Course 395: Machine Learning

• Lecturers: Maja Pantic (maja@doc.ic.ac.uk)
 Stavros Petridis (sp104@doc.ic.ac.uk)

• Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core of machine learning

• Goal (CBC): To enable hands-on experience with implementing machine learning algorithms (developed using Matlab)

• Material: *Machine Learning* by Tom Mitchell (1997)
 Neural Networks & Deep Learning by Michael Nielsen (2017)
 Manual for completing the CBC
 Syllabus on CBR!!

• More Info: https://www.ibug.doc.ic.ac.uk/courses
Course 395: Machine Learning – Lectures

• Lecture 1-2: Concept Learning (M. Pantic)
• Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)
• Lecture 5-6: Evaluating Hypotheses (S. Petridis)
• Lecture 7-8: Artificial Neural Networks I (S. Petridis)
• Lecture 9-10: Artificial Neural Networks II (S. Petridis)
• Lecture 11-12: Instance Based Learning (M. Pantic)
• Lecture 13-14: Genetic Algorithms (M. Pantic)
Course 395: Machine Learning - CBC

• Lecture 1-2: Concept Learning

→ Lecture 3-4: Decision Trees & CBC Intro

→ Lecture 5-6: Evaluating Hypotheses

→ Lecture 7-8: Artificial Neural Networks I

→ Lecture 9-10: Artificial Neural Networks II

• Lecture 11-12: Instance Based Learning

• Lecture 13-14: Genetic Algorithms
NOTE

CBC accounts for 33% of the final grade for the Machine Learning Exam.

final grade = 0.66*exam_grade + 0.33*CBC_grade
Course 395: Machine Learning – Lectures

• Lecture 1-2: Concept Learning (M. Pantic)

• Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

• Lecture 5-6: Evaluating Hypotheses (S. Petridis)

• Lecture 7-8: Artificial Neural Networks I (S. Petridis)

• Lecture 9-10: Artificial Neural Networks II (S. Petridis)

• Lecture 11-12: Instance Based Learning (M. Pantic)

• Lecture 13-14: Genetic Algorithms (M. Pantic)
Concept Learning – Lecture Overview

• Why machine learning?

• Well-posed learning problems

• Designing a machine learning system

• Concept learning task

• Concept learning as Search

• Find-S algorithm

• Candidate-Elimination algorithm
Machine Learning

- Learning ↔ Intelligence
 (Def: Intelligence is the ability to learn and use concepts to solve problems.)

- Machine Learning ↔ Artificial Intelligence
 - Def: AI is the science of making machines do things that require intelligence if done by men (Minsky 1986)
 - Def: Machine Learning is an area of AI concerned with development of techniques which allow machines to learn

- Why Machine Learning? ↔ Why Artificial Intelligence?
 ≡ To build machines exhibiting intelligent behaviour (i.e., able to reason, predict, and adapt) while helping humans work, study, and entertain themselves
Machine Learning
Machine Learning

- Machine Learning ↔ Artificial Intelligence
- Machine Learning ← Biology (e.g., Neural Networks, Genetic Algorithms)
- Machine Learning ← Cognitive Sciences (e.g., Case-based Reasoning)
- Machine Learning ← Statistics (e.g., Support Vector Machines)
- Machine Learning ← Probability Theory (e.g., Bayesian Networks)
- Machine Learning ← Logic (e.g., Inductive Logic Programming)
- Machine Learning ← Information Theory (e.g., used by Decision Trees)
Machine Learning

• Human Learning ↔ Machine Learning
 – human-logic inspired problem solvers (e.g., rule-based reasoning)
 – biologically inspired problem solvers (e.g., Neural Networks)
 • supervised learning - generates a function that maps inputs to desired outputs
 • unsupervised learning - models a set of inputs, labelled examples are not available
 – learning by education (e.g., reinforcement learning, case-based reasoning)

• General Problem Solvers vs. Purposeful Problem Solvers
 – emulating general-purpose human-like problem solving is impractical
 – restricting the problem domain results in ‘rational’ problem solving
 – example of General Problem Solver: Turing Test
 – examples of Purposeful Problem Solvers: speech recognisers, face recognisers, facial expression recognisers, data mining, games, etc.

