Course 395: Machine Learning - Lectures

Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)
Neural Networks

Reading:
• Machine Learning (Tom Mitchel) Chapter 4

• Pattern Classification (Duda, Hart, Stork) Chapter 6
 (chapters 6.1, 6.2, 6.3, 6.8)

Further Reading:
• http://neuralnetworksanddeeplearning.com/
 (great online book)

Coursera classes
 - Machine Learning by Andrew Ng
 - Neural Networks by Hinton
History

• 1st generation Networks: Perceptron 1957 – 1969
 - Perceptron is useful only for examples that are linearly separable

• 2nd generation Networks: Feedforward Networks and other variants, beginning of 1980s to middle/end of 1990s
 - Difficult to train, many parameters, similar performance to SVMs

• 3rd generation Networks: Deep Networks 2006 - ?
 - New approach to train networks with multiple layers
 - State of the art in object recognition / speech recognition
Hype Cycle

Neural Network History

Gartner Hype Cycle

- Peak of Inflated Expectations
- Plateau of Productivity
- Trough of Disillusionment
- Slope of Enlightenment

From Deep Learning: Methods and Applications, Deng and Yu
What are Neural Networks?

The real thing!

Billions of neurons

Local computations on interconnected elements (neurons)

Parallel computation
 - neuron switch time 0.001 sec
 - recognition tasks performed in 0.1 sec.
Biological Neural Networks

A network of interconnected biological neurons.
Connections per neuron $10^4 - 10^5$
Biological vs Artificial Neural Networks

<table>
<thead>
<tr>
<th>Biological Neural Network</th>
<th>Artificial Neural Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soma</td>
<td>Neuron</td>
</tr>
<tr>
<td>Dendrite</td>
<td>Input</td>
</tr>
<tr>
<td>Axon</td>
<td>Output</td>
</tr>
<tr>
<td>Synapse</td>
<td>Weight</td>
</tr>
</tbody>
</table>

Imperial College London

Stavros Petridis

Machine Learning (course 395)
Artificial Neural Networks: the dimensions

Architecture
How are the neurons connected

The Neuron
How information is processed in each unit. output = f(input)

Learning algorithms
How a Neural Network modifies its weights in order to solve a particular learning task in a set of training examples

The goal is to have a Neural Network that generalizes well, that is, that it generates a ‘correct’ output on a set of test/new examples/inputs.
The Neuron

- Main building block of any neural network

\[o = \sigma(\text{net}) = \sigma(w^T X) \]

where \(w \) are the weights, \(x \) are the inputs, and \(\sigma \) is the transfer/activation function.
Activation functions

\[Y_{step} = \begin{cases} \text{1, if } X \geq 0 \\ \text{0, if } X < 0 \end{cases} \]

\[Y_{sign} = \begin{cases} +1, \text{ if } X \geq 0 \\ -1, \text{ if } X < 0 \end{cases} \]

\[Y_{sigmoid} = \frac{1}{1 + e^{-X}} \]

\[Y_{linear} = X \]

\[X = \text{net} = \sum_{i=1}^{n} w_i x_i + w_0, \quad Y = o = \sigma(\text{net}) \]
Activation functions

- Rectified Linear Unit (ReLu): \(\max(0, x) \)
- Popular for deep networks
- Less computationally expensive than sigmoid
- Accelerates convergence during training
- Leaky ReLu: \(\text{output} = \begin{cases} x & \text{if } x > 0 \\ 0.01x & \text{otherwise} \end{cases} \)

From http://cs231n.github.io/neural-networks-1/
Role of Bias

\[\text{net} = \sum_{i=1}^{n} w_i x_i + w_0 x_0 (= 1) \]

\[o = \sigma(\text{net}) \]

\[w_0 = -\theta \]

