Course 395: Machine Learning

- Lecturers: Maja Pantic (maja@doc.ic.ac.uk)
 Stephen Muggleton (shm@doc.ic.ac.uk)

- Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core of machine learning

- Goal (CBC): To enable hands-on experience with implementing machine learning algorithms using Matlab

 Manual for completing the CBC
 Syllabus on CBR
 Notes on Inductive Logic Programming

- More Info: https://www.ibug.doc.ic.ac.uk/courses
Course 395: Machine Learning – Lectures

• Lecture 1-2: Concept Learning (M. Pantic)
• Lecture 3-4: Decision Trees & CBC Intro (M. Pantic)
• Lecture 5-6: Artificial Neural Networks (THs)
• Lecture 7-8: Instance Based Learning (M. Pantic)
• Lecture 9-10: Genetic Algorithms (M. Pantic)
• Lecture 11-12: Evaluating Hypotheses (THs)
• Lecture 13-14: Guest Lectures on ML Applications
• Lecture 15-16: Inductive Logic Programming (S. Muggleton)
• Lecture 17-18: Inductive Logic Programming (S. Muggleton)
Course 395: Machine Learning – Exam Material

- Lecture 1-2: Concept Learning (*Mitchell*: Ch.1, Ch.2)
- Lecture 3-4: Decision Trees & CBC Intro (*Mitchell*: Ch.3)
- Lecture 5-6: Artificial Neural Networks (*Mitchell*: Ch.4)
- Lecture 7-8: Instance Based Learning (Syllabus, *Mitchell*: Ch.8)
- Lecture 9-10: Genetic Algorithms (*Mitchell*: Ch.9)
- Lecture 11-12: Evaluating Hypotheses (*Mitchell*: Ch.5)
- Lecture 13-14: not examinable
- Lecture 15-16: Inductive Logic Programming (*Notes*)
- Lecture 17-18: Inductive Logic Programming (*Notes*)
Course 395: Machine Learning - CBC

- Lecture 1-2: Concept Learning
- Lecture 3-4: Decision Trees & CBC Intro
- Lecture 5-6: Artificial Neural Networks
- Lecture 7-8: Instance Based Learning
- Lecture 9-10: Genetic Algorithms
- Lecture 11-12: Evaluating Hypotheses
- Lecture 13-14: Guest Lectures on ML Applications
- Lecture 15-16: Inductive Logic Programming
- Lecture 17-18: Inductive Logic Programming
Course 395: Machine Learning

NOTE

CBC accounts for 33% of the final grade for the Machine Learning Exam.

final grade = 0.66*exam_grade + 0.33*CBC_grade
Course 395: Machine Learning - CBC

• Lecture 1-2: Concept Learning

 Lecture 3-4: Decision Trees & CBC Intro

 Lecture 5-6: Artificial Neural Networks

 Lecture 7-8: Instance Based Learning

• Lecture 9-10: Genetic Algorithms

 Lecture 11-12: Evaluating Hypotheses

• Lecture 13-14: Guest Lectures on ML Applications

• Lecture 15-16: Inductive Logic Programming

• Lecture 17-18: Inductive Logic Programming
Course 395: Machine Learning – Lectures

- Lecture 1-2: Concept Learning (*M. Pantic*)
- Lecture 3-4: Decision Trees & CBC Intro (*M. Pantic*)
- Lecture 5-6: Artificial Neural Networks (*THs*)
- Lecture 7-8: Instance Based Learning (*M. Pantic*)
- Lecture 9-10: Genetic Algorithms (*M. Pantic*)
- Lecture 11-12: Evaluating Hypotheses (*THs*)
- Lecture 13-14: Guest Lectures on ML Applications
- Lecture 15-16: Inductive Logic Programming (*S. Muggleton*)
- Lecture 17-18: Inductive Logic Programming (*S. Muggleton*)
Concept Learning – Lecture Overview

• Why machine learning?
• Well-posed learning problems
• Designing a machine learning system
• Concept learning task
• Concept learning as Search
• Find-S algorithm
• Candidate-Elimination algorithm
Machine Learning

- Learning ↔ Intelligence
 (Def: *Intelligence is the ability to learn and use concepts to solve problems.*)

- Machine Learning ↔ Artificial Intelligence
 - Def: *AI is the science of making machines do things that require intelligence if done by men* (Minsky 1986)
 - Def: *Machine Learning is an area of AI concerned with development of techniques which allow machines to learn*

- Why Machine Learning? ↔ Why Artificial Intelligence?
Machine Learning

In-Vehicle Computing
complete car-PC system
Machine Learning

• Learning ↔ Intelligence
 (Def: Intelligence is the ability to learn and use concepts to solve problems.)