• Application domains: security, medicine, education, finances, genetics, etc.
Well-posed Learning Problems

- **Def 1 (Mitchell 1997):**

 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves by experience E.

- **Def 2 (Hadamard 1902):**

 A (machine learning) problem is well-posed if a solution to it exists, if that solution is unique, and if that solution depends on the data / experience but it is not sensitive to (reasonably small) changes in the data / experience.
Designing a Machine Learning System

- Target Function V represents the problem to be solved (e.g., choosing the best next move in chess, identifying people, classifying facial expressions into emotion categories)

- $V: D \rightarrow C$ where D is the input state space and C is the set of classes
 $V: D \rightarrow [-1, 1]$ is a general target function of a binary classifier

- Ideal Target Function is usually not known; machine learning algorithms learn an approximation of V, say V'

- Representation of function V' to be learned should
 - be as close an approximation of V as possible
 - require (reasonably) small amount of training data to be learned

- $V'(d) = w_0 + w_1x_1 + \ldots + w_nx_n$ where $\langle x_1 \ldots x_n \rangle \equiv d \in D$ is an input state. This reduces the problem to learning (the most optimal) weights w.
Designing a Machine Learning System

- $V: D \rightarrow C$ where D is the input state and C is the set of classes. $V: D \rightarrow [-1, 1]$ is a general target function of a binary classifier.

- $V'(d) = w_0 + w_1x_1 + \ldots + w_nx_n$ where $\langle x_1, \ldots, x_n \rangle \equiv d \in D$ is an input state. This reduces the problem to learning (the most optimal) weights w.

- Training examples suitable for the given target function representation V' are pairs $\langle d, c \rangle$ where $c \in C$ is the desired output (classification) of the input state $d \in D$.

- Learning algorithm learns the most optimal set of weights w (so-called best hypothesis), i.e., the set of weights that best fit the training examples $\langle d, c \rangle$.

- Learning algorithm is selected based on the availability of training examples (supervised vs. unsupervised), knowledge of the final set of classes C (offline vs. online, i.e., eager vs. lazy), availability of a tutor (reinforcement learning).

- The learned V' is then used to solve new instances of the problem.
Concept Learning

- Concept learning
 - supervised, eager learning
 - target problem: whether something belongs to the target concept or not
 - target function: $V: D \rightarrow \{\text{true, false}\}$

- Underlying idea: Humans acquire general concepts from specific examples (e.g., concepts: beauty, good friend, well-fitting-shoes)
 (note: each concept can be thought of as Boolean-valued function)

- Concept learning is inferring a Boolean-valued function from training data
 \rightarrow concept learning is the prototype binary classification
Concept Learning as Search

- Concept learning task:
 - target concept: Girls who Simon likes
 - target function: \(c: D \rightarrow \{0, 1\} \)
 - data\(d \in D \): Girls, each described in terms of the following attributes
 - \(a_1 \equiv \text{Hair} \) (possible values: blond, brown, black)
 - \(a_2 \equiv \text{Body} \) (possible values: thin, average, plump)
 - \(a_3 \equiv \text{likesSimon} \) (possible values: yes, no)
 - \(a_4 \equiv \text{Pose} \) (possible values: arrogant, natural, goofy)
 - \(a_5 \equiv \text{Smile} \) (possible values: none, pleasant, toothy)
 - \(a_6 \equiv \text{Smart} \) (possible values: yes, no)
 - target f-on representation: \(h \equiv c': \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\} \)
 - training examples\(D \): positive and negative examples of target function \(c \)

