
 Stavros Petridis Machine Learning (course 395)

Course 395: Machine Learning - Lectures
 Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)



 Stavros Petridis Machine Learning (course 395)

Neural Networks

Reading:

•Machine Learning (Tom Mitchel) Chapter 4

•Pattern Classification (Duda, Hart, Stork) Chapter 6

 (chapters 6.1, 6.2, 6.3, 6.8)

Further Reading:

• http://neuralnetworksanddeeplearning.com/

 (great online book)

Coursera classes

 - Machine Learning by Andrew Ng

 - Neural Networks by Hinton

 Stavros Petridis Machine Learning (course 395)

History

• 1st generation Networks: Perceptron 1957 – 1969

 - Perceptron is useful only for examples that are linearly separable

• 2nd generation Networks: Feedforward Networks and

 other variants, beginning of 1980s to middle/end of

 1990s

 - Difficult to train, many parameters, similar performance to SVMs

• 3rd generation Networks: Deep Networks 2006 - ?

 - New approach to train networks with multiple layers

 - State of the art in object recognition / speech recognition

 Stavros Petridis Machine Learning (course 395)

Hype Cycle

From Deep Learning: Methods and Applications,

Deng and Yu

 Stavros Petridis Machine Learning (course 395)

What are Neural Networks?

The real thing! Billions of neurons

Local computations on interconnected elements (neurons)

Parallel computation
• neuron switch time 0.001sec
• recognition tasks performed in 0.1 sec.

 Stavros Petridis Machine Learning (course 395)

Biological Neural Networks

A network of interconnected biological neurons.

Connections per neuron 104 - 105

 Stavros Petridis Machine Learning (course 395)

Biological vs Artificial Neural Networks

 Stavros Petridis Machine Learning (course 395)

Architecture

 How are the neurons connected

The Neuron

 How information is processed in each unit. output = f(input)

Learning algorithms

 How a Neural Network modifies its weights in order to solve a

 particular learning task in a set of training examples

The goal is to have a Neural Network that generalizes well, that is, that

it generates a ‘correct’ output on a set of test/new examples/inputs.

Artificial Neural Networks: the dimensions

 Stavros Petridis Machine Learning (course 395)

The Neuron

Σ
 

I

n

p

u

t

s

Output

 Bias

σ
o=σ(net)

 Neuron

Weights

• Main building block of any neural network

 Net Activation

 Transfer/Activation

Function

 Stavros Petridis Machine Learning (course 395)

Activation functions

)(,
1 0 netoYwxwnetX

n

i ii   

 Stavros Petridis Machine Learning (course 395)

Activation functions

From http://cs231n.github.io/neural-networks-1/

• Rectified Linear Unit (ReLu): max(0, x)

• Popular for deep networks

• Less computationally expensive than sigmoid

• Accelerates convergence during training

• Leaky ReLu: 𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑥 𝑖𝑓 𝑥 > 0

0.01𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Stavros Petridis Machine Learning (course 395)

Role of Bias

• The threshold where the neuron fires should be adjustable

• Instead of adjusting the threshold we add the bias term

• Defines how strong the neuron input should be before the neuron fires

𝑛𝑒𝑡 = 𝑤𝑖𝑥𝑖 +
𝑛

𝑖=1
𝑤0𝑥0(= 1)

 o = 𝜎(𝑛𝑒𝑡)

𝑜 =

1 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
≥ 𝜃

0 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
< 𝜃

𝑜 =

1 𝑖𝑓 𝑤𝑖𝑥𝑖 − 𝜃
𝑛

𝑖=1
≥ 0

0 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
− 𝜃 < 0

𝑤0=-𝜃

 Stavros Petridis Machine Learning (course 395)

Perceptron

Σ
 

I

n

p

u

t

s

σ
o=σ(net)

• σ = sign/step/function

• Perceptron = a neuron that its input is the dot product of W and X

 and uses a step function as a transfer function

 Stavros Petridis Machine Learning (course 395)

• Generalization to single layer perceptrons with more neurons is

easy because:

 

• The output units are mutually independent

• Each weight only affects one of the outputs

Perceptron: Architecture

 Stavros Petridis Machine Learning (course 395)

• Perceptron was invented by Rosenblatt

• The Perceptron--a perceiving

 and recognizing automaton, 1957

Perceptron

 Stavros Petridis Machine Learning (course 395)