• Machine Learning ↔ Artificial Intelligence
 – Def: AI is the science of making machines do things that require intelligence if done by men (Minsky 1986)
 – Def: Machine Learning is an area of AI concerned with development of techniques which allow machines to learn

• Why Machine Learning? ↔ Why Artificial Intelligence?
 ≡ To build machines exhibiting intelligent behaviour (i.e., able to reason, predict, and adapt) while helping humans work, study, and entertain themselves
Machine Learning

- Machine Learning ↔ Artificial Intelligence
- Machine Learning ← Biology (e.g., Neural Networks, Genetic Algorithms)
- Machine Learning ← Cognitive Sciences (e.g., Case-based Reasoning)
- Machine Learning ← Statistics (e.g., Support Vector Machines)
- Machine Learning ← Probability Theory (e.g., Bayesian Networks)
- Machine Learning ← Logic (e.g., Inductive Logic Programming)
- Machine Learning ← Information Theory (e.g., used by Decision Trees)
Machine Learning

- Human Learning ↔ Machine Learning
 - human-logic inspired problem solvers (e.g., rule-based reasoning)
 - biologically inspired problem solvers (e.g., Neural Networks)
 - supervised learning - generates a function that maps inputs to desired outputs
 - unsupervised learning - models a set of inputs, labelled examples are not available
 - learning by education (e.g., reinforcement learning, case-based reasoning)

- General Problem Solvers vs. Purposeful Problem Solvers
 - emulating general-purpose human-like problem solving is impractical
 - restricting the problem domain results in ‘rational’ problem solving
 - example of General Problem Solver: Turing Test
 - examples of Purposeful Problem Solvers: speech recognisers, face recognisers, facial expression recognisers, data mining, games, etc.

- Application domains: security, medicine, education, finances, genetics, etc.
Well-posed Learning Problems

• Def 1 (Mitchell 1997):
 A computer program is said to learn from experience \(E \) with respect to some class of tasks \(T \) and performance measure \(P \), if its performance at tasks in \(T \), as measured by \(P \), improves by experience \(E \).

• Def 2 (Hadamard 1902):
 A (machine learning) problem is well-posed if a solution to it exists, if that solution is unique, and if that solution depends on the data / experience but it is not sensitive to (reasonably small) changes in the data / experience.
Designing a Machine Learning System

- Target Function \(V \) represents the problem to be solved (e.g., choosing the best next move in chess, identifying people, classifying facial expressions into emotion categories)

- \(V: D \rightarrow C \) where \(D \) is the input state space and \(C \) is the set of classes
 \(V: D \rightarrow [-1, 1] \) is a general target function of a binary classifier

- Ideal Target Function is usually not known; machine learning algorithms learn an approximation of \(V \), say \(V' \)

- Representation of function \(V' \) to be learned should
 - be as close an approximation of \(V \) as possible
 - require (reasonably) small amount of training data to be learned

- \(V'(d) = w_0 + w_1x_1 + \ldots + w_nx_n \) where \(\langle x_1, \ldots, x_n \rangle \equiv d \in D \) is an input state. This reduces the problem to learning (the most optimal) weights \(w \).
Designing a Machine Learning System

- $V: D \rightarrow C$ where D is the input state and C is the set of classes
- $V: D \rightarrow [-1, 1]$ is a general target function of a binary classifier

- $V'(d) = w_0 + w_1 x_1 + \ldots + w_n x_n$ where $\langle x_1 \ldots x_n \rangle \equiv d \in D$ is an input state. This reduces the problem to learning (the most optimal) weights w.

- Training examples suitable for the given target function representation V' are pairs $\langle d, c \rangle$ where $c \in C$ is the desired output (classification) of the input state $d \in D$.

- Learning algorithm learns the most optimal set of weights w (so-called best hypothesis), i.e., the set of weights that best fit the training examples $\langle d, c \rangle$.

- Learning algorithm is selected based on the availability of training examples (supervised vs. unsupervised), knowledge of the final set of classes C (offline vs. online, i.e., eager vs. lazy), availability of a tutor (reinforcement learning).

