount proportional to w

• L1 drives small weights to zero

 Stavros Petridis Machine Learning (course 395)

L1/L2 Regularisation

• Why small weights prevent overfitting?

• When weights are 0 or close to zero this equivalent to

removing the corresponding connection between the

neurons

• Simpler architecture  avoids overfitting

• Network has the right capacity

• It is like we start with a high capacity (complex) network

until we find a network with the right capacity for the

problem

 Stavros Petridis Machine Learning (course 395)

Dropout

• We don’t modify the error function but the network itself

• During training neurons are randomly dropped out

• The probability that a neuron is present is p

From Dropout: A simple way to prevent neural networks from

 overfitting by Srivastava et al., JMLR 2014

 Stavros Petridis Machine Learning (course 395)

Dropout

• Dropout prevents overfitting because it provides a way

of approximately combining exponentially many

different neural network architectures.

• Typical values for p: 0.8/0.5 for input/hidden neurons

• At test time the outgoing weights of a neuron are

multiplied by p

From Dropout: A simple way to prevent neural networks from

 overfitting by Srivastava et al., JMLR 2014

 Stavros Petridis Machine Learning (course 395)

Dropout - Tips

• If a network with n neurons in the hidden layer works

well for a given task then a good dropout network should

have n/p neurons.

• Dropout introduces a significant amount of noise in the

gradients, a lot of gradients cancel each other  you

should use higher learning rate (and maybe higher

momentum)

• More epochs are needed

• The above heuristics do not always work!

 Stavros Petridis Machine Learning (course 395)

Max-Norm Regularisation

• Constrain the norm of the incoming weight vector at each

hidden unit to be upper bounded by a fixed constant c.

• Weight vector length: 𝐿 = 𝑤𝑗1
2 +𝑤𝑗2

2+. . . +𝑤𝑗𝑁
2

• 𝑤𝑗𝑖 corresponds to incoming weights to neuron j from the

N neurons of the previous layer

• If L > c then multiply all the incoming weights by c/L

• The new vector length is c

• Another approach to keep the weights small

• Usually used in combination with dropout

 Stavros Petridis Machine Learning (course 395)

Data Augmentation

• One of the best ways to avoid overfitting is more data

• So we can artificially generate more data, usually a bit

noisy, so we introduce more variation

• We should apply operations that correspond to real-world

variations.

• For images: flip left-right, rotate, translate, etc

 Stavros Petridis Machine Learning (course 395)

Data Normalisation

• It is not desirable that some inputs are orders of magnitude

larger than other inputs

• Map each input x(i) to [-1/0, +1]

• Min value is mapped to -1/0

• Max value is mapped to 1

 Stavros Petridis Machine Learning (course 395)

Data Normalisation

• Standardize inputs to mean=0 and 1 std. dev.=1

 y =
𝑥−𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑

• Useful for continuous inputs/targets

• It’s called z-normalisation

• Scaling is needed if inputs take very different values. If e.g.,

they are in the range [-3, 3] then scaling is probably not needed

 Stavros Petridis Machine Learning (course 395)

Data Normalisation

• 𝑥𝑚𝑒𝑎𝑛, 𝑥𝑠𝑡𝑑 are computed on the training set and then

applied to the validation and test sets.

• It is not correct to normalise each set separately.

 Stavros Petridis Machine Learning (course 395)

Image Normalisation

• When the input data are images then you can simply

remove the mean image computed on the training set.

• Alternatively, you can compute the mean and

standard deviation of all the pixels in each image and

 z-normalise each image independently.

 Stavros Petridis Machine Learning (course 395)

Monitoring the learning process

• Find a learning rate value at which the loss on the training data

 immediately begins to decrease.

• It’s a good idea to turn off regularisation at this point

• If loss increases or oscillates

 then the learning rate is too

 high

• If loss goes down slowly the

 the learning rate is low

From http://cs231n.github.io/neural-networks-3/

 Stavros Petridis Machine Learning (course 395)

Monitoring the learning process

Other tips

• Compute the mean and standard deviation of hidden

neurons activations for all examples in a mini-batch

• They should be different than 0 (this is important when

ReLu is used since the neurons can easily die)

• For each layer compute the norm of the weights and the

 norm of the weight updates Δw.

• The ratio norm(Δw) / norm(w) should be 0.01 – 0.0001

• If ratio is significantly different then something could be

wrong

 Stavros Petridis Machine Learning (course 395)

Hyperparameter Optimisation

• Once a good initial learning rate value is found then we

 can optimise the hyperparameters on the validation set

• Network architecture: number of layers, number of neurons

 per layer.

