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Course 395: Machine Learning - Lectures 
 Lecture 1-2: Concept Learning (M. Pantic) 

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) 

Lecture 5-6: Evaluating Hypotheses (S. Petridis) 

Lecture 7-8: Artificial Neural Networks I (S. Petridis) 

Lecture 9-10: Artificial Neural Networks II (S. Petridis)  

Lecture 11-12: Instance Based Learning (M. Pantic) 

Lecture 13-14: Genetic Algorithms (M. Pantic) 

 

  
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Neural Networks 
 

Reading: 

•Machine Learning (Tom Mitchel) Chapter 4 

 

•Pattern Classification (Duda, Hart, Stork) Chapter 6 

 (chapters 6.1, 6.2, 6.3, 6.8) 

 
 

Further Reading: 

• http://neuralnetworksanddeeplearning.com/ 

 (great online book) 

 
Coursera classes  

 - Machine Learning by Andrew Ng 

 - Neural Networks by Hinton 
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History 
 

• 1st generation Networks: Perceptron 1957 – 1969 

 - Perceptron is useful only for examples that are linearly separable 

 

• 2nd generation Networks: Feedforward Networks and  

 other variants, beginning of 1980s to middle/end of  

 1990s 

  - Difficult to train, many parameters, similar performance to SVMs 

 

• 3rd generation Networks: Deep Networks 2006 - ? 

   - New approach to train networks with multiple layers 

    - State of the art in object recognition / speech recognition 
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Hype Cycle 

From Deep Learning: Methods  and Applications, 

Deng and Yu 
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What are Neural Networks? 

The real thing! Billions of neurons 

Local computations on interconnected elements (neurons) 

Parallel computation  
• neuron switch time 0.001sec 
• recognition tasks performed in 0.1 sec. 
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Biological Neural Networks 

A network of interconnected biological neurons. 

Connections per neuron 104 - 105 
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Biological vs Artificial Neural Networks 
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Architecture         

 How are the neurons connected  

The Neuron        

 How information is processed in each unit.  output = f(input) 

Learning algorithms 

 How a Neural Network modifies its weights in order to solve a 

 particular learning task in a set of training examples 

The goal is to have a Neural Network that generalizes well, that is, that 

it generates a ‘correct’ output on a set of test/new examples/inputs. 

Artificial Neural Networks: the dimensions 
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The Neuron 

Σ 
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σ 
o=σ(net) 

 Neuron 

Weights 

• Main building block of any neural network 

 

 Net Activation 

 Transfer/Activation 

Function 
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Activation functions 
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Activation functions 

From http://cs231n.github.io/neural-networks-1/ 

• Rectified Linear Unit (ReLu): max(0, x) 

• Popular for deep networks 

• Less computationally expensive than sigmoid 

• Accelerates convergence during training 

• Leaky ReLu: 𝑜𝑢𝑡𝑝𝑢𝑡 =  
𝑥         𝑖𝑓 𝑥 > 0

0.01𝑥   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Role of Bias 

• The threshold where the neuron fires should be adjustable 

• Instead of adjusting the threshold we add the bias term 

• Defines how strong the neuron input should be before the neuron fires 

 

 

𝑛𝑒𝑡 =  𝑤𝑖𝑥𝑖 +
𝑛

𝑖=1
𝑤0𝑥0(= 1) 

 o = 𝜎(𝑛𝑒𝑡) 

𝑜 =

1 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
≥ 𝜃

0 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
< 𝜃

 

 

𝑜 =

1 𝑖𝑓 𝑤𝑖𝑥𝑖 − 𝜃
𝑛

𝑖=1
≥ 0

0 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
− 𝜃 < 0

 

 

𝑤0=-𝜃 
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Perceptron 

Σ 
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o=σ(net) 

• σ = sign/step/function 

• Perceptron = a neuron that its input is the dot product of W and X 

    and uses a step function as a transfer function 
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• Generalization to single layer perceptrons with more neurons is 

easy because: 

 

• The output units are mutually independent  

• Each weight only affects one of the outputs 

Perceptron: Architecture 
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• Perceptron was invented by Rosenblatt 