- The learned V' is then used to solve new instances of the problem.
Concept Learning

- Concept learning
 - supervised, eager learning
 - target problem: whether something belongs to the target concept or not
 - target function: \(V: D \rightarrow \{\text{true, false}\} \)

- Underlying idea: Humans acquire general concepts from specific examples (e.g., concepts: living organism, beauty, computer, well-fitting-shoes) (note: each concept can be thought of as Boolean-valued function)

- Concept learning is inferring a Boolean-valued function from training data → concept learning is the prototype binary classification
Concept Learning Task – An Example

• Concept learning task:
 – target concept: Girls who Simon likes
 – target function: \(c: D \rightarrow \{0, 1\} \)
 – data \(d \in D \): Girls, each described in terms of the following attributes
 • \(a_1 \equiv Hair \) (possible values: blond, brown, black)
 • \(a_2 \equiv Body \) (possible values: thin, normal, plump)
 • \(a_3 \equiv likesSimon \) (possible values: yes, no)
 • \(a_4 \equiv Pose \) (possible values: arrogant, natural, goofy)
 • \(a_5 \equiv Smile \) (possible values: none, pleasant, toothy)
 • \(a_6 \equiv Smart \) (possible values: yes, no)
 – target f-on representation: \(h \equiv c' : \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\} \)
 – training examples \(D \): positive and negative examples of target function \(c \)

• Aim: Find a hypothesis \(h \in H \) such that \((\forall d \in D) \ h(d) - c(d) < \varepsilon \approx 0 \), where \(H \) is the set of all possible hypotheses \(h = \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \), where each \(a_k \), \(k = [1..6] \), may be ‘?’ (≡ any value is acceptable), ‘0’ (≡ no value is acceptable), or a specific value.
Concept Learning Task – Notation

• Concept learning task:
 – target concept: Girls who Simon likes
 – target function: \(c : D \rightarrow \{0, 1\} \)
 – data \(d \in D \): Girls, each described in terms of the following attributes
 - \(a_1 \equiv Hair \) (possible values: blond, brown, black)
 - \(a_2 \equiv Body \) (possible values: thin, normal, plump)
 - \(a_3 \equiv likesSimon \) (possible values: yes, no)
 - \(a_4 \equiv Pose \) (possible values: arrogant, natural, goofy)
 - \(a_5 \equiv Smile \) (possible values: none, pleasant, toothy)
 - \(a_6 \equiv Smart \) (possible values: yes, no)
 – target f-on representation: \(h \equiv c' : \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\} \)
 – training examples \(D \): positive and negative examples of target function \(c \)

• **Aim**: Find a hypothesis \(h \in H \) such that \((\forall d \in D) h(d) – c(d) < \varepsilon \approx 0 \), where \(H \) is the set of all possible hypotheses \(h = \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \), where each \(a_k, k = [1..6] \), may be ‘?’ (≡ any value is acceptable), ‘0’ (≡ no value is acceptable), or a specific value.

\[h \equiv \langle ?, ?, ?, ?, ?, ? \rangle \quad h \equiv \langle 0, 0, 0, 0, 0 \rangle \quad h \equiv \langle ?, ?, yes, ?, ?, ? \rangle \]
Concept Learning as Search

• Concept learning task:
 – target concept: Girls who Simon likes
 – target function: \(c: D \rightarrow \{0, 1\} \)
 – data \(d \in D \): Girls, each described in terms of the following attributes
 • \(a_1 \equiv \text{Hair} \) (possible values: blond, brown, black)
 • \(a_2 \equiv \text{Body} \) (possible values: thin, normal, plump)
 • \(a_3 \equiv \text{likesSimon} \) (possible values: yes, no)
 • \(a_4 \equiv \text{Pose} \) (possible values: arrogant, natural, goofy)
 • \(a_5 \equiv \text{Smile} \) (possible values: none, pleasant, toothy)
 • \(a_6 \equiv \text{Smart} \) (possible values: yes, no)
 – target f-on representation: \(h \equiv c': \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \rightarrow \{0, 1\} \)
 – training examples \(D \): positive and negative examples of target function \(c \)

• **Aim:** Find a hypothesis \(h \in H \) such that \((\forall d \in D) \ h(d) - c(d) < \varepsilon = 0 \), where \(H \) is the set of all possible hypotheses \(h \equiv \langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle \), where each \(a_k, k = [1..6] \), may be ‘?’ (≡ any value is acceptable), ‘0’ (≡ no value is acceptable), or a specific value.

\[|H| = 1 + 4 \cdot 4 \cdot 3 \cdot 4 \cdot 4 \cdot 3 = 2305 \]

\[h \equiv \langle 0, 0, 0, 0, 0, 0 \rangle \]
General-to-Specific Ordering

- Many concept learning algorithms utilize general-to-specific ordering of hypotheses

