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Course 395: Machine Learning 

•  Lecturers:  Maja Pantic (maja@doc.ic.ac.uk) 
   Stavros Petridis (sp104@doc.ic.ac.uk)  

•  Goal (Lectures): To present basic theoretical concepts and key algorithms that 
form the core of machine learning 

•  Goal (CBC): To enable hands-on experience with implementing machine 
learning algorithms (developed using Matlab) 

•  Material:  Machine Learning by Tom Mitchell (1997) 
   Neural Networks & Deep Learning by Michael Nielsen (2017) 
   Manual for completing the CBC 
   Syllabus on CBR!! 

•  More Info:  https://www.ibug.doc.ic.ac.uk/courses 
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Course 395: Machine Learning – Lectures 

•  Lecture 1-2: Concept Learning (M. Pantic) 

•  Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) 

•  Lecture 5-6: Evaluating Hypotheses (S. Petridis) 

•  Lecture 7-8: Artificial Neural Networks I (S. Petridis) 

•  Lecture 9-10: Artificial Neural Networks II (S. Petridis) 

•  Lecture 11-12: Instance Based Learning (M. Pantic) 

•  Lecture 13-14: Genetic Algorithms (M. Pantic) 
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•  Lecture 1-2: Concept Learning 

•  Lecture 3-4: Decision Trees & CBC Intro 

•  Lecture 5-6: Evaluating Hypotheses  

•  Lecture 7-8: Artificial Neural Networks I 

•  Lecture 9-10: Artificial Neural Networks II 

•  Lecture 11-12: Instance Based Learning 

•  Lecture 13-14: Genetic Algorithms 

Course 395: Machine Learning - CBC 
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Course 395: Machine Learning 

NOTE 
 CBC accounts for 33% of the final grade for the Machine Learning Exam.  
 final grade = 0.66*exam_grade + 0.33*CBC_grade  
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Course 395: Machine Learning – Lectures 

•  Lecture 1-2: Concept Learning (M. Pantic)  

•  Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) 

•  Lecture 5-6: Evaluating Hypotheses (S. Petridis) 

•  Lecture 7-8: Artificial Neural Networks I (S. Petridis) 

•  Lecture 9-10: Artificial Neural Networks II (S. Petridis) 

•  Lecture 11-12: Instance Based Learning (M. Pantic) 

•  Lecture 13-14: Genetic Algorithms (M. Pantic) 
 

!   
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Concept Learning – Lecture Overview 

•  Why machine learning?  

•  Well-posed learning problems 

•  Designing a machine learning system 

•  Concept learning task 

•  Concept learning as Search 

•  Find-S algorithm 

•  Candidate-Elimination algorithm 
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Machine Learning 

•  Learning ↔ Intelligence  
 (Def: Intelligence is the ability to learn and use concepts to solve problems.) 

•  Machine Learning ↔ Artificial Intelligence 
–  Def: AI is the science of making machines do things that require 

intelligence if done by men (Minsky 1986) 
–  Def: Machine Learning is an area of AI concerned with development of 

techniques which allow machines to learn 

•  Why Machine Learning? ↔ Why Artificial Intelligence? 
≡  To build machines exhibiting intelligent behaviour (i.e., able to reason, 

predict, and adapt) while helping humans work, study, and entertain 
themselves  
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Machine Learning 
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Machine Learning 

•  Machine Learning ↔ Artificial Intelligence 

•  Machine Learning ← Biology (e.g., Neural Networks, Genetic Algorithms) 

•  Machine Learning ← Cognitive Sciences (e.g., Case-based Reasoning) 

•  Machine Learning ← Statistics (e.g., Support Vector Machines) 

•  Machine Learning ← Probability Theory (e.g., Bayesian Networks) 

•  Machine Learning ← Logic (e.g., Inductive Logic Programming) 

•  Machine Learning ← Information Theory (e.g., used by Decision Trees) 
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Machine Learning 

•  Human Learning ↔ Machine Learning 
–  human-logic inspired problem solvers (e.g., rule-based reasoning) 
–  biologically inspired problem solvers (e.g., Neural Networks) 

•  supervised learning - generates a function that maps inputs to desired outputs  
•  unsupervised learning - models a set of inputs, labelled examples are not available  

–  learning by education (e.g., reinforcement learning, case-based reasoning) 

•  General Problem Solvers vs. Purposeful Problem Solvers 
–  emulating general-purpose human-like problem solving is impractical 
–  restricting the problem domain results in ‘rational’ problem solving 
–  example of General Problem Solver: Turing Test 
–  examples of Purposeful Problem Solvers: speech recognisers, face recognisers, 

facial expression recognisers, data mining, games, etc. 