• Learning rate: when to start decaying, type of decay

• Regularisation: type of regularisation, values for

regularisation parameters

• Training algorithm, SGD+Momentum, Adam, RMSprop

• Maybe we wish to optimise again the initial learning rate

 Stavros Petridis Machine Learning (course 395)

(Hyper)Parameters / Weights

• (Hyper)Parameters are what the user specifies, e.g.

number of hidden neurons, learning rate, number of

epochs etc

• They need to be optimised

• Weights: They are also parameters but they are optimised

automatically via gradient descent

 Stavros Petridis Machine Learning (course 395)

Vanishing/Exploding gradient

• As we backpropagate through many layers:

1. If the weights are small -> 𝛿𝑖 shrink exponentially

2. If the weights are big -> 𝛿𝑖 grow exponentially

• So either the network stops learning (case 1) or becomes

unstable (case 2)

• That is why it is not possible to train deep networks with

 backpropagation

∆𝒘𝒋𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒋𝒊
= −𝜼𝜹𝒋𝒙𝒊 𝑤ℎ𝑒𝑟𝑒 𝜹𝒋 = (𝜹𝒌𝒘𝒌𝒋)

𝑲

𝒌=𝟏

𝝏𝝈(𝒏𝒆𝒕𝒋)

𝝏𝒏𝒆𝒕𝒋

 Stavros Petridis Machine Learning (course 395)

Deep NNs

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Output

Layer

Input

Layer

3-layer feed-forward network 4-layer feed-forward network

• Two ways to train

• A lot of data (data augmentation), ReLu, dropout etc

• Pre-training

 Stavros Petridis Machine Learning (course 395)

Deep NNs

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Output

Layer

Input

Layer

3-layer feed-forward network 4-layer feed-forward network

• There is a pre-training phase where weights are initialised to a

 good starting point.

• Pre-training is performed per layer using Restricted Boltzmann Machines

or Stacked Denoising Autoencoders

• Then backpropagation is used to fine-tune the weights starting from a good

initialisation point.

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• Train a network to reproduce

 its input

• This network is called an

 Autoencoder (AE)

• The idea is that the middle

 layer represents the main

 variations in the data

• The problem is that the AE

 may simply learn the identity

 function

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• Denoising AE: we add noise

 to the input so the network

 learns to reconstruct (output)

 the “denoised” input

• We usually set as many as

 half of the inputs to 0

• The network tries to

 reconstruct the input and undo

 the effect of noise

• The hidden layer is “forced”

 to learn the main variations in

 the data

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• The hidden layer weights of

 the AE are copied to the feed-

 forward NN

• The output of the hidden layer

 is used as input for the 2nd AE

• Noise is added to this new

 input and the 2nd AE learns

 to “denoise” its input

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• The hidden layer weights of

 the 2nd AE are copied

 to the feed-forward NN

• The output of the hidden layer

 is used as input for the 3rd AE

• Using this approach we can

 add as many as layers as we

 want

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• This approach is used to

 initialise the NN

• This is called pre-training

• It results in good initialisation

 of the weights

• Then we fine-tune the network

 using stochastic gradient

 descent

 Stavros Petridis Machine Learning (course 395)

Deep Networks for Time Series

• Deep feedforward NNs are good at various tasks but

 not at handling time series data

• Recurrent Neural Networks are suitable for time series

• They also suffer from the vanishing gradient problem

 Stavros Petridis Machine Learning (course 395)

LSTMs

• A type of recurrent network that can be effectively trained is the

Long-Short Term Memory Recurrent Neural Network (LSTM-

RNN). Introduced in 1990s

• We replace the neuron with a memory cell

• There are input, output and forget gates which control when

information flows in / out of the cell and when to reset the state

of the cell

 Stavros Petridis Machine Learning (course 395)

LSTMs

From LSTM: A search space odyssey by Greff et al., arXiv Mar 2015

 Stavros Petridis Machine Learning (course 395)

Convolutional Neural Networks

• Convolutional Neural Networks (CNNs) have been very

successful in computer vision

• First version was introduced in 1980s (neocognitron)

• Improved by LeCun et al., “Gradient-Based Learning Applied to

Document Recognition”, Proc. IEEE, 1998

 Stavros Petridis Machine Learning (course 395)

Convolutional Neural Networks

• Became popular in 2012 after winning the ImageNet competition

• “ImageNet Classification with Deep Convolutional Neural

Networks”, by Krizhevsky et al., NIPS 2012

• Tricks: Data augmentation, Dropout, ReLu + GPUs

 Stavros Petridis Machine Learning (course 395)

Convolutional Neural Networks

• It’s a deep network = many layers

• Each layer is either a convolutional layer or subsampling layer

• Final layers are fully connected layers

 Stavros Petridis Machine Learning (course 395)

ImageNet Competition – Object Classification

• Classification of 1000+ objects

• State-of-the-art before 2012: ~26%

• New state-of-the-art in 2012 with deep networks: ~15%

