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Abstract

Conflict is usually defined as a high level of disagreement taking place when
individuals act on incompatible goals, interests, or intentions. Research in
human sciences has recognized conflict as one of the main dimensions along
which an interaction is perceived and assessed. Hence, automatic estimation
of conflict intensity in naturalistic conversations would be a valuable tool
for the advancement of human-centered computing and the deployment of
novel applications for social skills enhancement including conflict manage-
ment and negotiation. However, machine analysis of conflict is still limited
to just a few works, partially due to an overall lack of suitable annotated
data, while it has been mostly approached as a conflict or (dis)agreement
detection problem based on audio features only. In this work, we aim to
overcome the aforementioned limitations by a) presenting the Conflict Esca-
lation Resolution (CONFER) Database, a set of excerpts from audio-visual
recordings of televised political debates where conflicts naturally arise, and b)
reporting baseline experiments on audio-visual conflict intensity estimation.
The database contains approximately 142 minutes of recordings in Greek lan-
guage, split over 120 non-overlapping episodes of naturalistic conversations
that involve two or three interactants. Subject- and session-independent ex-
periments are conducted on continuous-time (frame-by-frame) estimation of
real-valued conflict intensity, as opposed to binary conflict/non-conflict clas-
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sification. For the problem at hand, the efficiency of various audio and visual
features and fusion of them as well as various regression frameworks is exam-
ined. Experimental results suggest that there is much room for improvement
in the design and development of automated multi-modal approaches to con-
tinuous conflict analysis. The CONFER Database is publicly available for
non-commercial use at http://ibug.doc.ic.ac.uk/resources/confer/.

Keywords: Automatic Conflict Analysis, Conflict Intensity Estimation,
Conflict Detection, Behavioral Computing, Social Signal Processing,
Behavioral Annotation

1. Introduction

Conflict is used to label a range of human experiences, from disagree-
ment to stress and anger, occurring when involved individuals act on in-
compatible goals, interests, or intentions over resources or attitudes [1, 2].
Various research studies in human sciences argue that a “disagreement” does
not have to result in a conflict; conflict describes a high level of disagree-
ment, or “escalation of disagreement”, where at least one of the involved
interlocutors feels emotionally offended. Similarly to other phenomena aris-
ing in social interactions [3, 4], conflict is largely manifested by means of
non-verbal behavioral cues including facial expressions, body postures, ges-
tures, and head movements, as well as conversational social signals including
interruptions, overlapping speech, loudness and other cues associated with
turn-organization [5]. Conflict, which has been recognized as one of the
main dimensions along which a dyadic or multi-party social interaction is
perceived, is usually accompanied by negative effects on communication and
social life [6]. Hence, automatic analysis of conflict can be a cornerstone
in the deployment of technologies targeting social interactions understand-
ing and social skills enhancement such as content-based multimedia indexing
and retrieval, machine-mediated communication, socially intelligent human-
computer interfaces, to mention but a few.

Although conflict has been extensively investigated in human sciences, it
has not received the same level of attention by the computing community.
In spite of recent advances in social signal processing [7, 3, 4] and machine
analysis of cues related to social behaviors [8, 9], research on machine anal-
ysis of conflict is still limited to just a few works that target automatic
conflict detection based on audio features [10, 11, 12] or (dis)agreement de-
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tection [13, 14, 15]. This can be partially attributed to an overall lack of
suitable annotated data that could be used to train the machine learning de-
tectors for recognition of the relevant phenomena [14, 4]. Most importantly,
given that interpersonal conflict is a mode of dyadic or multi-party inter-
action, automatic analysis of conflict is by itself a difficult task in terms of
machine learning effort, since it requires the simultaneous analysis of more
than one subjects at the same time. Also, the particularities of non-verbal
communication due to conflictual conversation pose additional challenges to
the related audio signal processing and computer vision tasks. For instance,
interruptions and overlapping speech are more frequent when conflict takes
place, which can largely affect the accuracy of speaker diarization or subse-
quent stages of audio feature extraction. When the visual modality is also
considered, irregular postures or frequent and intense head and hand move-
ments can lead to increased levels of visual noise pertaining to missing and
incomplete data (e.g., partial image texture occlusions) or feature extraction
errors (e.g., incorrect object localization, tracking errors).

Previous works on the automatic conflict analysis are characterized by
the following main limitations.

• They are evaluated on corpora containing conversations that are cap-
tured in controlled, simulated conditions or on pre-segmented episodes
of conflict/non-conflict.

• They are based exclusively on the audio modality (e.g., prosodic, con-
versational features), such as the works of Kim et al. [10, 11, 12], who
investigated the degree of conflict in broadcasted political debates. The
only audio-visual approach to conflict detection that we are aware of
is [16], where robust, multi-modal fusion of audio-visual cues is utilized.

• They only deal with conflict detection or conflict escalation/resolution
detection. These are approached as classification tasks aiming at esti-
mating a single binary label (conflict/non-conflict) or discrete conflict
intensity levels for the entire sequence or segments of it. The only work
in the literature – that we are aware of – that has approached conflict
in dimensional rather than categorical terms, i.e., as a continuous (real-
valued) variable, and conflict intensity estimation as a regression task
is [12].

In this paper, we provide a comprehensive description of the Conflict Es-
calation Resolution (CONFER) Database, a collection of audio-visual record-

3



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 1: Characteristic frames from episodes of the Set two (top row) and three (bottom
row) of the CONFER Database.

ings of naturalistic interactions from political debates suitable for the inves-
tigation of conflict behavior. These recordings have been manually extracted
from more than 60 hours of live political debates, televised in Greece be-
tween 2011 and 2012. In contrast with other corpora, political debates are
real-world competitive multi-party conversations where participants do not
act in a simulated context, but participate in an event that has a major im-
pact on their real life (for example, in terms of results at the elections) [10].
Consequently, even if some constraints are imposed by the debate format,
the participants have real motivations leading to real conflicts.