- The threshold where the neuron fires should be adjustable
- Instead of adjusting the threshold we add the bias term
- Defines how strong the neuron input should be before the neuron fires

\[o = \begin{cases}
1 & \text{if } \sum_{i=1}^{n} w_i x_i \geq \theta \\
0 & \text{if } \sum_{i=1}^{n} w_i x_i < \theta
\end{cases} \]

\[o = \begin{cases}
1 & \text{if } \sum_{i=1}^{n} w_i x_i - \theta \geq 0 \\
0 & \text{if } \sum_{i=1}^{n} w_i x_i - \theta < 0
\end{cases} \]
Perceptron

\[o = \sigma(\text{net}) = \sigma(w^T X) \]

- \(\sigma \) = sign/step/function
- Perceptron = a neuron that its input is the dot product of \(W \) and \(X \) and uses a step function as a transfer function

\[o = \sigma(\text{net}) = \begin{cases} 1 & \text{if net > 0} \\ -1 & \text{otherwise} \end{cases} \]
Generalization to single layer perceptrons with more neurons is easy because:

- The output units are mutually independent
- Each weight only affects one of the outputs
Perceptron

- Perceptron was invented by Rosenblatt
- *The Perceptron*—*a perceiving and recognizing automaton*, 1957
Perceptron: Example 1 - AND

- $x_1 = 1, x_2 = 1 \rightarrow \text{net} = 20 + 20 - 30 = 10 \rightarrow o = \sigma(10) = 1$
- $x_1 = 0, x_2 = 1 \rightarrow \text{net} = 0 + 20 - 30 = -10 \rightarrow o = \sigma(-10) = 0$
- $x_1 = 1, x_2 = 0 \rightarrow \text{net} = 20 + 0 - 30 = -10 \rightarrow o = \sigma(-10) = 0$
- $x_1 = 0, x_2 = 0 \rightarrow \text{net} = 0 + 0 - 30 = -30 \rightarrow o = \sigma(-10) = 0$

$o = \sigma(\text{net}) = \begin{cases} 1 & \text{if net > 0} \\ 0 & \text{otherwise} \end{cases}$
Perceptron: Example 2 - OR

- $x_1 = 1, x_2 = 1 \rightarrow \text{net} = 20 + 20 - 10 = 30 \rightarrow o = \sigma(30) = 1$
- $x_1 = 0, x_2 = 1 \rightarrow \text{net} = 0 + 20 - 10 = 10 \rightarrow o = \sigma(10) = 1$
- $x_1 = 1, x_2 = 0 \rightarrow \text{net} = 20 + 0 - 10 = 10 \rightarrow o = \sigma(10) = 1$
- $x_1 = 0, x_2 = 0 \rightarrow \text{net} = 0 + 0 - 10 = -10 \rightarrow o = \sigma(-10) = 0$
Perceptron: Example 3 - NAND

\[o = \sigma(\text{net}) = \begin{cases}
1 & \text{if } \text{net} > 0 \\
0 & \text{otherwise}
\end{cases} \]

- \(x_1 = 1, x_2 = 1 \rightarrow \text{net} = -20 - 20 + 30 = -10 \rightarrow o = \sigma(-10) = 0 \)
- \(x_1 = 0, x_2 = 1 \rightarrow \text{net} = 0 - 20 + 30 = 10 \rightarrow o = \sigma(10) = 1 \)
- \(x_1 = 1, x_2 = 0 \rightarrow \text{net} = -20 + 0 + 30 = 10 \rightarrow o = \sigma(10) = 1 \)
- \(x_1 = 0, x_2 = 0 \rightarrow \text{net} = 0 + 0 + 30 = 30 \rightarrow o = \sigma(30) = 1 \)
Perceptron for classification

- Given training examples of classes A1, A2 train the perceptron in such a way that it classifies correctly the training examples:
 - If the output of the perceptron is 1 then the input is assigned to class A1 (i.e. if $\sigma(w^T x) = 1$)
 - If the output is 0 then the input is assigned to class A2

