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Abstract—Human mimicry is a behavioural cue occurring dur-
ing social interaction that can inform us about the participants’
inter-personal states and attitudes. It occurs when a participant
in an interaction exhibits some behaviour as a result of a co-
participants prior display of that signal, and occurs on both short
and long time-scales. To develop a detection method for such
behaviour, we use a method based on feature prediction, where
we train an ensemble of regression models from one subject’s
features to the co-subject’s features, for each class. The ensemble
of models with lowest reconstruction error is used to detect
mimicry and non-mimicry, using continuous audiovisual streams.
As mimicry events are dynamical phenomena, we use a temporal
regression model (long short-term memory neural networks) to
capture sequential dependencies in the data. On a data set of ten
12-minute dyadic interaction episodes, our method gave average
positive and negative recall rates of 77.5% and 60.0% respectively,
on data with significant class imbalances, due to the relative
sparsity of mimicry samples when doing continuous detection.

I. INTRODUCTION

Mimicry has been demonstrated to be an important part
of human social interactions [1] and its implicit social signals
have attracted increasing attention from not only psycholo-
gists but also from HCI researchers [2]. Mimicry has been
operationalized in varying ways by psychology literature,
and has overlap with the related concepts of interactional
synchrony, interactive alignment, and convergence. It serves
as an important indicator of cooperativeness and empathy dur-
ing interaction. Recent research has explored whether people
non-consciously exploit mimicry to gain a social advantage
[3]. People can consciously or non-consciously mimic the
behaviour of others, because their goals activate behavioural
strategies which may aid in pursuing those goals [4], [5]. Indi-
viduals can mimic many different aspects of their interaction
partners, including speech patterns, facial expressions, emo-
tions, moods, postures, gestures, mannerisms, and idiosyncratic
movements [6],[7]. While non-conscious mimicry may not be
consciously perceived, it can be fostered or inhibited by social,
motivational, cognitive, and affective conditions, and has been
assumed to play a role in social glue [1], [8], to breed feelings
of similarity, affiliation, and sympathy [9]. The more mimicry
observed, the more smoothly an interaction is perceived, as
participants or confederates who are being mimicked are more
willing to alter the way in which they interact with others,
in order to share similar affect, express understanding, and
obtain more agreement[3],[10]. In this work we present a
method to continuously detect mimicry episodes, using class-
specific regression models to reconstruct the feature stream of a
participant in a dyadic interaction, from the other participant’s
feature stream. A sample at time point t is given the label of
the regression models with the lowest reconstruction error. We
propose that the regression models of a particular class will
more accurately model the relationship between the feature
streams, when an episode of that class is occurring. For

this study, we investigated mimicry of smiles, laughter, and
linguistic vocalization (“hmm”,“yeah”). As such, we restricted
the labelling of positive examples of mimicry to solely those
episodes containing these behaviours. For this work, we define
a mimicry episode as simple synchronous matching behaviour
- an occurrence of a participant in an interaction exhibiting
some behaviour as a result of their co-participants prior display
of that behaviour, on a range of different time-scales. We
used data from the MAHNOB Mimicry database [11]. To
the best of our knowledge this is the first work that attempts
continuous detection of behavioural mimicry, using data of
natural interaction between minimally constrained subjects,
and evaluates predictive performance against ground truth.
We obtain promising results, with mimicry being detected
successfully in many episodes, however the method is prone
to variability in the reconstruction error, which can generate
excessive false positives.