Perceptron: Example 1 - AND

• x1 = 1, x2 = 1 net = 20+20-30=10 o = σ(10) = 1

• x1 = 0, x2 = 1 net = 0+20-30 =-10 o = σ(-10) = 0

• x1 = 1, x2 = 0 net = 20+0-30 =-10 o = σ(-10) = 0

• x1 = 0, x2 = 0 net = 0+0-30 =-30 o = σ(-10) = 0

Σ σ
o=σ(net)

 Stavros Petridis Machine Learning (course 395)

Perceptron: Example 2 - OR

• x1 = 1, x2 = 1 net = 20+20-10=30 o = σ(30) = 1

• x1 = 0, x2 = 1 net = 0+20-10 =10 o = σ(10) = 1

• x1 = 1, x2 = 0 net = 20+0-10 =10 o = σ(10) = 1

• x1 = 0, x2 = 0 net = 0+0-10 =-10 o = σ(-10) = 0

Σ σ
o=σ(net)

 Stavros Petridis Machine Learning (course 395)

Perceptron: Example 3 - NAND

• x1 = 1, x2 = 1 net = -20-20+30=-10  o = σ(-10) = 0

• x1 = 0, x2 = 1 net = 0-20+30 =10  o = σ(10) = 1

• x1 = 1, x2 = 0 net = -20+0+30 =10  o = σ(10) = 1

• x1 = 0, x2 = 0 net = 0+0+30 =30  o = σ(30) = 1

Σ σ
o=σ(net)

 Stavros Petridis Machine Learning (course 395)

• Given training examples of classes A1, A2 train the

perceptron in such a way that it classifies correctly the

 training examples:

– If the output of the perceptron is 1 then the input is

assigned to class A1 (i.e. if)

– If the output is 0 then the input is assigned to class A2

• Geometrically, we try to find a hyper-plane that separates the

examples of the two classes. The hyper-plane is defined by the

linear function

Perceptron for classification

 Stavros Petridis Machine Learning (course 395)

Perceptron: Geometric view

(Note that q  -w0)

20

10

02211

02211

AClassthenwxwxwif

AClassthenwxwxwif





definitionourondepends

AorAClassthenwxwxwif 21002211 

 Stavros Petridis Machine Learning (course 395)

Perceptron: The limitations of perceptron

• Perceptron can only classify examples that are linearly separable

• The XOR is not linearly separable.

• This was a terrible blow to the field

 Stavros Petridis Machine Learning (course 395)

• Marvin Minsky • Seymour Papert

• A famous book was published in 1969: Perceptrons

• Caused a significant decline in interest and funding of
neural network research

Perceptron

 Stavros Petridis Machine Learning (course 395)

Perceptron XOR Solution

• XOR can be expressed in terms of AND, OR, NAND

 Stavros Petridis Machine Learning (course 395)

Perceptron XOR Solution

• XOR can be expressed in terms of AND, OR, NAND

• XOR = NAND (AND) OR

AND

1 1  1

0 1  0

1 0  0

0 0  0

OR

1 1  1

0 1  1

1 0  1

0 0  0

NAND

1 1  0

0 1  1

1 0  1

0 0  1

OR

20

20

-10

NAND

-20

-20

30

20
AND

20

-30

y1

y2

o

• x1=1, x2 =1 y1=1 AND y2=0  o = 0

• x1=1, x2 =0 y1=1 AND y2=1  o = 1

• x1=0, x2 =1 y1=1 AND y2=1  o = 1

• x1=0, x2 =0 y1=0 AND y2=1 o = 0

 Stavros Petridis Machine Learning (course 395)

XOR

1

0
1

x2

x1

OR

NAND

1

1

0

0 20x1 + 20x2 = 10

-20x1 -20x2 = -30

20x1 + 20x2 < 10 20x1 + 20x2 > 10

-20x1 - 20x2 < -30 -20x1 - 20x2 > -30

 Stavros Petridis Machine Learning (course 395)

Input

layer

Output

layer

Hidden Layer

• We consider a more general network architecture: between the input and output

 layers there are hidden layers, as illustrated below.

• Hidden nodes do not directly receive inputs nor send outputs to the external

 environment.

Multilayer Feed Forward Neural Network

 Stavros Petridis Machine Learning (course 395)

NNs: Architecture

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Output

Layer

Input

Layer

Feedback

Connection

3-layer feed-forward network 4-layer feed-forward network

4-layer recurrent network – Difficult to train

• The input layer does

 not count as a layer

 Stavros Petridis Machine Learning (course 395)

NNs: Architecture

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Output

Layer

Input

Layer

3-layer feed-forward network 4-layer feed-forward network

• Deep networks are simply networks with many layers.

• They are trained in the same way as shallow networks but

 1) either weight initialisation is done in a different way.

