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Course 395: Machine Learning - Lectures 
 Lecture 1-2: Concept Learning (M. Pantic) 

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) 

Lecture 5-6: Evaluating Hypotheses (S. Petridis) 

Lecture 7-8: Artificial Neural Networks I (S. Petridis) 

Lecture 9-10: Artificial Neural Networks II (S. Petridis)  

Lecture 11-12: Instance Based Learning (M. Pantic) 

Lecture 13-14: Genetic Algorithms (M. Pantic) 
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Output Weights Update Rule: Example 

• Update rule for output units:  Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗 

 

• Error function  

 

•
𝜕𝐸

𝜕𝑜𝑘
= −(𝑡𝑘 − 𝑜𝑘) 

 

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘  = 𝜊𝑘 1 − 𝜊𝑘   

   when σ is sigmoid 
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Output Weights Update Rule: Example 

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗 = 𝜂 𝑡𝑘 − 𝑜𝑘 𝜊𝑘 1 − 𝜊𝑘 𝑦𝑗   

 

• When the output is 0 or 1 then Δw is 0 as well 

 

• No matter if our prediction is right or wrong Δw will be 0 

   if the output is either 0 or 1 
 

• When the output activation function is sigmoid it is not a good 

    idea to use the quadratic error function   
 

• See http://neuralnetworksanddeeplearning.com/chap3.html 
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Cross Entropy Error as Error Function 

• A good error function when the output activation functions are 

sigmoid is the binary cross entropy defined as follows: 

 

 
 

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗 

 

•
𝜕𝐸

𝜕𝑜𝑘
=
𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)
 

 

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘  = 𝜊𝑘 1 − 𝜊𝑘   
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Cross Entropy Error as Error Function 

 

• Δ𝑤𝑘𝑗 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗 

 

• Δ𝑤𝑘𝑗 = −𝜂
𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)
𝜊𝑘 1 − 𝜊𝑘 𝑦𝑗= 𝜂(𝑡𝑘 − 𝑜𝑘) 𝑦𝑗 

 
 

• The higher the error the higher the weight update  
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Softmax output activation functions 

• A popular output activation function for classification is 

softmax 𝑜𝑘 =
𝑒𝑛𝑒𝑡𝑘

 𝑒𝑛𝑒𝑡𝑘𝑘

 

 

• The output can be interpreted as a discrete probability 

distribution 
 

• The right error function is the negative log likelihood cost  

     E = − 𝑡𝑘𝑙𝑛𝑜𝑘𝑘  
 

• Target vectors = [0 0 1 … 0]  E = −𝑙𝑛𝑜𝐿 where L is the 

position of the active target, i.e., it is 1. 
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Output activation functions: Summary 

• For each output activation function the right error function 

should be selected 
 

• Sigmoid  Cross entropy error (useful for classification) 
 

• Softmax  negative log likelihood cost (useful for 

classification) 
 

• Both combinations work well for classification problems, 

Softmax has the advantage of producing a discrete probability 

distribution over the outputs 
 

• Linear  Quadratic loss (useful for regression) 
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SGD with momentum 
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• Standard backpropagation 

• If the error surface is a long and narrow valley, gradient  

    descent goes quickly down the valley walls, but very slowly 

    along the valley floor. 

   

From https://www.cs.toronto.edu/~hinton/csc2515/notes/lec6tutorial.pdf 
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SGD with momentum 

• Backpropagation with momentum 
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• Standard backpropagation 

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + (1 − 𝜇) −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)
  OR 

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)
  

• 𝜇 = momentum constant, usually 0.9, 0.95 
 

• It is like giving momentum to the weights 
 

• We do not take into account only the local gradient but 

also recent trends in the error surface 
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Other Training Algorithms 

• Adam (usually works quite well) 

 

• Adagrad 

 

• Adadelta 

 

• RMSprop 

 

• Nesterov momentum 

 

• …and others 
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Learning Rate Decay 

• In the beginning weights are random so we need large weight 

updates, then as training progresses we need smaller and 

smaller updates. 

 

• It’s a good idea to start with a “high” (depends on the 

problem/dataset) learning rate and decay it slowly. 