From the entire dataset, 120 video excerpts have been extracted from
a total of 27 TV broadcasts, with total duration amounting to approxi-
mately 142 minutes. The dataset is split into 2 sets, namely two and three,
which consist of recordings containing interactions that involve two or three
participants, respectively. All 120 videos have been annotated by 10 ex-
perts, in terms of continuous conflict intensity. The CONFER Database has
been partially presented at previous works (see [17, 16, 18]), but a com-
plete description of the data and available annotations, has not been re-
ported so far. The database is publicly available for non-commercial use at
http://ibug.doc.ic.ac.uk/resources/confer/. Along with the audio-
visual episodes and the annotations, audio and visual features (facial tracking
points and SIFT) are also provided (see Section 4).

This work is novel not only in providing a comprehensive description
of this database, which is suitable for the investigation of conflict behavior
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in naturalistic conversations, but also in reporting baseline experiments that
could serve as a benchmark for efforts in the field. These experiments primar-
ily aim to overcome the last two of the aforementioned limitations of previous
works on automatic conflict analysis, namely by i) examining both audio and
visual features as well as fusion of them for the target problem, and ii) ad-
dressing continuous-time (frame-by-frame) estimation of continuous-valued
conflict intensity. For each Set of the database, we conduct two baseline
experiments in which the efficiency for the problem at hand of various vi-
sual (shape- and appearance-based) descriptors and audio features as well as
fusion of them, and classifiers, respectively, is examined. A cross-validation
experimental scenario is employed in order to assess performance of the base-
line predictive frameworks on collectively all audio-visual recordings of the
CONFER Database. A challenging experimental protocol is established with
all experiments being subject- and session-independent. This is to ensure
that the sequences used for testing involve different subjects from different
TV broadcasts compared to those used in the training phase.

Overall, the contributions of this paper are as follows.

• A comprehensive description of the Conflict Escalation Resolution (CON-
FER) Database is provided. The audio-visual data and available an-
notations are described in detail.

• The presented baseline experiments constitute the first audio-visual ap-
proach in the literature to continuous-time (frame-by-frame) estimation
of continuous-valued conflict intensity.

• This database contains naturalistic, competitive conversations from po-
litical debates where conflict naturally arises, and, as such, is primarily
intended for research targeting automatic conflict analysis. However,
it could also be a valuable source for studies of other social phenom-
ena such as (dis)agreement, interest, mimicry, turn-taking, and back
channel (i.e., head nods) communication.

• The provided audio-visual episodes of conflict have been filmed in
real-world “in-the-wild” conditions involving a wide range of views,
amenable lighting conditions, spontaneous and overlapping speech, and
abrupt head and body movements or occlusions. Hence, it can be also
exploited to evaluate the robustness of signal processing and machine
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learning techniques for automatic speech recognition and speaker iden-
tification, face detection and facial point tracking, head pose estima-
tion, to mention but a few.

The remainder of the paper is as follows. Section 2 provides a list of exist-
ing databases that have already been or could be used for automatic analysis
of conflict and similar social signals and phenomena. Section 3 presents in
detail the audio-visual data and conflict intensity annotations included in
the CONFER Database. Section 4 describes the methodology employed for
the baseline experiments on continuous conflict intensity estimation that are
presented in Section 5, while Section 6 concludes the paper.

2. Prior Work

The only existing database that has been released primarily to serve re-
search on machine analysis of conflict is the SSPNet Conflict Corpus [20],
which consists of 1430 clips of 30 seconds extracted from the Canal9 Cor-
pus [19] – a collection of audio-visual recordings from 45 political debates
aired on the Swiss TV (in French) – corresponding to 138 subjects in total.
Each clip of the database has been annotated in terms of a single continuous
conflict score in the range [−10,+10] for the purposes of the sequence-level
binary classification and regression tasks of the Conflict Sub-Challenge in-
cluded in the Interspeech 2013 Computational Paralinguistics Challenge [20].
Pesarin et al. [28] have manually segmented 13 debates from the SSPNet Con-
flict Corpus, with a total duration of 6 h and 27 min, into conflictual and
non-conflictual intervals for conflict detection. Recently, Kim et al. [12] have
relied on Mechanical Turk crowdsourcing to have the corpus annotated in
terms of continuous (real-valued) conflict intensity, using two separate ques-
tionnaires, one for the physical layer and the other for the inferential layer
of the conversation (see Section 3 for definitions). However, the annotations
of both works mentioned above constitute a sequence-level rather than a
frame-by-frame characterization of conflict.

Audio-visual recordings of political debates have been recently utilized for
research on detection of the similar behavioral phenomenon of

1The Green Persuasive Database can be found online at
http://sspnet.eu/2009/12/green-persuasive-database/.

2The SEWA Database is available online at http://db.sewaproject.eu/.
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Table 1: Summary of the databases that have or could be used for automatic analysis of
conflict as well as other social behaviors and signals.

Database # Subjects Duration Audio-visual? Synchronous?
Cultural

Background

Canal 9 [19] 190 43 h 10 min 4 4
Swiss

(French-speaking)

SSPNet Conflict Corpus [20]
(subset of Canal 9) 138 11 h 55 min 4 4

Swiss
(French-speaking)

[13] (subset of Canal 9) 28 not known 4 4
Swiss

(French-speaking)

AMI [21] 213 100 h 4 4
Mostly non-native
English speakers

AMIDA [22] not known 10 h 4 4
Mostly non-native
English speakers

ICSI [23] 53 75 h 7 −

28 native English
speakers (mostly

American), the rest
non-native (12

German)

Green Persuasive1 16 not known 4 4 not known

Wolf [24] 36 7h 4 4
Mostly non-native
English speakers

Mission Survival [25] 44 6h 4 4 Canadian

MAHNOB Mimicry [26] 60 11h 4 4

Spanish, French,
Greek, English, Dutch,
Portuguese, Romanian

SEWA2 398 34h 35 min 4 4

British, German,
Hungarian, Greek,
Serbian, Chinese

[27] 208 62 h 48 min 4 4

77% Caucasian, 8%
Afr. American, 5%

Asian or Pac.
Islander, 5%

Latino(a), 1% Native
American, 4% Other

7
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Figure 2: Conflict intensity annotations along with three characteristic frames shown for
the sequence 20120326_seq3 from the Set two of the CONFER Database.