- Geometrically, we try to find a hyper-plane that separates the examples of the two classes. The hyper-plane is defined by the linear function
Perceptron: Geometric view

(Note that $\theta = -w_0$)

(a) Two-input perceptron.

if $w_1x_1 + w_2x_2 + w_0 > 0$ then $\text{Class} = A_1$

if $w_1x_1 + w_2x_2 + w_0 < 0$ then $\text{Class} = A_2$

(b) Three-input perceptron.

if $w_1x_1 + w_2x_2 + w_3x_3 + w_0 = 0$ then $\text{Class} = A_1$ or A_2

depends on our definition
Perceptron: The limitations of perceptron

- Perceptron can only classify examples that are linearly separable.
- The XOR is not linearly separable.
- This was a terrible blow to the field.
Perceptron

• A famous book was published in 1969: **Perceptrons**
• Caused a significant decline in interest and funding of neural network research

 • Marvin Minsky
 • Seymour Papert
Perceptron XOR Solution

- XOR can be expressed in terms of AND, OR, NAND
Perceptron XOR Solution

- XOR can be expressed in terms of AND, OR, NAND
- XOR = NAND (AND) OR

Truth Tables

OR

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

NAND

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
</tr>
<tr>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>0 0</td>
<td>1</td>
</tr>
</tbody>
</table>

AND

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>1</td>
</tr>
<tr>
<td>0 1</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>0</td>
</tr>
<tr>
<td>0 0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example Cases

- x₁=1, x₂=1 → y₁=1 AND y₂=0 → o = 0
- x₁=1, x₂=0 → y₁=1 AND y₂=1 → o = 1
- x₁=0, x₂=1 → y₁=1 AND y₂=1 → o = 1
- x₁=0, x₂=0 → y₁=0 AND y₂=1 → o = 0
XOR

\[-20x_1 - 20x_2 = -30\]
\[-20x_1 - 20x_2 > -30\]
\[-20x_1 - 20x_2 < -30\]

\[20x_1 + 20x_2 = 10\]
\[20x_1 + 20x_2 < 10\]
\[20x_1 + 20x_2 > 10\]
Multilayer Feed Forward Neural Network

- We consider a more general network architecture: between the input and output layers there are hidden layers, as illustrated below.

- Hidden nodes do not directly receive inputs nor send outputs to the external environment.
The input layer does not count as a layer.

4-layer recurrent network – Difficult to train
NNs: Architecture

3-layer feed-forward network 4-layer feed-forward network

• Deep networks are simply networks with many layers.

• They are trained in the same way as shallow networks but
 1) either weight initialisation is done in a different way.
 2) or we use a lot of data with strong regularisation
Multilayer Feed Forward Neural Network

\[y_j = \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) \]

\[o_k = \sigma \left(\sum_{j=0}^{nH} y_j w_{kj} \right) \]

\[o_k = \sigma \left(\sum_{j=0}^{nH} \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) w_{kj} \right) \]

- \(w_{ji} \) = weight associated with \(i \)th input to hidden unit \(j \)
- \(w_{kj} \) = weight associated with \(j \)th input to output unit \(k \)
- \(y_j \) = output of \(j \)th hidden unit
- \(o_k \) = output of \(k \)th output unit
- \(n \) = number of inputs
- \(nH \) = number of hidden neurons
- \(K \) = number of output neurons
Representational Power of Feedforward Neural Networks

• Boolean functions: Every boolean function can be represented exactly by some network with two layers

• Continuous functions: Every bounded continuous function can be approximated with arbitrarily small error by a network with 2 layers

• Arbitrary functions: Any function can be approximated to arbitrary accuracy by a network with 3 layers

• Catch: We do not know 1) what the appropriate number of hidden neurons is, 2) the proper weight values

\[o_k = \sigma \left(\sum_{j=0}^{n_H} \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) w_{kj} \right) \]
Classification / Regression with NNs