• The Perceptron--a perceiving  

    and recognizing automaton, 1957 

Perceptron 
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Perceptron: Example 1 - AND 

 

• x1 = 1, x2 = 1 net = 20+20-30=10 o = σ(10) = 1 

• x1 = 0, x2 = 1 net = 0+20-30 =-10 o = σ(-10) = 0 

• x1 = 1, x2 = 0 net = 20+0-30 =-10 o = σ(-10) = 0 

• x1 = 0, x2 = 0 net = 0+0-30   =-30 o = σ(-10) = 0 

 

 

 

Σ σ 
o=σ(net) 
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Perceptron: Example 2 - OR 

 

• x1 = 1, x2 = 1 net = 20+20-10=30 o = σ(30) = 1 

• x1 = 0, x2 = 1 net = 0+20-10  =10 o = σ(10) = 1 

• x1 = 1, x2 = 0 net = 20+0-10  =10 o = σ(10) = 1 

• x1 = 0, x2 = 0 net = 0+0-10   =-10 o = σ(-10) = 0 

 

 

 

Σ σ 
o=σ(net) 
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Perceptron: Example 3 - NAND 

• x1 = 1, x2 = 1 net = -20-20+30=-10  o = σ(-10) = 0 

• x1 = 0, x2 = 1 net = 0-20+30    =10  o  = σ(10) = 1 

• x1 = 1, x2 = 0 net = -20+0+30  =10  o  = σ(10) = 1 

• x1 = 0, x2 = 0 net = 0+0+30     =30  o  = σ(30) = 1 

 

 

 

Σ σ 
o=σ(net) 
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• Given training examples of classes  A1, A2 train the 

perceptron in such a way that it classifies correctly the  

     training examples: 

– If the output of the perceptron is 1 then the input is 

assigned to class  A1  (i.e. if                           )                

– If the output  is 0 then the input is assigned to class A2  
 

• Geometrically, we try to find a hyper-plane that separates the 

examples of the two classes. The hyper-plane is defined by the 

linear function 

Perceptron for classification 
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Perceptron: Geometric view 

(Note that q  -w0) 
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Perceptron: The limitations of perceptron 

• Perceptron can only classify examples that are linearly separable 

• The XOR is not linearly separable. 

• This was a terrible blow to the field 
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• Marvin Minsky • Seymour  Papert 

• A famous book was published in 1969: Perceptrons 

• Caused a significant decline in interest and funding of 
neural network research  

Perceptron 
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Perceptron XOR Solution 

• XOR can be expressed in terms of AND, OR, NAND 
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Perceptron XOR Solution 

• XOR can be expressed in terms of AND, OR, NAND 

• XOR = NAND (AND) OR   

AND 

1 1  1 

0 1  0 

1 0  0 

0 0  0 

OR 

1 1  1 

0 1  1 

1 0  1 

0 0  0 

NAND 

1 1  0 

0 1  1 

1 0  1 

0 0  1 

OR 

20 

20 

-10 

NAND 

-20 

-20 

30 

20 
AND 

20 

-30 

y1 

y2 

o 

• x1=1, x2 =1 y1=1 AND y2=0  o = 0 

• x1=1, x2 =0 y1=1 AND y2=1  o = 1 

• x1=0, x2 =1 y1=1 AND y2=1  o = 1 

• x1=0, x2 =0 y1=0 AND y2=1  o = 0 
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XOR 

1 

0 
1 

x2 

x1 

OR 

NAND 

1 

1 

0 

0 20x1 + 20x2 = 10 

-20x1 -20x2 = -30 

20x1 + 20x2 < 10 20x1 + 20x2 > 10 

-20x1 - 20x2 < -30 -20x1 - 20x2 > -30 
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Input 

layer 

Output 

layer 

Hidden Layer 

• We consider a more general network architecture: between the input and output  

      layers there are hidden layers, as illustrated below.  

 

• Hidden nodes do not directly receive inputs nor send outputs to the external   

     environment. 

