

Course 395: Machine Learning - Lectures

Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

➤ Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)

Neural Networks

Reading:

- Machine Learning (Tom Mitchel) Chapter 4
- Pattern Classification (Duda, Hart, Stork) Chapter 6
(chapters 6.1, 6.2, 6.3, 6.8)

Further Reading:

- <http://neuralnetworksanddeeplearning.com/>
(great online book)

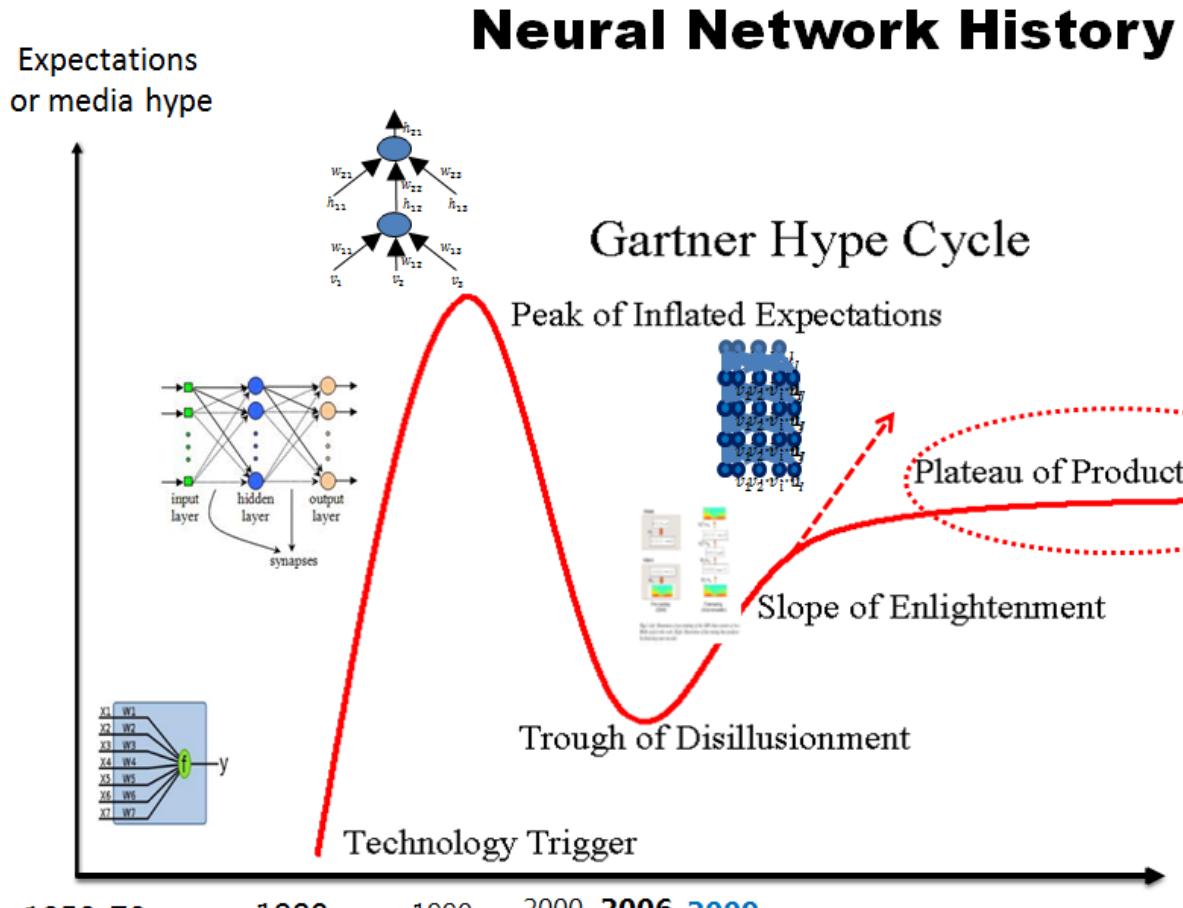
Coursera classes

- Machine Learning by Andrew Ng
- Neural Networks by Hinton

History

- 1st generation Networks: Perceptron 1957 – 1969
 - Perceptron is useful only for examples that are linearly separable
- 2nd generation Networks: Feedforward Networks and other variants, beginning of 1980s to middle/end of 1990s
 - Difficult to train, many parameters, similar performance to SVMs
- 3rd generation Networks: Deep Networks 2006 - ?
 - New approach to train networks with multiple layers
 - State of the art in object recognition / speech recognition

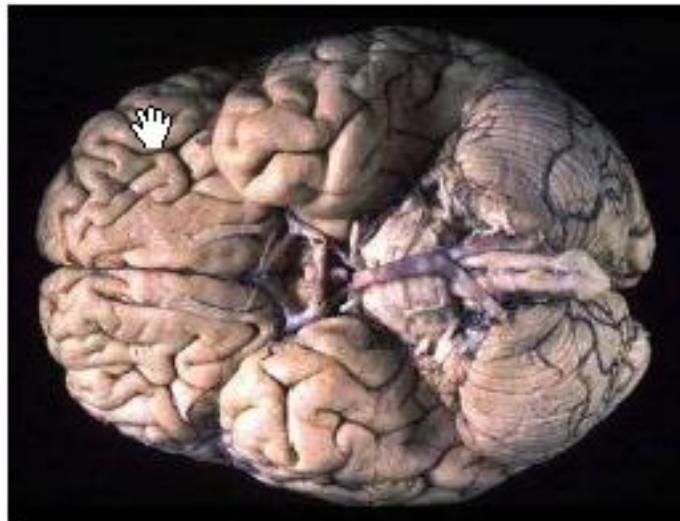
Hype Cycle



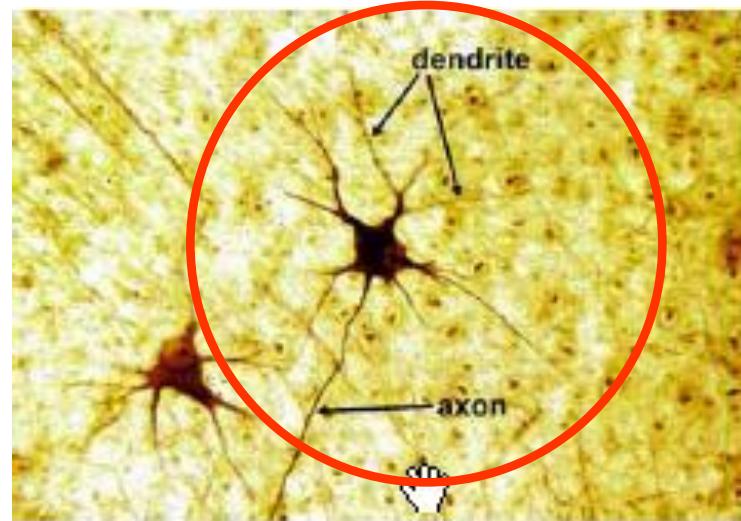
From Deep Learning: Methods and Applications,
Deng and Yu

What are Neural Networks?

The real thing!



Billions of neurons

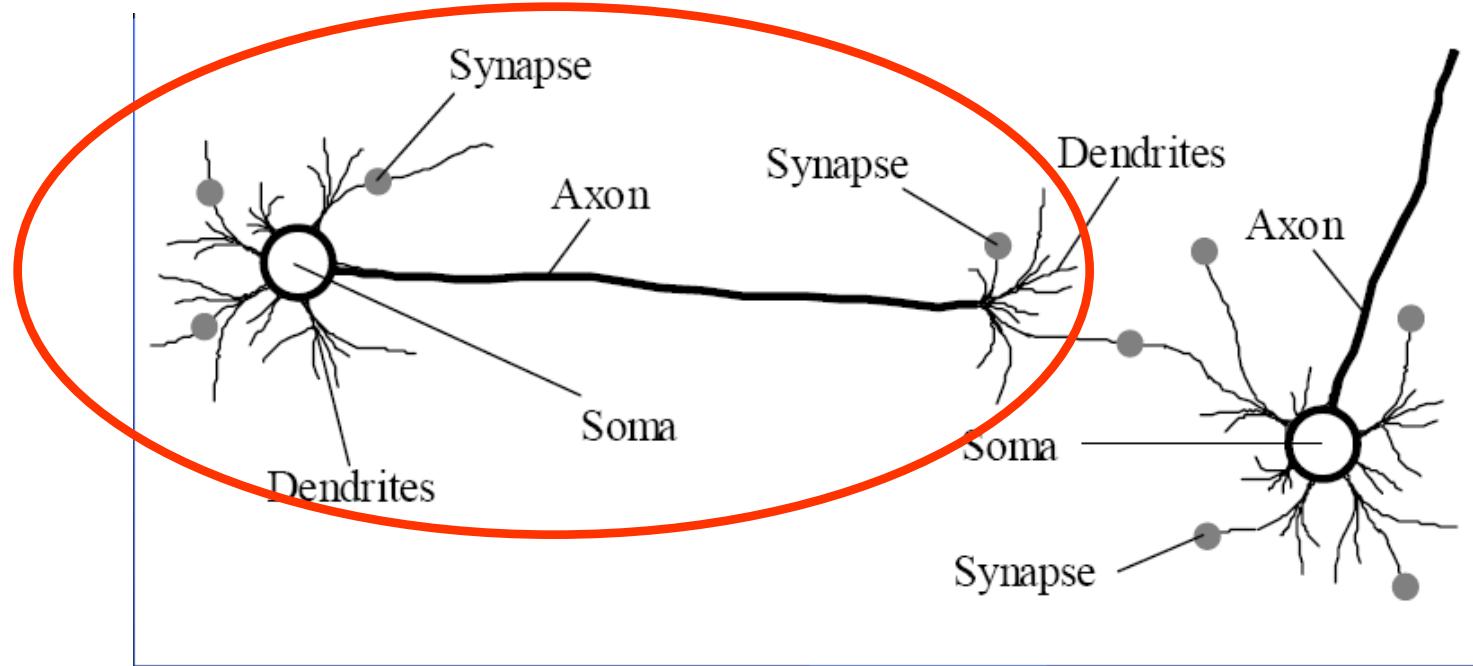


Local computations on **interconnected** elements (neurons)

Parallel computation

- neuron switch time 0.001 sec
- recognition tasks performed in 0.1 sec.

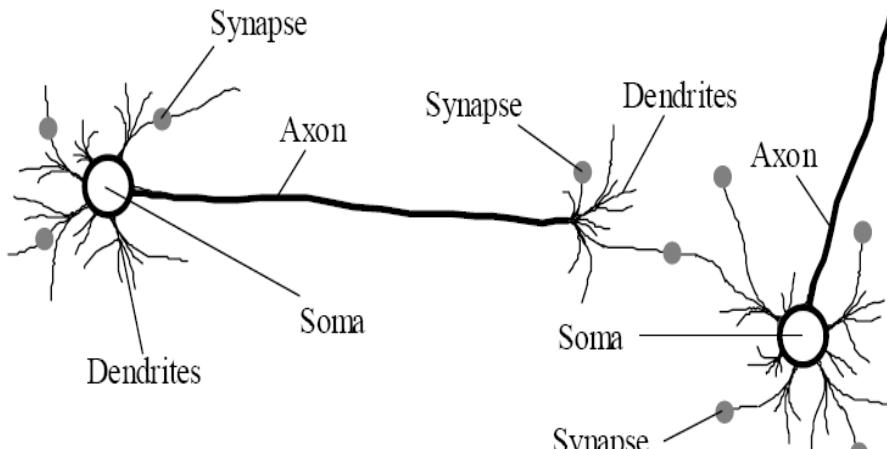
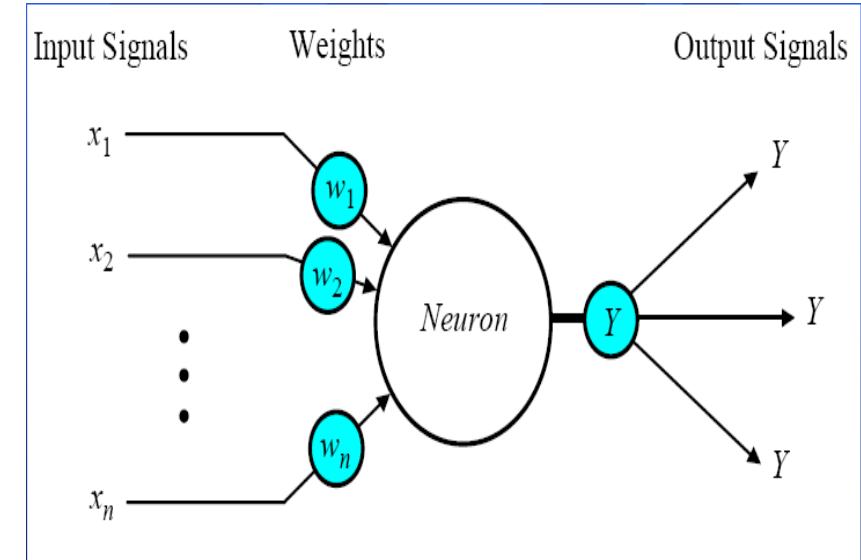
Biological Neural Networks



A network of interconnected biological neurons.