• You should think of neural networks as function approximators

\[o_k = \sigma \left(\sum_{j=0}^{n_H} \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) w_{kj} \right) \]

Classification
- Discrete output
- e.g., recognise one of the six basic emotions

Regression
- Continuous output
- e.g., house price estimation
Output Representation

- **Binary Classification**
 Target Values (t): 0 or -1 (negative) and 1 (positive)

- **Regression**
 Target values (t): continuous values [-inf, +inf]

- **Ideally** \(o \approx t \)

\[
o_k = \sigma \left(\sum_{j=0}^{nH} \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) w_{kj} \right)
\]
Multiclass Classification

Target Values: vector (length=no. Classes)
e.g. for 4 classes the targets are the following:

Class1 Class2 Class3 Class4

\[
\begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\quad
\begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
\end{bmatrix}
\quad
\begin{bmatrix}
0 \\
0 \\
1 \\
0 \\
\end{bmatrix}
\quad
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
\end{bmatrix}
\]
Training

• We have assumed so far that we know the weight values
• We are given a training set consisting of inputs and targets \((X, T)\)
• Training: Tuning of the weights \((w)\) so that for each input pattern \((x)\) the output \((o)\) of the network is close to the target values \((t)\).

\[
o \approx t
\]

\[
o = \sigma\left(\sum_{j=0}^{n_H} \sigma\left(\sum_{i=0}^{n} x_i w_{ji}\right) w_{kj}\right)
\]
Training – Gradient Descent

• Gradient Descent: A general, effective way for estimating parameters (e.g. \(w \)) that minimise error functions

• We need to define an error function \(E(w) \)

• Update the weights in each iteration in a direction that reduces the error in order to minimize \(E \)

\[
\begin{align*}
w_i & \leftarrow w_i + \Delta w_i \\
\Delta w_i & = -\eta \frac{\partial E}{\partial w_i}
\end{align*}
\]
Gradient Descent

Gradient descent method: take a step in the direction that decreases the error E. This direction is the opposite of the derivative of E.

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

- derivative: direction of steepest increase
- learning rate: determines the step size in the direction of steepest decrease
Gradient Descent – Learning Rate

- Derivative: direction of steepest increase
- Learning rate: determines the step size in the direction of steepest decrease. It usually takes small values, e.g. 0.01, 0.1
- If it takes large values then the weights change a lot -> network unstable

\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} > 0 \quad \Delta w_i = -\eta \frac{\partial E}{\partial w_i} < 0 \]
Gradient Descent – Learning Rate

\[J \quad \eta < \eta_{opt} \]

\[J \quad \eta = \eta_{opt} \]

\[J \quad \eta_{opt} < \eta < 2\eta_{opt} \]

\[J \quad \eta > 2\eta_{opt} \]
Learning: The backpropagation algorithm

- The Backprop algorithm searches for weight values that minimize the error function of the network (K outputs) over the set of training examples (training set).

- Based on gradient descent algorithm

\[w_i \leftarrow w_i + \Delta w_i \]
\[\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \]
Reminder: Multilayer Feed Forward Neural Network

\(y_j = \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) = \sigma (\text{net}_j) \)

\(o_k = \sigma (\sum_{j=0}^{nH} y_j w_{kj}) = \sigma (\text{net}_k) \)

\(o_k = \sigma \left(\sum_{j=0}^{nH} \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) w_{kj} \right) \)

\(W_{ji} = \text{weight associated with } i\text{th input to hidden unit } j \)

\(W_{kj} = \text{weight associated with } j\text{th input to output unit } k \)

\(y_j = \text{output of } j\text{th hidden unit} \)

\(o_k = \text{output of } k\text{th output unit} \)

\(n = \text{number of inputs} \)

\(nH = \text{number of hidden neurons} \)

\(K = \text{number of output neurons} \)
Backpropagation: Initial Steps

- Training Set: A set of input vectors $x_i, i = 1 \ldots D$ with the corresponding targets t_i