- General-to-Specific Ordering:
 - h_1 precedes (is more general than) $h_2 \iff (\forall d \in D) (h_1(d) = 1) \leftarrow (h_2(d) = 1)$
 (e.g., $h_1 \equiv \langle ?, ?, yes, ?, ?, \rangle$ and $h_2 \equiv \langle ?, ?, yes, ?, yes \rangle \Rightarrow h_1 \succ_g h_2$)
 - h_1 and h_2 are of equal generality \iff
 $\exists d \in D \{ [(h_1(d) = 1) \rightarrow (h_2(d) = 1)] \land [(h_2(d) = 1) \rightarrow (h_1(d) = 1)] \}$
 (e.g., $h_1 \equiv \langle ?, ?, yes, ?, ?, \rangle$ and $h_2 \equiv \langle ?, ?, yes, ?, yes, ?, yes \rangle \Rightarrow h_1 =_g h_2$)
 - h_2 succeeds (is more specific than) $h_1 \iff (\forall d \in D) (h_1(d) = 1) \leftarrow (h_2(d) = 1)$
 (e.g., $h_1 \equiv \langle ?, ?, yes, ?, ?, \rangle$ and $h_2 \equiv \langle ?, ?, yes, ?, yes \rangle \Rightarrow h_2 \succeq h_1$)
Find-S Algorithm

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, ($\forall i$) $a_i = 0$.
2. FOR each positive training instance $d \in D$, do:
 FOR each attribute a_i, $i = [1..n]$, in h, do:
 IF a_i is satisfied by d
 THEN do nothing
 ELSE replace a_i in h so that the resulting $h' >_g h$, $h \leftarrow h'$.
3. Output hypothesis h.
Find-S Algorithm – Example

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) \ a_i = 0$.
2. FOR each positive training instance $d \in D$, do:

 FOR each attribute a_i, $i = [1..n]$, in h, do:

 IF a_i is satisfied by d
 THEN do nothing
 ELSE replace a_i in h so that the resulting $h' >_g h$, $h \leftarrow h'$.
3. Output hypothesis h.

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

$h\leftarrow\langle0,0,0,0,0,0\rangle \rightarrow h \equiv d1 \rightarrow h \leftarrow \langle\text{blond, ?, yes, ?, ?, no}\rangle$
Find-S Algorithm

- Find-S is guaranteed to output the most specific hypothesis \(h \) that best fits positive training examples.
- The hypothesis \(h \) returned by Find-S will also fit negative examples as long as training examples are correct.
- However,
 - Find-S is sensitive to noise that is (almost always) present in training examples.
 - there is no guarantee that \(h \) returned by Find-S is the *only* \(h \) that fits the data.
 - several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
 - Why we should prefer most specific hypotheses over, e.g., most general hypotheses?
Find-S Algorithm – Example

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) \ a_i = 0$.
2. FOR each positive training instance $d \in D$, do:
 FOR each attribute a_i, $i = [1..n]$, in h, do:
 IF a_i is satisfied by d
 THEN do nothing
 ELSE replace a_i in h so that the resulting $h' >_g h$, $h \leftarrow h'$.
3. Output hypothesis h.

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

Find-S $\rightarrow h = \langle$blond, ?, yes, ?, ?, no\rangle BUT $h_2 = \langle$blond, ?, ?, ?, ?, no\rangle fits D as well
Find-S Algorithm

- Find-S is guaranteed to output the most specific hypothesis h that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.

However,
- Find-S is sensitive to noise that is (almost always) present in training examples.
- There is no guarantee that h returned by Find-S is the *only* h that fits the data.
- Several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
- Why we should prefer most specific hypotheses over, e.g., most general hypotheses?
Find-S Algorithm – Example

1. Initialise $h \in H$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) a_i = 0$.
2. FOR each positive training instance $d \in D$, do:
 FOR each attribute a_i, $i = [1..n]$, in h, do:
 IF a_i is satisfied by d
 THEN do nothing
 ELSE replace a_i in h so that the resulting $h' \supseteq h$, $h \leftarrow h'$.
3. Output hypothesis h.

<table>
<thead>
<tr>
<th>$c(d)$</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

Find-S $\rightarrow h_1 = \langle$blond, ?, ?, ?, ?, no$\rangle$ YET $h_2 = \langle$blond,?, yes, ?, ?, ?> fits D as well
Find-S Algorithm

- Find-S is guaranteed to output the most specific hypothesis h that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.