•  Application domains: security, medicine, education, finances, genetics, etc. 
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Well-posed Learning Problems 

•  Def 1 (Mitchell 1997): 
 A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P, if its performance at tasks in T, 
as measured by P, improves by experience E. 

•  Def 2 (Hadamard 1902): 
 A (machine learning) problem is well-posed if a solution to it exists, if that 
solution is unique, and if that solution depends on the data / experience but it 
is not sensitive to (reasonably small) changes in the data / experience. 
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Designing a Machine Learning System 

•  Target Function V represents the problem to be solved 
 (e.g., choosing the best next move in chess, identifying people, 
classifying facial expressions into emotion categories)  

•  V: D → C where D is the input state space and C is the set of classes 
 V: D → [-1, 1] is a general target function of a binary classifier 

•  Ideal Target Function is usually not known; machine learning 
algorithms learn an approximation of V, say V’  

•  Representation of function V’ to be learned should 
–  be as close an approximation of V as possible  
–  require (reasonably) small amount of training data to be learned 

•  V’(d) = w0 + w1x1 +…+ wnxn where ‹x1…xn› ≡ d ∈ D is an input state. 
 This reduces the problem to learning (the most optimal) weights w. 

Determine type of 
 training examples 

Determine  
Target Function 

Choose Target F-on 
Representation 

Choose Learning 
Algorithm 

Well-posed  
Problem? 
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Designing a Machine Learning System 
•  V: D → C where D is the input state and C is the set of classes 

 V: D → [-1, 1] is a general target function of a binary classifier 

•  V’(d) = w0 + w1x1 +…+ wnxn where ‹x1…xn› ≡ d ∈ D is an input state. 
 This reduces the problem to learning (the most optimal) weights w. 

•  Training examples suitable for the given target function representation 
V’ are pairs ‹d, c› where c ∈ C is the desired output (classification) of 
the input state d ∈ D. 

•  Learning algorithm learns the most optimal set of weights w (so-called 
best hypothesis), i.e., the set of weights that best fit the training 
examples ‹d, c›. 

•  Learning algorithm is selected based on the availability of training 
examples (supervised vs. unsupervised), knowledge of the final set of 
classes C (offline vs. online, i.e., eager vs. lazy), availability of a tutor 
(reinforcement learning). 

•  The learned V’ is then used to solve new instances of the problem. 

Determine type of 
 training examples 

Determine  
Target Function 

Choose Target F-on 
Representation 

Choose Learning 
Algorithm 

Well-posed  
Problem? 
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Concept Learning 

•  Concept learning 
–  supervised, eager learning 
–  target problem: whether something belongs to the target concept or not 
–  target function: V: D → {true, false} 

•  Underlying idea: Humans acquire general concepts from specific examples 
 (e.g., concepts: beauty, good friend, well-fitting-shoes) 
 (note: each concept can be thought of as Boolean-valued function) 

•  Concept learning is inferring a Boolean-valued function from training data  
  → concept learning is the prototype binary classification 
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Concept Learning as Search 

•  Concept learning task: 
–  target concept: Girls who Simon likes 
–  target function: c: D → {0, 1} 
–  data d ∈ D:  Girls, each described in terms of the following attributes 

•  a1 ≡ Hair (possible values: blond, brown, black) 
•  a2 ≡ Body (possible values: thin, average, plump) 
•  a3 ≡ likesSimon (possible values: yes, no) 
•  a4 ≡ Pose (possible values: arrogant, natural, goofy) 
•  a5 ≡ Smile (possible values: none, pleasant, toothy) 
•  a6 ≡ Smart (possible values: yes, no) 

