Course 395: Machine Learning - Lectures
Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)
Lecture 5-6: Evaluating Hypotheses (S. Petridis)
> Lecture 7-8: Artificial Neural Networks I (S. Petridis)
Lecture 9-10: Artificial Neural Networks Il (S. Petridis)
Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)
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Neural Networks

Reading:
*Machine Learning (Tom Mitchel) Chapter 4

Pattern Classification (Duda, Hart, Stork) Chapter 6
(chapters 6.1, 6.2, 6.3, 6.8)

Further Reading:
* http://neuralnetworksanddeeplearning.com/
(great online book)

Coursera classes
- Machine Learning by Andrew Ng
- Neural Networks by Hinton
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History

« 15t generation Networks: Perceptron 1957 — 1969
- Perceptron is useful only for examples that are linearly separable

« 2"d generation Networks: Feedforward Networks and
other variants, beginning of 1980s to middle/end of
1990s

- Difficult to train, many parameters, similar performance to SVMs

« 3" generation Networks: Deep Networks 2006 - ?

- New approach to train networks with multiple layers
- State of the art in object recognition / speech recognition
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DNN DNN From Deep Learning: Methods and Applications,
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What are Neural Networks?

The real thing! Billions of neurons

Local computations on interconnected elements (neurons)

Parallel computation

* neuron switch time 0.001sec
» recognition tasks performed in 0.1 sec.
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Biological Neural Networks
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A network of interconnected biological neurons.

Connections per neuron 10%- 10°
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Biological vs Artificial Neural Networks
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Artificial Neural Networks: the dimensions

Architecture
How are the neurons connected

Input Signals

The Neuron

Input Layer Ouiput Layer

How information is processed in each unit. output = f(input)

Learning algorithms

How a Neural Network modifies its weights in order to solve a
particular learning task in a set of training examples

The goal is to have a Neural Network that generalizes well, that is, that
it generates a ‘correct’ output on a set of test/new examples/inputs.
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The Neuron

Weights Bias
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Transfer/Activation
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0 = o(net)=c(w! X)

« Main building block of any neural network
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Activation functions

Step function Sign function | Sigmoid function | Linear function
Ya Ya Ya Ya
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X =net=>" wx+W, Y=0=oc(net)
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Activation functions

Rectified Linear Unit (ReLu): max(0, x)
Popular for deep networks

Less computationally expensive than sigmoid
Accelerates convergence during training

b if x>0

Leaky ReLu: output = { 0.01% otherwise
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Role of Bias
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The threshold where the neuron fires should be adjustable
Instead of adjusting the threshold we add the bias term
Defines how strong the neuron input should be before the neuron fires
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Perceptron

o Wn, 0 = o(net)=oc(wl' X
T (net)=o(w"X)

lif net >0

= t =
0 = o(net) {—1 otherwise

« o = sign/step/function
 Perceptron = a neuron that its input is the dot product of W and X

and uses a step function as a transfer function
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Perceptron: Architecture

Generalization to single layer perceptrons with more neurons is
easy because:

 The output units are mutually independent
 Each weight only affects one of the outputs
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Perceptron

« Perceptron was invented by Rosenblatt
» The Perceptron--a perceiving
and recognizing automaton, 1957

| FRANK |
ROSENBLATT|. - -
vl |
19281971 |
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Perceptron: Example 1 - AND

10 w1=20 Z net=),1-, w;x; + w, / \ 0=0(net2

O
L) w,=20 U

lif net>0
0 otherwise

o = o(net) = {

e x1=1,x2=1- net = 20+20-30=10 >0 = 5(10) = 1

. x1=0,x2 =1 net =0+20-30 =-10 >0 = 6(-10) = 0
. x1=1,x2 =0 net=20+0-30 =-10 >0 = 6(-10) = 0
. x1=0,x2=0- net=0+0-30 =-30 >0 =0(-10) =0
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Perceptron: Example 2 - OR

w20 /\ net=Y7, w;x; + w, /
(0]

1if net >0
0 otherwise

0=c(net)

o = o(net) = {

e x1=1,x2=1- net = 20+20-10=30 >0 = 5(30) = 1
« x1=0,x2=1 net=0+20-10 =10 S0 =05(10) = 1
e x1=1,x2=0- net=20+0-10 =10 S0 =05(10) = 1
« x1=0,x2=0- net=0+0-10 =-10 >0 =5(-10) = 0
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Perceptron: Example 3 - NAND

L1 (/Lw1=-2 $@ net=)1, w;x; + wy =@ o:c(net2
o Qﬁ'v

1if net >0
0 otherwise

o = o(net) = {

. x1=1,x2=1-> net=-20-20+30=-10 > 0 = 6(-10) = 0
« x1=0,x2=1>net=0-20+30 =100 =o(10) =1
. x1=1,x2=0-> net=-20+0+30 =10 > 0 =5(10) =1
« x1=0,x2=0>net=0+0+30 =30->0 =0(30)=1
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Perceptron for classification