II. PRIOR WORK

Some initial work has been done on the learning of
predictive models for mimicry detection. Multiple authors have
developed methods for detection relying on the construction
of a “junk” set, which randomly permutes each subject’s data
independently, either acting on windows of grouped samples,
or as individual samples. This is then used to calculate an
artificial baseline measure. A synchrony score is calculated
on both the junk and real datasets, and some statistical test
is used to either highlight variables that might be particularly
informative, or temporal windows that have a particularly high
similarity. Ramseyer et al. [12] calculated cross-correlation of
motion energy features in one minute windows, with both pos-
itive and negative time lags; these scores were aggregated into
a global score and compared between real and (window-level)
permuted data. Delaherche and Chetouani [13] modelled global
coordination between movement features (motion energy, mo-
tion history, hand trajectory) and prosodic features (pitch,
energy, pause, and vocalic energy) for dyadic interactions, us-
ing Pearsons correlation and magnitude coherence (correlation
of the signals’ Fourier transform) between all feature-feature
pairs. Synchrony was inferred for pairs of features where the
correlation measures were further than 2 standard deviations
from those produced using a sample-level random permutation.
Michelet et al. [14] extracted spatio-temporal interest points,
of which they calculated neighbourhood statistics. These his-
tograms were concatenated, quantized into bags-of-words us-
ing k-means clustering, and locally-constrained dynamic time
warping was used as a similarity measure. A threshold was
then used to discriminate between mimicry and non-mimicry
states in short windows. Barbosa et al. [15] used lagged cross
correlation to measure motion co-ordination of lip and tongue
movements during repetitious speech between two subjects,
while [16] and [17] used windowed cross-correlation and
peak-picking to investigate symmetry in head movement time
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series. Boker and Rotondo [18] used lagged windowed cross-
correlation to investigate symmetry in full-body motion capture
data of free-form spontaneous dance. Sun et al. [19] used the
correlation of motion intensity histograms on video data of
natural interactions, demonstrating that after some duration
of face-to-face interaction, participants have the tendency to
adopt body postures, head movements, hand gestures and lin-
guistic idiosyncrasies of their co-participants. In an alternative
approach to cross-correlation based models, [20] computed 2
linear regression models per window; one model contained
both auto-regressive and cross-regressive components, while
the other contained an auto-regressive component only. If the
difference in R2 between the 2 models was significant (by F-
test), it was inferred that the reduction in unexplained variance
by incorporation of cross-regressive terms was non-random,
and hence an indicator of mimicry.

Recurrence analysis is another approach that has been used
to detect movement synchronization. This applies a similarity
metric to all pairs of samples from each sequence {(xi, yj) |
xi ∈ X, yy ∈ Y, i = 1...N, j = 1...M, } where X and Y
represent each sequence of features, to give an NxM matrix,
over which a threshold is taken to give a binary similarity
matrix. The diagonal structures in this matrix then represent
periods where the processes had a similar trajectory through
the phase space, and its entropy can be used as a measure of
process similarity. Such analysis has been used with motion
capture data of body posture in dyadic interaction [21][22]
where participants were asked to complete some joint task
such as a co-operative visual puzzle, or the pronunciation of
pairs of words subject to varying environmental conditions, to
observe the effect on mimicry on postural sway.

Out of the studies above, only [14] develop a predictive
model which is tested against ground truth, reporting AUC
measure, while others generally investigate some similarity
measure (assumed to be a suitable indicator of mimicry be-
haviour) in relation to some other variable (such as outcome
success of therapeutic treatment) or hypothesis (such as pre-
sumed increase in mimicry over the course of an interaction).

III. DATASET

We used a relatively new multimodal database, containing
mimicry episodes as they occur in naturalistic dyadic interac-
tions, the MAHNOB Mimicry Database [11]. The experiments
are designed to explore the relationship between the occur-
rence of mimicry and human affect. The corpus is recorded
using ambient and individual close-talk fixed microphones,
individual cameras from 6 frontal and 1 overhead view(s),
and a profile-view wide-angle camera. All output signals were
exactly synchronized using external triggers. Video data was
recorded at 58 frames/second, and audio was sampled at
48kHz. The dataset consists of 54 recordings of dyadic face-
to-face interactions: 34 are discussions on a political topic,
and 20 are conversations situated in a role-playing game.
Each session is between 5 and 20 minutes long. The subjects
consist of 40 participants and 3 confederates, across a range
of ethnic backgrounds and first languages. This data has
been partially annotated for multiple behaviours, including
dialogue acts, head gestures, hand gestures, body movement
and facial expression, and mimicry episodes. Due to only
partial availability of annotations, we used 10 sessions, with a
session length median of 14 minutes. Table I presents statistics