 

• Typical values for initial learning rate, 0.1, 0.01. It’s problem 

dependent 

 

• Step decay: Reduce the learning rate by some factor every few 

epochs, e.g., divide by 2 every 50 epochs 
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Learning Rate Decay 

• Keep learning rate constant for T epochs and then decrease as 

follows:𝑙𝑟𝑡 =
𝑙𝑟0∗𝑇

max (𝑡,𝑇)
 

 

• Keep learning rate constant for T epochs and then decrease as 

follows: 𝑙𝑟𝑡 =𝑙𝑟𝑡−1 ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 (e.g. 0.99) 

 

• Decrease as follows: 𝑙𝑟𝑡 =
𝑙𝑟0

1+
𝑡

𝑇

 , T is the epoch where the 

learning rate is halved 

 

• You can think of many other ways to decay the learning rate 
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Momentum 

• It’s usually a good practice to increase the momentum during 

training. 

 

• Typically the initial value is 0.5 and the final value is 0.9, 0.95 

 

• Increase is usually linear 

 

• It’s also common to start increasing the momentum when the 

learning rate starts decreasing. 
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Weight Initialisation 

• We said we start with random weights…but how? 
 

• Some of the most common weight initialisation 

techniques are the following: 
 

1. Sample from a gaussian distribution, we need to define mean 

(usually 0) and standard deviation (e.g. 0.1 or 0.01) 
 

2. Sample from a uniform distribution, we need to define the 

range [-b,b] 
 

3. Sparse initialisation: Use gaussian/uniform distributions to 

initialise weights and then set most of them to 0. You need to 

define sparsity level, e.g. 0.8 (80% weights in each layer are 

set to 0). 
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Weight Initialisation 

 

4. Glorot Initialisation: Sample from a gaussian distribution 

with 0 mean and st. dev. = 2/(𝑛1 + 𝑛2) 

      - n1, n2 are the number of neurons in the previous and next 

 layers, respectively. 

      - Glorot, Bengio, Understanding the difficulty of training    

        deep feedforward neural networks, JMLR, 2010 
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Weight Initialisation 

 

 

5. He Initialisation: Sample from a gaussian distribution with 0 

mean and st. dev. = 2/𝑛1 

      - n1 is the number of inputs to the neuron (i.e. the size of the    

        previous layer).  

      - Designed for neurons which use ReLu as activation     

        functions. 

      -  He et al., Delving Deep into Rectifiers: Surpassing Human-   

         Level Performance on ImageNet Classification, ICCV 2015 
 

 

6. You can find many other approaches in the literature 
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Ways to avoid overfitting 

• Early stopping (see slide 55, part 1) 

 

• L1 Regularisation 

 

• L2 Regularisation 

 

• Dropout 

 

• Max-norm Constraint 

 

• Data augmentation    
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Early Stopping 

• Early stopping: should we use loss or Classification error? 

 

• It’s common that classification error can go down  

     while the loss goes up! 
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L2 Regularisation 

• 𝐸 = 𝐸0 +  𝜆  𝑤2𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠  
 

• 𝐸0 is the original error function, e.g., quadratic loss, 

negative log-likelihood 
 

• It is NOT applied to the bias 
 

• We wish to minimise the original error function (𝐸0) 
 

• We also wish to penalise large weights, keep the weights 

small (second term) 
 

• Small 𝜆  we prefer to minimise 𝐸0 
 

• Large 𝜆  we prefer small weights 
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L1 Regularisation 

• 𝐸 = 𝐸0 +  𝜆  |𝑤|𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠  
 

• 𝐸0 is the original error function, e.g., quadratic loss, 

negative log-likelihood 
 

• It is NOT applied to the bias 
 

• We wish to minimise the original error function (𝐸0) 
 

• We also wish to penalise large weights, keep the weights 

small (second term) 
 

• Small 𝜆  we prefer to minimise 𝐸0 
 

• Large 𝜆  we prefer small weights 

 



  Stavros Petridis                       Machine Learning (course 395) 

L1/L2 Regularisation 

• So what’s the difference between L1 and L2 

regularisation? 
 

• L2: 
𝜕𝐸

𝜕𝑤
=
𝜕𝐸0

𝜕𝑤
+ λ𝑤   Δ𝑤 = −𝜂 

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑤   

• L1: 
𝜕𝐸

𝜕𝑤
=
𝜕𝐸0

𝜕𝑤
+ λ𝑠𝑖𝑔𝑛(𝑤) Δ𝑤 = −𝜂 

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑠𝑖𝑔𝑛(𝑤)  

 

• L1: The weights shrink by a constant amount towards 0 
 

• L2: The weights shrink by an amount proportional to w 
 

• L1 drives small weights to zero 
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L1/L2 Regularisation 

• Why small weights prevent overfitting? 
 