–  target f-on representation: h ≡ c’: ‹a1, a2, a3, a4, a5, a6› → {0, 1} 
–  training examples D: positive and negative examples of target function c 

•  Aim: Find a hypothesis h∈ H such that (∀d ∈ D) h(d) – c(d) < ε ≈ 0, where H is the 
set of all possible hypotheses h ≡ ‹a1, a2, a3, a4, a5, a6›, where each ak, k = [1..6], may 
be ‘?’ (≡ any value is acceptable), ‘0’ (≡ no value is acceptable), or a specific value. 

instances 

error rate 

concept learning ≡ searching through H 

|H| = 1 + 4· 4· 3· 4· 4· 3 = 2305  

+‘?’ 
+‘?’ 

+‘?’ 
+‘?’ 

h ≡‹0,0,0,0,0,0› 
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General-to-Specific Ordering  

•  Many concept learning algorithms utilize general-to-specific ordering of hypotheses 

•  General-to-Specific Ordering: 
–  h1 precedes (is more general than) h2  ⇔  (∀d ∈ D) (h1(d) = 1) ← (h2(d) = 1)  

 (e.g., h1 ≡ ‹?, ?, yes,?, ?, ?› and h2 ≡ ‹?, ?, yes,?, ?, yes›  ⇒  h1 >g h2 ) 

–  h1 and h2 are of equal generality  ⇔   (∃d ∈ D) { [(h1(d) = 1) → (h2(d) = 1)] ∧ 
[(h2(d) = 1) → (h1(d) = 1)] ∧ h1 and h2 have equal number of ‘?’ } 
 (e.g., h1 ≡ ‹?, ?, yes,?, ?, ?› and h2 ≡ ‹?, ?, ?, ?, ?, yes›  ⇒  h1 =g h2 ) 

–  h2 succeeds (is more specific than) h1  ⇔  (∀d ∈ D) (h1(d) = 1) ← (h2(d) = 1)  
 (e.g., h1 ≡ ‹?, ?, yes,?, ?, ?› and h2 ≡ ‹?, ?, yes,?, ?, yes›  ⇒  h2 ≥g h1 ) 
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Find-S Algorithm – Example  

Initialise h∈ H to the most specific hypothesis: h ← ‹a1,…,an›, (∀i) ai = 0. 
FOR each positive training instance d ∈ D, do:   

 FOR each attribute ai, i = [1..n], in h, do: 
  IF ai is satisfied by d 
  THEN do nothing 
  ELSE replace ai in h so that the resulting h’ >g h, h ← h’. 

Output hypothesis h. 

1.    
2.    

3.    

c(d) hair body likesSimon pose smile smart 
1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

h ← ‹0,0,0,0,0,0›     →     h ≡ d1     →     h ← ‹blond, ?, yes, ?, ?, no› 
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Find-S Algorithm 

•  Find-S is guaranteed to output the most specific hypothesis h that best fits positive 
training examples.  

•  The hypothesis h returned by Find-S will also fit negative examples as long as 
training examples are correct. 

•  However, 
–  Find-S is sensitive to noise that is (almost always) present in training examples. 
–  there is no guarantee that h returned by Find-S is the only h that fits the data. 
–  several maximally specific hypotheses may exist that fits the data but, Find-S 

will output only one. 
–  Why we should prefer most specific hypotheses over, e.g., most general 

hypotheses? 
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Find-S Algorithm – Example  

Initialise h∈ H to the most specific hypothesis: h ← ‹a1,…,an›, (∀i) ai = 0. 
FOR each positive training instance d ∈ D, do:   

 FOR each attribute ai, i = [1..n], in h, do: 
  IF ai is satisfied by d 
  THEN do nothing 
  ELSE replace ai in h so that the resulting h’ >g h, h ← h’. 

Output hypothesis h. 

1.    
2.    