about the subjects used in this work. We define a mimicry
episode as an occurrence of a participant in an interaction
exhibiting a behaviour as a result of their co-participants prior
display of that signal. The episode onset is taken to be the
onset of the mimickee’s action subsequently manifested by
the mimicker, whilst the offset is taken to be the offset of the
mimicker’s display of that action. The upper bound on the time
lag between mimickee action offset and mimicker action onset
is set at 4 seconds - an even longer delay would be unlikely
to be mimicry. Mimicry behaviours may occur multiple times
within the same episode, either due to overlapping occurrences
(ie. the onset of a behavior to be mimicked occurs before
the offset of a previously mimicked behavior), or “reflective”
mimicry, i.e. subject 2 mimicking an action of subject 1,
which is subsequently mimicked by subject 1, as in contagious
laughter.

Session # Class size Episode length mean/var Session length

Mimicry Non-mimicry Mimicry Non-mimicry
3 1273 24532 254/60 4583/6021 7m24s
4 2714 52685 226/126 4777/4466 15m54s
5 4040 52647 237/140 3284/7342 16m16s
6 2146 54016 214/94 5369/5277 16m07s
11 2350 52105 195/86 4299/4978 15m38s
21 1967 33057 281/126 4696/2393 10m03s
32 4800 32087 228/152 1515/1750 10m36s
33 1072 54826 172/62 9137/6093 16m03s
42 6009 36651 214/104 1307/1598 12m14s
44 3833 14384 212/124 845/1125 5m13s

TABLE I: Session statistics (class size and episode length
reported as number of samples, session length as time in

seconds)

IV. FEATURES

Audio features: Cepstral features, such as MFCCs, have been
widely used in speech recognition, language-identification, and
discrimination between linguistic/non-linguistic vocalizations.
We use the first 6 MFCCs, computed every 10ms, over a
window of 100ms, giving a frame rate of 100 frames/second.
Visual features: Changes in facial expression are captured
using the point tracker described in [23], which uses an online
appearance model to track rigid head movements and non-
rigid facial motion, using 113 landmark facial points. It also
decouples this movements to output MPEG-4 facial animation
parameter (FAP) estimates, corresponding to mouth width,
mouth height, eyebrow pose etc.

V. LONG SHORT-TERM MEMORY NETWORKS

The long short-term memory network (LSTM) is a neural
network model that can preserve long-range dependencies and
contextual information in sequential data. They are an ad-
vancement on standard recurrent neural networks trained with
gradient methods, for which training is very difficult, especially
with long input sequences. As the network is unrolled through
time, the error signal tends to zero or divergence as it travels
backward through the network layers. Each backwards pass
through a “neuron” scales the error signal by the derivative
of the neurons activation function multiplied by the neuron
output’s connection weight. As error is backpropagated, this
scaling is repeatedly applied to the error term. If the scaling
is consistently less than 1, the error will vanish, leading to
negligible weight updates and extremely slow convergence; if
consistently greater than 1, the error term will diverge. LSTMs
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preserve the error signal by forcing the scaling to 1, using a
linear activation function with derivative equal to 1, and recur-
rent connection weight equal to 1. This allows them to maintain
unscaled activation values and error derivatives across arbitrary
time scales. As neural networks require nonlinear hidden unit
activation functions to be able to represent arbitrary non-linear
functions, each hidden memory cell′s state is squashed with
a sigmoid before being passed on to the rest of the network.
LSTM inputs/outputs are also “gated” to control internal state.
If a memory cell stores information that is only useful later in
a sequence, this (currently) irrelevant information may reduce
performance in the interim, causing it to be discarded, which
sacrifices overall performance. Memory cells may also be
perturbed by irrelevant input, causing information relevant later
in the sequence to be lost. Each cell therefore has its net
input and output modulated by input and output gates, respec-
tively, allowing a context-sensitive way to update its internal
state, shield state information from interference, and protect
downstream units from perturbation by (currently irrelevant)
stored information. A forget gate scales the activation from
the previous time-step, so memory cells can be cleared after
the current state has become irrelevant.

