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Abstract

Facial landmark localisation in images captured in-the-wild is an important and chal-
lenging problem. The current state-of-the-art revolves around certain kinds of Deep Con-
volutional Neural Networks (DCNNs) such as stacked U-Nets and Hourglass networks.
In this work, we innovatively propose stacked dense U-Nets for this task. We design a
novel scale aggregation network topology structure and a channel aggregation building
block to improve the model’s capacity without sacrificing the computational complex-
ity and model size. With the assistance of deformable convolutions inside the stacked
dense U-Nets and coherent loss for outside data transformation, our model obtains the
ability to be spatially invariant to arbitrary input face images. Extensive experiments on
many in-the-wild datasets, validate the robustness of the proposed method under extreme
poses, exaggerated expressions and heavy occlusions. Finally, we show that accurate 3D
face alignment can assist pose-invariant face recognition where we achieve a new state-
of-the-art accuracy on CFP-FP (98.514%).

1 Introduction

Facial landmark localisation [7, 8, 24, 25, 28, 34, 35, 37, 38] in unconstrained recording con-
ditions has recently received considerable attention due to wide applications such as human-
computer interaction, video surveillance and entertainment. 2D and 3D ! in-the-wild face
alignments are very challenging as facial appearance can change dramatically due to extreme
poses, exaggerated expressions and heavy occlusions.

The current state-of-the-art 2D face alignment benchmarks [28, 38] revolve around ap-
plying fully-convolutional neural networks to predict a set of landmark heatmaps, where
for a given heatmap, the network predicts the probability of a landmark’s presence at each
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'In this paper, the 3D facial landmarks refer to the 2D projections of the real-world 3D landmarks, which can
preserve face structure and semantic consistency across extreme pose variations.
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and every pixel. Since the heatmap prediction for face alignment is essentially a dense re-
gression problem, (1) rich features representations that span resolutions from low to high,
and (2) skip connections that preserve spatial information at each resolution, are exten-
sively investigated to combine multi-scale representations to improve inference of where
and what [23, 26, 27, 31]. In fact, the most recent state-of-the-art performance in 2D face
alignment has been held for a while [35, 38] and is also believed to be saturated [1, 2] by the
stacked Hourglass models [26], which repeat resolution-preserved bottom-up and top-down
processing in conjunction with intermediate supervision.

Although lateral connections can consolidate multi-scale feature representations in Hour-
glass, these connections are shallow themselves due to simple one-step operations. Deep
layer aggregation (DLA) [36] augments shallow lateral connections with deeper aggrega-
tions to better fuse information across layers. We further add the down-sampling paths for the
aggregation nodes in DLA and create a new Scale Aggregation Topology (SAT) for network
design. Following the same insight in the network topology structure, we propose a Chan-
nel Aggregation Block (CAB). The decreasing channel in CAB helps to increase contextual
modelling, which incorporates global landmark relationships and increases robustness when
local observation is blurred. By combining SAT and CAB, we create the network struc-
ture designated dense U-Net. Nevertheless, the computation complexity and model size of
the proposed dense U-Net dramatically increases and there is optimisation difficulty during
model training especially when the training data is limited. Therefore, we further simplify
the dense U-net by removing one down-sampling step as well as substituting some normal
convolutions with deep-wise separable convolutions and direct lateral connections. Finally,
the simplified dense U-net maintains similar computational complexity and model size as
Hourglass, but significantly improves the model’s capacity.

Even though stacked dense U-Nets have a high capacity to predict the facial landmark
heatmaps, they are still limited by the lack of ability to be spatially invariant to the input face
images. Generally, the capability of modelling geometric transformations comes from deeper
network design for transformation-invariant feature learning and extensive data augmenta-
tion. For transformation-invariant feature learning, Spatial Transform Networks (STN) [21]
is the first work to learn spatial transformation from data by warping the feature map via a
global parametric transformation. However, such warping is expensive due to additional cal-
culation on explicit parameter estimation. By contrast, deformable convolution [6] replaces
the global parametric transformation and feature warping with a local and dense spatial sam-
pling by additional offsets learning, thus introduces an extremely light-weight spatial trans-
former. For data augmentation, Honari et al. [17] have explored a semi-supervised learning
technique for face alignment based on having a model predict equivariant landmarks with
respect to transformations applied to the image. Similar idea can be found in [33], where
mirror-ability, the ability of a model to produce symmetric results in mirrored images, is ex-
plored to improve face alignment. Inspired by these works, we innovatively introduce dual
transformers into the stacked dense U-Nets. As illustrated in Fig. 1, inside the network, we
employ deformable convolution to enhance transformation-invariant feature learning. Out-
side the network, we design a coherent loss for arbitrary transformed inputs, enforcing the
model’s prediction to be consistent with different transformations that are applied to the
image. With the joint assistance of deformable convolution and coherent loss, our model
obtains the ability to be spatially invariant to the arbitrary input face images.

In conclusion, our major contributions can be summarised as follows:

We propose a novel scale aggregation network topological structure and a channel ag-
gregation building block to improve the model’s capacity without obviously increasing
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Figure 1: Stacked dense U-Nets with dual transformers for robust facial landmark localisa-
tion. We stack two dense U-Nets, each followed by a deformable convolution layer, as the
network backbone. The input of the network is one face image together with its affine or flip
transformed counterpart. The loss includes heatmap discrepancy between the prediction and
ground truth as well as two predictions before and after transformation.

computational complexity and model size.

