Course 395: Machine Learning

Lecturers: Maja Pantic (maja@doc.ic.ac.uk)
Stavros Petridis (sp104(@doc.ic.ac.uk)

* Goal (Lectures): To present basic theoretical concepts and key algorithms that
form the core of machine learning

* Goal (CBC): To enable hands-on experience with implementing machine
learning algorithms (developed using Matlab)

« Material: Machine Learning by Tom Mitchell (1997)
Neural Networks & Deep Learning by Michael Nielsen (2017)

Manual for completing the CBC
Syllabus on CBR!!

* More Info: hitps://www.ibug.doc.ic.ac.uk/courses
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Course 395: Machine Learning — Lectures

e Lecture 1-2: Concept Learning (M. Pantic)

* Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)
* Lecture 5-6: Evaluating Hypotheses (S. Petridis)

« Lecture 7-8: Artificial Neural Networks I (S. Petridis)

» Lecture 9-10: Artificial Neural Networks II (S. Petridis)

e Lecture 11-12: Instance Based Learning (M. Pantic)

» Lecture 13-14: Genetic Algorithms (M. Pantic)

Imperial College
London

Maja Pantic Machine Learning (course 395)



Course 395: Machine Learning - CBC

e Lecture 1-2: Concept Learning
~®¥ Lecture 3-4: Decision Trees & CBC Intro
<~V Lecture 5-6: Evaluating Hypotheses
<P Lecture 7-8: Artificial Neural Networks I
<= Lecture 9-10: Artificial Neural Networks 11
* Lecture 11-12: Instance Based Learning

* Lecture 13-14: Genetic Algorithms
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Course 395: Machine Learning

NOTE
CBC accounts for 33% of the final grade for the Machine Learning Exam.
final grade = 0.66*exam_grade + 0.33*CBC grade
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Course 395: Machine Learning — Lectures

> Lecture 1-2: Concept Learning (M. Pantic)
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Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)
Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)
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Concept Learning — Lecture Overview

Why machine learning?

*  Well-posed learning problems

* Designing a machine learning system
* Concept learning task

« Concept learning as Search

e Find-S algorithm

* Candidate-Elimination algorithm

Imperial College
London

Maja Pantic Machine Learning (course 395)



Machine Learning

e Learning < Intelligence

(Def: Intelligence is the ability to learn and use concepts to solve problems.)

* Machine Learning < Artificial Intelligence

Def: Al is the science of making machines do things that require
intelligence if done by men (Minsky 1986)

Def: Machine Learning is an area of AI concerned with development of
techniques which allow machines to learn

Why Machine Learning? <» Why Artificial Intelligence?

Imperial College
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To build machines exhibiting intelligent behaviour (i.e., able to reason,
predict, and adapt) while helping humans work, study, and entertain
themselves
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Machine Learning
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Machine Learning

Machine Learning < Artificial Intelligence

e Machine Learning «— Biology (e.g., Neural Networks, Genetic Algorithms)
e Machine Learning «— Cognitive Sciences (e.g., Case-based Reasoning)

e Machine Learning « Statistics (e.g., Support Vector Machines)

* Machine Learning «— Probability Theory (e.g., Bayesian Networks)

* Machine Learning < Logic (e.g., Inductive Logic Programming)

* Machine Learning «— Information Theory (e.g., used by Decision Trees)
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Machine Learning

 Human Learning <> Machine Learning
— human-logic inspired problem solvers (e.g., rule-based reasoning)

— biologically inspired problem solvers (e.g., Neural Networks)
« supervised learning - generates a function that maps inputs to desired outputs

« unsupervised learning - models a set of inputs, labelled examples are not available

— learning by education (e.g., reinforcement learning, case-based reasoning)

* General Problem Solvers vs. Purposeful Problem Solvers
— emulating general-purpose human-like problem solving is impractical
— restricting the problem domain results in ‘rational’ problem solving
— example of General Problem Solver: Turing Test

— examples of Purposeful Problem Solvers: speech recognisers, face recognisers,
facial expression recognisers, data mining, games, etc.

* Application domains: security, medicine, education, finances, genetics, etc.
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Well-posed Learning Problems
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Def 1 (Mitchell 1997):

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves by experience E.