VI. METHODOLOGY

We adapt a method first suggested in [24], where each
feature vector is split into two disjoint subsets - one subset of
features is reconstructed from the other using a class-specific
regression model, and the model with minimum reconstruction
error classifies the sample. In our case, our subsets are the
subject-specific audiovisual features. For each of the two
classes, mimicry and non-mimicry, we train a regression model
from the first subject’s features to the second subject’s features,
and vice versa. This is done for multiple time lags, both
positive and negative, to account for subject reaction time, and
directionality of mimicry. We use the long short-term memory
network [25] as our underlying regression model to account
for sequential dependencies in our data, without resorting to
concatenation of multiple samples from a window into one
very large feature vector. The relationship between the subject
1 and subject 2’s features for both mimicry SM

1 , SM
2 and non-

mimicry SM̄
1 , SM̄

2 is modelled by fM
S1→S2

, fM
S2→S1

for mimicry

and fM̄
S1→S2

, fM̄
S2→S1

for non-mimicry as follows:

fM
S2→S1

(SM
2 ) = Ŝ1

M ≈ SM
1 (1)

fM
S1→S2

(SM
1 ) = Ŝ2

M ≈ SM
2 (2)

fM̄
S2→S1

(SM̄
2 ) = Ŝ1

M̄ ≈ SM̄
1 (3)

fM̄
S1→S2

(SM̄
1 ) = Ŝ2

M̄ ≈ SM̄
2 (4)

Once the model parameters are learnt, an unseen example
is given the label of the pair of class-specific models that
produce the lowest reconstruction error. When new samples
are available (for both subjects), the audio and visual features
are computed, and are then fed to the models from eq. 1, 2,
3, 4, and 4 error values are produced. We use mean squared
error (MSE) to scalarize the vector of reconstruction errors.

eMS2→S1
= MSE(Ŝ1

M
, SM

1 ) (5)

eMS1→S2
= MSE(Ŝ2

M
, SM

2 ) (6)

eM̄S2→S1
= MSE(Ŝ1

M̄
, SM̄

1 ) (7)

eM̄S1→S2
= MSE(Ŝ2

M̄
, SM̄

2 ) (8)

We then compute a weighted mean of the MSE, for each
class, as shown in eq. 9 and 10, where wM , wM̄ are parameters
optimized using gridsearch during model selection on the
validation set.

eM = wM × eMS2→S1
+ (1− wM )× eMS1→S2

(9)

eM̄ = wM̄ × eM̄S2→S1
+ (1− wM̄ )× eM̄S1→S2

(10)

A frame is classified as mimicry or non-mimicry depending
on which pair of models (corresponding to a particular class)
produced the best feature reconstruction, i.e. the pair with the
lowest combined reconstruction error:

IF eM > eM̄ THEN M ELSE M (11)

VII. EXPERIMENTAL STUDIES

A. Pre-processing steps

We split our data into training, validation and test sets on
a per-session basis, as mimicry behaviours vary considerably
between different pairs of subjects. The training set consisted
of the first contiguous block of the session such that it
contained half of all the mimicry episodes. This was then split
into individual sequences and used for training. The contiguous
block containing the next quarter of all the mimicry episodes
formed the validation set, and the remaining data was used
for testing and performance evaluation. Before training, all
features are z-normalized (per session) to zero mean and unit
standard deviation, and smoothed using a Savitzky-Golay filter
of window size 15 and degree 3.

B. Training

Mimicry and non-mimicry models are trained with se-
quences from their respective classes only. We use an ensemble
of the classifiers detailed above, with lags of {-24,0,24}
samples, corresponding to time lags of {-0.5,0,0.5} seconds.
This sits in between the time scales of low-latency motor
mimicry, and emotional mimicry which involves higher-level
(slower) cognitive processes [26]. As many mimicry episodes
were short, models with longer time lags would have had even
less training data per session than currently available, due to
the need to clip the ends of each training sequence after time-
shifting one relative to the other (for example, when using
a 150 sample length sequence to train a model with a lag
of 58 frames ≡ 1s, clipping the sequence after time-shifting
would lose 40% of the data for that sequence!). Preliminary
experiments also showed that including longer time lags had no
meaningful effect on performance, for this model. We define
lag relative to subject 1, hence a model with a negative lag
implies that it models the relationship between data from
subject 2 with earlier data from subject 1. So, as shown in
Fig.1, for each class we train regression models to predict the
audiovisual features at t in stream 2 based on the features at
t− 24 in stream 1 (and vice versa), and models to predict the
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Fig. 1: Regression models at different time lags each
generate a frame label for time t, which are combined using