(dis)agreement [13] (see [29]) for a survey). The latter has been also in-
vestigated by means of experiments performed on meeting corpora such as
the AMI Corpus [21] and the ICSI Corpus [23]. Other databases, albeit
not annotated in terms of (dis)agreement or conflict, that contain multiple
instances of the latter behaviors as well as other social behaviors (e.g., in-
terest, politeness, mimicry, flirting), social signals (e.g., social dominance,
engagement, hot-spots, acceptance, blame) and personality traits include
[22, 24, 25, 27], the Green Persuasive Dataset and the newly released SEWA
Database. It is worth mentioning that the SEWA Database is the largest
and the richest database of human conversational and emotional behaviour
that has been released so far. Table 1 provides a concise summary of the
existing databases that have already or could be used for automatic analysis
of conflict and similar social signals and phenomena.

3. Database

In this section, we provide a comprehensive description of the CONFER
Database, a collection of audio-visual recordings of naturalistic interactions
from political debates.
Data. The database consists of video excerpts from televised political de-
bates in Greek language. In particular, it contains episodes of conflict esca-
lation and resolution, which have been extracted from more than 60 hours of
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live political debates aired as a part of the Anatropi Greek TV show3. Each
debate includes at least two guests discussing under the moderation of the
TV host.

From the entire collection of the TV programme broadcasts, 120
non-overlapping episodes of conflict escalation have been manually extracted.
These audio-visual excerpts are divided into two Sets, which are balanced in
terms of total duration, namely the Set two that contains 73 episodes of
dyadic interactions, and the Set three that contains 47 episodes of interac-
tions among three subjects. Overall, these episodes correspond to a total
duration of approximately 142 minutes and to a total number of 54 subjects,
43 male and 11 female. It is worth mentioning that the episodes contain de-
bates that may have more than one instances of conflict escalation, yet they
always end with conflict resolution. For all recordings, the video stream has
been recorded at 25 frames per second, while the sample rate of the audio
channel is 22050 Hz. Each video sequence of the dataset has a spatial reso-
lution of 720× 576 pixels and has all participants involved in the episode in
view. The duration of the episodes varies from 20.2 seconds to 534.0 seconds,
having a mean and standard deviation of 71.0 and 70.5 seconds, respectively,
as computed for the whole dataset. Characteristic frames from the dataset
are depicted in Fig. 1.

Due to the spontaneous and competitive nature of the interactions con-
tained in the CONFER Database, various types and levels of noise are in-
curred in the data. Regarding the audio channel, speaker diarization and
speech recognition are rendered difficult since the interlocutors often inter-
rupt or talk over one another, driven by anger or agitation or aiming to
dominate the dialogue. In some of the recordings, a third party speaking in
the background is involved. Also, in most of the cases speech is emotionally
colored and thus often fragmented and disorganized or extremely rapid and
even unintelligible.

Regarding the visual stream, camera angles can vary a lot across episodes
or even within the same episode, while illumination conditions vary less. De-
pending on the way the interlocutors are positioned in the studio, the former
are often portrayed at large head pose pan angles or even in almost-profile
view, due to them looking at their interlocutor rather than the camera fixed
on them. Moreover, due to the involved parties being engaged in naturalistic

3http://www.megatv.com/anatropi/.
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competitive conversations, the subjects often perform abrupt and extreme
head movements (e.g., head nods, shakes, tilts), body movements (e.g., for-
ward/backward leaning, spinning periodically on their swivel chairs) and ges-
tures (e.g., hand crosses, hand wags). The aforementioned conditions pose
obstacles to the computer vision pre-processing tasks, such as face detection,
facial point tracking and registration [30, 31], since the latter have to cope
with frequent and large out-of-plane head rotations and occlusions [32, 33].
Annotations. The data have been annotated on a frame-by-frame basis in
terms of continuous (real-valued) conflict intensity by 10 expert annotators,
all of them being native Greek speakers. The annotation task is carried out
in real time, i.e., while the annotators are watching each audio-visual excerpt,
by employing a joystick-based annotation tool. The tool records the conflict
intensity level in the continuous range [0, 1000] at a variable sampling rate,
which is approximately 64 samples per second in average. All annotations are
subsequently down-sampled to the video frame rate of 25 frames per second.
The procedure followed so as to extract a single ground truth annotation
sequence from the 10 available annotations for each episode of the CONFER
Database is described in detail in Section 4.2. Ground truth annotations
of conflict intensity are plotted as a function of time for a sequence of the
database along with three characteristic frames in Fig. 2.

The annotators have been advised to annotate the videos by considering
the physical (related to the behavior being observed) and the inferential (re-
lated to the interpretation of the discussion) layer of the conversation [10].
The physical layer includes the behavioral cues observed during conflicts and
include interruptions, overlapping speech, cues related to turn organization
in conversations as well as head nodding, fidgeting and frowning [5]. The
inferential layer is based on the perception of the competitive processes oc-
curring in conversations where conflict is viewed as a ‘mode of interaction’
governed by the principle that “the attainment of the goal by one party pre-
cludes its attainment by the others” [2, 15]. For instance, conflicting goals
often lead to attempts of limiting, if not eliminating, the speaking oppor-
tunities of others in conversations. In view of the demanding nature of the
task of annotating conflict in real time and in terms of both conversational
layers, all annotators were initially ‘trained’ on a small subset (∼10%) of the
CONFER Database episodes. In particular, they were instructed to watch
these episodes as many times as they considered necessary and retain the
annotation that best assessed conflict intensity in terms of both layers. For
each of the remaining episodes of the database, the annotators were allowed

10
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two plays, and again the most suitable annotation was retained.

4. Methodology

In this section, the methodology employed for the baseline experiments
conducted on the CONFER Database for audio-visual continuous-time con-
flict intensity estimation is described.

4.1. Sets and Protocol
Two baseline experiments are conducted for each Set of the CONFER

Database. A subject- and session-independent cross-validation experimental
protocol is employed. Specifically, each Set is divided in 5 segments, balanced
in terms of duration, containing videos that include different interactants and
have been broadcast at different times. In each fold, 3 segments are used
for training, one for validation (parameter tuning) and the remaining one
for testing, and the average value over all test sequences of each evaluation
metric (see Section 4.5) is retained. The process is repeated 5 times, until
all episodes have been used for testing. Finally, the mean and standard
deviation of the metrics, as computed over all 5 folds, are reported.