« Given training examples of classes Al, A2 train the
perceptron in such a way that it classifies correctly the

training examples:

— If the output of the perceptron is 1 then the input is
assigned to class Al (i.e.if o(wix)=1 )

— If the output is 0 then the input is assigned to class A2
» Geometrically, we try to find a hyper-plane that separates the

examples of the two classes. The hyper-plane is defined by the
linear function
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Perceptron: Geometric view

.Tz 'y
Class A, (NOte that 9 — _Wo)
T2
1

Class A, \ > X

2

i
xwp txow, —0=0 . xywy Hxowy, Txgwy —0=0
(a) Two-input perceptron. (b) Three-input perceptron.

if w,x, +W,X, +w, >0 then Class= Al if wx, +Ww,X, +w, =0then Class = Al or A2
if WX, +W,X, +W, <0 then Class=A2  depends onour definition
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Perceptron: The limitations of perceptron

F X1 A& X

N

2
1¢ 1
X1
L L > —
0 1 \

A X &

0 0 1
(a) AND (xq M x>) (b) OR (x1 v xy) (c) Exclusive-OR
(x1 @ x3)

» Perceptron can only classify examples that are linearly separable
* The XOR is not linearly separable.

e This was a terrible blow to the field
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Perceptron

« A famous book was published in 1969: Perceptrons

« Caused a significant decline in interest and funding of
neural network research

« Marvin Minsky * Seymour Papert
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Perceptron XOR Solution

« XOR can be expressed in terms of AND, OR, NAND
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Perceptron XOR Solution

« XOR can be expressed in terms of AND, OR, NAND
« XOR =NAND (AND) OR

OR NAND
11->1 11->0
01->1 01->1
10->1 10->1
00->0 00->1

AND
11>1
01>0
10>0
00->0
¢ x1=1,x2=1-2>y1=1ANDYy2=0-2>0=0

 x1=1,x2=0->yl1=1ANDy2=1-2>0=1
 x1=0,x2=1->y1=1ANDy2=1-2>0=1
* X1=0,x2 =0-> y1=0 AND y2=1-> 0=0
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XOR

-20x1 -20x2 =-30
220x1 - 20X2 > -36\-20x1 - 20x2 < -30

A X2 \\
20x1+20x2=10 00O
N 1 s
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\\ 1 Xl
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Multilayer Feed Forward Neural Network

» We consider a more general network architecture: between the input and output
layers there are hidden layers, as illustrated below.

» Hidden nodes do not directly receive inputs nor send outputs to the external
environment.

Output

Input
layer

layer

Hidden Layer
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NNs: Architecture

Hidden
Layer 2

I/&.‘kv&,‘\\\

</
Input % OSEA §\‘4{/

SOSEY <22
NV g
Hidden Hidden Hidden
Layer 1 Layer1  Layer3

3-layer feed-forward network 4-layer feed-forward network

e O
’ \ ‘t’f’ ’(
XAX J

Output
Layer

Output XL
V'r‘ ,f\:'/
Layer

« The input layer does

Feedback not count as a layer
Connection

4-layer recurrent network — Difficult to train
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NNs: Architecture

Hidden
Layer 2

9 > O
o s,
KNSR XA Output
/‘«‘V N S8Q
NOLIOZY
NS

Output
Layer

Hidden Hidden Hidden
Layer 1 Layer1  Layer3

3-layer feed-forward network 4-layer feed-forward network
» Deep networks are simply networks with many layers.

« They are trained in the same way as shallow networks but
1) either weight initialisation is done in a different way.
2) or we use a lot of data with strong regularisation
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Multilayer Feed Forward Neural Network

W;; = weight associated with ith input

to hidden unit |

Wi = weight associated with jth input
to output unit k

Y = output of jth hidden unit

Xi Wi W,
kj :
O, = output of kth output unit

Yj = (Z. OX'WJ') n = number of inputs
_ ‘7@, " yw k,) nH = number of hidden neurons

(Z @ }N ) K = number of output neurons
k=0 JOG i=0 | jI Kj

Stavros Petridis Machine Learning (course 395)




Representational Power of
Feedforward Neural Networks

Boolean functions: Every boolean function can be represented
exactly by some network with two layers

Continuous functions: Every bounded continuous function can
be approximated with arbitrarily small error by a network with
2 layers

Arbitrary functions: Any function can be approximated to
arbitrary accuracy by a network with 3 layers