However,
1. Find-S is sensitive to noise that is (almost always) present in training examples.
2. There is no guarantee that h returned by Find-S is the only h that fits the data.
3. Several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
4. Why we should prefer most specific hypotheses over, e.g., most general hypotheses?
Candidate-Elimination Algorithm

- Find-S is guaranteed to output the most specific hypothesis h that best fits positive training examples.
- The hypothesis h returned by Find-S will also fit negative examples as long as training examples are correct.

- However,
 1. Find-S is sensitive to noise that is (almost always) present in training examples.
 2. there is no guarantee that h returned by Find-S is the only h that fits the data.
 3. several maximally specific hypotheses may exist that fits the data but, Find-S will output only one.
 4. Why we should prefer most specific hypotheses over, e.g., most general hypotheses?

To address the last three drawbacks of Find-S, Candidate-Elimination was proposed.
Candidate-Elimination (C-E) Algorithm

- Main idea: Output a set of hypothesis $VS \subseteq H$ that fit (are consistent) with data D

- Candidate-Elimination (C-E) Algorithm is based upon:
 - general-to-specific ordering of hypotheses
 - Def: h is consistent (fits) data D \iff $(\forall \langle d, c(d) \rangle) h(d) = c(d)$
 - Def: version space $VS \subseteq H$ is set of all $h \in H$ that are consistent with D

- C-E algorithm defines VS in terms of two boundaries:
 - general boundary $G \subseteq VS$ is a set of all $h \in VS$ that are the most general
 - specific boundary $S \subseteq VS$ is a set of all $h \in VS$ that are the most specific
Candidate-Elimination (C-E) Algorithm

1. Initialise $G \in VS$ to the most general hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) a_i = ?$.
 Initialise $S \in VS$ to the most specific hypothesis: $h \leftarrow \langle a_1, \ldots, a_n \rangle$, $(\forall i) a_i = 0$.
2. FOR each training instance $d \in D$, do:
 IF d is a positive example
 Remove from G all h that are not consistent with d.
 FOR each hypothesis $s \in S$ that is not consistent with d, do:
 - replace s with all h that are consistent with d, $h \succ_gh \in G$,
 - remove from S all s being more general than other s in S.
 IF d is a negative example
 Remove from S all h that are not consistent with d.
 FOR each hypothesis $g \in G$ that is not consistent with d, do:
 - replace g with all h that are consistent with d, $g \succ_gh \in S$,
 - remove from G all g being less general than other g in G.
3. Output hypothesis G and S.

Maja Pantic

Machine Learning (course 395)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[G_0 \leftarrow \{?, ?, ?, ?, ?, ?\} , \quad S_0 \leftarrow \{0, 0, 0, 0, 0\} \]
C-E Algorithm – Example

<table>
<thead>
<tr>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
</tr>
</tbody>
</table>

\(d1\) is positive \(\rightarrow\) refine \(S\)

no \(g \in G_0\) is inconsistent with \(d1\) \(\rightarrow\) \(G_1 \leftarrow G_0 \equiv \{? , ?, ?, ?, ?, ?\}\)

add to \(S\) all minimal generalizations of \(s \in S_0\) such that \(s \in S_1\) is consistent with \(d1\)

\(S_1 \leftarrow \{\langle\text{blond, thin, yes, arrogant, toothy, no}\rangle\}\)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

- \(d_2\) is negative \(\rightarrow\) refine \(G\)

- no \(s \in S_1\) is inconsistent with \(d_2\) \(\rightarrow\) \(S_2 \leftarrow S_1 \equiv \{\langle \text{blond, thin, yes, arrogant, toothy, no} \rangle\}\)

- add to \(G\) all minimal specializations of \(g \in G_1\) such that \(g \in G_2\) is consistent with \(d_2\)
 - \(G_1 \equiv \{\langle ?, ?, ?, ?, ?, ? \rangle\}\)
 - \(G_2 \leftarrow \{\langle \text{blond, ?, ?, ?, ?, ?} \rangle, \langle ?, ?, yes, ?, ?, ? \rangle, \langle ?, ?, ?, arrogant, ?, ? \rangle, \langle ?, ?, ?, toothy, ? \rangle, \langle ?, ?,?,?,?, no \rangle \}\)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