Multilayer Feed Forward Neural Network 
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NNs: Architecture 

Input 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Output 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Hidden  

Layer 3 

Output 

Layer 

Input 

Layer 

Feedback  

Connection 

3-layer feed-forward network 4-layer feed-forward network 

4-layer recurrent network – Difficult to train 

• The input layer does  

     not count as a layer 
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NNs: Architecture 

Input 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Output 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Hidden  

Layer 3 

Output 

Layer 

Input 

Layer 

3-layer feed-forward network 4-layer feed-forward network 

• Deep networks are simply networks with many layers. 

 

• They are trained in the same way as shallow networks but  

    1) either weight initialisation is done in a different way. 

    2) or we use a lot of data with strong regularisation 
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Multilayer Feed Forward Neural Network 

jiw
kjwix

jiw = weight associated with ith input  

to hidden unit j 

kjw = weight associated with jth input  

to output unit k 

jy

ko

= output of jth hidden unit 

= output of kth output unit 
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Representational Power of  

Feedforward Neural Networks 

• Boolean functions: Every boolean function can be represented 

exactly by some network with two layers 

 

• Continuous functions: Every bounded continuous function can 

be approximated with arbitrarily small error by a network with 

2 layers 
 

• Arbitrary functions: Any function can be approximated to 

arbitrary accuracy by a network with 3 layers 
 

• Catch: We do not know 1) what the appropriate number of 

hidden neurons is, 2) the proper weight values 

( (   


nH

j kj

n

i jiik wwxo
0 0
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Classification / Regression with NNs 

• You should think of neural networks as function 

approximators 

 

  

 

( (   


nH

j kj

n

i jiik wwxo
0 0


Classification 
- Discrete output 

-e.g., recognise one of the six  

 basic emotions 

Regression 
-  Continuous output 

-  e.g., house price estimation  
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Output Representation 

• Binary Classification 

    Target Values (t): 0 or -1 (negative) and 1 (positive) 

 

• Regression 

    Target values (t): continuous values [-inf, +inf] 
 

• Ideally o ≈ t 

( (   


nH

j kj

n

i jiik wwxo
0 0




  Stavros Petridis                       Machine Learning (course 395) 

Multiclass Classification 

Target Values: vector (length=no. Classes) 

e.g. for 4 classes the targets are the following: 
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Training 

• We have assumed so far that we know the weight 

values 

• We are given a training set consisting of inputs and 

targets (X, T) 

• Training: Tuning of the weights (w) so that for each 

input pattern (x) the output (o) of the network is close 

to the target values (t). 

( (   


nH
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n

i jii wwxo
0 0


o ≈ t 
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Training – Gradient Descent 

•Gradient Descent: A general, effective way for estimating    

parameters (e.g.  w)  that minimise error functions 

 

• We need to define an error function E(w) 

 

• Update the weights in each iteration in a direction that reduces 

the error the order in order to minimize E 
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Gradient  descent method:  take a step in the direction 

that decreases the error E. This direction is the opposite 

of the derivative of E.   

Gradient direction E 

Gradient Descent 

- derivative:  direction of steepest increase 

- learning rate: determines the step size in 

  the direction of steepest decrease 
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Gradient Descent – Learning Rate 

-    Derivative:  direction of steepest increase 

- Learning rate: determines the step size in the direction of steepest 

decrease. It usually takes small values, e.g. 0.01, 0.1 

- If it takes large values then the weights change a lot -> network unstable 

∆𝑤𝑖 = −𝜂
𝜕𝐸

𝜕𝑤𝑖
>0 ∆𝑤𝑖 = −𝜂

𝜕𝐸

𝜕𝑤𝑖
<0 

E 

Gradient direction 

Positive Slope Negative Slope 
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Gradient Descent –Learning Rate 
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• The Backprop algorithm searches for weight values that 

minimize the error function of the network (K outputs) over 

the set of training examples (training set).  
     