• When weights are 0 or close to zero this equivalent to 

removing the corresponding connection between the 

neurons 
 

• Simpler architecture  avoids overfitting 

 

• Network has the right capacity 

 

• It is like we start with a high capacity (complex) network 

until we find a network with the right capacity for the 

problem 
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Dropout 

• We don’t modify the error function but the network itself 
 

• During training neurons are randomly dropped out 
 

• The probability that a neuron is present is p  

 
 

 

From Dropout: A simple way to prevent neural networks from 

 overfitting by Srivastava et al., JMLR 2014  
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Dropout 

• Dropout prevents overfitting because it provides  a  way  

of  approximately  combining  exponentially  many 

different  neural  network architectures. 
 

• Typical values for p: 0.8/0.5 for input/hidden neurons 

• At test time the outgoing weights of a neuron are 

multiplied by p 
 

 

 
 

 

From Dropout: A simple way to prevent neural networks from 

 overfitting by Srivastava et al., JMLR 2014  
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Dropout - Tips 

• If a network with n neurons in the hidden layer works 

well for a given task then a good dropout network should 

have n/p neurons. 
 

 

• Dropout introduces a significant amount of noise in the 

gradients, a lot of gradients cancel each other  you 

should use higher learning rate (and maybe higher 

momentum) 
 

• More epochs are needed 

 

• The above heuristics do not always work! 
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Max-Norm Regularisation 

• Constrain the norm of the incoming weight vector at each 

hidden unit to be upper bounded by a fixed constant c. 
 

• Weight vector length: 𝐿 = 𝑤𝑗1
2 +𝑤𝑗2

2+. . . +𝑤𝑗𝑁
2 

• 𝑤𝑗𝑖     corresponds to incoming weights to neuron j from the 

N neurons of the previous layer 
 

• If L > c then multiply all the incoming weights by c/L 
 

• The new vector length is c 

• Another approach to keep the weights small 

• Usually used in combination with dropout 
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Data Augmentation 

• One of the best ways to avoid overfitting is more data 
 

• So we can artificially generate more data, usually a bit 

noisy, so we introduce more variation 
 

• We should apply operations that correspond to real-world 

variations. 
 

• For images: flip left-right, rotate, translate, etc  
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Data Normalisation 

• It is not desirable that some inputs are orders of magnitude 

larger than other inputs 

 

• Map each input x(i) to [-1/0, +1] 

 

• Min value is mapped to -1/0 

 

• Max value is mapped to 1 
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Data Normalisation 

• Standardize inputs to mean=0 and 1 std. dev.=1 

    y = 
𝑥−𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑
 

 

• Useful for continuous inputs/targets 

 

• It’s called z-normalisation 
 

 

• Scaling is needed if inputs take very different values. If e.g.,  

they are in the range [-3, 3] then scaling is probably not needed 
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Data Normalisation 

• 𝑥𝑚𝑒𝑎𝑛, 𝑥𝑠𝑡𝑑 are computed on the training set and then 

applied to the validation and test sets.  

 

• It is not correct to normalise each set separately. 
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Image Normalisation 

• When the input data are images then you can simply 

remove the mean image computed on the training set. 

 

• Alternatively, you can compute the mean and 

standard deviation of all the pixels in each image and 

    z-normalise each image independently. 
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Monitoring the learning process 

• Find a learning rate value at which the loss on the training data 

    immediately begins to decrease. 

• It’s a good idea to turn off regularisation at this point 

• If loss increases or oscillates 

     then the learning rate is too   

     high 

 

• If loss goes down slowly the 

     the learning rate is low 

From http://cs231n.github.io/neural-networks-3/ 
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Monitoring the learning process 

Other tips 

• Compute the mean and standard deviation of hidden 

neurons activations for all examples in a mini-batch 

 

• They should be different than 0 (this is important when 

ReLu is used since the neurons can easily die) 

 

• For each layer compute the norm of the weights and the  

    norm of the weight updates Δw. 

 

• The ratio norm(Δw) / norm(w) should be 0.01 – 0.0001 

 

• If ratio is significantly different then something could be 

wrong 
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Hyperparameter Optimisation 

• Once a good initial learning rate value is found then we  

     can optimise the hyperparameters on the validation set 
 

• Network architecture: number of layers, number of neurons 

    per layer. 
 