3.    

c(d) hair body likesSimon pose smile smart 
1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

Find-S → h = ‹blond, ?, yes, ?, ?, no›   BUT    h2 = ‹blond,?, ?, ?, ?, no> fits D as well 
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Find-S Algorithm – Example  

Initialise h∈ H to the most specific hypothesis: h ← ‹a1,…,an›, (∀i) ai = 0. 
FOR each positive training instance d ∈ D, do:   

 FOR each attribute ai, i = [1..n], in h, do: 
  IF ai is satisfied by d 
  THEN do nothing 
  ELSE replace ai in h so that the resulting h’ >g h, h ← h’. 

Output hypothesis h. 

1.    
2.    

3.    

c(d) hair body likesSimon pose smile smart 
1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

Find-S → h1 = ‹blond, ?, ?, ?, ?, no›   YET    h2 = ‹blond,?, yes, ?, ?, ?> fits D as well 
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Candidate-Elimination Algorithm 

•  Find-S is guaranteed to output the most specific hypothesis h that best fits positive 
training examples.  

•  The hypothesis h returned by Find-S will also fit negative examples as long as 
training examples are correct. 

•  However, 
1.  Find-S is sensitive to noise that is (almost always) present in training examples. 
2.  there is no guarantee that h returned by Find-S is the only h that fits the data. 
3.  several maximally specific hypotheses may exist that fits the data but, Find-S 

will output only one. 
4.  Why we should prefer most specific hypotheses over, e.g., most general 

hypotheses? 

To address the last three drawbacks of Find-S, Candidate-Elimination was proposed 
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Candidate-Elimination (C-E) Algorithm 

•  Main idea: Output a set of hypothesis VS ⊆ H that fit (are consistent) with data D 

•  Candidate-Elimination (C-E) Algorithm is based upon: 
–  general-to-specific ordering of hypotheses 

–  Def: h is consistent (fits) data D ⇔ (∀‹d, c(d)›) h(d) = c(d) 

–  Def: version space VS ⊆ H is set of all h ∈ H that are consistent with D 

•  C-E algorithm defines VS in terms of two boundaries: 
–  general boundary G ⊆ VS is a set of all h ∈ VS that are the most general 

–  specific boundary S ⊆ VS is a set of all h ∈ VS that are the most specific  
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Candidate-Elimination (C-E) Algorithm 

Initialise G⊆ VS to the most general hypothesis: h ← ‹a1,…,an›, (∀i) ai = ?. 
Initialise S⊆ VS to the most specific hypothesis: h ← ‹a1,…,an›, (∀i) ai = 0. 
FOR each training instance d ∈ D, do: 
         IF d is a positive example 

 Remove from G all h that are not consistent with d.   
 FOR each hypothesis s ∈ S that is not consistent with d, do: 
          - replace s with all h that are consistent with d, h >g s, h ≥g g ∈ G, 
          - remove from S all s being more general than other s in S. 

 IF d is a negative example 
 Remove from S all h that are not consistent with d.   
 FOR each hypothesis g ∈ G that is not consistent with d, do: 
          - replace g with all h that are consistent with d, g >g h, h >g s ∈ S, 
          - remove from G all g being less general than other g in G.  
   

Output hypothesis G and S. 

1.    

2.    

3.    
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C-E Algorithm – Example  
c(d) hair body likesSimon pose smile smart 

1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

G0 ← {‹?, ?, ?, ?, ?, ?›} ,   S0 ← {‹0, 0, 0, 0, 0, 0›}  
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C-E Algorithm – Example  
c(d) hair body likesSimon pose smile smart 

1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

d1 is positive   →   refine S 

no g ∈ G0 is inconsistent with d1   →     G1 ← G0 ≡ {‹?, ?, ?, ?, ?, ?›}    

add to S all minimal generalizations of s∈ S0 such that s∈ S1 is consistent with d1 
S1 ← {‹blond, thin, yes, arrogant, toothy, no›}  



  Maja Pantic                                        Machine Learning (course 395) 