Catch: We do not know 1) what the appropriate number of
hidden neurons Is, 2) the proper weight values

0 =o(X ) o2 xw )
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Classification / Regression with NNs

* You should think of neural networks as function

@n— (Zn— )

Classification Regression
- Discrete output - Continuous output
-e.g., recognise one of the six - e.0., house price estimation

A Dasic emotions
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Output Representation

 Binary Classification
Target Values (t): 0 or -1 (negative) and 1 (positive)

» Regression
Target values (t): continuous values [-Inf, +Inf]

e Ideally o=t

0. =X, xw, g )
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Multiclass Classification

Target Values: vector (length=no. Classes)
e.g. for 4 classes the targets are the following:

Class1l Class?2 Class3 Class4

1 0 0 0

o| |1 |o]| o
o| |o| |1] o
o| |0 |o] |1
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Training

» \We have assumed so far that we know the weight
values

» \We are given a training set consisting of inputs and
targets (X, T)

 Training: Tuning of the weights (w) so that for each
Input pattern (x) the output (o) of the network is close
to the target values (t).

0 =o(3} a(z.o o o
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Training — Gradient Descent

*Gradient Descent: A general, effective way for estimating
parameters (e.g. w) that minimise error functions

» We need to define an error function E(w)

» Update the weights in each iteration in a direction that reduces
the error the order in order to minimize E

W, <— W, + AW,
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Gradient Descent

Gradient descent method: take a step In the direction
that decreases the error E. This direction Is the opposite
of the derivative of E.

0.9k
E ner Gradient direction

[

[N \
Aw; = OL oo
i = 7] Ow; il
0.3 F
o2k

D.I2 |D. .IEi

- - - . D—1 —D.IEE - —D.IEi -0 -0z a 0.5 w .

- derivative: direction of steepest increase / I?\U . ¢

- learning rate: determines the step size in sz:
the direction of steepest decrease
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Gradient Descent — Learning Rate

1

E “°[\Negative Slope| Positive Slope

0.3

0.7 -

0.6 -

nsl Gradient|direction
ol / ~
0.3

0.2 F

Derivative: direction of steepest increase

Learning rate: determines the step size in the direction of steepest
decrease. It usually takes small values, e.g. 0.01, 0.1

If it takes large values then the weights change a lot -> network unstable
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Gradient Descent —Learning Rate

T {:napf

T

N="Nopt J Nopt {'T?{E'T?ant J n:}gnmpt

——

w
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Learning: The backpropagation algorithm

« The Backprop algorithm searches for weight values that
minimize the error function of the network (K outputs) over
the set of training examples (training set).

Input
layer

Output
layer

« Based on gradient descent algorithm

o=
W, <— W. -|-AVVi AWiZ—Uﬁ
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Reminder: Multilayer Feed Forward
Neural Network

W;; = weight associated with ith input
to hidden unit |

Wi = weight associated with jth input
to output unit k

Y = output of jth hidden unit

X; Wji ij

O, = output of kth output unit
~ G(Z ) net ) n = number of inputs
= 0@1 N7 ij) net ) nH = number of hidden neurons

(Z (Z }N ) K = number of output neurons
=0 (o2 i
j=0 i=0 ' J' J
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Backpropagation: Initial Steps

Training Set: A set of input vectors x;,i = 1...D
with the corresponding targets t;

* 1. learning rate, controls the change rate of the weights

Begin with random weights (use one of the initialisation
strategies discussed later)
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Backpropagation: Output Neurons

y (O}\mok = U(Z: YWy ) =o(net,)
j = >
@W

 \We define our error function, for example E = EZ:Zl(tk —0,f

 E depends on the weights because o, = Z.- P W,

« For simplicity we assume the error of one training example
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Backpropagation: Output Neurons

V. (Q}\mok = J(Z: YW ): o(net, )

=
v

0Er _ O0ER 0dop Onety _ 0Eg do(nety)

° — —
aij doj dnety, aij doj, Onety J

' JEy do(net
. We define §, = 2£k22(neti)
doy Onety

0Ej,
6ij

 Update: Awy ;= —n

= —775k)’j
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Backpropagation: Output/Hidden Neurons

W W,

Input
layer

Output
layer

Weights connected to output neuron k can influence the error
of that particular neuron only:.

O By +Ey+ -+ Ej + -+ Eg)=
aij

0Ej,
aij

That’s why (jva =
kj

Weights connected to hidden neuron j can influence the error
of all output neurons

That's why =— = =" (Ey + E; + +++ Eg + ++ + Eg)
ji

awﬂ
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Backpropagation: Hidden Neurons

O\/\ VJ—G(Z xw, )= ofnet,
Q/KJ

O\/\ oot
W

OE O0E ay] (’)net] OE 0do(netj)

x.