Connections per neuron $10^4 - 10^5$

Biological vs Artificial Neural Networks

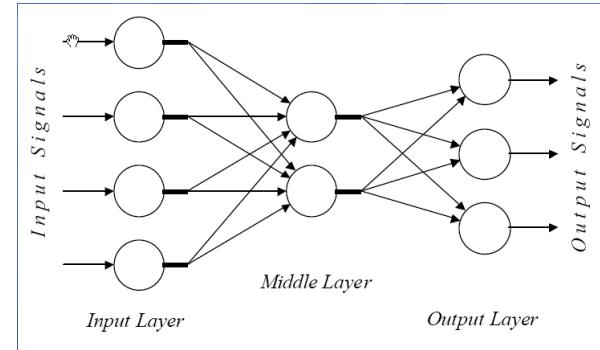


Biological Neural Network	Artificial Neural Network
Soma	Neuron
Dendrite	Input
Axon	Output
Synapse	Weight

Artificial Neural Networks: the dimensions

Architecture

How are the neurons connected



The Neuron

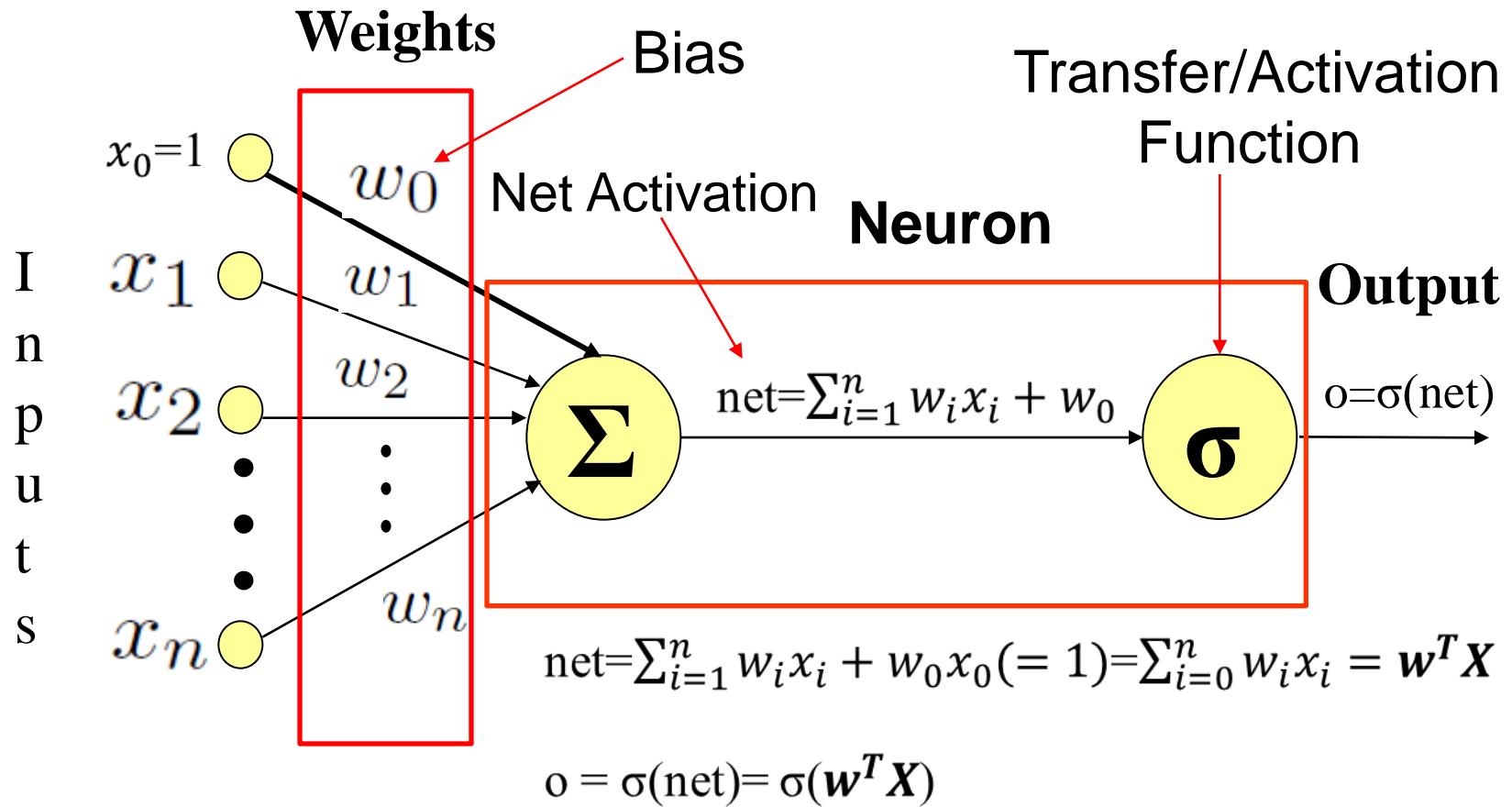
How information is processed in each unit. $\text{output} = f(\text{input})$

Learning algorithms

How a Neural Network modifies its **weights** in order to solve a particular **learning task** in a set of **training examples**

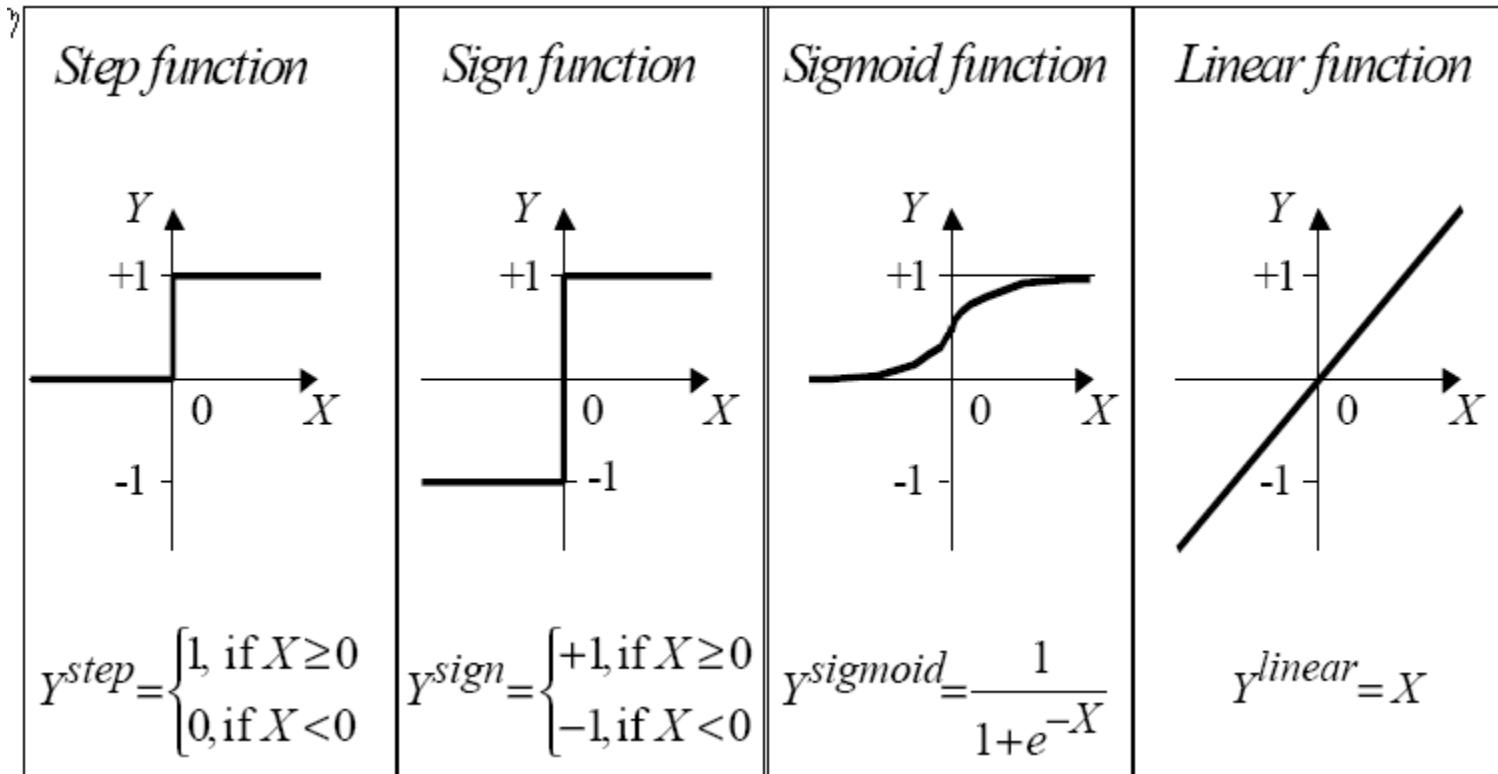
The goal is to have a Neural Network that **generalizes** well, that is, that it generates a 'correct' output on a set of **test/new examples/inputs**.

The Neuron



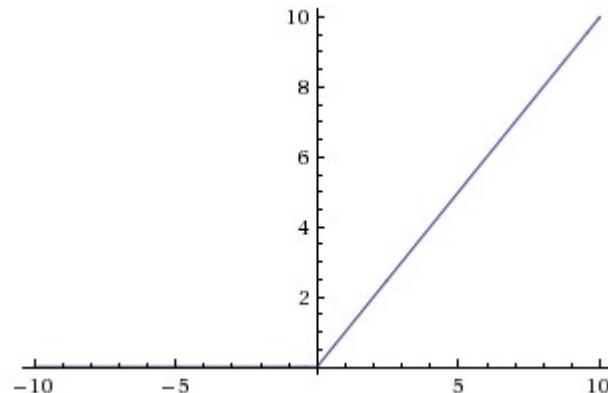
- Main building block of any neural network

Activation functions



$$X = \text{net} = \sum_{i=1}^n w_i x_i + w_0, \quad Y = o = \sigma(\text{net})$$

Activation functions



From <http://cs231n.github.io/neural-networks-1/>

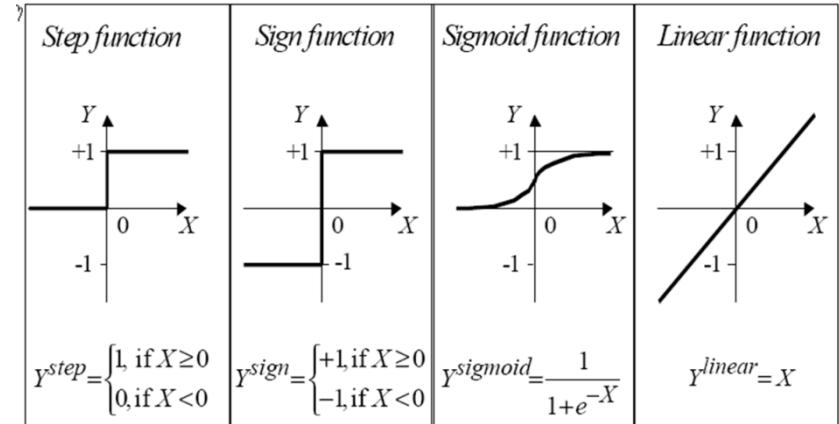
- Rectified Linear Unit (ReLU): $\max(0, x)$
- Popular for deep networks
- Less computationally expensive than sigmoid
- Accelerates convergence during training
- Leaky ReLu: $output = \begin{cases} x & \text{if } x > 0 \\ 0.01x & \text{otherwise} \end{cases}$

Role of Bias

$$net = \sum_{i=1}^n w_i x_i + w_0 x_0 (= 1)$$

$$o = \sigma(net)$$

$$w_0 = -\theta$$

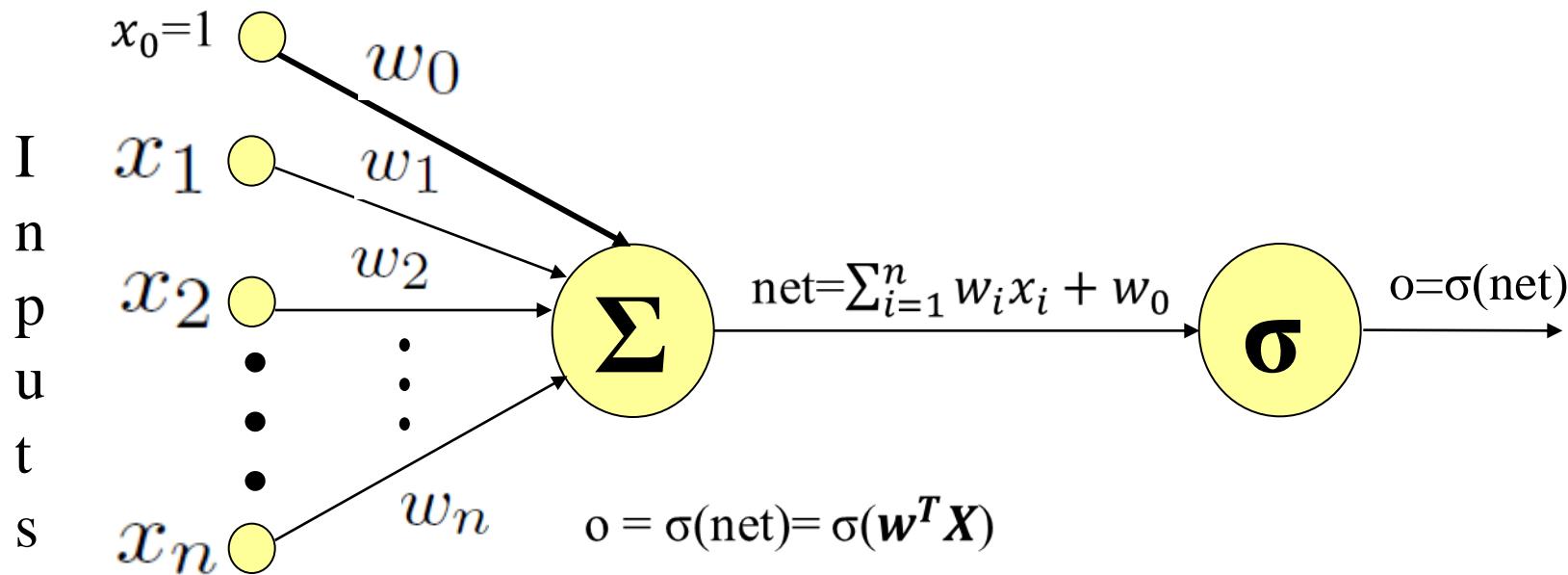


- The threshold where the neuron fires should be adjustable
- Instead of adjusting the threshold we add the bias term
- Defines how strong the neuron input should be before the neuron fires

$$o = \begin{cases} 1 & \text{if } \sum_{i=1}^n w_i x_i \geq \theta \\ 0 & \text{if } \sum_{i=1}^n w_i x_i < \theta \end{cases}$$

$$o = \begin{cases} 1 & \text{if } \sum_{i=1}^n w_i x_i - \theta \geq 0 \\ 0 & \text{if } \sum_{i=1}^n w_i x_i - \theta < 0 \end{cases}$$