• Learning rate: when to start decaying, type of decay 
 

• Regularisation: type of regularisation, values for 

regularisation parameters 
 

• Training algorithm, SGD+Momentum, Adam, RMSprop 

 

• Maybe we wish to optimise again the initial learning rate 
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(Hyper)Parameters / Weights 

• (Hyper)Parameters are what the user specifies, e.g. 

number of hidden neurons, learning rate, number of 

epochs etc 

 

• They need to be optimised 

 

• Weights: They are also parameters but they are optimised 

automatically via gradient descent 
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Vanishing/Exploding gradient 

• As we backpropagate through many layers: 

1. If the weights are small -> 𝛿𝑖 shrink exponentially  

2. If the weights are big -> 𝛿𝑖 grow exponentially  

• So either the network stops learning (case 1) or becomes 

unstable (case 2) 

• That is why it is not possible to train deep networks with 

    backpropagation 

∆𝒘𝒋𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒋𝒊
= −𝜼𝜹𝒋𝒙𝒊 𝑤ℎ𝑒𝑟𝑒  𝜹𝒋 = (𝜹𝒌𝒘𝒌𝒋)

𝑲

𝒌=𝟏

𝝏𝝈(𝒏𝒆𝒕𝒋)

𝝏𝒏𝒆𝒕𝒋
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Deep NNs 

Input 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Output 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Hidden  

Layer 3 

Output 

Layer 

Input 

Layer 

3-layer feed-forward network 4-layer feed-forward network 

• Two ways to train 
 

• A lot of data (data augmentation), ReLu, dropout etc 
 

• Pre-training 
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Deep NNs 

Input 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Output 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Hidden  

Layer 3 

Output 

Layer 

Input 

Layer 

3-layer feed-forward network 4-layer feed-forward network 

• There is a pre-training phase where weights are initialised to a 

     good starting point. 
 

• Pre-training is performed per layer using Restricted Boltzmann Machines 

or Stacked Denoising Autoencoders 
 

• Then backpropagation is used to fine-tune the weights starting from a good 

initialisation point. 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• Train a network to reproduce 

     its input  
 

• This network is called an 

     Autoencoder (AE) 
 

• The idea is that the middle 

     layer represents the main  

     variations in the data  
 

• The problem is that the AE 

     may simply learn the identity 

     function 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• Denoising AE: we add noise 

    to the input so the network 

    learns to reconstruct (output) 

    the “denoised” input 
 

• We usually set as many as  

     half of the inputs to 0 
 

• The network tries to  

     reconstruct the input and undo 

     the effect of noise 
 

• The hidden layer is “forced”  

     to learn the main variations in  

     the data 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• The hidden layer weights of 

     the AE are copied to the feed- 

    forward NN 
 

• The output of the hidden layer 

     is used as input for the 2nd AE 
 

• Noise is added to this new  

     input and the 2nd AE learns 

     to “denoise” its input 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• The hidden layer weights of 

     the 2nd AE are copied  

      to the feed-forward NN 
 

• The output of the hidden layer 

     is used as input for the 3rd AE 
 

• Using this approach we can 

     add as many as layers as we  

     want 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• This approach is used to 

     initialise the NN 
 

• This is called pre-training 
 

• It results in good initialisation 

    of the weights 
 

• Then we fine-tune the network 

    using stochastic gradient  

    descent 
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Deep Networks for Time Series 

• Deep feedforward NNs are good at various tasks but 

   not at handling time series data 

 

• Recurrent Neural Networks are suitable for time series 

 

• They also suffer from the vanishing gradient problem 
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LSTMs 

• A type of recurrent network that can be effectively trained is the 

Long-Short Term Memory Recurrent Neural Network (LSTM-

RNN). Introduced in 1990s 

 

• We replace the neuron with a memory cell 

 

• There are input, output and forget gates which control when 

information flows in / out of the cell and when to reset the state 

of the cell 
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LSTMs 

 

 

From LSTM: A search space odyssey by Greff et al., arXiv Mar 2015 
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Convolutional Neural Networks 

• Convolutional Neural Networks (CNNs) have been very 

successful in computer vision 
 

• First version was introduced in 1980s (neocognitron) 
 

• Improved by LeCun et al., “Gradient-Based Learning Applied to 

Document Recognition”, Proc. IEEE, 1998 
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Convolutional Neural Networks 

• Became popular in 2012 after winning the ImageNet competition 
 

• “ImageNet Classification with Deep Convolutional Neural 

Networks”, by Krizhevsky et al., NIPS 2012 
 

• Tricks: Data augmentation, Dropout, ReLu + GPUs 
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Convolutional Neural Networks 

• It’s a deep network = many layers 
 

• Each layer is either a convolutional layer or subsampling layer  
 

• Final layers are fully connected layers 
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ImageNet Competition – Object Classification 

• Classification of 1000+ objects 

• State-of-the-art before 2012: ~26% 

• New state-of-the-art in 2012 with deep networks: ~15% 

 