majority voting

audiovisual features at t in stream 1 based on the features at
t−24 in stream 2 (and vice versa), as well as models to predict
the features at t in stream 1 from t in stream 2 (and vice versa).
Models with time-lags suffer from inevitable edge effects (e.g.
when training with the first sample in a session, there are no
prior samples to train a time-lagged model with); rather than
zero-pad the sequence ends, we clip those samples that have
no corresponding samples (at the correct time) to train with.
We use the LSTM implementation from the PyBrain neural
network library [27].

C. Labelling procedure

After the regression models for each class have produced
a reconstruction of their complementary features, the error
values eMS2→S1

, eMS1→S2
, eM̄S2→S1

, eM̄S1→S2
are smoothed using

a Savitzky-Golay filter, with a window size of 29 frames,
and degree 5. The reconstruction errors from each pair of
regressors are then compared to generate a label prediction
as per eq.11. As mentioned above, we use an ensemble of
classifiers with different time lags, each of which produces
a label for a given sample. Therefore each frame is labelled
3 times. These “votes” are then combined using a majority-
voting decision rule. The performance measures we use are
precision and recall. Note that we are not classifying pre-
segmented sequences, rather we are performing classification
on individual frames along the entire length of the sequence.
Training of each regression model is performed using pre-
segmented sequences (as they are only trained using data from
their respective classes), however labelling of new frames is
done continuously, to take advantage of the stateful LSTM
model.

D. Model selection

We trained networks using only one hidden layer. The
number of hidden neurons was optimized using a line search
across the range [25-75] in steps of 10, where the hidden
layer size for networks in both classes was constrained to be
equal. Networks were trained using resilient back-propagation,
with a training epoch limit of 500. Our method also requires
optimization of the weights wM and wM̄ , with respect to
classification performance. This is performed using a single-
resolution grid-search in steps of 0.001, subject to 0 ≤ wM ,
wM̄ ≤ 1. The best performing model is chosen (using f1
performance as a selection criterion), and tested as below.
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Fig. 2: Positive precision has an approximate inverse
relationship to severity of class imbalance in the data

E. Testing

The (resilient) back-propagation training algorithm when
applied to an LSTM network, solves a local optimization of
an error function with (potentially) many local minima - the
local minimum the network finishes in is dependent on its
initialization point in the weight-space. This initial point is
instantiated randomly, so different training runs may end up in
different minima. To account for this non-determinism, during
testing we train and test each model 5 times, reporting mean
and standard deviation.

VIII. RESULTS

TABLE II: Class-specific precision and recall measures for
detection of mimicry of laughter, smiles, and linguistic

vocalization

Session # Non-mimicry Mimicry

precision recall precision recall
3 93.8 (1.1) 56.2 (1.4) 13.8 (1.2) 65.4 (6.6)
4 95.4 (1.5) 63.4 (1.2) 22.6 (1.3) 77.8 (8.0)
5 98.3 (1.0) 56.1 (2.4) 14.6 (1.5) 88.4 (6.0)
6 98.9 (3.6) 61.3 (1.2) 10.5 (6.8) 86.8 (4.1)
11 97.8 (4.8) 53.5 (4.7) 6.2 (0.5) 71.4 (6)
21 83.3 (4.2) 69.9 (3.2) 52.3 (5.4) 70.2 (7.7)
32 95.2 (0.8) 63.9 (0.9) 39.1 (0.7) 87.7 (2.2)
33 98.9 (4.9) 49.2 (3.6) 6.3 (0.5) 84.4 (8.2)
42 91.2 (1.9) 63.3 (1.5) 47.1 (1.9) 84.2 (3.4)
44 40.6 (2.0) 63.9 (3.0) 79 (1.8) 59.2 (1.8)

Table II shows the experimental results on 10 full sessions
of the MAHNOB Mimicry database. We can see that the
performance is highly session dependent, however the models
have a bias towards labelling a frame as mimicry, as shown
by the generally high positive recall performance. This may
be due to the significant class imbalance in the data.