Def 2 (Hadamard 1902):

A (machine learning) problem is well-posed if a solution to it exists, if that
solution is unique, and if that solution depends on the data / experience but it
is not sensitive to (reasonably small) changes in the data / experience.
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Designing a Machine Learning System

« Target Function V represents the problem to be solved
(e.g., choosing the best next move in chess, identifying people,
classifying facial expressions into emotion categories)

Well-posec
Problem?

V. D — Cwhere D is the input state space and C is the set of classes

{Det,eljmme type Of} V:D — [-1, 1] 1s a general target function of a binary classifier
training examples

— * Ideal Target Function is usually not known; machine learning
Determine . . : ,
.« algorithms learn an approximation of V, say V
Target Function |

— be as close an approximation of J as possible
— require (reasonably) small amount of training data to be learned

Y . * Representation of function V'’ to be learned should
{hoose Target F-on

Representation

\ 4

{Choose Learning |
Algorithm

o V'(d) =w,+wx, +..+wx where «,...x,» =d €D is an input state.
This reduces the problem to learning (the most optimal) weights w.
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Designing a Machine Learning System

 V: D — Cwhere D is the input state and C is the set of classes
V:D — [-1, 1] 1s a general target function of a binary classifier

Well-posec
Problem?

« V() =wy,+wx, +..+wx where «x,...x,» =d €D is an input state.
This reduces the problem to learning (the most optimal) weights w.

{Deizeljmine type Of} » Training examples suitable for the given target function representation
training examples V'’ are pairs «d, ¢» where ¢ € C is the desired output (classification) of
i the input state d € D.

[ Determine

Target Function )] ¢ Learning algorithm learns the most optimal set of weights w (so-called
| best hypothesis), i.e., the set of weights that best fit the training

xamples «d, ¢).
{hoose Target F-on cXamplcs «d, ¢
Representation )

* Learning algorithm is selected based on the availability of training

v — examples (supervised vs. unsupervised), knowledge of the final set of
{Choose I{eammg classes C (offline vs. online, i.e., eager vs. lazy), availability of a tutor
Algorithm ) (reinforcement learning).

e The learned V"’ is then used to solve new instances of the problem.
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Concept Learning

* Concept learning
— supervised, eager learning
— target problem: whether something belongs to the target concept or not
— target function: V: D — {true, false}

» Underlying idea: Humans acquire general concepts from specific examples
(e.g., concepts: beauty, good friend, well-fitting-shoes)
(note: each concept can be thought of as Boolean-valued function)

* Concept learning is inferring a Boolean-valued function from training data
— concept learning is the prototype binary classification
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Concept Learning as Search

« Concept learning task:
— target concept: Girls who Simon likes
— target function: ¢: D — {0, 1}
— dat D: Girls, each described in terms of the following attributes
a,; = Hair (possible values: blond, brown, black)

* a, = Body (possible values: thin, average, plump)_*-_-'ﬁ
instances * a3 = likesSimon (possible values: yes, no)\_a|H| =]+44 344 3=2305
* a, = Pose (possible values: arrogant, natural, goofy) A

* a5 = Smile (possible values: none, pleasant, toothy) & 2
+ 97

h =<0,0,0,0,0,0»
* a4z = Smart (possible values: yes, no) error rate
— target f-on representation: h=c¢: «a,, a,, a;, a,, a;, ap — {0

— training examples D: positive and negative examples of target function ¢

uch that (Vd € D) h(d) — c(d) 0, where H 1s the
ses h =«a,, a,, a;, a, as, ap, where each a,, k = [1..6], may
ceptable), ‘0’ (= no value is acceptable), or a specific value.

« Aim: Find a hypothesis /
set of all possible hypot
be ‘2" (= any value is

concept learning = searching through H
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General-to-Specific Ordering
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« Many concept learning algorithms utilize general-to-specific ordering of hypotheses

* General-to-Specific Ordering:
— hl precedes (is more general than) 72 < (Vd €D) (hi(d) = 1) «— (h2(d) = 1)
(e.g., hl1 =<2, 7, yes,?,?, D and h2 =<2, ?, yes,?, 7, yes» = hl >g h2)

— hl and h2 are of equal generality < (3d €D) {[(hi(d) = 1) — (h2(d) = )] A
[(h2(d) = 1) — (hi(d) = I)] A hl and h2 have equal number of ‘?’ }

(e.g., hli =<2 yes,?,?, Dand h2=<2,7,?7,7, 7, ves» = hl =g h2)
g Y

— h2 succeeds (is more specific than) 1l < (Vd €D) (hi(d) = 1) «— (h2(d) = 1)
(e.g, hl =<7, yes,?,?, Hand h2 =, 7, yes,?, ?, yes> = h2>¢hl )
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Find-S Algorithm — Example

1. Initialise 2& H to the most specific hypothesis: 4 « «ai,...,an, (Vi) ai = 0.
2. FOR each positive training instance d € D, do:
FOR each attribute a;, i = [1..n/, in A, do:
IF a; 1s satisfied by d
THEN do nothing
ELSE replace a; in & so that the resulting 4” > h, h < h’.