 

 

 

 

• Based on gradient descent algorithm 

Input 

layer 

Output 

layer 

Learning: The backpropagation algorithm 
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Reminder: Multilayer Feed Forward  

Neural Network 

jiw
kjwix

jiw = weight associated with ith input  

to hidden unit j 

kjw = weight associated with jth input  

to output unit k 

jy
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= output of jth hidden unit 

= output of kth output unit 
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Backpropagation: Initial Steps 

 

•  Training Set: A set of input vectors 𝑥𝑖 , 𝑖 = 1…𝐷  

      with the corresponding targets 𝑡𝑖 

•  η: learning rate, controls the change rate of the weights  

•    Begin with random weights (use one of the initialisation  

      strategies discussed later) 
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Backpropagation: Output Neurons    

 

 

 

•   We define our error function, for example 

•   E depends on the weights because  
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• For simplicity we assume the error of one training example 
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•
𝜕𝐸𝑘

𝜕𝑤𝑘𝑗
=

𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑗
=

𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑦𝑗 

 

• We define 𝛿𝑘 =
𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
  

• Update: ∆𝑤𝑘𝑗= −𝜂
𝜕𝐸𝑘

𝜕𝑤𝑘𝑗
= −𝜂𝛿𝑘𝑦𝑗 

Backpropagation: Output Neurons 
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Input 

layer 

Output 

layer 

Backpropagation: Output/Hidden Neurons 

• Weights connected to output neuron k can influence the error 

     of that particular neuron only. 

• That’s why 
𝜕𝐸

𝜕𝑤𝑘𝑗
 = 

𝜕

𝜕𝑤𝑘𝑗
𝐸1 + 𝐸2 + ⋯+ 𝐸𝑘 + ⋯+ 𝐸𝐾 = 

𝜕𝐸𝑘

𝜕𝑤𝑘𝑗
 

 

• Weights connected to hidden neuron j can influence the error 

     of all output neurons. 

• That’s why 
𝜕𝐸

𝜕𝑤𝑗𝑖
 = 

𝜕

𝜕𝑤𝑗𝑖
𝐸1 + 𝐸2 + ⋯+ 𝐸𝑘 + ⋯+ 𝐸𝐾  

 

jiw kjw
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•
𝜕𝐸

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑗𝑖
=

𝜕𝐸

𝜕𝑦𝑗

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
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•
𝜕𝐸
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=  

𝜕𝐸𝑘

𝜕𝑦𝑗

𝐾
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𝜕𝑜𝑘

𝜕𝑦𝑗

𝐾
𝑘=1 =  

𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑦𝑗

𝐾
𝑘=1  

 

Backpropagation: Hidden Neurons 
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•
𝜕𝐸

𝜕𝑦𝑗
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=
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𝜕𝑛𝑒𝑡𝑗
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Backpropagation: Hidden Neurons 
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•
𝜕𝐸

𝜕𝑤𝑗𝑖
=  (𝛿𝑘𝑤𝑘𝑗)

𝐾
𝑘=1

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
𝑥𝑖 

• We define 𝛿𝑗 =  (𝛿𝑘𝑤𝑘𝑗)
𝐾
𝑘=1

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
 

 

 

Backpropagation: Hidden Neurons 

ix

jiw

(  ( j

n

i jiij netwxy    0

jy

kjw

(  ( k

nH

j kjjk netwyo    1

Hidden Neuron 

Output Neuron 
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•
𝜕𝐸

𝜕𝑤𝑗𝑖
= 𝛿𝑗𝑥𝑖 

• Update: ∆𝑤𝑗𝑖= −𝜂
𝜕𝐸

𝜕𝑤𝑗𝑖
= −𝜂𝛿𝑗𝑥𝑖 

 

Backpropagation: Hidden Neurons 

ix

jiw

(  ( j

n

i jiij netwxy    0

jy

kjw

(  ( k

nH

j kjjk netwyo    1

Hidden Neuron 

Output Neuron 
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Input 

layer 

Output 

layer 

Backpropagation: Hidden Neurons 

 

• Update: ∆𝑤𝑗𝑖= −𝜂
𝜕𝐸

𝜕𝑤𝑗𝑖
= −𝜂𝛿𝑗𝑥𝑖 

 

• 𝛿𝑗 =  (𝛿𝑘𝑤𝑘𝑗)
𝐾
𝑘=1

𝜕σ(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
 

 

• 𝛿𝑘 =
𝜕𝐸𝑘

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
 

jiw kjw

ix

𝛿1 

𝛿2 

𝑤12 𝛿1 

𝑤22 𝛿2 

𝛿2ℎ𝑖𝑑 = (𝑤12  𝛿1+ 𝑤22 𝛿2) 
𝜕σ(𝑛𝑒𝑡2)

𝜕𝑛𝑒𝑡2
 

∆𝑤21= −𝜂 𝛿2ℎ𝑖𝑑  𝑥1 



  Stavros Petridis                       Machine Learning (course 395) 

Example 

• http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html 
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Stochastic Gradient Descent 

 

• Stochastic/Incremental/On-line: One example at a time is fed to  

     the network.  