Perceptron

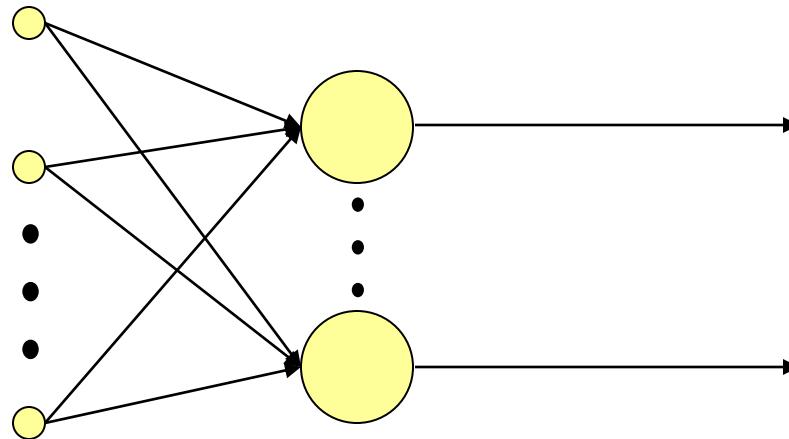


$$o = \sigma(\text{net}) = \begin{cases} 1 & \text{if } \text{net} > 0 \\ -1 & \text{otherwise} \end{cases}$$

- $\sigma = \text{sign}/\text{step}/\text{function}$
- Perceptron = a neuron that its input is the dot product of \mathbf{W} and \mathbf{X} and uses a step function as a transfer function

Perceptron: Architecture

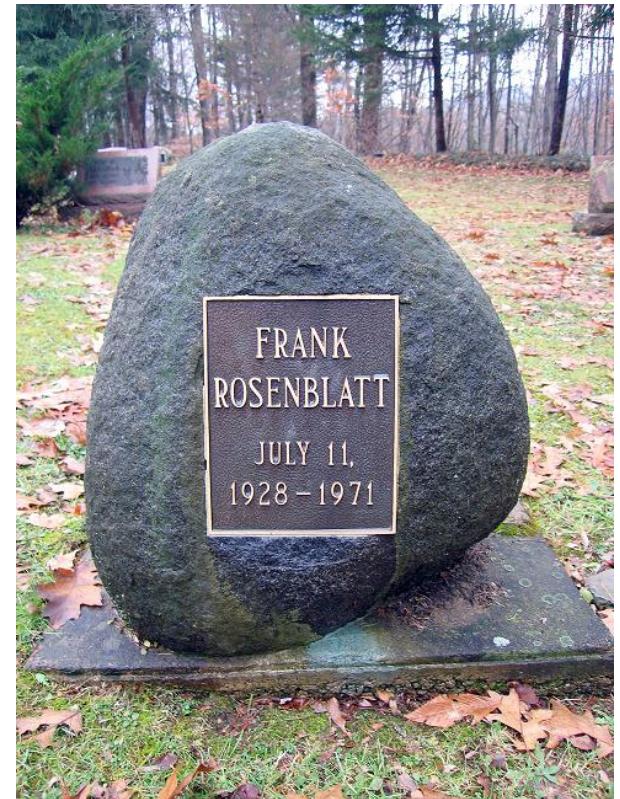
- Generalization to single layer perceptrons with more neurons is easy because:



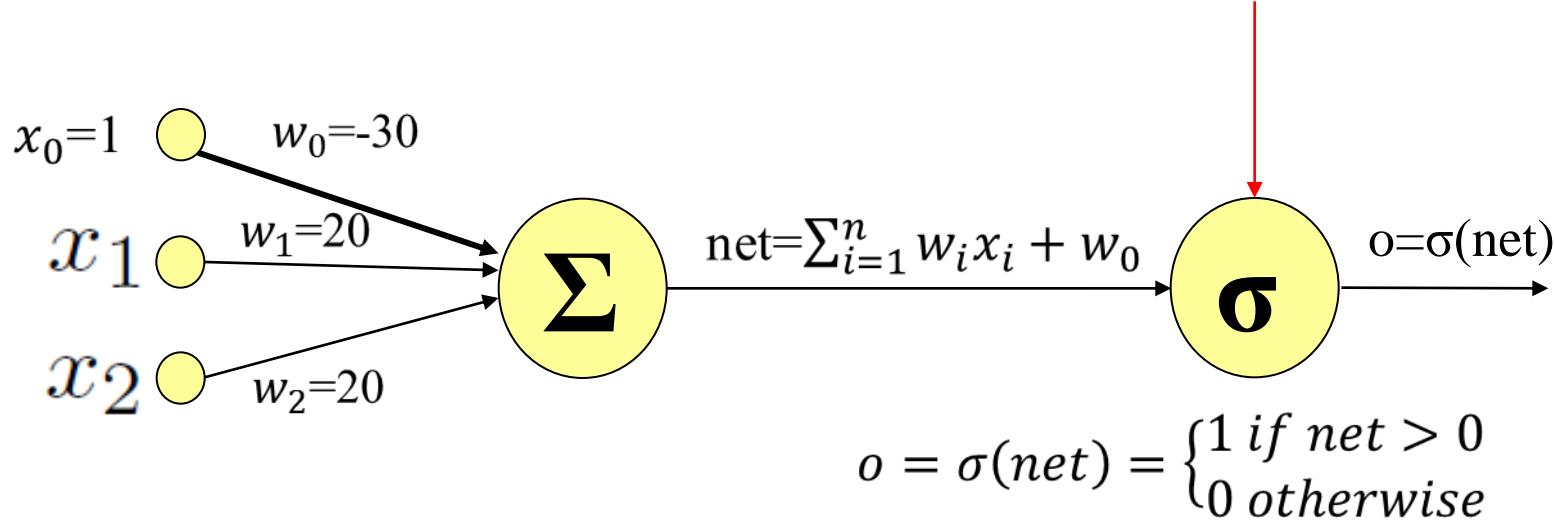
- The output units are mutually independent
- Each weight only affects one of the outputs

Perceptron

- Perceptron was invented by Rosenblatt
- *The Perceptron--a perceiving and recognizing automaton*, 1957

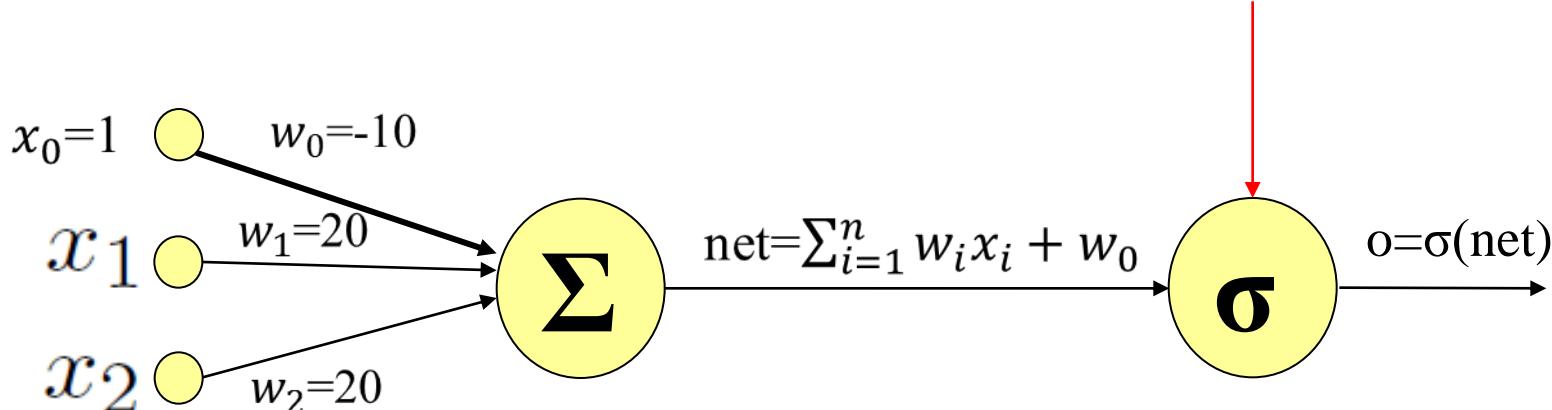


Perceptron: Example 1 - AND



- $x_1 = 1, x_2 = 1 \rightarrow \text{net} = 20 + 20 - 30 = 10 \rightarrow o = \sigma(10) = 1$
- $x_1 = 0, x_2 = 1 \rightarrow \text{net} = 0 + 20 - 30 = -10 \rightarrow o = \sigma(-10) = 0$
- $x_1 = 1, x_2 = 0 \rightarrow \text{net} = 20 + 0 - 30 = -10 \rightarrow o = \sigma(-10) = 0$
- $x_1 = 0, x_2 = 0 \rightarrow \text{net} = 0 + 0 - 30 = -30 \rightarrow o = \sigma(-30) = 0$

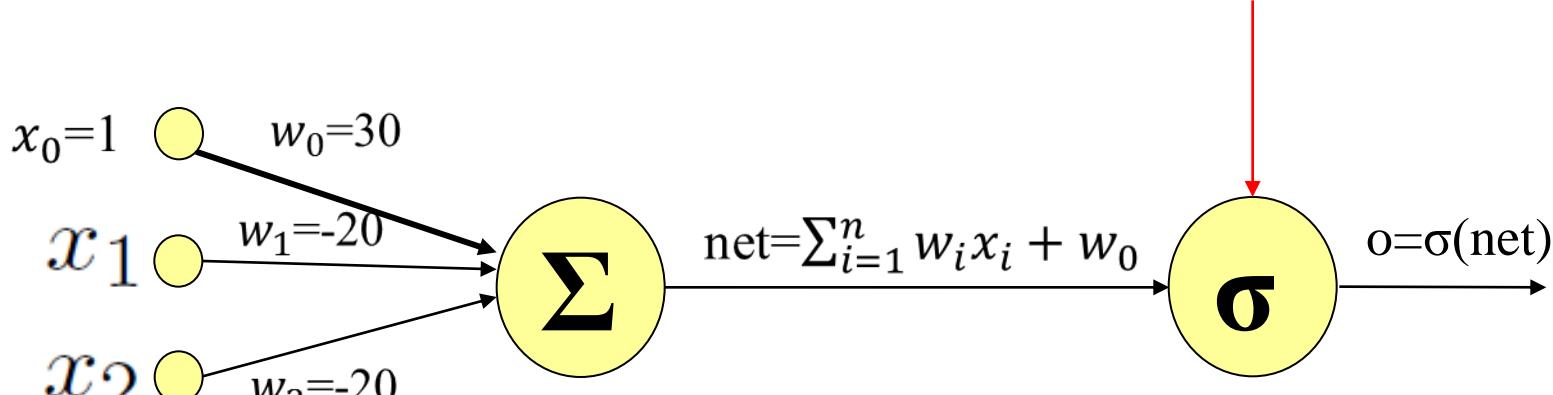
Perceptron: Example 2 - OR



$$o = \sigma(\text{net}) = \begin{cases} 1 & \text{if } \text{net} > 0 \\ 0 & \text{otherwise} \end{cases}$$

- $x_1 = 1, x_2 = 1 \rightarrow \text{net} = 20 + 20 - 10 = 30 \rightarrow o = \sigma(30) = 1$
- $x_1 = 0, x_2 = 1 \rightarrow \text{net} = 0 + 20 - 10 = 10 \rightarrow o = \sigma(10) = 1$
- $x_1 = 1, x_2 = 0 \rightarrow \text{net} = 20 + 0 - 10 = 10 \rightarrow o = \sigma(10) = 1$
- $x_1 = 0, x_2 = 0 \rightarrow \text{net} = 0 + 0 - 10 = -10 \rightarrow o = \sigma(-10) = 0$