- **Aim**: Find a hypothesis \(h \in H \) such that \((\forall d \in D) \ h(d) - c(d) < \varepsilon = 0 \), where \(H \) is the set of all possible hypotheses \(h \equiv \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \), where each \(a_k, k = [1..6] \), may be ‘?’ (≡ any value is acceptable), ‘0’ (≡ no value is acceptable), or a specific value. Concept learning ≡ searching through \(H \)

\[|H| = 1 + 4 \cdot 3 \cdot 4 \cdot 3 = 2305 \]
General-to-Specific Ordering

- Many concept learning algorithms utilize general-to-specific ordering of hypotheses
- General-to-Specific Ordering:
 - \(h_1 \) precedes (is more general than) \(h_2 \) \(\iff (\forall d \in D) (h_1(d) = 1) \leftarrow (h_2(d) = 1) \)
 (e.g., \(h_1 \equiv \langle ?, ?, yes, ?, ?, ? \rangle \) and \(h_2 \equiv \langle ?, ?, yes, ?, ?, yes \rangle \Rightarrow h_1 >_g h_2 \))
 - \(h_1 \) and \(h_2 \) are of equal generality \(\iff (\exists d \in D) \{ [(h_1(d) = 1) \rightarrow (h_2(d) = 1)] \wedge [(h_2(d) = 1) \rightarrow (h_1(d) = 1)] \} \wedge h_1 \) and \(h_2 \) have equal number of ‘?’
 (e.g., \(h_1 \equiv \langle ?, ?, yes, ?, ?, ? \rangle \) and \(h_2 \equiv \langle ?, ?, yes, ?, ?, yes \rangle \Rightarrow h_1 =_g h_2 \))
 - \(h_2 \) succeeds (is more specific than) \(h_1 \) \(\iff (\forall d \in D) (h_1(d) = 1) \leftarrow (h_2(d) = 1) \)
 (e.g., \(h_1 \equiv \langle ?, ?, yes, ?, ?, ? \rangle \) and \(h_2 \equiv \langle ?, ?, yes, ?, ?, yes \rangle \Rightarrow h_2 \geq_g h_1 \))
Find-S Algorithm – Example

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) \ a_i = 0$.
2. FOR each positive training instance $d \in D$, do:
 FOR each attribute a_i, $i = [1..n]$, in h, do:
 \begin{align*}
 &\text{IF } a_i \text{ is satisfied by } d \\
 &\text{THEN do nothing} \\
 &\text{ELSE replace } a_i \text{ in } h \text{ so that the resulting } h' >_g h, h \leftarrow h'.
 \end{align*}
3. Output hypothesis h.

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>$hair$</th>
<th>$body$</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

$h \leftarrow \langle 0,0,0,0,0,0 \rangle \quad \rightarrow \quad h \equiv d1 \quad \rightarrow \quad h \leftarrow \langle \text{blond, ?, yes, ?, ?, no} \rangle$
Find-S Algorithm

- Find-S is guaranteed to output the most specific hypothesis h that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.

However,
- Find-S is sensitive to noise that is (almost always) present in training examples.
- There is no guarantee that h returned by Find-S is the only h that fits the data.
- Several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
- Why we should prefer most specific hypotheses over, e.g., most general hypotheses?
Find-S Algorithm – Example

1. Initialise \(h \in H \) to the most specific hypothesis: \(h \leftarrow \langle a_1, \ldots, a_n \rangle, (\forall i) a_i = 0 \).

2. FOR each positive training instance \(d \in D \), do:

 FOR each attribute \(a_i, i = [1..n] \), in \(h \), do:

 IF \(a_i \) is satisfied by \(d \)

 THEN do nothing

 ELSE replace \(a_i \) in \(h \) so that the resulting \(h' \) \(\succ_g h \), \(h \leftarrow h' \).