- η: learning rate, controls the change rate of the weights

- Begin with random weights (use one of the initialisation strategies discussed later)
Backpropagation: Output Neurons

We define our error function, for example $E = \frac{1}{2} \sum_{k=1}^{K} (t_k - o_k)^2$

E depends on the weights because $o_d = \sum_{i=0}^{n} x_i^d w_i$

For simplicity we assume the error of one training example
Backpropagation: Output Neurons

\[
o_k = \sigma \left(\sum_{j=1}^{n_H} y_j w_{kj} \right) = \sigma (\text{net}_k)
\]

- \[
\frac{\partial E_k}{\partial w_{kj}} = \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial w_{kj}} = \frac{\partial E_k}{\partial o_k} \frac{\partial \sigma (\text{net}_k)}{\partial \text{net}_k} y_j
\]

- We define \[
\delta_k = \frac{\partial E_k}{\partial o_k} \frac{\partial \sigma (\text{net}_k)}{\partial \text{net}_k}
\]

- Update: \[
\Delta w_{kj} = -\eta \frac{\partial E_k}{\partial w_{kj}} = -\eta \delta_k y_j
\]
Backpropagation: Output/Hidden Neurons

- Weights connected to output neuron k can influence the error of that particular neuron only.
- That’s why \(\frac{\partial E}{\partial w_{kj}} = \frac{\partial}{\partial w_{kj}} (E_1 + E_2 + \cdots + E_k + \cdots + E_K) = \frac{\partial E_k}{\partial w_{kj}} \)

- Weights connected to hidden neuron j can influence the error of all output neurons.
- That’s why \(\frac{\partial E}{\partial w_{ji}} = \frac{\partial}{\partial w_{ji}} (E_1 + E_2 + \cdots + E_k + \cdots + E_K) \)
Backpropagation: Hidden Neurons

\[y_j = \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) = \sigma \left(\text{net}_j \right) \]

\[o_k = \sigma \left(\sum_{j=1}^{nH} y_j w_{kj} \right) = \sigma \left(\text{net}_k \right) \]

- \[
\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}} = \frac{\partial E}{\partial y_j} \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j} x_i
\]

- \[
\frac{\partial E}{\partial y_j} = \sum_{k=1}^{K} \frac{\partial E_k}{\partial y_j} = \sum_{k=1}^{K} \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial y_j} = \sum_{k=1}^{K} \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial y_j}
\]
Backpropagation: Hidden Neurons

Hidden Neuron x_i

- $y_j = \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) = \sigma(\text{net}_j)$

Output Neuron y_j

- $o_k = \sigma \left(\sum_{j=1}^{nH} y_j w_{kj} \right) = \sigma(\text{net}_k)$

\[\frac{\partial E}{\partial y_j} = \sum_{k=1}^{K} \frac{\partial E_k}{\partial o_k} \frac{\partial o_k}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial y_j} = \sum_{k=1}^{K} \delta_k w_{kj} \]

\[\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ji}} = \sum_{k=1}^{K} (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j} x_i \]
Backpropagation: Hidden Neurons

\[y_j = \sigma \left(\sum_{i=0}^{n} x_i w_{ji} \right) = \sigma(\text{net}_j) \]

\[o_k = \sigma \left(\sum_{j=1}^{n_H} y_j w_{kj} \right) = \sigma(\text{net}_k) \]

- \[\frac{\partial E}{\partial w_{ji}} = \sum_{k=1}^{K} (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j} x_i \]

- We define \(\delta_j = \sum_{k=1}^{K} (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j} \)
Backpropagation: Hidden Neurons