 2) or we use a lot of data with strong regularisation

 Stavros Petridis Machine Learning (course 395)

Multilayer Feed Forward Neural Network

jiw
kjwix

jiw = weight associated with ith input

to hidden unit j

kjw = weight associated with jth input

to output unit k

jy

ko

= output of jth hidden unit

= output of kth output unit

( 


n

i jiij wxy
0



( 


nH

j kjjk wyo
0



n = number of inputs

nH = number of hidden neurons

K = number of output neurons ((  


nH

j kj

n

i jiik wwxo
0 0


 Stavros Petridis Machine Learning (course 395)

Representational Power of

Feedforward Neural Networks

• Boolean functions: Every boolean function can be represented

exactly by some network with two layers

• Continuous functions: Every bounded continuous function can

be approximated with arbitrarily small error by a network with

2 layers

• Arbitrary functions: Any function can be approximated to

arbitrary accuracy by a network with 3 layers

• Catch: We do not know 1) what the appropriate number of

hidden neurons is, 2) the proper weight values

((  


nH

j kj

n

i jiik wwxo
0 0


 Stavros Petridis Machine Learning (course 395)

Classification / Regression with NNs

• You should think of neural networks as function

approximators

((  


nH

j kj

n

i jiik wwxo
0 0


Classification
- Discrete output

-e.g., recognise one of the six

 basic emotions

Regression
- Continuous output

- e.g., house price estimation

 Stavros Petridis Machine Learning (course 395)

Output Representation

• Binary Classification

 Target Values (t): 0 or -1 (negative) and 1 (positive)

• Regression

 Target values (t): continuous values [-inf, +inf]

• Ideally o ≈ t

((  


nH

j kj

n

i jiik wwxo
0 0


 Stavros Petridis Machine Learning (course 395)

Multiclass Classification

Target Values: vector (length=no. Classes)

e.g. for 4 classes the targets are the following:



















0

0

0

1



















0

0

1

0



















0

1

0

0



















1

0

0

0

Class1 Class3 Class2 Class4

 Stavros Petridis Machine Learning (course 395)

Training

• We have assumed so far that we know the weight

values

• We are given a training set consisting of inputs and

targets (X, T)

• Training: Tuning of the weights (w) so that for each

input pattern (x) the output (o) of the network is close

to the target values (t).

((  


nH

j kj

n

i jii wwxo
0 0


o ≈ t

 Stavros Petridis Machine Learning (course 395)

Training – Gradient Descent

•Gradient Descent: A general, effective way for estimating

parameters (e.g. w) that minimise error functions

• We need to define an error function E(w)

• Update the weights in each iteration in a direction that reduces

the error the order in order to minimize E

iii www 

i

i
w

E
w




- 

 Stavros Petridis Machine Learning (course 395)

Gradient descent method: take a step in the direction

that decreases the error E. This direction is the opposite

of the derivative of E.

Gradient direction E

Gradient Descent

- derivative: direction of steepest increase

- learning rate: determines the step size in

 the direction of steepest decrease

 Stavros Petridis Machine Learning (course 395)

Gradient Descent – Learning Rate

- Derivative: direction of steepest increase

- Learning rate: determines the step size in the direction of steepest

decrease. It usually takes small values, e.g. 0.01, 0.1

- If it takes large values then the weights change a lot -> network unstable

∆𝑤𝑖 = −𝜂
𝜕𝐸

𝜕𝑤𝑖
>0 ∆𝑤𝑖 = −𝜂

𝜕𝐸

𝜕𝑤𝑖
<0

E

Gradient direction

Positive Slope Negative Slope

 Stavros Petridis Machine Learning (course 395)

Gradient Descent –Learning Rate

 Stavros Petridis Machine Learning (course 395)

• The Backprop algorithm searches for weight values that

minimize the error function of the network (K outputs) over

the set of training examples (training set).

• Based on gradient descent algorithm

Input

layer

Output

layer

Learning: The backpropagation algorithm

iii www 
i

i
w

E
w




- 

 Stavros Petridis Machine Learning (course 395)

Reminder: Multilayer Feed Forward

Neural Network

jiw
kjwix

jiw = weight associated with ith input

to hidden unit j

kjw = weight associated with jth input

to output unit k

jy

ko

= output of jth hidden unit

= output of kth output unit

( (j

n

i jiij netwxy    0

( (k

nH

j kjjk netwyo    0

n = number of inputs

nH = number of hidden neurons

K = number of output neurons ((  


nH

j kj

n

i jiik wwxo
0 0


 Stavros Petridis Machine Learning (course 395)