3. Output hypothesis \(h \).

<table>
<thead>
<tr>
<th>(c(d))</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

Find-S \(\rightarrow h = \langle \text{blond, ?, yes, ?, ?, no} \rangle \) \ BUT \(h2 = \langle \text{blond, ?, ?, ?, ?, no} \rangle \) fits \(D \) as well
Find-S Algorithm – Example

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle, \forall i \ a_i = 0$.
2. FOR each positive training instance $d \in D$, do:
 FOR each attribute $a_i, i = [1..n]$, in h, do:
 IF a_i is satisfied by d
 THEN do nothing
 ELSE replace a_i in h so that the resulting $h' \supset h$, $h \leftarrow h'$.
3. Output hypothesis h.

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>$hair$</th>
<th>$body$</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

Find-S $\rightarrow h1 = \langle$blond, ?, ?, ?, ?, no\rangle YET $h2 = \langle$blond,?, yes, ?, ?, ?\rangle fits D as well
Candidate-Elimination Algorithm

- Find-S is guaranteed to output the most specific hypothesis h that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.

- However,
 1. Find-S is sensitive to noise that is (almost always) present in training examples.
 2. there is no guarantee that h returned by Find-S is the only h that fits the data.
 3. several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
 4. Why we should prefer most specific hypotheses over, e.g., most general hypotheses?

To address the last three drawbacks of Find-S, Candidate-Elimination was proposed.
Candidate-Elimination (C-E) Algorithm

- Main idea: Output a set of hypothesis $VS \subseteq H$ that fit (are consistent) with data D
- Candidate-Elimination (C-E) Algorithm is based upon:
 - general-to-specific ordering of hypotheses
 - Def: h is consistent (fits) data $D \iff (\forall \langle d, c(d) \rangle) \; h(d) = c(d)$
 - Def: version space $VS \subseteq H$ is set of all $h \in H$ that are consistent with D
- C-E algorithm defines VS in terms of two boundaries:
 - general boundary $G \subseteq VS$ is a set of all $h \in VS$ that are the most general
 - specific boundary $S \subseteq VS$ is a set of all $h \in VS$ that are the most specific
Candidate-Elimination (C-E) Algorithm

1. Initialise $G \subseteq VS$ to the most general hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) \ a_i = \ ?$. Initialise $S \subseteq VS$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) \ a_i = 0$.

2. FOR each training instance $d \in D$, do:
 IF d is a positive example
 Remove from G all h that are not consistent with d.
 FOR each hypothesis $s \in S$ that is not consistent with d, do:
 - replace s with all h that are consistent with d, $h >_g s$, $\forall g \in G$,
 - remove from S all s being more general than other s in S.

 IF d is a negative example
 Remove from S all h that are not consistent with d.
 FOR each hypothesis $g \in G$ that is not consistent with d, do:
 - replace g with all h that are consistent with d, $g >_g h$, $\forall h \in S$,
 - remove from G all g being less general than other g in G.

3. Output hypothesis G and S.

C-E Algorithm – Example

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

$G_0 \leftarrow \{?, ?, ?, ?, ?, ?\}$, $S_0 \leftarrow \{0, 0, 0, 0, 0\}$
C-E Algorithm – Example

<table>
<thead>
<tr>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

\(d1\) is positive \(\rightarrow\) refine \(S\)

no \(g \in G_0\) is inconsistent with \(d1\) \(\rightarrow\) \(G_1 \leftarrow G_0 \equiv \{?, ?, ?, ?, ?, ?\}\)

add to \(S\) all minimal generalizations of \(s \in S_0\) such that \(s \in S_1\) is consistent with \(d1\)

\(S_1 \leftarrow \{\text{blond, thin, yes, arrogant, toothy, no}\}\)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

\[d_2 \text{ is negative} \rightarrow \text{refine } G \]

\[\text{no } s \in S_1 \text{ is inconsistent with } d_2 \rightarrow S_2 \leftarrow S_1 \equiv \{ \langle \text{blond}, \text{thin}, \text{yes}, \text{arrogant}, \text{toothy}, \text{no} \rangle \} \]

\[\text{add to } G \text{ all minimal specializations of } g \in G_1 \text{ such that } g \in G_2 \text{ is consistent with } d_2 \]

\[G_1 \equiv \{ \langle ?, ?, ?, ?, ?, ? \rangle \} \]