4.2. Annotations
Recent studies on combining multiple annotations of human behavior or

affect have provided evidence suggesting that the average of multiple an-
notations can lie far away from the actual ground truth and thus lead to
ill-generalizable models [34]. This is mainly due to the subjectivity of an-
notators and the variability related to their age and gender or their stress,
fatigue, attention or even intention while annotating (e.g., there can be spam-
mer annotators that they do not even pay attention during the annotation
process). Furthermore, when the task in question is temporal, additional
noise in the set of multiple annotations is entailed by the temporal lags in
the perception and annotation of the related events.

Motivated by the aforementioned findings, herein we follow a supervised
approach to fusing the multiple available annotations. Specifically, Canoni-
cal Correlation Analysis (CCA) [35] is employed for each sequence to extract
subspaces that are maximally correlated for the set of 10 annotations avail-
able and the corresponding audio-visual feature set. For all experiments
presented in this paper, the coefficient corresponding to the first component
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Figure 3: Annotations illustrated as a function of time for the sequence 20120206_seq5
from the Set three of the CONFER Database. (a) Original annotations from 10 annotators
rescaled in [0, 1], and (b) Ground truth annotations derived by performing CCA on the
original annotations and the corresponding features.

of the CCA-derived annotation subspace is used as the ground truth anno-
tation for each episode. The latter is rescaled in the continuous range [0, 1].
Original annotations of conflict intensity from the 10 annotators as well as
the CCA-derived annotation for a sequence of the CONFER Database are
plotted as a function of time in Fig. 3.

4.3. Features
The various audio and visual features as well as fusion of them that are

used in the experiments of this study are described in what follows.
Audio features. As mentioned above, most of the existing approaches
to automatic conflict analysis have relied almost exclusively on audio fea-
tures [10, 11, 12] such as spectral, prosodic, durational, lexical and turn
organization descriptors. A concise review of audio-based approaches to
(dis)agreement and conflict detection is provided in [12].

In this work, we employ the openSMILE feature extractor [36] to ob-
tain the ComParE acoustic feature set of 65 low-level descriptors (LLD) (4
energy-related, 55 spectral and 6 voicing-related), which has been success-
fully applied for automatic recognition of paralinguistic phenomena [37]. The
65 LLD used are summarized in Table 3 in [38]. The audio features extracted
for each sequence of the CONFER Database are down-sampled to 25 Hz fre-
quency to match the frame rate of the video stream. Similarly to [39, 37] the
audio features of each sequence are z-normalized (each feature component is
normalized to mean=0 and standard deviation=1).
Visual features. In recent years, research in behavioral and affective com-
puting as well as signal processing has gradually shifted from audio-only (or
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even video-only) systems to audio-visual approaches [8, 9]. As a matter of
fact, the latter have been shown to outperform uni-modal frameworks in var-
ious related tasks such as continuous interest prediction [40, 16], detection
of behavioral mimicry [41], and dimensional and continuous affect predic-
tion [39], to mention but a few. Notably, other challenging problems such as
accent classification [42, 43, 44] and pain intensity estimation [45] have been
addressed based exclusively on visual features.

Motivated by the aforementioned works and deviating from a common
practice in automatic conflict analysis where only audio features are employed
(e.g., [10, 11, 12]), in this paper we utilize also visual features for conflict
intensity estimation. Our aim is to capture facial behavioral cues that are
deemed intrinsically correlated with conflict, such as smiling, blinking, head
nodding, flouncing and frowning [5, 14]. Both shape- and appearance-based
descriptors are examined. Note that the video stream of each episode from
the CONFER Database is spatially cropped at each frame so that a separate
video stream is obtained for each one of the participants involved in the
conversation. The Menpo project [46] has been employed in this study for
all visual feature extraction tasks, which are described as follows.

Facial point tracking: First, 68 fiducial facial points are detected at each
frame of each cropped video sequence portraying a single interactant. To
this end, we employ the Gauss-Newton Deformable Part Model in [47], which
when combined with a person-specific face detector produces very accurate
results [48]. The coordinates of 49 facial landmarks are retained for each
frame by excluding the facial points that correspond to the face boundaries.
Next, the effects of head translation, scale and in-plane rotation are removed
by universally aligning the tracking points with the ‘mean’ shape computed
over all frames through a 2-D non-reflective similarity transformation.

Shape features: Principal Component Analysis (PCA) [49] is applied on
the aligned tracking points to yield a low-dimensional shape descriptor for
each frame. In particular, the coordinates of the 49 facial landmarks are
projected onto the subspace spanned by the ‘eigenshapes’ of a pre-trained
Active Shape Model (ASM) [50]. The latter has been previously trained
on collectively 4 datasets of faces “in-the-wild”, and thus its principal com-
ponents efficiently ‘explain’ variations of shape corresponding, for instance,
to out-of-plane rotations, different face anatomy characteristics and subtle
expression-related deformations. For each video frame, 18 coefficients that
account for 95% of the total variance are retained for each subject. The final
feature vector for each frame is obtained by concatenating the descriptors for
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Figure 4: Effect on the mean shape ((b), (e)) of varying the 1st (i = 1) component
(pose-related) and the 7th (i = 7) component (expression-related) of the Active Shape
Model used herein for shape feature extraction by −2

√
λi and 2

√
λi, where λi denotes the

respective eigenvalue.

all interactants in the episode.
Inspired by [51], we follow a face-anatomy-driven rather than a simply

data-driven approach to identifying the most suitable feature representation
of facial shape for the problem at hand. To this end, we visually inspect
the deformation pattern associated with each component of the ASM. We
observe that the first 6 components capture head movements (rigid face mo-
tion), while the remaining 12 components capture expression-related defor-
mations (non-rigid face motion). The discriminative power of both pose- and
expression-related shape features as well as the combination of them – which
we henceforth call Pose, Expression and Points, respectively – is investigated
for the target problem. In Fig. 4, one can see the mean shape and the ef-
fect on it of varying the 1st (i = 1) component (pose-related) and the 7th

(i = 7) component (expression-related) by −2
√
λi and +2

√
λi, where λi de-

notes the variance explained by the respective component. It is evident that
the former component is associated with out-of-plane head rotation (yaw),
whereas the latter component is associated with deformations related to sad-
ness/happiness (frown/smile).