Perceptron: Example 3 - NAND



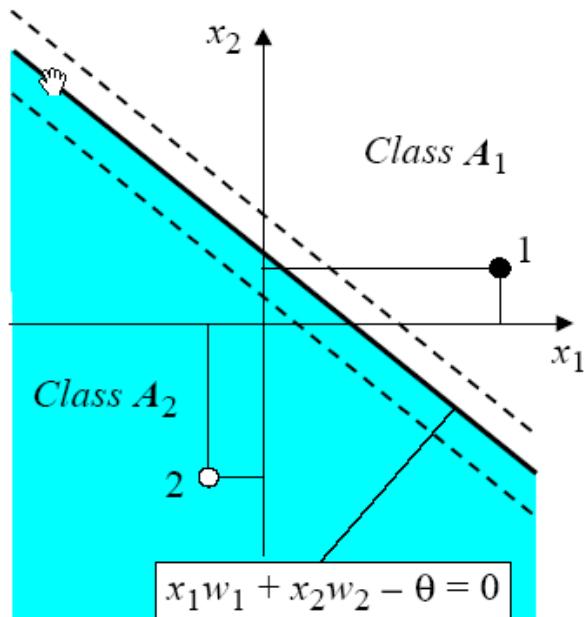
$$o = \sigma(\text{net}) = \begin{cases} 1 & \text{if } \text{net} > 0 \\ 0 & \text{otherwise} \end{cases}$$

- $x_1 = 1, x_2 = 1 \rightarrow \text{net} = -20 - 20 + 30 = -10 \rightarrow o = \sigma(-10) = 0$
- $x_1 = 0, x_2 = 1 \rightarrow \text{net} = 0 - 20 + 30 = 10 \rightarrow o = \sigma(10) = 1$
- $x_1 = 1, x_2 = 0 \rightarrow \text{net} = -20 + 0 + 30 = 10 \rightarrow o = \sigma(10) = 1$
- $x_1 = 0, x_2 = 0 \rightarrow \text{net} = 0 + 0 + 30 = 30 \rightarrow o = \sigma(30) = 1$

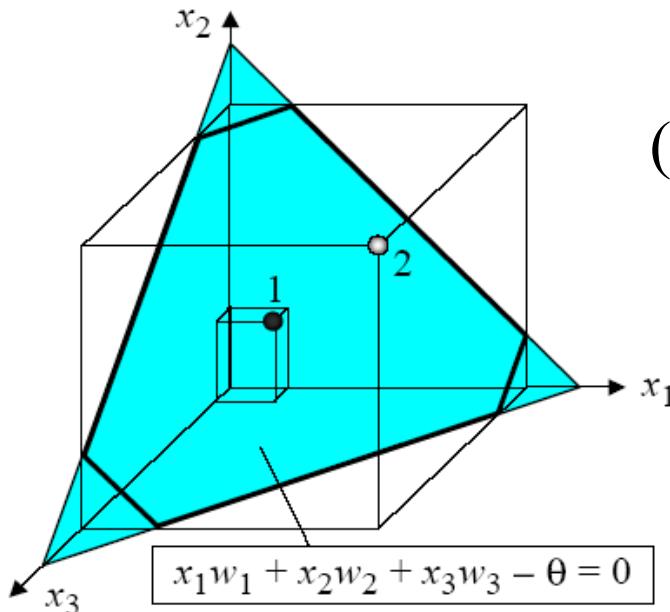
Perceptron for classification

- Given training examples of classes A1, A2 train the perceptron in such a way that it classifies correctly the training examples:
 - *If the output of the perceptron is 1 then the input is assigned to class A1 (i.e. if $\sigma(\mathbf{w}^T \mathbf{x}) = 1$)*
 - *If the output is 0 then the input is assigned to class A2*
- Geometrically, we try to find a hyper-plane that separates the examples of the two classes. The hyper-plane is defined by the linear function

Perceptron: Geometric view



(a) Two-input perceptron.



(Note that $\theta = -w_0$)

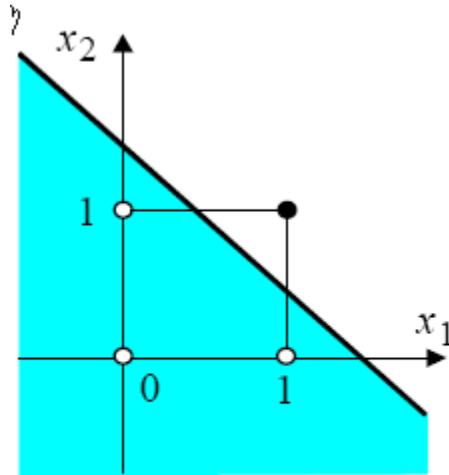
if $w_1 x_1 + w_2 x_2 + w_0 > 0$ then Class = A_1

if $w_1 x_1 + w_2 x_2 + w_0 < 0$ then Class = A_2

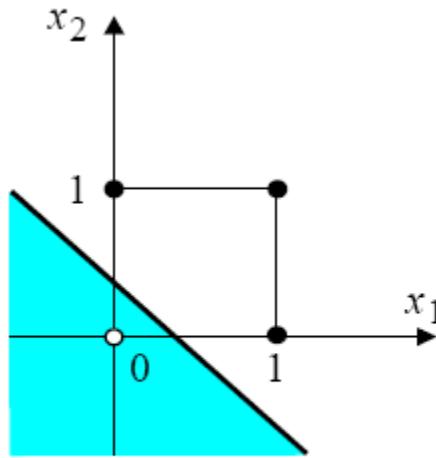
if $w_1 x_1 + w_2 x_2 + w_0 = 0$ then Class = A_1 or A_2

depends on our definition

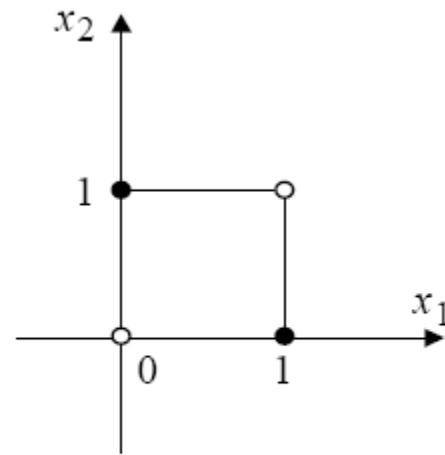
Perceptron: The limitations of perceptron



(a) AND ($x_1 \cap x_2$)



(b) OR ($x_1 \cup x_2$)



(c) $Exclusive-OR$
($x_1 \oplus x_2$)

- Perceptron can only classify examples that are linearly separable
- The XOR is not linearly separable.
- This was a terrible blow to the field

Perceptron

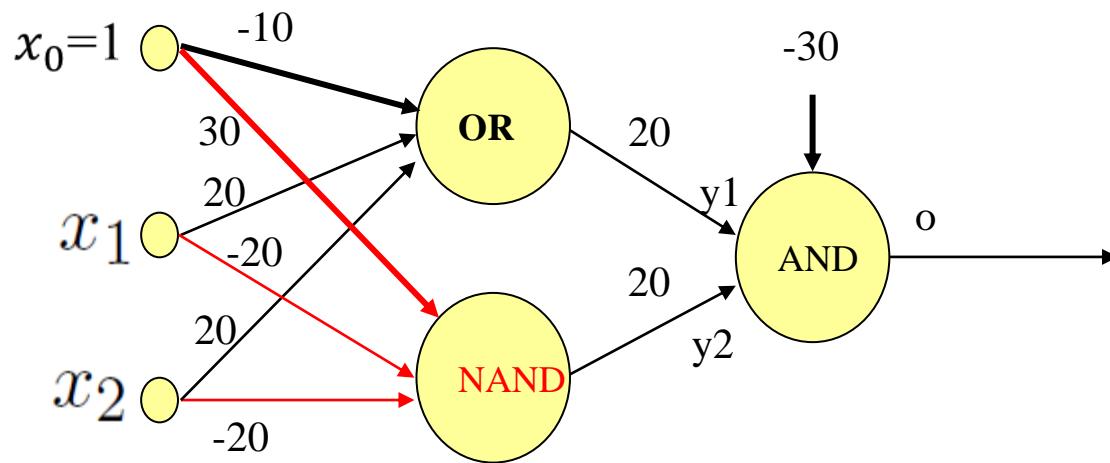
- A famous book was published in 1969: **Perceptrons**
- Caused a significant decline in interest and funding of neural network research
 - Marvin Minsky
 - Seymour Papert

Perceptron XOR Solution

- XOR can be expressed in terms of AND, OR, NAND

Perceptron XOR Solution

- XOR can be expressed in terms of AND, OR, NAND
- $\text{XOR} = \text{NAND}(\text{AND}) \text{ OR}$



OR	NAND
1 1 → 1	1 1 → 0
0 1 → 1	0 1 → 1
1 0 → 1	1 0 → 1
0 0 → 0	0 0 → 1

AND
1 1 → 1
0 1 → 0
1 0 → 0
0 0 → 0

- $x_1=1, x_2=1 \rightarrow y_1=1 \text{ AND } y_2=0 \rightarrow o=0$
- $x_1=1, x_2=0 \rightarrow y_1=1 \text{ AND } y_2=1 \rightarrow o=1$
- $x_1=0, x_2=1 \rightarrow y_1=1 \text{ AND } y_2=1 \rightarrow o=1$
- $x_1=0, x_2=0 \rightarrow y_1=0 \text{ AND } y_2=1 \rightarrow o=0$

