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Highlights

e We present an audiovisual dataset for investigation of
mimicry behaviour.

e We report baseline performances from per-session
mimicry classification experiments.

e Performance is session-dependent, due to variability in
subject expressiveness.

o Current mimicry classification methods need more devel-
opment for spontaneous data.
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People mimic verbal and nonverbal/expressions and behavior of their coun-
terparts in various social interactions. Research in psychology and social sci-
ences has shown that mimicry has theipower to influence social judgment and
various social behaviours, including negotiation and debating, courtship, em-
pathy and helping behaviours, Henee, automatic recognition of mimicry be-
haviour would be a valuable tool in various domains, and especially in nego-
tiation skills enhancement and“medical help provision training. In this work,
we present the MAHNOB:Mimicry database, a set of fully synchronised, mul-
ti-sensory, audiovisual recordings of naturalistic dyadic interactions, suitable
for investigation‘of . mimicry and negotiation behaviour. The database contains
11 hoursfof recordings, split over 54 sessions of dyadic interactions between
12 confederates and their 48 counterparts, being engaged either in a socio-po-
litical'discussion or negotiating a tenancy agreement. To provide a benchmark
for efforts in machine understanding of mimicry behaviour, we report a num-
ber of baseline experiments based on visual data only. Specifically, we con-
sider face and head movements, and report on binary classification of video
sequences into mimicry and non-mimicry categories based on the following
widely-used methodologies: two similarity-based methods (cross correlation
and time warping), and a state-of-the-art temporal classifier (Long Short Term
Memory Recurrent Neural Network). The best reported results are session-de-
pendent, and affected by the sparsity of positive examples in the data. This
suggests that there is much room for improvement upon the reported baseline
experiments.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

lated phenomena including interactional synchrony [9], and in-
teractive alignment [28]. All of these phenomena (including

Research in/psychology has found that people mimic pos-
tures, facial expressions, mannerisms and other verbal and
nonverbal expressions of the counterpart in social interaction
[6][16]. Contagious effects of laughter and yawning, mimicry
of speech rate and rhythms, and imitation of smoking behaviour
and mannerisms are just but a few examples [13]. Mimicry has
been operationalized in varying ways and has overlap with re-

**Corresponding author: Tel.: +44-207-594-8195;
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mimicry) fall under the larger category of behavioural simi-
larity. Mimicry behaviour can be divided into motor mimicry
and emotional mimicry [15]. Motor mimicry constrains be-
haviours to be identical in expression (but not in duration, inten-
sity or phase). In emotional mimicry, the displayed behaviours
may not be identical, but have the same “functional value”, i.e.
“convey the same message” in terms of the underlying affec-
tive state, including but not limited to, sadness, empathy, or
trust. Note that motor mimicry may also be (a part of) an
emotional mimicry episode. For example, an inner-brow raise



displayed in sadness may be mimicked (and perhaps intensi-
fied by additional displays of chin raise and downwards head
tilt). In this work we largely focus on motor mimicry, mainly
because of its agnostic character. To wit, while emotional
mimicry judgment is all about interpretation of what under-
lies the displayed behavioural expression and mimicry episode,
motor mimicry judgment is objective, describing just the “sur-
face” of the shown behaviour, such as which facial movement or
speech mannerism has been mimicked, leaving inference about
the conveyed message (emotion) to higher order decision mak-
ing.

Research in psychology and social sciences has shown that
presence or absence of motor mimicry behaviour can serve as
a (positive or negative) indicator of co-operativeness [16], so-
cial judgment [13], presence of autism spectrum disorder [20],
and even traumatic brain injury [18]. Hence the presence and
characteristics of motor mimicry behaviour can serve as a use-
ful step in higher-order behavioural inference. It is not surpris-
ing then that automated machine recognition of interpersonal
mimicry behaviours could be of tremendous help to research
and society. It could speed up research in behavioural, political,
and social sciences. It could be of tremendous value for feed-
back provision in negotiation skills and medical help provision
training. Crucially, it could revolutionise the way we interact
with robots and avatars; such technology would enable these
artefacts to mimic their human counterparts properly and show
rapport and collaboration and evoke trust. Recently, few pio-
neering efforts towards machine analysis of mimicry behaviour
have been reported, but the research on the topic is still in its
infancy, partly because of the lack of suitable data to train ma-
chine learning algorithms on.