3. Output hypothesis /.

c(d) hair body likesSimon pose smile smart
1 1 blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes

h<—<0,0,0,000 — h=dl — h<«<blond,?,yes,?,?, no»
Imperial College

London
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Find-S Algorithm

* Find-S is guaranteed to output the most specific hypothesis / that best fits positive
training examples.

* The hypothesis h returned by Find-S will also fit negative examples as long as
training examples are correct.

« However,
— Find-S i1s sensitive to noise that is (almost always) present in training examples.
— there is no guarantee that / returned by Find-S is the only & that fits the data.

— several maximally specific hypotheses may exist that fits the data but, Find-S
will output only one.

— Why we should prefer most specific hypotheses over, e.g., most general
hypotheses?
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Find-S Algorithm — Example

1. Initialise 2& H to the most specific hypothesis: 4 « «ai,...,an, (Vi) ai = 0.
2. FOR each positive training instance d € D, do:
FOR each attribute a;, i = [1..n/, in A, do:
IF a; 1s satisfied by d
THEN do nothing
ELSE replace a; in & so that the resulting 4” > h, h < h’.

3. Output hypothesis /.
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c(d) hair body likesSimon pose smile smart
1 1 blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes

Find-S — & = <blond, ?, yes, 7, 2, no» BUT /A2 =<blond,?, ?, ?, 7, no> fits D as well
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Find-S Algorithm — Example

1. Initialise 2& H to the most specific hypothesis: 4 « «ai,...,an, (Vi) ai = 0.
2. FOR each positive training instance d € D, do:
FOR each attribute a;, i = [1..n/, in A, do:
IF a; 1s satisfied by d
THEN do nothing
ELSE replace a; in & so that the resulting 4” > h, h < h’.

3. Output hypothesis /.
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c(d) hair body likesSimon pose smile smart
1 1 blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes

Find-S — il =<blond, 7, ?,?,?, no> YET h2=<blond,?, yes, ?, ?, 7> fits D as well
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Candidate-Elimination Algorithm

* Find-S is guaranteed to output the most specific hypothesis / that best fits positive
training examples.

« The hypothesis h returned by Find-S will also fit negative examples as long as
training examples are correct.

« However,
1. Find-S is sensitive to noise that is (almost always) present in training examples.
2. there 1s no guarantee that 4 returned by Find-S is the only A that fits the data.

3. several maximally specific hypotheses may exist that fits the data but, Find-S
will output only one.

4. Why we should prefer most specific hypotheses over, €.g., most general
hypotheses?

To address the last three drawbacks of Find-S, Candidate-Elimination was proposed
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Candidate-Elimination (C-E) Algorithm

» Main idea: Output a set of hypothesis V'S € H that fit (are consistent) with data D

* Candidate-Elimination (C-E) Algorithm is based upon:

— general-to-specific ordering of hypotheses
— Def: h is consistent (fits) data D < (V«d, c(d)>) h(d) = c(d)
— Def: version space VS C H is set of all # € H that are consistent with D

* C-E algorithm defines VS in terms of two boundaries:

— general boundary G C VS'is a set of all 2 € VS that are the most general
— specific boundary S € VSis a set of all # € VS that are the most specific
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Candidate-Elimination (C-E) Algorithm

1. Initialise GC VS to the most general hypothesis: & «— <ay,...,an, (Vi) ai = 2.
Initialise SC VS to the most specific hypothesis: & «— <al,...,an>, (Vi) ai = 0.
2. FOR each training instance d € D, do:
IF d 1s a positive example
Remove from G all h that are not consistent with d.
FOR each hypothesis s €. that is not consistent with d, do:
- replace s with all 4 that are consistent with d, h >¢ s, >; g €G,
- remove from S all s being more general than other s in S.
IF d 1s a negative example
Remove from S all h that are not consistent with d.
FOR each hypothesis g € G that is not consistent with d, do:
- replace g with all 4 that are consistent with d, g >¢ h, h >z s €S,

- remove from G all g being less general than other g in G.