Although our method is not directly discriminating between
the two class distributions in the feature space, the abundance
of non-mimicry data may allow the non-mimicry model to
learn a smoother approximation between the two sets of
features, allowing better generalization. Even after filtering,
the high-frequency noise in the mimicry model error is more
prominent than in the non-mimicry model error. This noise
seems to cause the false positives when reconstruction error
is low for both models, examples of which can be seen in
Fig. 3. For our experiments we limited filtering to a 29 frame
window, to avoid removing small variations on the order of
0.5s that could be informative of real expressions. However
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the persistent presence of noise suggests that a more aggres-
sive smoothing of the reconstruction errors might improve
performance; it may prove useful to include the smoothing
parameters in the optimization of the weights wM , and wM̄
during model selection. We can also see in Fig. 2 that there
is an inverse relationship between the ratio of the class sizes,
and the positive precision. The variances in performance for
positive precision and recall is also significantly higher than
for negative precision and recall, suggesting that the solutions
found by the networks for the mimicry models are relatively
unstable. The networks for both mimicry and non-mimicry
were constrained to have an equal number of hidden neurons,
to reduce the size of the model search space, however this
may have lead to overfitting of the mimicry models, as the
ratio between the number of parameters to optimize (network
weights) and available data becomes too high. Resampling to
artificially balance class-sizes would be of little use in this
case, since we are not directly discriminating in the feature
space, whilst subsampling the non-mimicry data may lead to
instability and overfitting for the non-mimicry models as well.

However we can see that our method can successfully
detect boundaries between mimicry and non-mimicry in some
cases, as in Fig.3. The sequence corresponding to those frames
is shown in Fig.4. This sequence has very obvious vocalized
laughter, smile and linguistic mimicry, and furthermore the
difference between mimicry and non-mimicry states for these
subjects is well defined, and hence is detected relatively easily
from the surrounding non-mimicry states. Furthermore, the
false positives later on in the sequence, between frame indices
2000-3000, are in this case not entirely wrong; during this
segment there is mimicry of head nods, with very significant
head movement from subject 2. Since the face tracker used is
not perfect at decoupling head movement from facial expres-
sions, and the subjects in session 32 nod very vigorously, these
nods are (though heavily damped) still present in the features
for normalized facial movements. Hence the models may have
unintendedly learnt how to detect nod mimicry, as nod mimicry
frequently co-occurs with smile mimicry in the training data
(and hence with positively labelled training data, as we only
labelled data as positive if they contained smile, laughter or
linguistic mimicry, for this work). In other sessions, such as
session 11, one subject had an extremely wide variety of highly
animated expressions while discussing a political topic, and the
difference in expression between mimicry and non-mimicry
states was poorly defined; another subject in session 3 had an
extremely small amplitude of expression and unvarying style
of speech throughout. These, coupled with the class imbalance
(e.g. for session 11, the negative-to-positive ratio is 25), may
have depressed the positive precision significantly.

IX. CONCLUSION

We presented a method to detect mimicry behaviour in
audiovisual data of naturalistic dyadic interaction, using a
temporal regression model, long short-term memory networks,
to reconstruct one subject’s behaviour from the other. Our
method can perform reasonably well, with promising positive
and negative recall rates of 77.5% and 60% respectively, but is
sensitive to a negative-to-positive sample ratio that is extremely
large, or insufficient amplitude of gesture and expression. Class
imbalance will be a significant problem to overcome for future
mimicry detection methods, and model complexity will be

have to be controlled to prevent noise overpowering subtle
behavioural cues.
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