Appearance features: Previous frameworks targeting biometrics and af-
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fective computing tasks such as face recognition [52] and pain intensity es-
timation [45] have relied on appearance features locally extracted from a
pre-defined grid of rectangular regions in face images registered in frontal
pose. However, this technique is not suitable for databases including images
that portray faces with large head pose angles, as is the case with the CON-
FER Database, since the 2D registration process unavoidably induces pixel
artefacts and texture discontinuities. Furthermore, some researchers are crit-
ical of the grid-based feature extraction, suggesting that the sub-regions are
not necessarily well aligned with meaningful facial features [53].

Motivated by these findings and other recent works [54, 33, 55], in this
study we adopt a hybrid approach to appearance feature extraction. In par-
ticular, we first apply the same transformation used for point registration
to the pixel intensities of each face image to remove translation, scale and
in-plane rotation effects. Subsequently, features are extracted from the inten-
sities lying within rectangular regions (patches) of dimension 20×20 pixels
centered at each facial point. Facial point tracking and point/image regis-
tration results are depicted for each interlocutor in Fig. 5 for 2 characteristic
frames from a sequence of the CONFER Database.

Two appearance-based descriptors are examined herein, namely Scale-
Invariant Feature Transform (SIFT) [56] and Discrete Cosine Transform
(DCT) [57]. SIFT is a rotation- and scale-invariant descriptor that captures
local orientation information in images, while DCT is a frequency-based de-
scriptor that projects pixel intensities onto real cosine basis functions. For
SIFT, we extract a 4×4 array of 8-bin orientation histograms for each im-
age patch. For DCT, the two-dimensional DCT is employed and the first
128 out of the zig-zag-arranged coefficients, which correspond to the low-
est frequencies, are retained, so that the final dimensionality matches that
of SIFT. For both descriptors, the features calculated from the total of 49
patches are concatenated into a single vector. For each frame, the final repre-
sentation is formed by concatenating the feature vectors for all interlocutors
(two or three). Finally, dimensionality is reduced in a supervised manner,
by applying CCA on the features and corresponding annotations. The CCA
coefficients of the feature set corresponding to 95% of the total energy are
retained, thus resulting in dimensionality of 75 (65) and 63 (56) for the Set
two (three) for SIFT and DCT, respectively. Note that all visual features are
`2-normalized.
Fusion. To investigate which features carry complementary information
with regards to manifestations of conflict in conversational and emotional
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5: Tracking and point/image registration results shown for each subject for 2
characteristic frames (frame 683 and frame 762) of the sequence 20111212_seq1 from the
Set two of the CONFER Database. (a)-(d) Original video frames, (e)-(h) Original tracking
points superimposed on the original video frames, and (i)-(l) Rectangular patches extracted
around the aligned points on the aligned video frames.
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behavior data and thus could help improve performance of conflict analysis
tools, in this study we examine also feature-level fusion. Both intra-modality
(Video-Video) and inter-modality (Audio-Visual) fusion is investigated. For
the former case, we combine the expression-related shape descriptor with
each appearance descriptor, that is, Expression+SIFT and Expression+DCT
as well as the Points descriptor (the whole shape-based feature vector) with
the appearance descriptor that performs best in the first baseline experiment
(see Section 5.1). This is done on the feature level, that is, by concatenating
the respective feature vectors.

For audio-visual (AV) fusion, we follow a more sophisticated approach,
motivated by recent evidence which suggests that feature-level AV fusion
can be sub-optimal and highly problematic mainly due to (i) the two modal-
ities being recorded at different measurement and temporal scales and (ii)
the detrimental effect of increased dimensionality on the classifier’s perfor-
mance [8]. To overcome the aforementioned limitations, we perform CCA to
derive linear, maximally correlated components among the audio and visual
feature sets. After retaining the components that account for the 95% of
energy for each of the sets, the resulting CCA coefficients are concatenated
to form the final AV feature representation. Note that for AV fusion, audio
features are combined only with the best-performing out of the (single- or
multi-feature) visual descriptors examined in the first baseline experiment
(see Section 5.1).

4.4. Classifiers
Four classifiers that have been extensively used for temporal modeling of

human behavior and affect are examined, namely Support Vector Regression
(SVR) [58], Random Forests for Regression (RF) [59], Continuous Condi-
tional Random Fields (CCRF) [60], and Long-Short Term Memory (LSTM)
Neural Networks [61]. LIBSVM [62], scikit-learn [63], [60], and the CUda
RecurREnt Neural Network Toolkit (CURRENNT) [64] are used to train
SVR, RF, CCRF and LSTMs, respectively. For each fold of the cross-
validation experiments, the validation set is used to optimize the classifiers
in terms of Correlation (COR) for SVR, RF and CCRF (see Section 4.5),
and Root Mean Squared Error (RMSE) for LSTMs4.

4CURRENNT [64] only supports RMSE criterion for the objective function of LSTMs.
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SVR [65] is a discriminative regression framework that extends Support
Vector Classification (SVC) to the continuous (real-valued) targets, and is
one of most commonly used regressors in the fields of affective computing and
social signal processing [9, 3] with applications to various tasks such as con-
tinuous and dimensional emotion prediction [39], and social signal/behavior
(e.g., laughter/conflict) detection/recognition [20], to mention but a few. In
this study, linear SVR with ε-insensitive loss function is examined, whose pa-
rameters are optimized by means of a suitable grid search. In particular, the
regularization parameter C is optimized in the set {10−5, 10−4, . . . , 1}, the
convergence tolerance parameter tol in the set {10−5, 10−4, . . . , 10−2}, while
for the ε parameter 50 values logarithmically spaced in the range [10−2, 1]
are examined.

RF [59] is an ensemble learning algorithm that combines unpruned De-
cision Tree learners based on random split selection of feature subspaces.
RF have gained popularity in recent years within the computer vision and
machine learning communities (e.g., [66, 67]) as they combine the ability to
handle large training datasets with computational efficiency and good gen-
eralizability. The two most critical parameters in the RF design, that is the
number of trees T in the forest and the number of features F selected to
split each node, are optimized in the range T ∈ {100, 500, 1000, 2000} and
F ∈ {√p, p/3, p/2}, respectively, where p denotes the dimensionality of the
feature vector.