3. Output hypothesis G and S.

Imperial College
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C-E Algorithm — Example

wnmn A W N =

c(d) hair body likesSimon pose smile smart
| blond thin yes arrogant toothy no
0 brown thin no natural pleasant yes
1 blond plump yes goofy pleasant no
0 black thin no arrogant none no
0 blond plump no natural toothy yes

Imperial College
London

Go— {2,2,2,2,2, DY, So« {<0,0,0,0,0, 0}
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C-E Algorithm — Example

c(d) hair body likesSimon pose smile smart
1 | blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes

dl is positive — refine S

no g € Gy is inconsistent withdl — G;«— Go={«2,7,7,7,7, D}

add to S all minimal generalizations of s& So such that s& S is consistent with d/

S1 < {«blond, thin, yes, arrogant, toothy, no>}
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C-E Algorithm — Example

c(d) hair body likesSimon pose smile smart
1 | blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes

d2 is negative — refine G

no s €81 is inconsistent with d2 —  S2 < S = {«blond, thin, yes, arrogant, toothy, no»}

add to G all minimal specializations of g& G1 such that g& G2 is consistent with d2
Gr={2,7°77D}
G2« {<blond, 7, ?7,?,?, " ,<?2, 2, yes, 2,7, ,<?,?,?, arrogant, 7, 7>,

7,?,7?,7, toothy, >, <?,?,7,?7,?7,no» }
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C-E Algorithm — Example

c(d) hair body likesSimon pose smile smart
1 | blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes

d3 is positive — refine S

two g& G2 are inconsistent with d3, i.e., <7, 7, ?, arrogant, 7, 7> and <?, ?, ?, ?, toothy, 7> —

Gs3; <« {<blond, 2, ?,?,?2, ", <2, 2, yes, 2,2, ,<2,?2,?2,?7, 7, n0> }

add to S all minimal generalizations of s&€ Sz such that s& S 1s consistent with d3
S> = {«blond, thin, yes, arrogant, toothy, no»}
S3 <« {<blond, ?, yes, 7, ?, no>}
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C-E Algorithm — Example

c(d) hair body likesSimon pose smile smart
1 | blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes

d4 is negative — refine G

no s €8s is inconsistent with d4 —  S4«— S3= {<blond, ?, yes, 7, 7, no>}

add to G all minimal specializations of g& Gs such that g& Gy 1s consistent with d4
G3 = {blond, 2,?2,?2,?7,D> ,<2,2,yes,?,2,D,<2,2,?7,?7,7,n0 }
G4« {<blond, 2,?2,?,?2,D ,<2,2,yes, 2,7, D }
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C-E Algorithm — Example

c(d) hair body likesSimon pose smile smart
1 | blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes

d5 is negative — refine G

nos €8y 1is inconsistent with d4 —

S5 «— S4= {«blond, ?, yes, 7, 7, no>}

add to G all minimal specializations of g& G4 such that g& Gs 1s consistent with d5
Gs+= {blond, 2,?7,?,?7,D,<2,?2,yes, 2,7, D}

Gs « {<blond, 3¢, 2,2, 10> &, 2, yes, 2, 2, D}
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C-E Algorithm — Example

c(d) hair body likesSimon pose smile smart
1 | blond thin yes arrogant toothy no
2 0 brown thin no natural pleasant yes
3 1 blond plump yes goofy pleasant no
4 0 black thin no arrogant none no
5 0 blond plump no natural toothy yes
Output of C-E:

version space of hypotheses VS C H bound with 7
specific boundary S = {<blond, ?, yes, ?, ?, no>} and
general boundary G = {?,?,yes, 2,7, D } (>

VS= {7 vyes, 2,7, 7 ,<blond, ?, yes, ?,?, D,
?7,7?,yes, ?,?,no», <blond, ?, yes, ?, ?, no>}
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Concept Learning — Practice

« Tom Mitchell” s book — chapter 1 and chapter 2
« Relevant exercises from chapter 1: 1.1,1.2, 1.3, 1.5

« Relevant exercises from chapter 2: 2.1,2.2,2.3,2.4,2.5
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Course 395: Machine Learning — Lectures

e Lecture 1-2: Concept Learning (M. Pantic)
» Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

* Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)
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