C-E Algorithm – Example  
c(d) hair body likesSimon pose smile smart 

1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

d2 is negative   →   refine G 

no s ∈ S1 is inconsistent with d2   →     S2 ← S1 ≡ {‹blond, thin, yes, arrogant, toothy, no›}    

add to G all minimal specializations of g∈ G1 such that g∈ G2 is consistent with d2 
G1 ≡ {‹?, ?, ?, ?, ?, ?›} 
G2 ← {‹blond, ?, ?, ?, ?, ?› , ‹?, ?, yes, ?, ?, ?› , ‹?, ?, ?, arrogant, ?, ?› ,  
            ‹?, ?, ?, ?, toothy, ?›, ‹?, ?, ?, ?, ?, no› }  
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C-E Algorithm – Example  
c(d) hair body likesSimon pose smile smart 

1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

d3 is positive   →   refine S 

two g∈ G2 are inconsistent with d3, i.e., ‹?, ?, ?, arrogant, ?, ?› and ‹?, ?, ?, ?, toothy, ?› → 
G3 ← {‹blond, ?, ?, ?, ?, ?› , ‹?, ?, yes, ?, ?, ?› , ‹?, ?, ?, ?, ?, no› }  

add to S all minimal generalizations of s∈ S2 such that s∈ S3 is consistent with d3 
S2 ≡ {‹blond, thin, yes, arrogant, toothy, no›} 
S3 ← {‹blond, ?, yes, ?, ?, no›}  
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C-E Algorithm – Example  
c(d) hair body likesSimon pose smile smart 

1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

d4 is negative   →   refine G 

no s ∈ S3 is inconsistent with d4   →     S4 ← S3 ≡ {‹blond, ?, yes, ?, ?, no›}    

add to G all minimal specializations of g∈ G3 such that g∈ G4 is consistent with d4 
G3 ≡ {‹blond, ?, ?, ?, ?, ?› , ‹?, ?, yes, ?, ?, ?› , ‹?, ?, ?, ?, ?, no› }  
G4 ← {‹blond, ?, ?, ?, ?, ?› , ‹?, ?, yes, ?, ?, ?› } 
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C-E Algorithm – Example  
c(d) hair body likesSimon pose smile smart 

1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

d5 is negative   →   refine G 

no s ∈ S4 is inconsistent with d4   →     S5 ← S4 ≡ {‹blond, ?, yes, ?, ?, no›}    

add to G all minimal specializations of g∈ G4 such that g∈ G5 is consistent with d5 
G4 ≡ {‹blond, ?, ?, ?, ?, ?› , ‹?, ?, yes, ?, ?, ?›}  
G5 ← {‹blond, ?, ?, ?, ?, no› , ‹?, ?, yes, ?, ?, ?› }    
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C-E Algorithm – Example  
c(d) hair body likesSimon pose smile smart 

1 1 blond thin yes arrogant toothy no 

2 0 brown thin no natural pleasant yes 

3 1 blond plump yes goofy pleasant no 

4 0 black thin no arrogant none no 

5 0 blond plump no natural toothy yes 

Output of C-E: 
  version space of hypotheses VS ⊆ H bound with 
  specific boundary S ≡ {‹blond, ?, yes, ?, ?, no›} and  
  general boundary G  ≡ {‹?, ?, yes, ?, ?, ?› } 

VS ≡ {‹?, ?, yes, ?, ?, ?› , ‹blond, ?, yes, ?, ?, ?› , 
      ‹?, ?, yes, ?, ?, no› , ‹blond, ?, yes, ?, ?, no›} 
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Concept Learning – Practice 

•  Tom Mitchell’s book – chapter 1 and chapter 2 

•  Relevant exercises from chapter 1:   1.1, 1.2, 1.3, 1.5 

•  Relevant exercises from chapter 2:   2.1, 2.2, 2.3, 2.4, 2.5 
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Course 395: Machine Learning – Lectures 

•  Lecture 1-2: Concept Learning (M. Pantic) 

•  Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) 

•  Lecture 5-6: Evaluating Hypotheses (S. Petridis) 

•  Lecture 7-8: Artificial Neural Networks I (S. Petridis) 

•  Lecture 9-10: Artificial Neural Networks II (S. Petridis)  

•  Lecture 11-12: Instance Based Learning (M. Pantic) 

•  Lecture 13-14: Genetic Algorithms (M. Pantic) 

!   