- **d3 is positive** → **refine S**

- **add to S all minimal generalizations of s ∈ S₂ such that s ∈ S₃ is consistent with d₃**
 - S₂ ≡ {⟨blond, thin, yes, arrogant, toothy, no⟩}
 - S₃ ← {⟨blond, ?, yes, ?, ?, no⟩}
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

d4 is negative \rightarrow refine G

no $s \in S_3$ is inconsistent with d4 \rightarrow $S_4 \leftarrow S_3 \equiv \{\langle\text{blond, ?, yes, ?, ?, no}\rangle\}$

add to G all minimal specializations of $g \in G_3$ such that $g \in G_4$ is consistent with d4

$G_4 \leftarrow \{\langle\text{blond, ?, ?, ?, ?, ?}\rangle, \langle?, ?, yes, ?, ?, ?\rangle \}$
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(d_5\) is negative \(\rightarrow\) refine \(G\)

no \(s \in S_4\) is inconsistent with \(d_4\) \(\rightarrow\) \(S_5 \leftarrow S_4 \equiv \{\text{blond, ?, yes, ?, ?, no}\}\)

add to \(G\) all minimal specializations of \(g \in G_4\) such that \(g \in G_5\) is consistent with \(d_5\)

\(G_4 \equiv \{\text{blond, ?, ?, ?, ?, ?} , \text{?, ?, yes, ?, ?, ?}\}\)

\(G_5 \leftarrow \{\text{blond, ?, ?, ?, ?, no} , \text{?, ?, yes, ?, ?, ?}\}\)
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

Output of C-E:

version space of hypotheses $VS \subseteq H$ bound with

specific boundary $S \equiv \{\langle \text{blond}, ?, \text{yes}, ?, ?, \text{no}\rangle\}$ and

general boundary $G \equiv \{\langle ?, ?, \text{yes}, ?, ?, \rangle\}$

Output of Find-S:

most specific hypothesis $h \equiv \langle \text{blond}, ?, \text{yes}, ?, ?, \text{no}\rangle$
C-E Algorithm – Example

<table>
<thead>
<tr>
<th></th>
<th>c(d)</th>
<th>hair</th>
<th>body</th>
<th>likesSimon</th>
<th>pose</th>
<th>smile</th>
<th>smart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>blond</td>
<td>thin</td>
<td>yes</td>
<td>arrogant</td>
<td>toothy</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>brown</td>
<td>thin</td>
<td>no</td>
<td>natural</td>
<td>pleasant</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>blond</td>
<td>plump</td>
<td>yes</td>
<td>goofy</td>
<td>pleasant</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>black</td>
<td>thin</td>
<td>no</td>
<td>arrogant</td>
<td>none</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>blond</td>
<td>plump</td>
<td>no</td>
<td>natural</td>
<td>toothy</td>
<td>yes</td>
</tr>
</tbody>
</table>

Output of C-E:

version space of hypotheses \(VS \subseteq H \) bound with specific boundary \(S \equiv \{\langle \text{blond}, ?, \text{yes}, ?, ?, \text{no}\rangle\} \) and general boundary \(G \equiv \{\langle ?, ?, \text{yes}, ?, ?, ?\rangle\} \)

\[
VS \equiv \{\langle ?, ?, \text{yes}, ?, ?, ?\rangle, \langle \text{blond}, ?, \text{yes}, ?, ?, ?\rangle, \\
\langle ?, ?, \text{yes}, ?, ?, \text{no}\rangle, \langle \text{blond}, ?, \text{yes}, ?, ?, \text{no}\rangle\}
\]
Concept Learning – Lecture Overview

• Why machine learning?
• Well-posed learning problems
• Designing a machine learning system
• Concept learning task
• Concept learning as Search
• Find-S algorithm
• Candidate-Elimination algorithm
Concept Learning – Exam Questions

• Tom Mitchell’s book – chapter 1 and chapter 2
• Relevant exercises from chapter 1: 1.1, 1.2, 1.3, 1.5
• Relevant exercises from chapter 2: 2.1, 2.2, 2.3, 2.4, 2.5
Course 395: Machine Learning – Lectures

• Lecture 1-2: Concept Learning (*M. Pantic*)

➤ Lecture 3-4: Decision Trees & CBC Intro (*M. Pantic*)

• Lecture 5-6: Artificial Neural Networks (*THs*)

• Lecture 7-8: Instance Based Learning (*M. Pantic*)

• Lecture 9-10: Genetic Algorithms (*M. Pantic*)

• Lecture 11-12: Evaluating Hypotheses (*THs*)

• Lecture 13-14: Guest Lectures on ML Applications

• Lecture 15-16: Inductive Logic Programming (*S. Muggleton*)

• Lecture 17-18: Inductive Logic Programming (*S. Muggleton*)