Backpropagation: Initial Steps

• Training Set: A set of input vectors 𝑥𝑖 , 𝑖 = 1…𝐷

 with the corresponding targets 𝑡𝑖

• η: learning rate, controls the change rate of the weights

• Begin with random weights (use one of the initialisation

 strategies discussed later)

 Stavros Petridis Machine Learning (course 395)

Backpropagation: Output Neurons

• We define our error function, for example

• E depends on the weights because  


n

i i

d

id wxo
0

jy

kjw

( (k

nH

j kjjk netwyo    1

( 
-

K

k kk otE
1

2

2

1

• For simplicity we assume the error of one training example

 Stavros Petridis Machine Learning (course 395)

•
𝜕𝐸𝑘

𝜕𝑤𝑘𝑗
=

𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
=

𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗

• We define 𝛿𝑘 =
𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘

• Update: ∆𝑤𝑘𝑗= −𝜂
𝜕𝐸𝑘

𝜕𝑤𝑘𝑗
= −𝜂𝛿𝑘𝑦𝑗

Backpropagation: Output Neurons

jy

kjw

( (k

nH

j kjjk netwyo    1

 Stavros Petridis Machine Learning (course 395)

Input

layer

Output

layer

Backpropagation: Output/Hidden Neurons

• Weights connected to output neuron k can influence the error

 of that particular neuron only.

• That’s why
𝜕𝐸

𝜕𝑤𝑘𝑗
 =

𝜕

𝜕𝑤𝑘𝑗
𝐸1 + 𝐸2 + ⋯+ 𝐸𝑘 + ⋯+ 𝐸𝐾 =

𝜕𝐸𝑘

𝜕𝑤𝑘𝑗

• Weights connected to hidden neuron j can influence the error

 of all output neurons.

• That’s why
𝜕𝐸

𝜕𝑤𝑗𝑖
 =

𝜕

𝜕𝑤𝑗𝑖
𝐸1 + 𝐸2 + ⋯+ 𝐸𝑘 + ⋯+ 𝐸𝐾

jiw kjw

 Stavros Petridis Machine Learning (course 395)

•
𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
𝑥𝑖

•
𝜕𝐸

𝜕𝑦𝑗
=

𝜕𝐸𝑘

𝜕𝑦𝑗

𝐾
𝑘=1 =

𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑦𝑗

𝐾
𝑘=1 =

𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑦𝑗

𝐾
𝑘=1

Backpropagation: Hidden Neurons

ix

jiw

( (j

n

i jiij netwxy    0

jy

kjw

( (k

nH

j kjjk netwyo    1

Hidden Neuron

Output Neuron

 Stavros Petridis Machine Learning (course 395)

•
𝜕𝐸

𝜕𝑦𝑗
=

𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑦𝑗
= 𝛿𝑘𝑤𝑘𝑗

𝐾
𝑘=1

𝐾
𝑘=1

•
𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
= (𝛿𝑘𝑤𝑘𝑗)

𝐾
𝑘=1

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
𝑥𝑖

Backpropagation: Hidden Neurons

ix

jiw

( (j

n

i jiij netwxy    0

jy

kjw

( (k

nH

j kjjk netwyo    1

Hidden Neuron

Output Neuron

 Stavros Petridis Machine Learning (course 395)

•
𝜕𝐸

𝜕𝑤𝑗𝑖
= (𝛿𝑘𝑤𝑘𝑗)

𝐾
𝑘=1

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
𝑥𝑖

• We define 𝛿𝑗 = (𝛿𝑘𝑤𝑘𝑗)
𝐾
𝑘=1

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗

Backpropagation: Hidden Neurons

ix

jiw

( (j

n

i jiij netwxy    0

jy

kjw

( (k

nH

j kjjk netwyo    1

Hidden Neuron

Output Neuron

 Stavros Petridis Machine Learning (course 395)

•
𝜕𝐸

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑥𝑖

• Update: ∆𝑤𝑗𝑖= −𝜂
𝜕𝐸

𝜕𝑤𝑗𝑖
= −𝜂𝛿𝑗𝑥𝑖

Backpropagation: Hidden Neurons

ix

jiw

( (j

n

i jiij netwxy    0

jy

kjw

( (k

nH

j kjjk netwyo    1

Hidden Neuron

Output Neuron

 Stavros Petridis Machine Learning (course 395)