CCRF [60] is an undirected graphical model-based discriminative frame-
work that extends the traditional Conditional Random Fields (CRF) [68]
to the case of continuous (real-valued) output. CCRF have been applied in
combination with SVR for the task of continuous and dimensional emotion
prediction [60]. Herein, we follow the approach in [60] in using linear SVR (ex-
actly as described above) to learn the vertex (static) features of the graphical
model and ten edge (temporal) features, that is, 5 neighbor n = {1, 2, . . . , 5}
and 5 distance similarities σ = {26, 27, . . . , 211} (see [60] for details).

LSTMs [69] constitute an extension of the traditional Recurrent Neural
Network architecture that is efficient in capturing contextual statistical reg-
ularities with large and unknown lags in time-series data. LSTMs have been
successfully applied to various behavioral and affective computing tasks such
as continuous and dimensional affect prediction [70, 39], visual-only accent
classification [43], and audio-visual depression scale prediction [71]. Herein,
we use bi-directional LSTMs with 1 hidden layer of 128 memory blocks. The
output layer consists of a single node whose sigmoid-function activation is
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used as the estimate of the conflict intensity. The networks are trained with
stochastic gradient descent with a batch size of 5 sequences for a maximum
of 1000 epochs. Finally, zero-mean Gaussian noise of variance 0.1 is added
to the features and early stopping is employed to prevent overfitting.

4.5. Evaluation Metrics
Performance is measured for each test sequence based on two metrics,

namely the Pearson’s Correlation coefficient (COR) and the Intra-class Cor-
relation Coefficient (ICC) [72]. Both metrics are computed for each test
sequence, and the average value over all test sequences is retained for each
fold. Finally, the mean and standard deviation of each metric over all 5 folds
are reported.

The Pearson’s Correlation coefficient (COR) is, along with the Mean
Squared Error (MSE), the most commonly used evaluation metric in the
affective computing literature [9, 39]. We have opted to use COR in this
study over MSE since the former can capture linear structural information
about how ground truth annotations and predictions vary together through
the calculation of the covariance [9]; if the two measurements have a perfect
linear relationship, then COR becomes 1 (complete positive relationship)
or −1 (complete negative relationship). This property of the correlation is
deemed advantageous for the experimental setting of our study that deals
with continuous-time (frame-by-frame) estimation of conflict intensity.

The Intra-class Correlation Coefficient (ICC) [72], initially proposed as a
metric for rater reliability in behavioral measurements, has been recently ap-
plied in providing a measure of ‘consistency’ or ‘agreement’ between ground
truth annotations of behavioral or affective attributes provided by humans
and corresponding predictions yielded by automated approaches (e.g., [45,
73]). It typically expresses the fraction of the total variance across all rat-
ings and subjects (including random error in the ‘judgements’) ‘explained’ by
the component of variance due to the targets alone [72]. Herein, we employ
the coefficient ICC(3,1), which corresponds to the scenario ‘Each target is
assessed by each rater, with a single measurement being available for each
rater and the raters being the only raters of interest’ [72]. For each auto-
mated framework examined, the ICC is computed based on the ground truth
annotations and the predicted values of conflict intensity.

To obtain a ‘human’ baseline ICC result, i.e., a measure of ‘level of consis-
tency amongst 10 humans in assessing conflict intensity’, we also compute the
ICC amongst the 10 available annotations for each sequence. This facilitates
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a more fair evaluation of the various automated approaches examined in the
experiments presented in Section 5.2. In particular, it enables us to compare
the degree of conformity – in ICC terms – between the ‘mean annotation’
and the conflict intensity predictions yielded by the various frameworks to
the degree of conformity amongst the measurements of conflict intensity ob-
tained by 10 humans for the same data. The mean (standard deviation) of
the ‘inter-annotator’ ICC is 0.495 (0.037) for the Set two and 0.414 (0.057)
for the Set three, respectively.

5. Results

In this section, experimental results are reported and discussed sepa-
rately for each of the two baseline experiments conducted on the CONFER
Database for audio-visual continuous-time conflict intensity estimation.

5.1. Baseline Experiment I: Feature Comparison
In the first experiment of this study, we investigate the efficiency of the

various audio and visual (shape- and appearance-based) descriptors as well
as the (Video-Video and Audio-Visual) fusion of them described above, for
the task of continuous-time (frame-by-frame) estimation of continuous (real-
valued) conflict intensity. In total, 10 features (incl. fusion) are examined,
namely Audio, Pose, Expression (Expr.), Points, SIFT, DCT, Expr.+SIFT
, Expr.+DCT, Points+SIFT, and Fusion (AV). For the regression stage of
this experiment, we use linear SVR which is one of the most commonly used
regression frameworks in the literature for dimensional behavior and affect
modeling [9]. We first examined the single-feature systems. Then, for Video-
Video fusion, we chose to examine the combination of the whole shape feature
vector (Points) with the best-performing appearance descriptor, i.e., SIFT,
hence Points+DCT is not considered. Finally, for audio-visual fusion, we
examined the combination of Audio features with the best-performing out of
all visual features and fusion of them, i.e., Expr.+SIFT.

Conflict intensity estimation results, in terms of COR averaged over all 5
folds of the cross-validation experiment, are shown in the bar graph of Fig. 6
for the Sets two and three of the CONFER Database. Among the single-
feature frameworks, the best performance of COR = 0.233 and COR = 0.302
for the Set two and three is achieved by Audio and SIFT, respectively. Note
that Audio is the only feature that accounts for lower performance on the
Set three than on the Set two, presumably due to the increased number of
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speakers in the former case incurring a larger number of speaker diarization
errors. On the other hand, for all visual features there is a large discrepancy
between the performances achieved on the Sets two and three, with the latter
being higher in all cases. This finding makes sense upon observing that it is
often the case with the recordings of the Set three that not all interactants are
recorded in the same studio and thus some of them retain a (quasi-)frontal
view during the conversation by looking straight at the camera rather than
at their interlocutors. Under these conditions, the computer vision tasks of
facial point tracking and image registration are rendered much easier and
hence accurate, thus leading to more efficient and error-free visual feature
extraction.