With the joint assistance of a deformable convolution inside the stacked dense U-Nets
and coherent loss for outside data transformation, our model obtains the ability to be
spatially invariant to the arbitrary input face images.

The proposed method creates new state-of-the-art results on five in-the-wild face align-
ment benchmarks, IBUG [28], COFW [3, 15], 300W-test [28], Menpo2D-test [38] and
AFLW2000-3D [40].

Assisted by the proposed 3D face alignment model, we make a breakthrough in the
pose-invariant face recognition with the verification accuracy at 98.514% on CFP-
FP [30].

2 Dense U-Net

2.1 Scale Aggregation Topology

The essence of topology design for heatmap regression is to capture local and global features
at different scales, while preserving the resolution information simultaneously. As illustrated
in Fig. 2(a) and 2(b), the topology of the U-Net [27] and Hourglass [26] are both symmetric
with four steps of pooling. At each down-sampling step, the network branches off the high
resolution features, which are later combined into the corresponding up-sampling features.
By using skip layers, U-Net and Hourglass can easily preserve spatial information at each
resolution. Hourglass is similar to U-Net except for the extra convolutional layers within the
lateral connections.

To improve the model’s capacity, DLA (Fig. 2(c)) iteratively and hierarchically merges
the feature hierarchy with additional aggregation nodes within the lateral connections. In-
spired by DLA, we further propose a Scale Aggregation Topology (SAT) (Fig. 2(d)) by
adding down-sampling inputs for aggregation nodes. The proposed SAT sets up a directed
acyclic convolutional graph to aggregate multi-scale features for the pixel-wise heatmap pre-
diction. However, the computation complexity and model size of SAT significantly builds up
and the aggregation of three scale signals poses optimisation difficulty during model training
especially when the training data is limited. To this end, we remove one step of pooling
(Fig. 2(e)), thus the lowest resolution is § 8 pixels. In addition, we further remove some in-
ner down-sampling aggregation paths and change some normal convolutions into depth-wise
separable convolutions [18] and lateral connections [27] as shown in Fig. 2(f). Finally, the
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(a) U-Net (b) Hourglass (c) DLA

(d) SAT (1) (e) SAT (Il (f) SAT (11
Figure 2: Different network topologies. SAT can capture local and global features and pre
serve spatial information by multi-scale information aggregation.

simpli ed SAT maintains similar computational complexity and model size as Hourglass,
but signi cantly improves the model's capacity.

2.2 Channel Aggregation Block

The original Hourglass [26] employs the bottleneck residual block (Fig. 3(a)). To improve
the block’s capacity, a parallel and multi-scale inception residual block is explored in [12]
(Fig. 3(b)). Meanwhile, a novel hierarchical, parallel and multi-scale (HPM) residual block
is extensively investigated in [1, 2] (Fig. 3(c)). For the building block design, we follow
the same insight in the network topology and innovatively propose a Channel Aggregatio
Block (CAB). As shown in Fig.3(d), CAB is symmetric in channel while SAT is symmet-
ric in scale. The input signals branch off before each channel decrease and converge b:
before each channel increase to maintain the channel information. Channel compression
the backbone can help contextual modelling [19], which incorporates channel-wise heatm:
relationships and increases robustness when local observation is blurred. To control the co
putational complexity and compress the model size, depth-wise separable convolutions [1
and replication-based channel extensions are employed within CAB.

3 Dual Transformer

3.1 Inside Transformer

We further improve the model's capacity by stacking two U-Nets end-to-end [2, 26], feedinc
the output of the rst U-Net as input into the second U-Net. Stacked U-Nets with inter-
mediate supervision [26] provide a mechanism for repeated bottom-up, top-down inferenc
allowing for re-evaluation and re-assessment of local heatmap predictions and global sg
tial con gurations. However, stacked U-Nets still lack the transformation modelling capac-



JIA GUO, JIANKANG DENG: STACKED DENSE U-NETS WITH DUAL TRANSFORMERS 5

(a) Resnet (b) Inception-Resnet (c) HPM [1, 2]

(d) CAB
Figure 3: Different building blocks. CAB can enhance contextual modelling by chann
compression and aggregation.

ity due to the xed geometric structures. Here, we consider two different kinds of spat
transformers: parameter explicit transformation by STN [21] and parameter implicit tral
formation by deformable convolution [6]. In Fig. 4(a), we employ the STN to remove tf
discrepancy of rigid transformation (e.g. translation, scale and rotation) on the input f:
image, thus the following stacked U-Nets only need to focus on the non-rigid face tra
formation. Since the variance of the regression target is obviously decreased, the acct
of face alignment can be easily improved. In Fig. 4(b), the application of deformable cc
volution behaves the similar way. Nonetheless, the deformable convolution augments
spatial sampling locations by learning additional offsets in a local and dense manner ins
of adopting a parameter explicit transformation or warping. In this paper, we employ 1
deformable convolution as the inside transformer which is not only more exible to mod
geometric face transformations but also has higher computation ef ciency.

(a) Parameter Explicit Transformation (b) Parameter Implicit Transformation

Figure 4: Inside transformer comparison: STN v.s. Deformable Convolution.