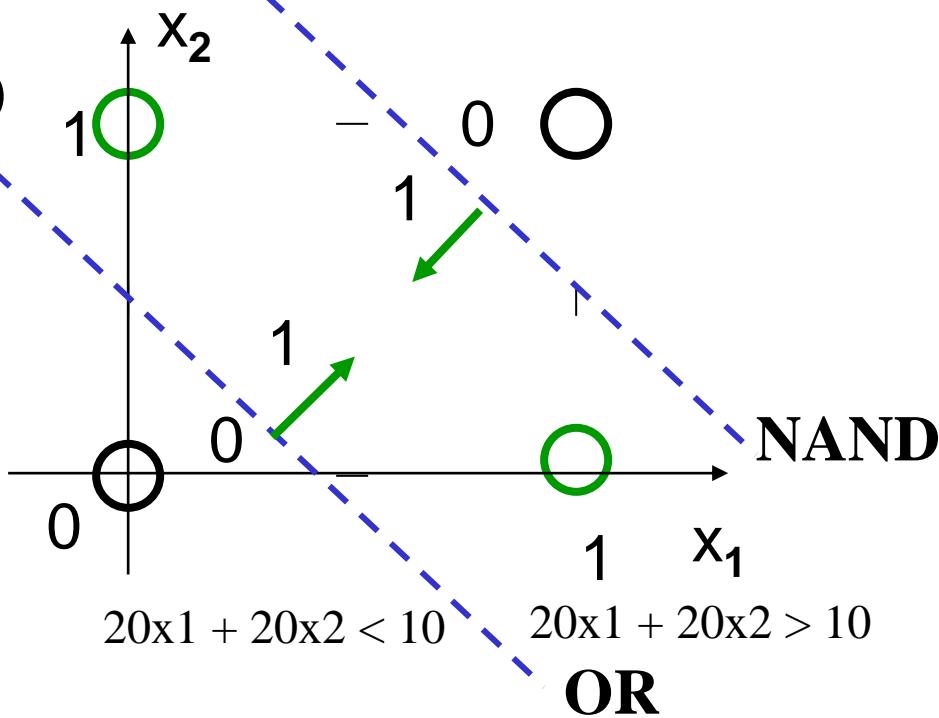
XOR

$$-20x_1 - 20x_2 = -30$$

$$-20x_1 - 20x_2 > -30$$

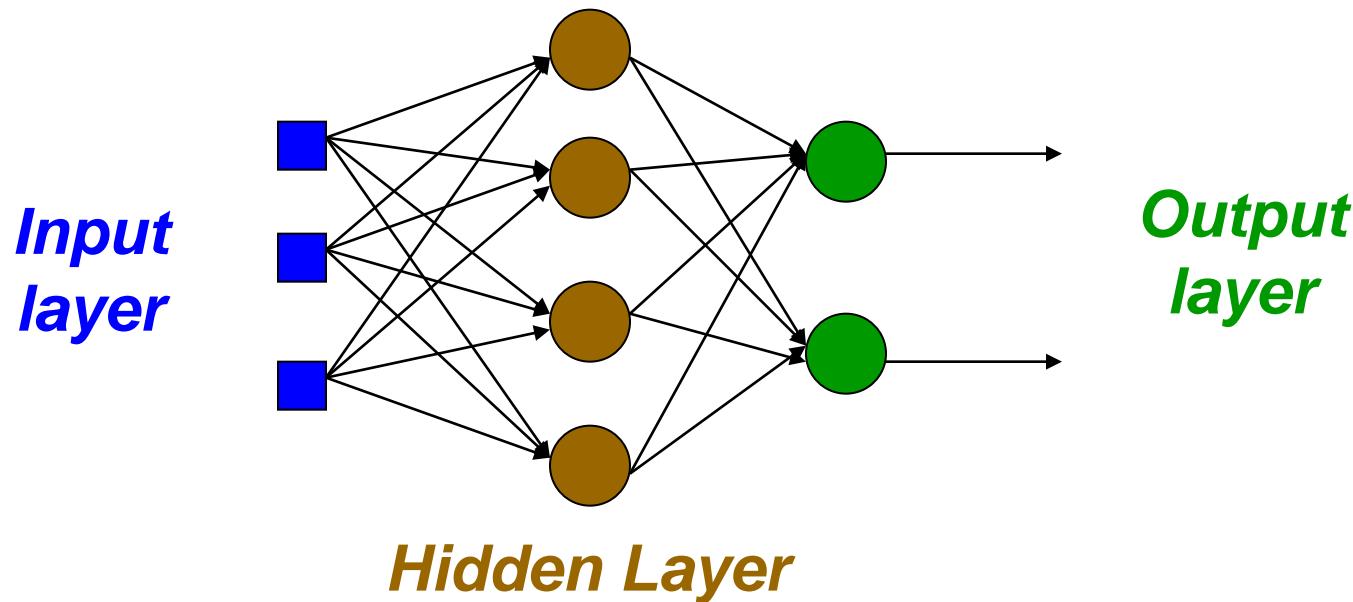
$$-20x_1 - 20x_2 < -30$$

$$20x_1 + 20x_2 = 10$$

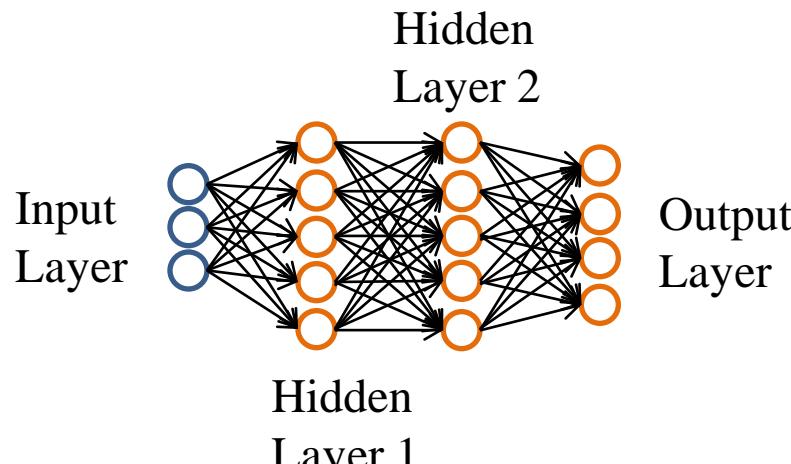


Multilayer Feed Forward Neural Network

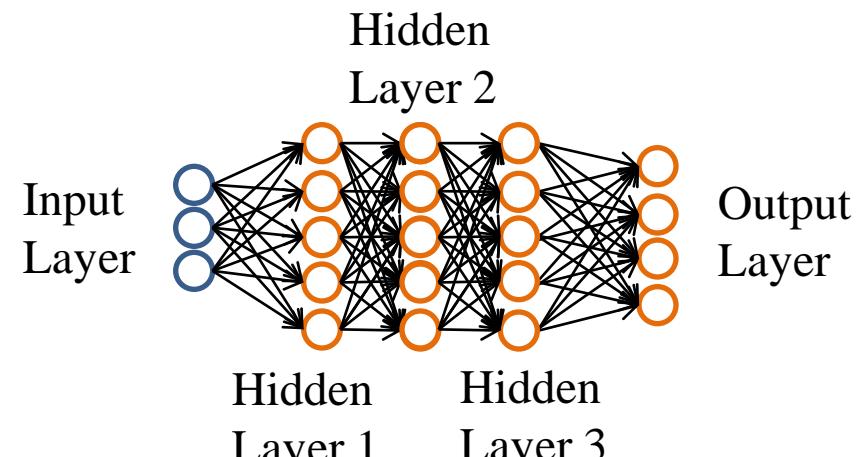
- We consider a more general network architecture: between the input and output layers there are hidden layers, as illustrated below.
- Hidden nodes do not directly receive inputs nor send outputs to the external environment.



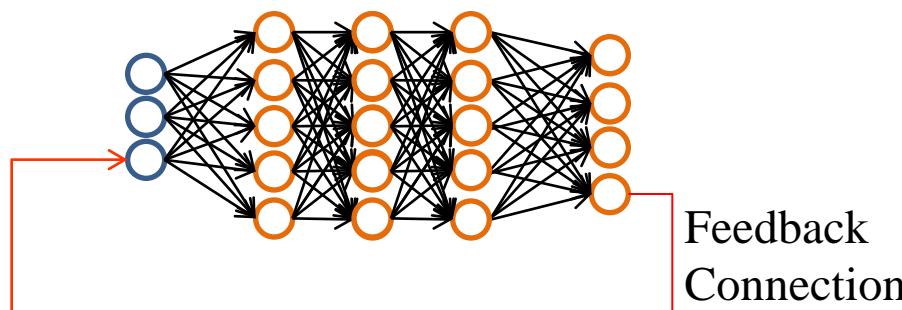
NNs: Architecture



3-layer feed-forward network



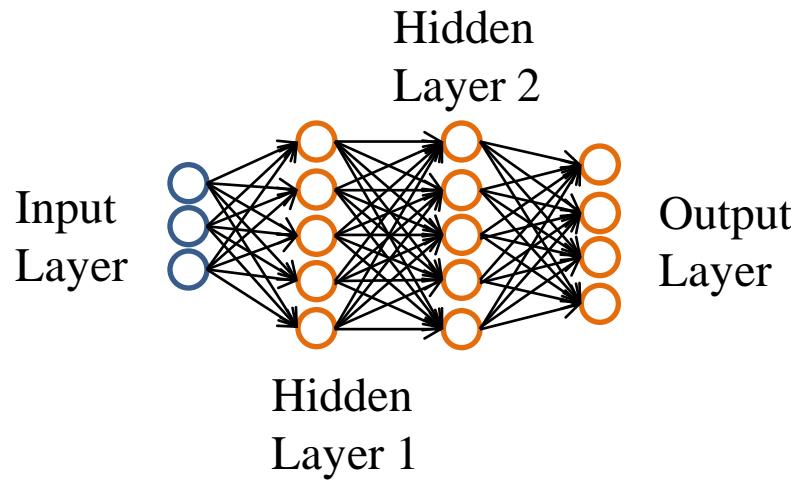
4-layer feed-forward network



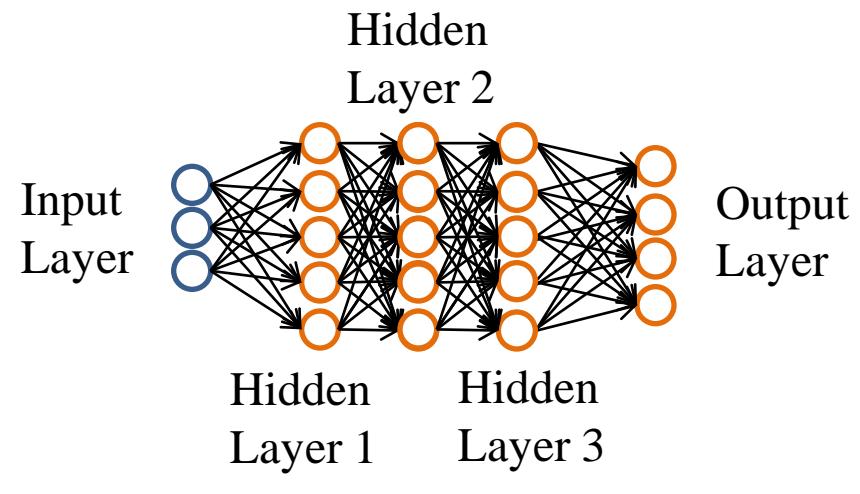
4-layer recurrent network – Difficult to train

- The input layer does not count as a layer

NNs: Architecture



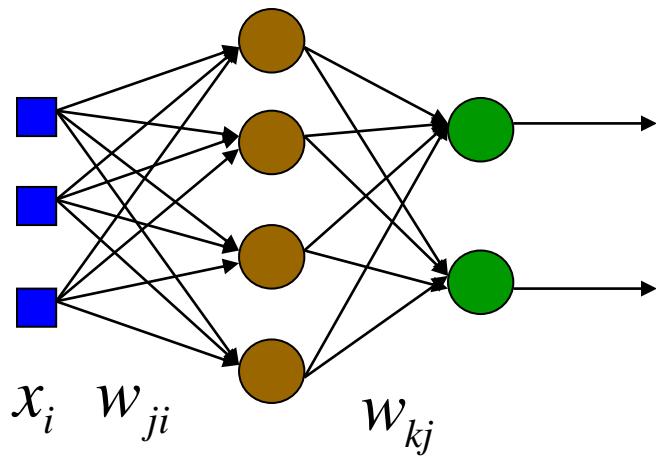
3-layer feed-forward network



4-layer feed-forward network

- Deep networks are simply networks with many layers.
- They are trained in the same way as shallow networks but
 - 1) either weight initialisation is done in a different way.
 - 2) or we use a lot of data with strong regularisation

Multilayer Feed Forward Neural Network



$$y_j = \sigma \left(\sum_{i=0}^n x_i w_{ji} \right)$$

$$o_k = \sigma \left(\sum_{j=0}^{nH} y_j w_{kj} \right)$$

$$o_k = \sigma \left(\sum_{j=0}^{nH} \sigma \left(\sum_{i=0}^n x_i w_{ji} \right) w_{kj} \right)$$

w_{ji} = weight associated with i th input to hidden unit j

w_{kj} = weight associated with j th input to output unit k

y_j = output of j th hidden unit

o_k = output of k th output unit

n = number of inputs

nH = number of hidden neurons

K = number of output neurons

Representational Power of Feedforward Neural Networks

- Boolean functions: Every boolean function can be represented **exactly** by some network with two layers
- Continuous functions: Every bounded continuous function can be **approximated** with arbitrarily small error by a network with 2 layers
- Arbitrary functions: Any function can be **approximated** to arbitrary accuracy by a network with 3 layers
- Catch: We do not know 1) what the appropriate number of hidden neurons is, 2) the proper weight values

$$o_k = \sigma \left(\sum_{j=0}^{nH} \sigma \left(\sum_{i=0}^n x_i w_{ji} \right) w_{kj} \right)$$

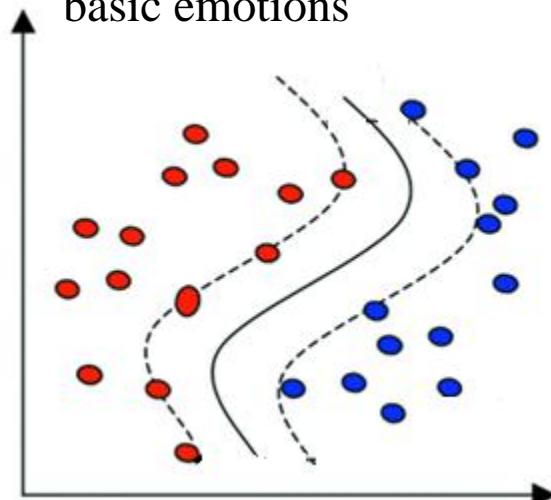
Classification / Regression with NNs

- You should think of neural networks as function approximators

$$o_k = \sigma \left(\sum_{j=0}^{nH} \sigma \left(\sum_{i=0}^n x_i w_{ji} \right) w_{kj} \right)$$

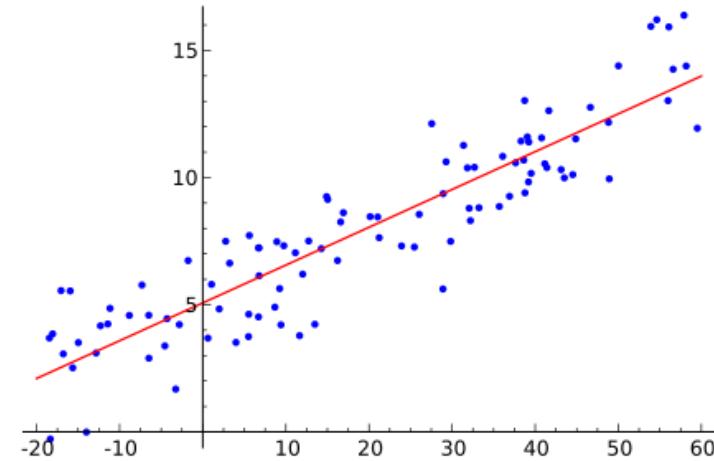
Classification

- Discrete output
- e.g., recognise one of the six basic emotions



Regression

- Continuous output
- e.g., house price estimation



Output Representation

- Binary Classification

Target Values (t): 0 or -1 (negative) and 1 (positive)

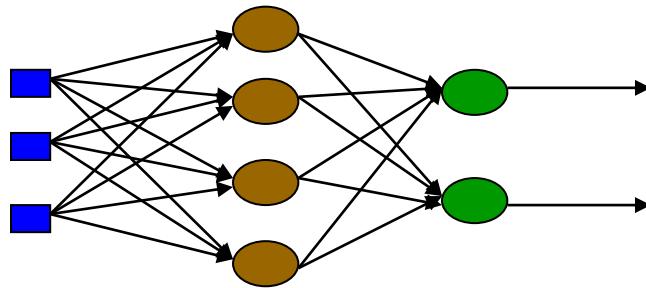
- Regression

Target values (t): continuous values $[-\infty, +\infty]$

- Ideally $o \approx t$

$$o_k = \sigma \left(\sum_{j=0}^{nH} \sigma \left(\sum_{i=0}^n x_i w_{ji} \right) w_{kj} \right)$$