Hidden Neuron x_i

Output Neuron y_j

$$y_j = \sigma\left(\sum_{i=0}^{n} x_i w_{ji}\right) = \sigma(\text{net}_j)$$

$$o_k = \sigma\left(\sum_{j=1}^{n_H} y_j w_{kj}\right) = \sigma(\text{net}_k)$$

- $\frac{\partial E}{\partial w_{ji}} = \delta_j x_i$

- Update: $\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} = -\eta \delta_j x_i$
Backpropagation: Hidden Neurons

\[
\delta_{2\text{hid}} = (w_{12} \delta_1 + w_{22} \delta_2) \frac{\partial \sigma(\text{net}_2)}{\partial \text{net}_2}
\]

\[
\Delta w_{21} = -\eta \delta_{2\text{hid}} x_1
\]

- Update: \(\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} = -\eta \delta_j x_i \)

- \(\delta_j = \sum_{k=1}^{K} (\delta_k w_{kj}) \frac{\partial \sigma(\text{net}_j)}{\partial \text{net}_j} \)

- \(\delta_k = \frac{\partial E_k}{\partial o_k} \frac{\partial \sigma(\text{net}_k)}{\partial \text{net}_k} \)
Example

Stochastic Gradient Descent

• Stochastic/Incremental/On-line: One example at a time is fed to the network.

• Weights are updated after each example is presented to the network.
Batch Gradient Descent

- Batch: All examples are fed to the network. Weights are updated only after all examples have been presented to the network.

- For each weight, the corresponding gradient (or Δw) is computed (for each example).

- The weights are updated based on the average gradient over all examples. Type equation here.

- $\Delta w_{all\text{Examples}} = \frac{1}{D} \sum_{d=1}^{D} \Delta w_{one\text{Example}}$
Mini-batch Gradient Descent

- Mini-Batch: M randomly examples are fed to the network.
 - $M = 32\ldots128$ (typical value 100)

- For each weight the corresponding gradient (or Δw) is computed (for each example).

- The weights are updated based on the average gradient over all M examples.

- Set of M examples is called mini-batch.

- Popular approach in deep neural networks.

- Sometimes called stochastic gradient descent (NOT to be confused with online/incremental gradient descent).
Backpropagation Stopping Criteria

• When the gradient magnitude (or Δw_i) is small, i.e.
 $\frac{\partial E}{\partial w_i} < \delta$ or $\Delta w_i < \delta$

• When the maximum number of epochs has been reached

• When the error on the validation set increases for n consecutive times (this implies that we monitor the error on the validation set). This is called early stopping.
Early stopping

- Stop when the error in the validation set increases (but not too soon!)
- Error might decrease in the training set but increase in the ‘validation’ set (overfitting!)
- It is also a way to avoid overfitting.
1. Initialise weights randomly
2. For each input training example x compute the outputs (forward pass)
3. Compute the output neurons errors and then compute the update rule for output layer weights (backward pass)
 $\Delta w_{kj} = -\eta \frac{\partial E}{\partial w_{kj}} = -\eta \delta_k y_j$ where $\delta_k = \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial net_k}$
4. Compute hidden neurons errors and then compute the update rule for hidden layer weights (backward pass)
 $\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} = -\eta \delta_j x_i$ where $\delta_j = \sum_{k=1}^{K} (\delta_k w_{kj}) \frac{\partial \sigma(net_j)}{\partial net_j}$
5. Compute the sum of all Δw, once all training examples have been presented to the network.

6. Update weights $w_i \leftarrow w_i + \Delta w_i$

7. Repeat steps 2-6 until the stopping criterion is met.

• The algorithm will converge to a weight vector with minimum error, given that the learning rate is sufficiently small.
Backpropagation: Convergence

- Converges to a local minimum of the error function
 - … can be retrained a number of times
- Minimises the error over the training examples
 - … will it generalise well over unknown examples?

- Training requires thousands of iterations (slow)
 - … but once trained it can rapidly evaluate output
Backpropagation: Error Surface

$J(\Theta)$

$\Theta^{(1)}_{12}$

$\Theta^{(1)}_{11}$