 

• Weights are updated after each example is presented to the network 
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Batch Gradient Descent 

• Batch: All examples are fed to the network. Weights are updated 

    only after all examples have been presented to the network 

 

• For each weight the corresponding gradient (or Δw) is computed 

     (for each example).  

 

• The weights are updated based on the average gradient over  

     all examples.Type equation here. 
 

• Δ𝑤𝑎𝑙𝑙𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠 =
1

𝐷
  Δ𝑤𝑜𝑛𝑒𝐸𝑥𝑎𝑚𝑝𝑙𝑒

𝐷
𝑑=1  
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Mini-batch Gradient Descent 

• Mini-Batch: M  randomly examples are fed to the network.  

     - M = 32…128 (typical value 100) 
 

• For each weight the corresponding gradient (or Δw) is computed 

     (for each example).  
 

• The weights are updated based on the average gradient over  

     all M examples. 
 

• Set of M examples is called mini-batch. 
 

• Popular approach in deep neural networks. 

 

• Sometimes called stochastic gradient descent (NOT to be confused 

    with online/incremental gradient descent).  
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• When the gradient magnitude (or ∆𝑤𝑖) is small, i.e.  

 

 

• When the maximum number of epochs has been 

reached 

• When the error on the validation set increases for n 

consecutive times (this implies that we monitor the 

error on the validation set). This is called early 

stopping. 

Backpropagation Stopping Criteria 

𝜕𝐸

𝜕𝑤𝑖
< 𝛿 𝑜𝑟 ∆𝑤𝑖 < 𝛿 
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Early stopping 

• Stop when the error in the validation set increases (but 

not too soon!) 

• Error might decrease in the training set but increase in the 

‘validation’ set (overfitting!) 

• It is also a way to avoid overfitting. 
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1. Initialise weights randomly 

2. For each input training example x compute the outputs 

(forward pass) 

3. Compute the output neurons errors and then compute the 

update rule for output layer weights (backward pass) 

 
 

Backpropagation Summary 

4. Compute hidden neurons errors and then compute the 

update rule for hidden layer weights (backward pass) 

 

 

 

∆𝒘𝒌𝒋= −𝜼
𝝏𝑬

𝝏𝒘𝒌𝒋
= −𝜼𝜹𝒌𝒚𝒋   𝑤ℎ𝑒𝑟𝑒  𝜹𝒌=

𝝏𝑬

𝝏𝒐𝒌

𝝏𝝈(𝒏𝒆𝒕𝒌)

𝝏𝒏𝒆𝒕𝒌
 

∆𝒘𝒋𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒋𝒊
= −𝜼𝜹𝒋𝒙𝒊 𝑤ℎ𝑒𝑟𝑒  𝜹𝒋 =  (𝜹𝒌𝒘𝒌𝒋)

𝑲

𝒌=𝟏

𝝏𝝈(𝒏𝒆𝒕𝒋)

𝝏𝒏𝒆𝒕𝒋
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5. Compute the sum of all Δw, once all training 

examples have been presented to the network 

 

6. Update weights 

 

7. Repeat steps 2-6 until the stopping criterion is met 

 

• The algorithm will converge to a weight vector with 

minimum error, given that the learning rate is 

sufficiently small 

 

 

 

Backpropagation Summary 

iii www 
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Backpropagation: Convergence 

• Converges to a local minimum of the error function 

• … can be retrained a number of times 

• Minimises the error over the training examples 

• …will it generalise well over unknown examples? 

 

• Training requires thousands of iterations (slow) 

• … but once trained it can rapidly evaluate output 
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Backpropagation: Error Surface 