Multiclass Classification



Target Values: vector (length=no. Classes)
e.g. for 4 classes the targets are the following:

Class1 Class2 Class3 Class4

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Training

- We have assumed so far that we know the weight values
- We are given a training set consisting of inputs and targets (\mathbf{X} , \mathbf{T})
- Training: Tuning of the weights (w) so that for each input pattern (x) the output (o) of the network is close to the target values (t).

$$o \approx t$$

$$o = \sigma \left(\sum_{j=0}^{nH} \sigma \left(\sum_{i=0}^n x_i w_{ji} \right) w_{kj} \right)$$

Training – Gradient Descent

- Gradient Descent: A general, effective way for estimating parameters (e.g. w) that minimise error functions
- We need to define an error function $E(w)$
- Update the weights in each iteration in a direction that reduces the error the order in order to minimize E

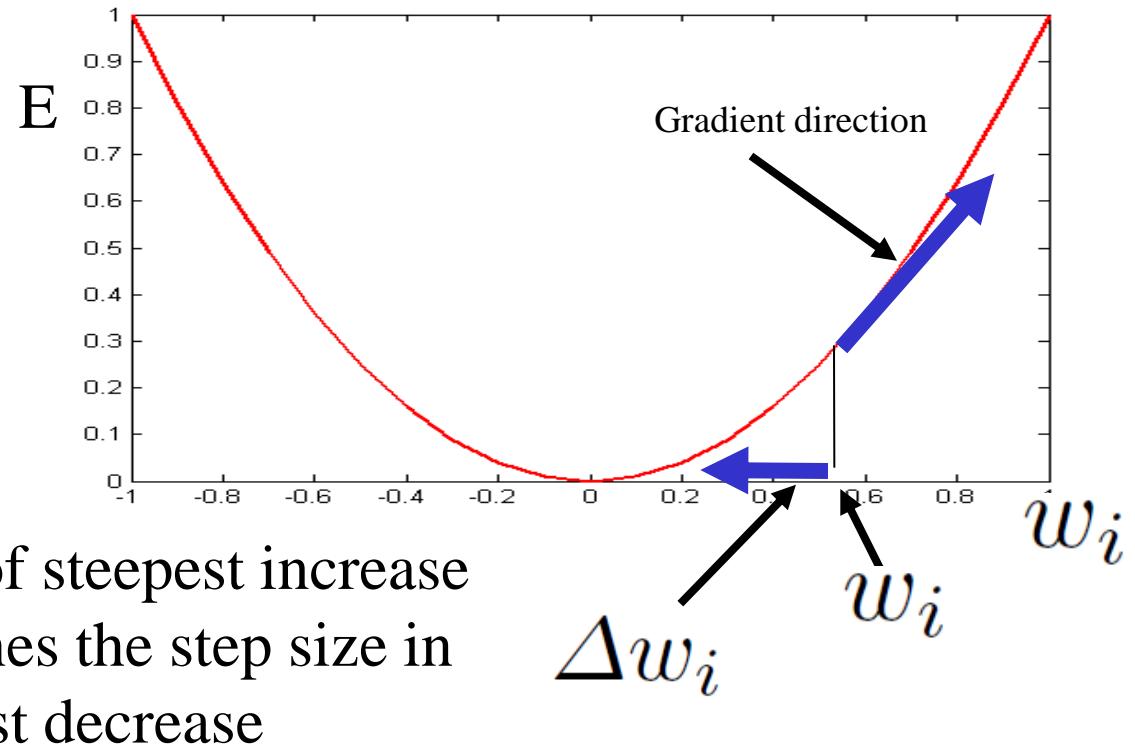
$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent

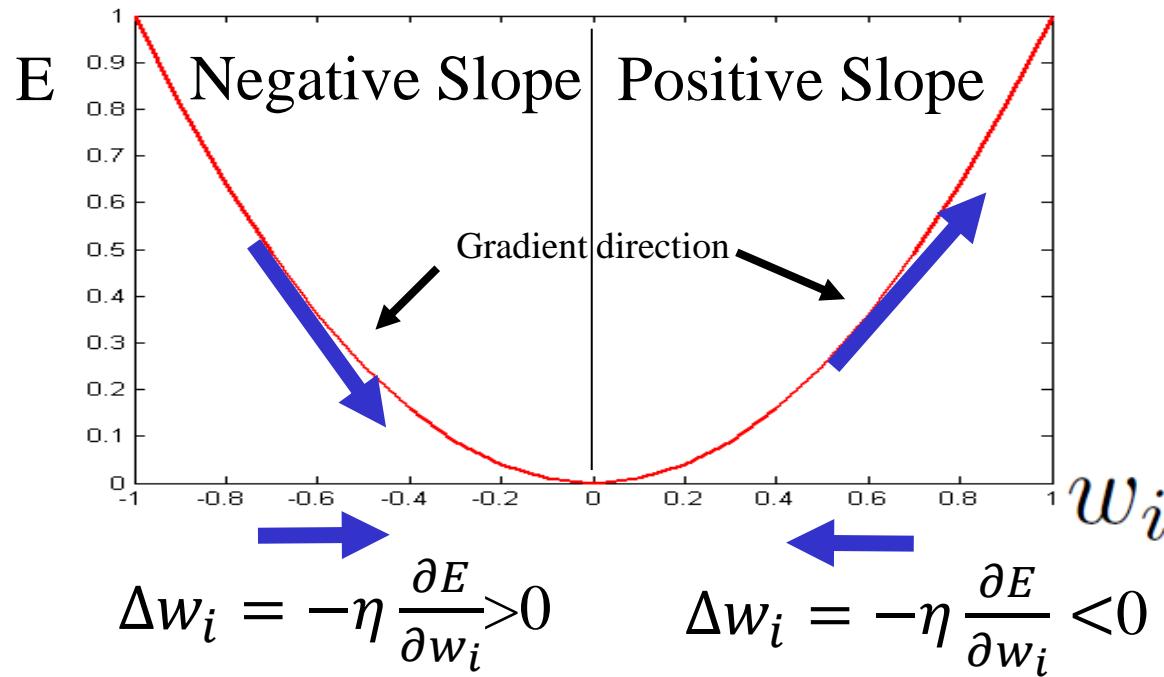
Gradient descent method: take a step in the direction that decreases the error E . This direction is the opposite of the derivative of E .

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$



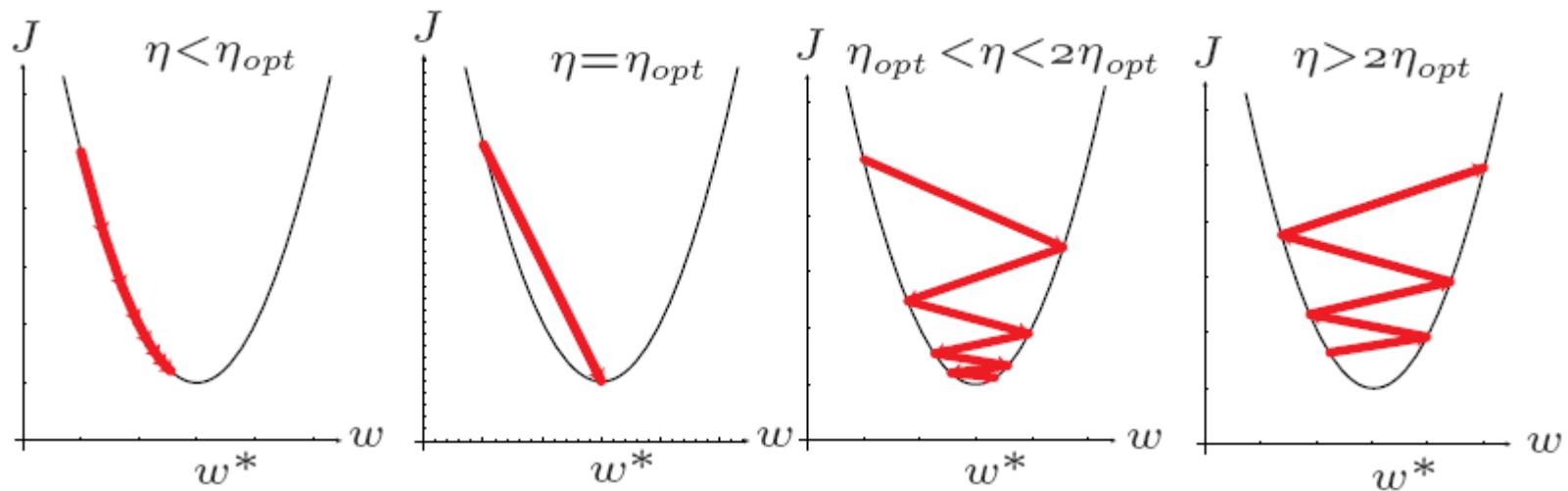
- derivative: direction of steepest increase
- learning rate: determines the step size in the direction of steepest decrease

Gradient Descent – Learning Rate



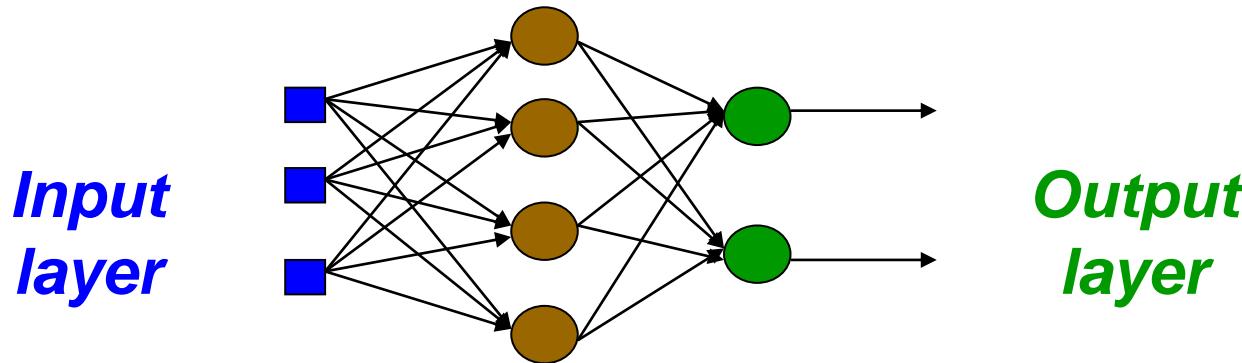
- Derivative: direction of steepest increase
- Learning rate: determines the step size in the direction of steepest decrease. It usually takes small values, e.g. 0.01, 0.1
- If it takes large values then the weights change a lot -> network unstable

Gradient Descent – Learning Rate



Learning: The backpropagation algorithm

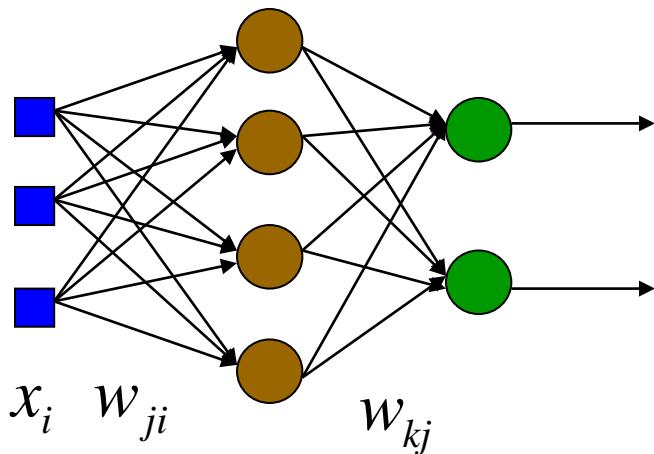
- The Backprop algorithm searches for weight values that minimize the error function of the network (K outputs) over the set of training examples (training set).