Among shape features, Pose features largely outperform Expression fea-
tures, with the latter leading to a rather poor performance when considered
alone. This conforms to recent evidence [14, 29] suggesting that head ges-
tures (e.g., head nod, shake, roll, ‘cut-off’) are among the most common
non-verbal cues through which (dis)agreement is manifested, hence the effi-
ciency of head pose features in capturing the latter and conflict as well. Also,
the poor performance yielded by Expression can be partially attributed to
the high variation of expression-related facial deformations in the CONFER
Database, which entails that a lot of the latter do not convey conflict infor-
mation and thus are uninformative for the task at hand.

Appearance features perform more accurately than shape features. This
is exactly as expected; while shape features are capable of capturing coarse
deformations related to facial expression, appearance features are efficient
in encapsulating finer movements and tale-telling transient features such as
bulges, wrinkles and furrows [8, 74, 44]. Also, SIFT outperforms DCT. This
is again not a surprising result given that SIFT features extracted from local
patches around facial landmarks have been shown to be efficient for automatic
face analysis “in-the-wild” [54]. Also, DCT being less efficient than SIFT in
this experiment can be partially attributed to its Fourier-based transforma-
tion, which is applied locally, capturing energy characteristics in the visual
scene which are unrelated to conflict (e.g., uninformative facial expressions,
illumination changes caused by head movements). It is also worth mention-
ing that, the shape-based Expression descriptor, despite performing poorly
when used in isolation, leads to performance improvement when combined
with either of the appearance descriptors. This behavior can be explained
considering that Expression captures coarse non-rigid deformations from the
whole face which are complementary to the local subtle movements encoded
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Figure 6: Baseline Experiment I: Conflict intensity estimation results, in terms of
COR averaged over all 5 folds, as obtained by linear SVR trained with the various
visual and audio features as well as fusion of them (Video-Video and Audio-Visual)
examined herein, for the Sets two and three of the CONFER Database.

by the appearance descriptors extracted from the local patches.
Finally, audio-visual fusion outperforms all remaining frameworks, lead-

ing to COR = 0.294 and COR = 0.336 for the Set two and three, respec-
tively. This result provides a strong indication that behavioral patterns
associated with continuous-in-time manifestations of conflict under uncon-
strained recording conditions are more accurately recognized when cues from
both the audio and video modality are considered, as is the case with other
social behaviors such as (dis)agreement, mimicry, interest, and flirting [3, 4].

5.2. Baseline Experiment II: Classifier Comparison
In the second experiment of this study, we investigate the efficiency of

the various classifiers described above in modeling and predicting conflict
intensity in continuous time for each test sequence, approached again as
a regression problem on a frame-by-frame basis. The features utilized to
train the classifiers are those that performed best in the previous experi-
ment, i.e., Audio and Expr.+SIFT for Audio and Video, respectively, and
Audio+Expr.+SIFT for audio-visual (AV) fusion.

Conflict intensity estimation results, in terms of the COR and ICC met-
rics averaged over all 5 folds of the cross-validation experiment, are reported
in Table 2a and Table 2b for the Set two and three of the CONFER Database,
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Table 2: Baseline Experiment II: Conflict intensity estimation results, in terms
of COR and ICC averaged over all 5 folds, as obtained by each feature-classifier
combination examined herein for the Sets (a) two, and (b) three of the CONFER
Database, respectively. The corresponding standard deviation values are reported
inside parentheses. The best COR and ICC performances for the uni- and multi-
modal frameworks (A: Audio, V: Visual, AV: Audio-Visual) are shown in boldface.

Classifier /
Feature Audio (A) Expr.+SIFT (V) Fusion (AV)

COR ICC COR ICC COR ICC

SVR 0.233 (0.064) 0.774 (0.031) 0.204 (0.090) 0.174 (0.030) 0.294 (0.065) 0.781 (0.029)

RF 0.170 (0.054) 0.144 (0.020) 0.052 (0.024) 0.168 (0.042) 0.178 (0.053) 0.160 (0.020)

CCRF 0.285 (0.177) 0.160 (0.355) 0.026 (0.067) -0.001 (0.000) 0.221 (0.075) 0.163 (0.357)

LSTMs 0.232 (0.092) 0.178 (0.033) 0.126 (0.071) 0.183 (0.070) 0.251 (0.070) 0.195 (0.065)

(a) Set two

Classifier /
Feature Audio (A) Expr.+SIFT (V) Fusion (AV)

COR ICC COR ICC COR ICC

SVR 0.229 (0.063) 0.687 (0.036) 0.326 (0.076) 0.357 (0.144) 0.336 (0.033) 0.296 (0.187)

RF 0.156 (0.061) 0.213 (0.050) 0.158 (0.108) 0.204 (0.092) 0.173 (0.092) 0.198 (0.089)

CCRF 0.213 (0.036) 0.045 (0.044) 0.153 (0.130) 0.014 (0.031) 0.211 (0.109) 0.014 (0.023)

LSTMs 0.259 (0.068) 0.221 (0.077) 0.185 (0.100) 0.186 (0.045) 0.148 (0.055) 0.195 (0.022)

(b) Set three

respectively. The best performances of COR = 0.294 and COR = 0.336 for
the Set two and three, respectively, are those achieved by audio-visual fusion
in the previous experiment. Interestingly, both the aforementioned best-
performing frameworks employ SVR in the regression stage. However, it is
worth noting that not for all classifiers does fusion result in improved perfor-
mance (in terms of COR) over that furnished by the corresponding uni-modal
systems. This can be partially attributed to different classifiers being to a dif-
ferent degree sensitive to (i) gross errors and outliers in the audio or/and the
video stream which, in turn, result in erroneous estimates of the correlated
components obtained by the classical CCA due to its reliance on least squares
minimization, and (ii) errors induced by feature pro- and post-processing
(e.g., normalization, AV synchronization). A partial remedy to the above-
mentioned limitations could be sought in either applying more robust tech-
niques for the extraction of individual and correlated components, such as the
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one proposed in [16], or ‘delegating’ both the tasks of modeling each stream
separately and uncovering the correlations between them to the classifier by
means of model-level fusion (see [8] for a survey of different types of fusion).