Input

layer

Output

layer

Backpropagation: Hidden Neurons

• Update: ∆𝑤𝑗𝑖= −𝜂
𝜕𝐸

𝜕𝑤𝑗𝑖
= −𝜂𝛿𝑗𝑥𝑖

• 𝛿𝑗 = (𝛿𝑘𝑤𝑘𝑗)
𝐾
𝑘=1

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗

• 𝛿𝑘 =
𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘

jiw kjw

ix

𝛿1

𝛿2

𝑤12 𝛿1

𝑤22 𝛿2

𝛿2ℎ𝑖𝑑 = (𝑤12 𝛿1+ 𝑤22 𝛿2)
𝜕σ(𝑛𝑒𝑡2)

𝜕𝑛𝑒𝑡2

∆𝑤21= −𝜂 𝛿2ℎ𝑖𝑑 𝑥1

 Stavros Petridis Machine Learning (course 395)

Example

• http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

 Stavros Petridis Machine Learning (course 395)

Stochastic Gradient Descent

• Stochastic/Incremental/On-line: One example at a time is fed to

 the network.

• Weights are updated after each example is presented to the network

 Stavros Petridis Machine Learning (course 395)

Batch Gradient Descent

• Batch: All examples are fed to the network. Weights are updated

 only after all examples have been presented to the network

• For each weight the corresponding gradient (or Δw) is computed

 (for each example).

• The weights are updated based on the average gradient over

 all examples.Type equation here.

• Δ𝑤𝑎𝑙𝑙𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠 =
1

𝐷
 Δ𝑤𝑜𝑛𝑒𝐸𝑥𝑎𝑚𝑝𝑙𝑒

𝐷
𝑑=1

 Stavros Petridis Machine Learning (course 395)

Mini-batch Gradient Descent

• Mini-Batch: M randomly examples are fed to the network.

 - M = 32…128 (typical value 100)

• For each weight the corresponding gradient (or Δw) is computed

 (for each example).

• The weights are updated based on the average gradient over

 all M examples.

• Set of M examples is called mini-batch.

• Popular approach in deep neural networks.

• Sometimes called stochastic gradient descent (NOT to be confused

 with online/incremental gradient descent).

 Stavros Petridis Machine Learning (course 395)

• When the gradient magnitude (or ∆𝑤𝑖) is small, i.e.

• When the maximum number of epochs has been

reached

• When the error on the validation set increases for n

consecutive times (this implies that we monitor the

error on the validation set). This is called early

stopping.

Backpropagation Stopping Criteria

𝜕𝐸

𝜕𝑤𝑖
< 𝛿 𝑜𝑟 ∆𝑤𝑖 < 𝛿

 Stavros Petridis Machine Learning (course 395)

Early stopping

• Stop when the error in the validation set increases (but

not too soon!)

• Error might decrease in the training set but increase in the

‘validation’ set (overfitting!)

• It is also a way to avoid overfitting.

 Stavros Petridis Machine Learning (course 395)

1. Initialise weights randomly

2. For each input training example x compute the outputs

(forward pass)

3. Compute the output neurons errors and then compute the

update rule for output layer weights (backward pass)

Backpropagation Summary

4. Compute hidden neurons errors and then compute the

update rule for hidden layer weights (backward pass)

∆𝒘𝒌𝒋= −𝜼
𝝏𝑬

𝝏𝒘𝒌𝒋
= −𝜼𝜹𝒌𝒚𝒋 𝑤ℎ𝑒𝑟𝑒 𝜹𝒌=

𝝏𝑬

𝝏𝒐𝒌

𝝏𝝈(𝒏𝒆𝒕𝒌)

𝝏𝒏𝒆𝒕𝒌

∆𝒘𝒋𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒋𝒊
= −𝜼𝜹𝒋𝒙𝒊 𝑤ℎ𝑒𝑟𝑒 𝜹𝒋 = (𝜹𝒌𝒘𝒌𝒋)

𝑲

𝒌=𝟏

𝝏𝝈(𝒏𝒆𝒕𝒋)

𝝏𝒏𝒆𝒕𝒋

 Stavros Petridis Machine Learning (course 395)

5. Compute the sum of all Δw, once all training

examples have been presented to the network

6. Update weights

7. Repeat steps 2-6 until the stopping criterion is met

• The algorithm will converge to a weight vector with

minimum error, given that the learning rate is

sufficiently small

Backpropagation Summary

iii www 

 Stavros Petridis Machine Learning (course 395)

Backpropagation: Convergence

• Converges to a local minimum of the error function

• … can be retrained a number of times

• Minimises the error over the training examples

• …will it generalise well over unknown examples?

• Training requires thousands of iterations (slow)

• … but once trained it can rapidly evaluate output

 Stavros Petridis Machine Learning (course 395)

Backpropagation: Error Surface