- Based on gradient descent algorithm

$$w_i \leftarrow w_i + \Delta w_i \quad \Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Reminder: Multilayer Feed Forward Neural Network



w_{ji} = weight associated with i th input to hidden unit j

w_{kj} = weight associated with j th input to output unit k

y_j = output of j th hidden unit

o_k = output of k th output unit

n = number of inputs

nH = number of hidden neurons

K = number of output neurons

$$y_j = \sigma\left(\sum_{i=0}^n x_i w_{ji}\right) = \sigma(\text{net}_j)$$

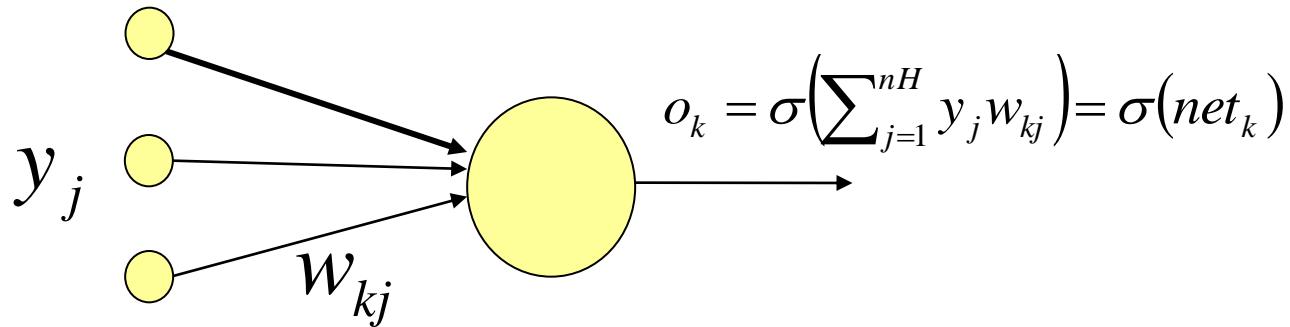
$$o_k = \sigma\left(\sum_{j=0}^{nH} y_j w_{kj}\right) = \sigma(\text{net}_k)$$

$$o_k = \sigma\left(\sum_{j=0}^{nH} \sigma\left(\sum_{i=0}^n x_i w_{ji}\right) w_{kj}\right)$$

Backpropagation: Initial Steps

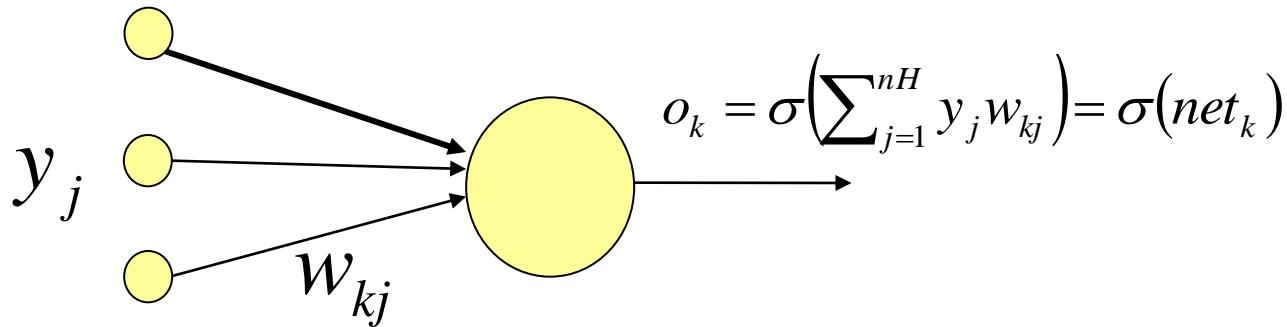
- Training Set: A set of input vectors $x_i, i = 1 \dots D$ with the corresponding targets t_i
- η : learning rate, controls the change rate of the weights
- Begin with random weights (use one of the initialisation strategies discussed later)

Backpropagation: Output Neurons



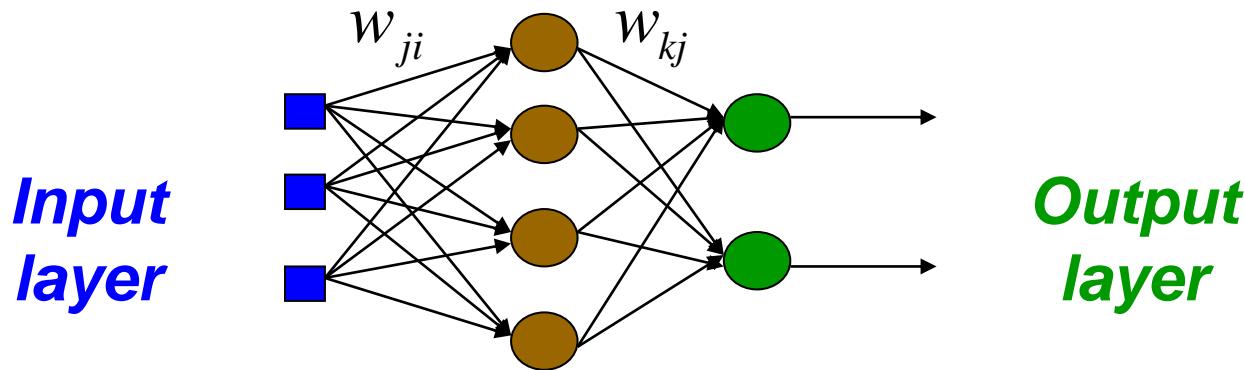
- We define our error function, for example $E = \frac{1}{2} \sum_{k=1}^K (t_k - o_k)^2$
- E depends on the weights because $o_d = \sum_{i=0}^n x_i^d w_i$
- For simplicity we assume the error of one training example

Backpropagation: Output Neurons



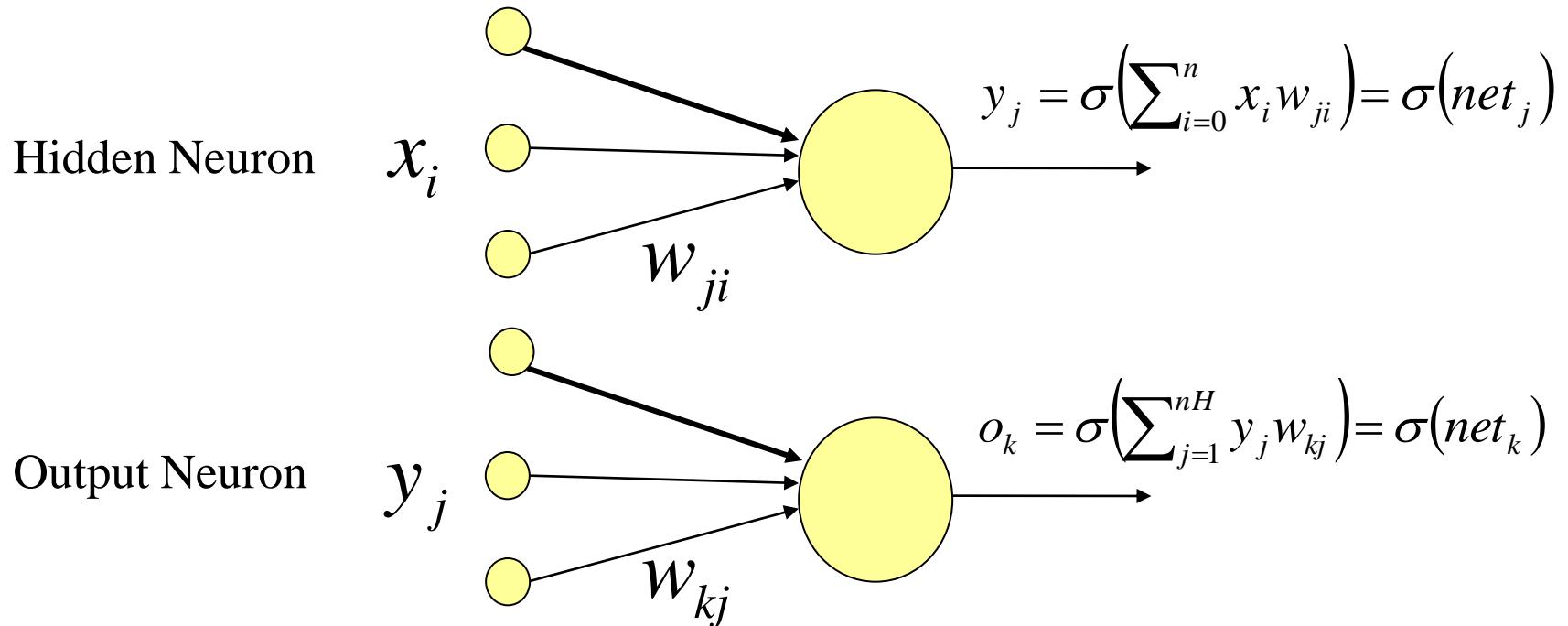
- $\frac{\partial E_k}{\partial w_{kj}} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial w_{kj}} = \frac{\partial E_k}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k} y_j$
- We define $\delta_k = \frac{\partial E_k}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k}$
- Update: $\Delta w_{kj} = -\eta \frac{\partial E_k}{\partial w_{kj}} = -\eta \delta_k y_j$

Backpropagation: Output/Hidden Neurons



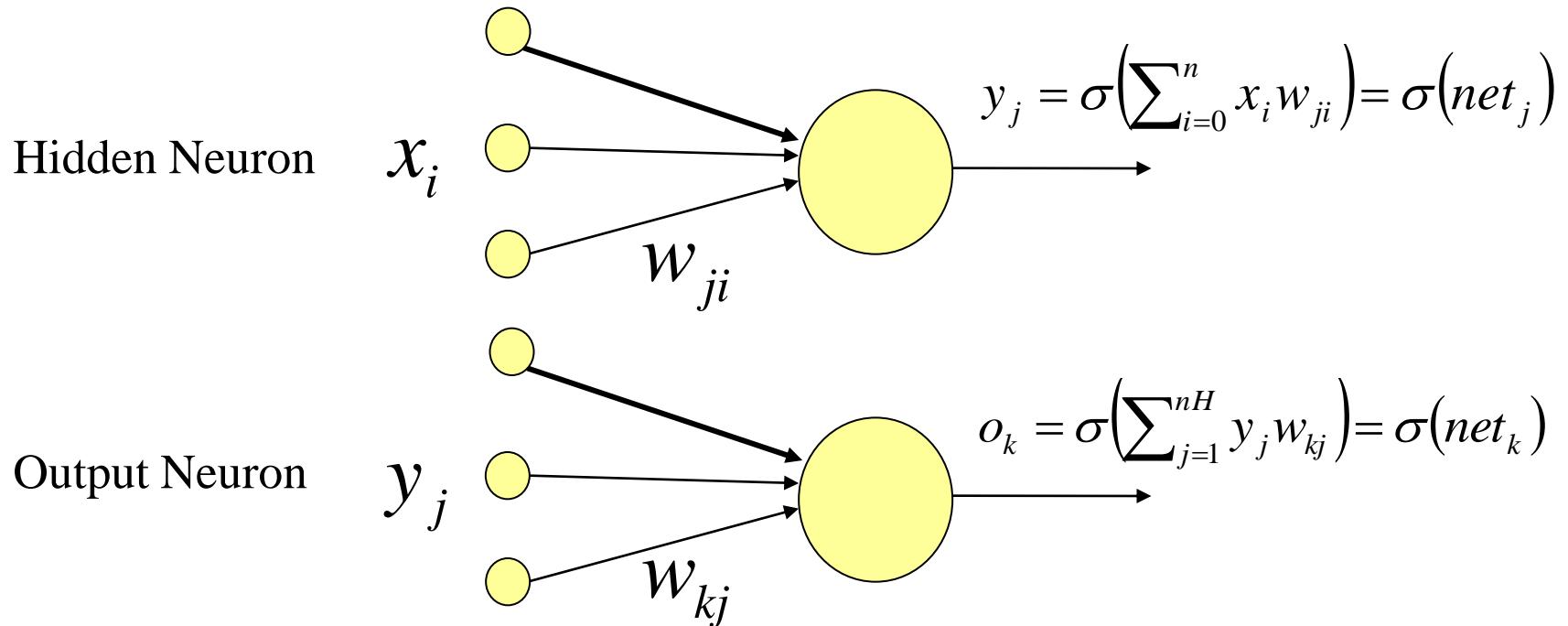
- Weights connected to output neuron k can influence the error of that particular neuron only.
- That's why $\frac{\partial E}{\partial w_{kj}} = \frac{\partial}{\partial w_{kj}} (E_1 + E_2 + \dots + E_k + \dots + E_K) = \frac{\partial E_k}{\partial w_{kj}}$
- Weights connected to hidden neuron j can influence the error of all output neurons.
- That's why $\frac{\partial E}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} (E_1 + E_2 + \dots + E_k + \dots + E_K)$

Backpropagation: Hidden Neurons



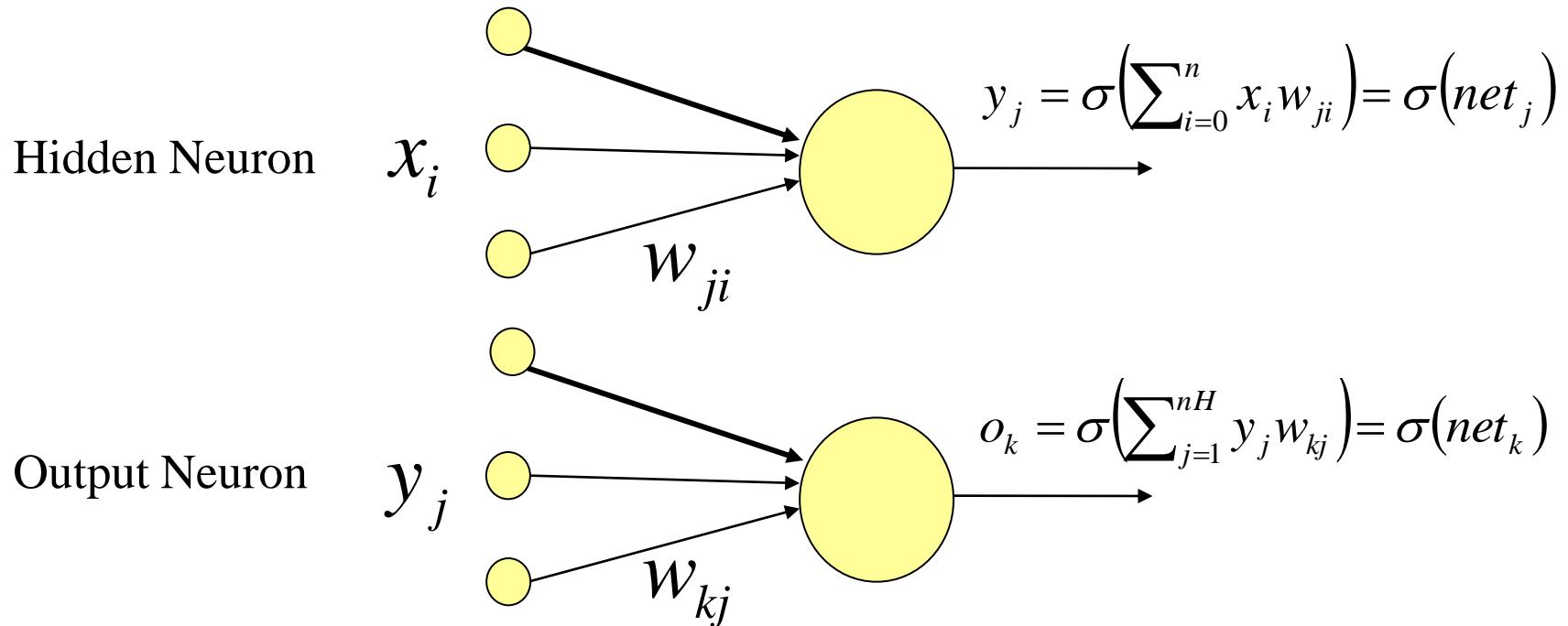
- $\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}} = \frac{\partial E}{\partial y_j} \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j} x_i$
- $\frac{\partial E}{\partial y_j} = \sum_{k=1}^K \frac{\partial E_k}{\partial y_j} = \sum_{k=1}^K \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial y_j} = \sum_{k=1}^K \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial y_j}$