Regarding the uni-modal frameworks, the best performances of COR =
0.285 and COR = 0.326 are accounted for by the combination of Audio with
CCRF and Expr.+SIFT with SVR for the Set two and three, respectively.
The superiority of SVR among classifiers for the multi-modal frameworks
and the high accuracy achieved by it also when trained with features from
a single modality conforms to previous evidence indicating its robustness to
overfitting and suitability for continuous prediction of behavior and affect di-
mensions [20, 39]. CCRF also yield accurate predictions in this experiment,
presumably thanks to their ability to learn the conflict ‘history’ across succes-
sive observations of continuous conversational data given that they, like their
discrete-output counterpart (CRF), relax the assumption of conditional in-
dependence of the features [68]. We argue that their performance for conflict
intensity prediction could be improved by (i) examining different functions
for the vertex and edge features (e.g., non-linear regressor for the vertex fea-
tures), and (ii) investigating different normalization schemes, to which they
have shown to be quite sensitive [70]. LSTMs trained with Audio features
also achieve high COR values for both Sets, albeit on par with or not much
higher than those achieved by SVR. This result might seem counter-intuitive
at first sight, since LSTMs, similarly to CCRF, are capable of capturing
long-range dependencies between successive observations and, as such, have
been shown successful in continuous modeling of human behavior and af-
fect [70, 39, 71]. However, we argue that the relatively low performance of
LSTMs in this experiment is mainly due to them having been trained based
on RMSE and that, by using an alternative implementation that allows COR-
based objective function for LSTMs training, one will most probably achieve
much higher performance. The same holds for the RF frameworks which
have been also trained on the basis of mean-squared generalization error and
thus are agnostic to contextual temporal information. The poor performance
of RF for this experiment can be also attributed to the random feature selec-
tion process employed to determine the split at each node; this practice can
result in sub-optimal partitioning of the feature space, especially in the case
of insufficient training data [75]. To alleviate this limitation, one could resort
to a semi-supervised approach to node splitting, such as the one proposed
in [75], that is, to use also unlabeled data to guide the node splitting.

As for the results in terms of ICC, SVR combined with AV Fusion and
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Audio accounts for the best performances of ICC = 0.781 and ICC = 0.687
for the Set two and three, respectively. It is worth noting that the best ICC
scores obtained by Audio are much higher than those obtained by the visual
descriptor Expr.+SIFT. In other words, the predictions yielded by the former
framework are much more ‘consistent’ in terms of ICC with the ground truth
annotations than those yielded by the latter. This behavior can be partially
attributed to the annotation process. In particular, it is highly likely that the
annotators, who are all native speakers of Greek that is the language spoken
in the CONFER Database, relied much more on the audio modality while
annotating since in that alone they could easily identify informative cues
associated with conflict escalation/resolution in terms of both the physical
layer (e.g., interruptions, overlapping speech) and the inferential layer (e.g.,
sarcasm, rudeness, confrontation) of the conversation. The impact of this
condition is larger in absolute terms for the ICC rather than the COR metric
in the results reported in Table 2. This is presumably due to the random
error associated with the ‘raters’ decreasing significantly for the audio-based
system and thus leading to an increase in the ratio of variances to which ICC
equals (see Section 4.5 and [72] for more details).

Furthermore, it is also worth noting that the aforementioned best per-
formances in terms of ICC exceed the corresponding values of ICC = 0.495
and ICC = 0.414 measured amongst the 10 annotators for the Set two and
three, respectively. This signifies that the corresponding frameworks, which
were trained using the ‘mean annotator’ annotations, learned the trend of
the ‘mean annotator’ better and were able to reproduce the trend accurately.
This result is quite encouraging in that it reveals that even uni-modal sys-
tems based on a commonly used classifier can be more ‘consistent’ with the
‘mean human rating’ in assessing conflict intensity than several humans are
with one another on the same dataset.

Overall, the relatively low results achieved in both experiments described
above can be attributed to (i) the challenging nature of the CONFER
Database, which consists of spontaneous conversational data where conflict
naturally arises, (ii) the demanding subject- and session-independent exper-
imental protocol adopted in this study, and (iii) the abundance of the data
(106536 and 106404 frames in total for the Set two and three, resp.), which
are all tested by means of cross-validation. However, these results indicate
that there is much room for improvement for tools targeting the task at hand.
We hope that these findings will encourage further research in the future in
the development of audio-visual approaches to automatic analysis of conflict
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as well as similar behavioral and affective phenomena.

6. Conclusion

In this paper, we presented the Conflict Escalation Resolution (CON-
FER) Database, a set of audio-visual recordings of naturalistic interactions
from political debates suitable for the investigation of conflict behavior. The
database contains 142 minutes of recordings in total and is the first of its kind
to have been annotated in terms of continuous (real-valued) conflict intensity
on a frame-by-frame basis. Data and annotations are publicly available for
non-commercial use at http://ibug.doc.ic.ac.uk/resources/confer/.
The CONFER Database can be used for the development of tools that target
automatic analysis of conflict or other social behaviors (e.g., (dis)agreement,
interest, politeness) and social signals (e.g., social dominance, engagement,
hot-spots), automatic speech recognition, recognition of non-verbal behav-
ioral cues (e.g., facial expressions, body postures, gestures, and vocal out-
bursts) as well as related audio processing and computer vision tasks (e.g.,
speaker diarizers, facial point trackers). In this study, we also reported bench-
mark results of subject- and session-independent experiments by means of
which the efficiency of commonly used audio and visual features and fusion
of them as well as classifiers was examined for continuous-time estimation of
continuous conflict intensity. These experiments represent the first system-
atic study of automatic conflict analysis viewed as a frame-by-frame regres-
sion task, with results indicating that there is much room for improvement.
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Highlights

• The Conflict Escalation Resolution (CONFER) Database is presented.

• CONFER contains 142 minutes (120 episodes) of recordings in Greek lan-
guage.

• Episodes are extracted from TV political debates where conflicts naturally
arise.

• Experiments are the first approach to continuous estimation of conflict in-
tensity.

• Performance of various audio and visual features and classifiers is evaluated.
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