Hidden Neuron

Output Neuron

K OEr00r K OEr Ooi Onety
k=130, Y| — “k=150, dnety 3y

=Yk
ay] k=1 631]
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Backpropagation: Hidden Neurons

O\/\ VJ—G(Z xw, )= ofnet,
Q/v

O\ /\ _1y ij) o(net, )

Hidden Neuron

Output Neuron

0E; 0do0j Onety K S
— — B W ;
ay] Zk 1 dog Onety 0y; Zk_l k*kj
OE OE ay] 6net] do(netj)
° = (O Wy, X
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Backpropagation: Hidden Neurons

O\/\ yJ_O-(Zno X; J,) net)
Q/U
O\ /\ _1y ij) o(net, )

Hidden Neuron

Output Neuron
O/kj'v
do(netj)
aw]l =D —1(0k W) onet;
_ X do(net;)
« We define §; = Y= (8xwy;) onet;
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Backpropagation: Hidden Neurons

O\/\ yJ_O-(Zno X; J,) net)
Q/U
O\ /\ _1y ij) o(net, )

Hidden Neuron

Output Neuron
@/HU
0E
° aWji = 5jxl-

OE
aWji

o Update: AW]l: —n = —775in
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Backpropagation: Hidden Neurons

do(nety)
dnet,

52hid = (le 51"' Wyo 52)

Input X
layer

AW21: —n 62hid X1 ]

[] — aE —
o Update AWji— —n aWji = —n(iji
do(net;)
* 6] — II§=1(5kaj) anetj]

__ O0Eg do(nety)

¢ & =

doy Odnety
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Example

« http://galaxy.agh.edu.pl/~visi/Al/backp_t_en/backprop.html

Stavros Petridis Machine Learning (course 395)



Stochastic Gradient Descent

 Stochastic/Incremental/On-line: One example at a time is fed to
the network.

« \Weights are updated after each example is presented to the network
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Batch Gradient Descent

Batch: All examples are fed to the network. Weights are updated
only after all examples have been presented to the network

For each weight the corresponding gradient (or Aw) is computed
(for each example).

The weights are updated based on the average gradient over
all examples.Type equation here.

1 vp
AWallExamples — B Zd=1 AWoneExample
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Mini-batch Gradient Descent

Mini-Batch: M randomly examples are fed to the network.
- M =32...128 (typical value 100)

For each weight the corresponding gradient (or Aw) is computed
(for each example).

The weights are updated based on the average gradient over
all M examples.

Set of M examples is called mini-batch.

Popular approach in deep neural networks.

Sometimes called stochastic gradient descent (NOT to be confused
with online/incremental gradient descent).
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Backpropagation Stopping Criteria

* When the gradient magnitude (or Aw;) Is small, I.e.
0F

aWi

<oorlAw; <o

* When the maximum number of epochs has been
reachec

* When the error on the validation set increases for n
consecutive times (this implies that we monitor the
error on the validation set). This is called early

stopping.
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Error

Early stopping

0.01 T T T T T T T T T 0.08

Training set error  *
Test set error +

% Trainin o
8 set error
0.009 -, Test set error  + B Q.07

0.06
005 -
004 -
003 -

002 -

001 -

0.002

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 2000 0 : T
Training iterations 0 1000 2000 3000 4000 5000 600(
Training iterations

 Stop when the error in the validation set increases (but
not too soon!)

 Error might decrease in the training set but increase in the
‘validation’ set (overfitting!)
* It is also a way to avoid overfitting.

Stavros Petridis Machine Learning (course 395)




Backpropagation Summary

Initialise weights randomly

For each input training example x compute the outputs
(forward pass)

Compute the output neurons errors and then compute the

update rule for output layer weights (backward pass)
) 5 . 5 — JE do(nety)
N aWk] - ky] WIETe Ok = aOk anetk

Aij=

Compute hidden neurons errors and then compute the

update rule for hidden layer weights (backward pass)

0E k do(net;)

- = —18,%; wh &zz 8 Wi
nawﬁ no;x; wnere oj k=1( ka]) 6net]-

iji:
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Backpropagation Summary

5. Compute the sum of all Aw, once all training
examples have been presented to the network

6. Update weights W, <—W, +Aw,
/. Repeat steps 2-6 until the stopping criterion is met

 The algorithm will converge to a weight vector with
minimum error, given that the learning rate Is
sufficiently small
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Backpropagation: Convergence

« Converges to a local minimum of the error function
* ... can be retrained a number of times
« Minimises the error over the training examples
» ...will it generalise well over unknown examples?

 Training requires thousands of iterations (slow)

* ... but once trained it can rapidly evaluate output
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Backpropagation: Error Surface
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