Backpropagation: Hidden Neurons



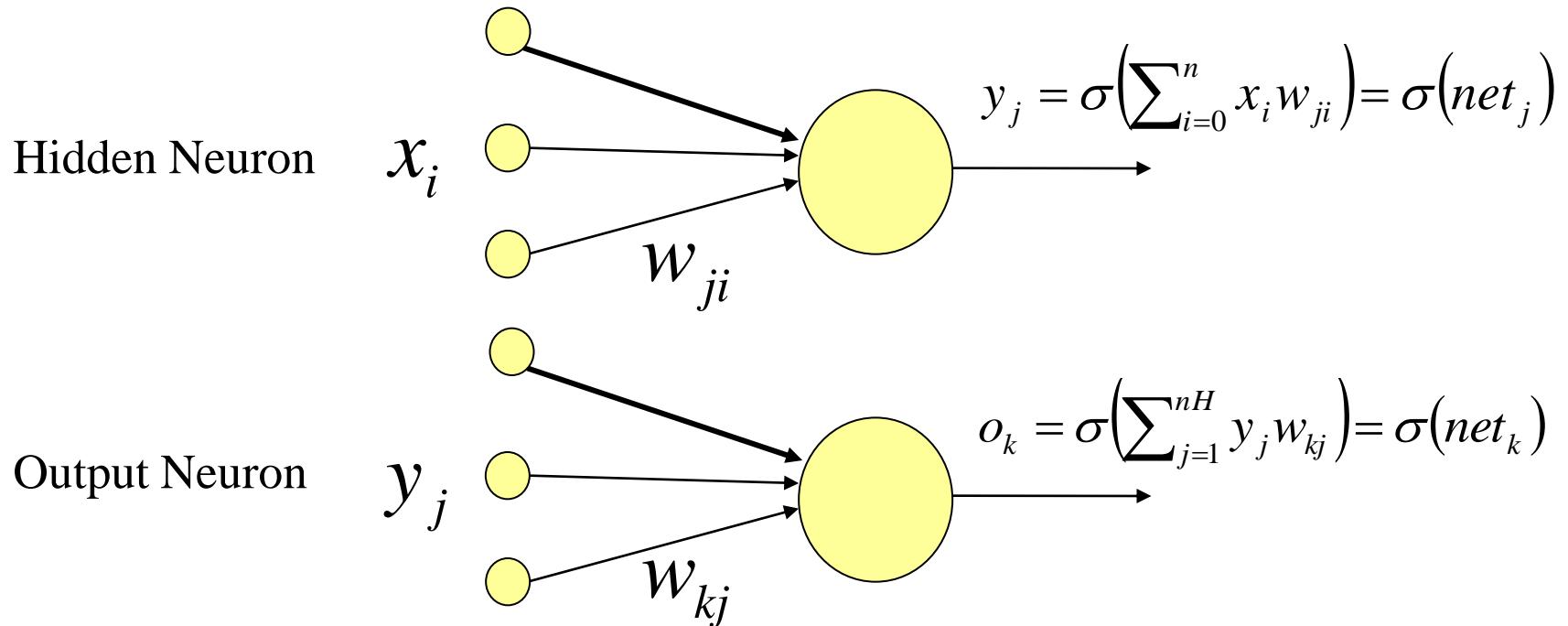
- $\frac{\partial E}{\partial y_j} = \sum_{k=1}^K \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial y_j} = \sum_{k=1}^K \delta_k w_{kj}$
- $\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}} = \sum_{k=1}^K (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j} x_i$

Backpropagation: Hidden Neurons



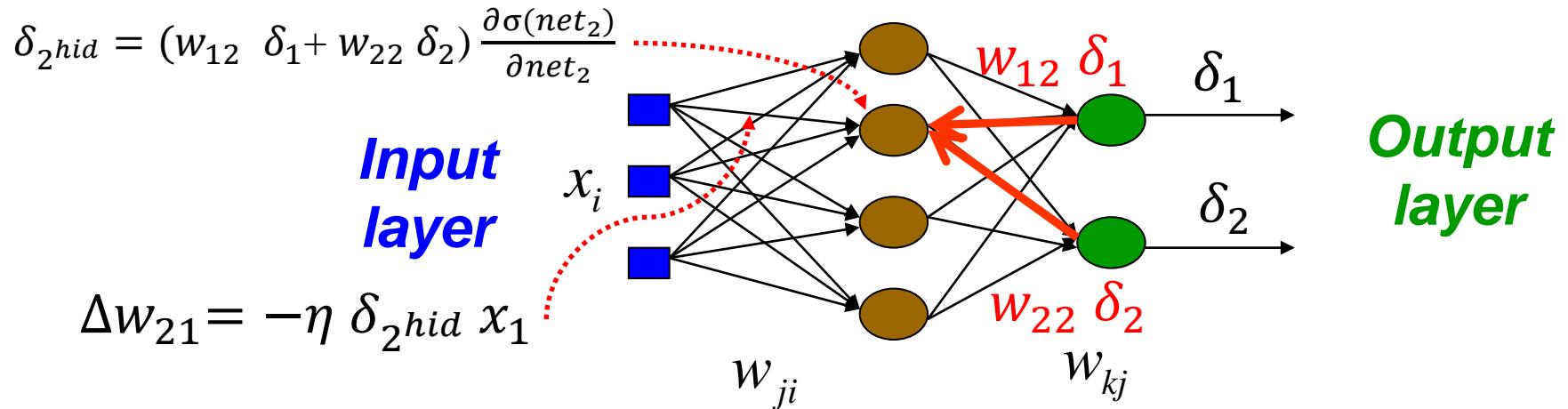
- $\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^K (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j} x_i$
- We define $\delta_j = \sum_{k=1}^K (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j}$

Backpropagation: Hidden Neurons



- $\frac{\partial E}{\partial w_{ji}} = \delta_j x_i$
- Update: $\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} = -\eta \delta_j x_i$

Backpropagation: Hidden Neurons



- Update: $\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} = -\eta \delta_j x_i$
- $\delta_j = \sum_{k=1}^K (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j}$
- $\delta_k = \frac{\partial E_k}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k}$

Example

- http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

Stochastic Gradient Descent

- Stochastic/Incremental/On-line: One example at a time is fed to the network.
- Weights are updated after each example is presented to the network

Batch Gradient Descent

- Batch: All examples are fed to the network. Weights are updated only after all examples have been presented to the network
- For each weight the corresponding gradient (or Δw) is computed (for each example).
- The weights are updated based on the average gradient over all examples. Type equation here.
- $\Delta w_{allExamples} = \frac{1}{D} \sum_{d=1}^D \Delta w_{oneExample}$

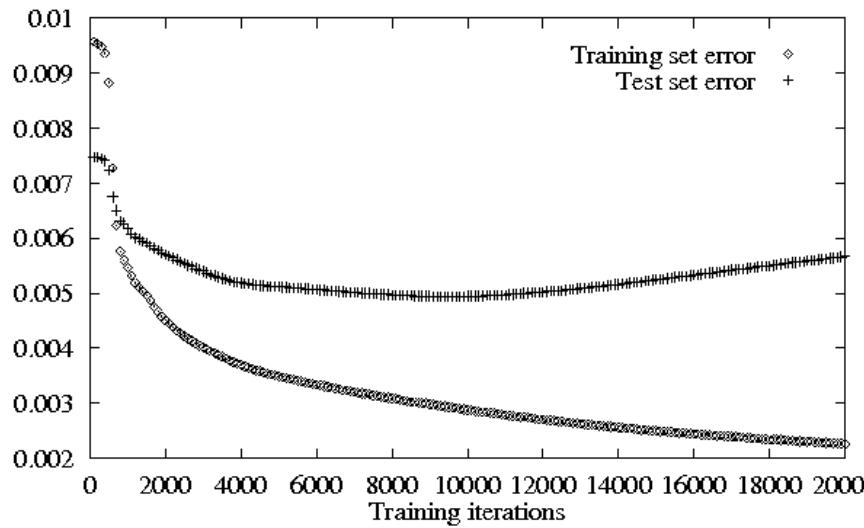
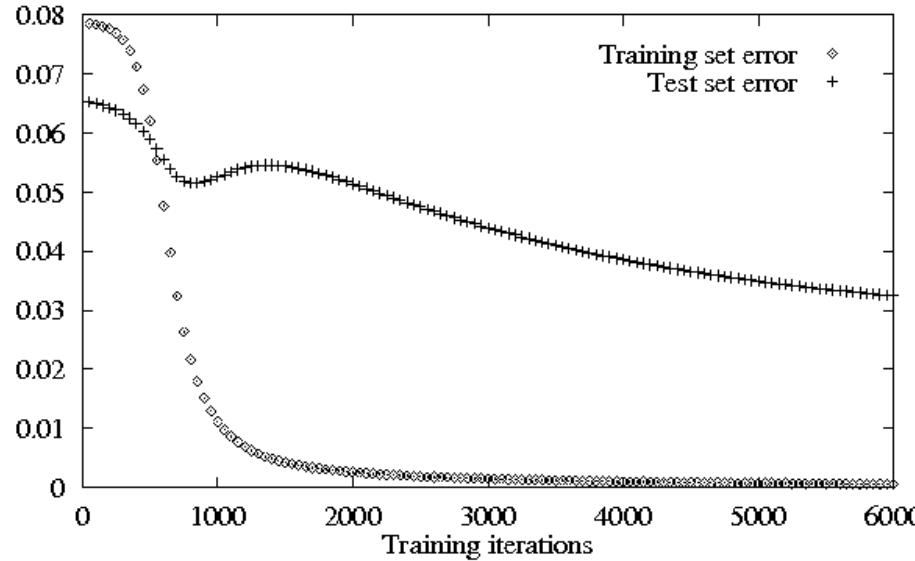
Mini-batch Gradient Descent

- Mini-Batch: M randomly examples are fed to the network.
 - $M = 32 \dots 128$ (typical value 100)
- For each weight the corresponding gradient (or Δw) is computed (for each example).
- The weights are updated based on the average gradient over all M examples.
- Set of M examples is called mini-batch.
- Popular approach in deep neural networks.
- Sometimes called stochastic gradient descent (NOT to be confused with online/incremental gradient descent).

Backpropagation Stopping Criteria

- When the gradient magnitude (or Δw_i) is small, i.e.
$$\frac{\partial E}{\partial w_i} < \delta \text{ or } \Delta w_i < \delta$$
- When the maximum number of epochs has been reached
- When the error on the validation set increases for n consecutive times (this implies that we monitor the error on the validation set). This is called early stopping.

Early stopping



- Stop when the error in the validation set increases (but not too soon!)
- Error might decrease in the training set but increase in the ‘validation’ set (overfitting!)
- It is also a way to avoid overfitting.

Backpropagation Summary

1. Initialise weights randomly
2. For each input training example x compute the outputs **(forward pass)**
3. Compute the output neurons errors and then compute the update rule for output layer weights **(backward pass)**

$$\Delta w_{kj} = -\eta \frac{\partial E}{\partial w_{kj}} = -\eta \delta_k y_j \text{ where } \delta_k = \frac{\partial E}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k}$$

4. Compute hidden neurons errors and then compute the update rule for hidden layer weights **(backward pass)**

$$\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} = -\eta \delta_j x_i \text{ where } \delta_j = \sum_{k=1}^K (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j}$$

Backpropagation Summary

5. Compute the sum of all Δw , once all training examples have been presented to the network
6. Update weights $w_i \leftarrow w_i + \Delta w_i$
7. Repeat steps 2-6 until the stopping criterion is met

- The algorithm will converge to a weight vector with minimum error, given that the learning rate is sufficiently small

Backpropagation: Convergence

- Converges to a local minimum of the error function
 - ... can be retrained a number of times
- Minimises the error over the training examples
 - ... will it generalise well over unknown examples?
- Training requires thousands of iterations (slow)
 - ... but once trained it can rapidly evaluate output

Backpropagation: Error Surface