C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(d_3\) is positive \(\rightarrow\) refine \(S\)

Two \(g \in G_2\) are inconsistent with \(d_3\), i.e., \(\langle ?, ?, ?, ?, ?, ? \rangle\) and \(\langle ?, ?, ?, ?, ?, ?, ? \rangle\) \(\rightarrow\) \(G_3 \leftarrow \{\langle \text{blond}, ?, ?, ?, ?, ?, ? \rangle, \langle ?, ?, yes, ?, ?, ?, ? \rangle, \langle ?, ?, ?, ?, ?, ?, no \rangle \}\)

Add to \(S\) all minimal generalizations of \(s \in S_2\) such that \(s \in S_3\) is consistent with \(d_3\)
\(S_2 \equiv \{\langle \text{blond}, \text{thin}, yes, arrogant, toothy, no \rangle\}\)
\(S_3 \leftarrow \{\langle \text{blond}, ?, yes, ?, ?, ?, no \rangle\}\)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(d4\) is negative \(\rightarrow\) refine \(G\)

\(\text{no} \ s \in S_3 \text{ is inconsistent with } d4\) \(\rightarrow\) \(S_4 \leftarrow S_3 \equiv \{\langle \text{blond}, ?, \text{yes}, ?, ?, \text{no} \rangle\}\)

\(\text{add to } G \text{ all minimal specializations of } g \in G_3 \text{ such that } g \in G_4 \text{ is consistent with } d4\)

\(G_4 \leftarrow \{\langle \text{blond}, ?, ?, ?, ?, ? \rangle, \langle ?, ?, \text{yes}, ?, ?, ? \rangle\}\)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

$d5$ is negative \rightarrow refine G

$\text{no s} \in S_4$ is inconsistent with $d4$ \rightarrow $S_5 \leftarrow S_4 \equiv \{\langle \text{blond, ?, yes, ?, ?, no} \rangle \}$

$\text{add to } G \text{ all minimal specializations of } g \in G_4 \text{ such that } g \in G_5 \text{ is consistent with } d5$

$G_4 \equiv \{\langle \text{blond, ?, ?, ?, ?, ?} \rangle, \langle ?, ?, yes, ?, ?, ? \rangle \}$

$G_5 \leftarrow \{\langle \text{blond, ?, ?, ?, no} \rangle, \langle ?, ?, yes, ?, ?, ? \rangle \}$
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

Output of C-E:

version space of hypotheses $VS \subseteq H$ bound with
specific boundary $S \equiv \{\langle\text{blond, ?, yes, ?, ?, no}\rangle\}$ and
general boundary $G \equiv \{\langle?, ?, yes, ?, ?, \rangle\}$

$VS \equiv \{\langle?, ?, yes, ?, ?, \rangle, \langle\text{blond, ?, yes, ?, ?, \rangle}, \langle?, ?, yes, ?, ?, no\rangle, \langle\text{blond, ?, yes, ?, ?, no}\rangle\}$
Concept Learning – Practice

• Tom Mitchell’s book – chapter 1 and chapter 2

• Relevant exercises from chapter 1: 1.1, 1.2, 1.3, 1.5

• Relevant exercises from chapter 2: 2.1, 2.2, 2.3, 2.4, 2.5
Course 395: Machine Learning – Lectures

- Lecture 1-2: Concept Learning (*M. Pantic*)

- Lecture 3-4: Decision Trees & CBC Intro (*M. Pantic & S. Petridis*)

- Lecture 5-6: Evaluating Hypotheses (*S. Petridis*)

- Lecture 7-8: Artificial Neural Networks I (*S. Petridis*)

- Lecture 9-10: Artificial Neural Networks II (*S. Petridis*)

- Lecture 11-12: Instance Based Learning (*M. Pantic*)

- Lecture 13-14: Genetic Algorithms (*M. Pantic*)