In this work we provide a comprehensive description
of the MAHNOB Mimicry database, a collection ‘of fully-
synchronised multi-sensory audiovisual recordings of natural-
istic dyadic interactions suitable for investigation of mimicry
and negotiation behaviour. Although primarily intended for
investigation of behavioural mimicry,«he dataycan be used in
studies of other social phenomena such as)turn taking, rapport,
and back channel communication. It is also suitable for eval-
uation of signal processing and machine learning techniques,
for head pose estimation, facial expression tracking, automatic
speech recognition, and“similar. /The database contains 11
hours of recordings, split over 54 sessions of dyadic interac-
tions between 12 confederates and their 48 counterparts, being
engaged either in a socip-political discussion or negotiating a
tenancy agreement. Out of 54 sessions 15 have been fully an-
notated, in térms of facial points tracked for both session partic-
ipants, millimétre-precision six-degrees-of-freedom (6-DOF)
head pose for both participants, and human judgments of motor
mimicry behaviours of head gestures, hand gestures, facial ex-
pressions, shoulder movements and postural shifts of the torso.
The database is publicly available for non-commercial use at
http:// mahnob-db.eu/ mimicry.

The MAHNOB Mimicry Database database is the first of its
kind as it satisfies all of the following:

e contains fully-synchronised recordings of interpersonal
dyadic interactions,
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e contains recordings of a fairly large number of subjects
and moderately wide range of ethnicities, and near-equal
subject gender balance,

e is filmed in conditions allowing comprehensive research in
computer vision and signal processing, in terms of range
of views, amenable lighting conditions, good image reso-
lution, and highly accurate synchronization of all record-
ing sensors, and

e is annotated in terms of a large number of head, hand,
shoulder and face gestures, and motor mimicry episodes
involving these gestures.

The MAHNOB Mimicry Database‘has been partially pre-
sented at conferences (see [36][35][2]) but aicomplete descrip-
tion of the data, the recording protocol and the available an-
notations, has not been reported sofar, The novelty of this
work is not only in provision,of a‘complete description of this
database, it is also in provision _of baseline experiments that
could serve as benchmark for efforts in the field. We con-
sider face and head movements tracked by the state-of-the-art-
trackers (i.e. the“face.tracker described in [25] and the head
pose estimator ‘desctibed in [17]) and report on binary classifi-
cation of videe sequences into mimicry and non-mimicry cat-
egories based onjthe following widely-used methodology: two
simildrity-based’'methods (cross correlation as used in [22] and
Generalised Time Warping [40]), and the state-of-the-art tem-
poralclassifier, Long Short Term Memory Recurrent Neural
Network (LSTM-RNN) [32]. Performance of the methods is
evaluated against the ground truth, representing human annota-
tions of motor mimicry behaviour.

The motor mimicry behaviours considered in our experi-
ments include smiles, frowns, and eyebrow raises, as well as
head nods, head shakes, and significant shifts in head posture.
We say that a motor mimicry episode has occurred if one of
the subjects displays a behaviour previously displayed by her
counterpart and does so within a certain time limit. This time
limit has both a lower and an upper bound. The former is set
so as to distinguish between synchronicity and mimicry. The
latter is set so as to distinguish between motor mimicry and be-
haviours that are identical in expression but displayed with large
delay and, hence, having low likelihood that they represent mo-
tor mimicry. These thresholds are set to 0.04 seconds and 4
seconds. Research in psychology has shown that people need
at least 40ms to recognise and start mimicking a facial move-
ment [34], and hence we set the lower bound to 0.04 seconds.
The upper boundary has been set in an experimental fashion,
by reviewing all motor mimicry episodes annotated as such by
the human annotators in the MAHNOB Mimicry database and
setting the threshold to the duration of the longest delay.

The problem of automatic motor mimicry recognition is
made difficult by the fact that the mimicked behaviour is identi-
cal in expression but may not be identical in duration, intensity
and phase. For example, for nods, the primary rotation around
transverse axis can be mixed with other rotations, and can vary
in velocity, intensity, phase and number of periods. This vari-
ability implies that the events need to be related to each other
through some non-trivial spatiotemporal transform. Most cur-
rent methods for mimicry detection or classification rely on a



pair-wise similarity measure, combined with a method to ac-
count for the delay in the reaction (via time-lags) and for the
variability in the duration of the reaction (via temporal-window-
based analysis). We use similar approaches in this work.

We conduct two sets of experiments. The first one is based on
facial cues only, where positive examples consist of sequences
containing motor mimicry of facial movements only. The sec-
ond experimental setup is based on facial and head motions,
and positive examples are sequences containing motor mimicry
of facial and head movements. Of the tested methods, LSTM-
RNNSs gave the best performance due to the methods inherent
ability to model well arbitrary spatio-temporal transformations.
However LSTM-RNNS suffer from significant variance in clas-
sification performance, which we also observed in our experi-
ments. The best reported results are session-dependent and af-
fected by the sparsity of positive examples in the data. This
suggests that there is much room for improvement upon the re-
ported baseline experiments.

The paper is further organised as follows. Sec. 2 reviews
prior work. Sec. 3 provides a complete description of the
MAHNOB Mimicry Database. Sec. 4 and Sec. 5 detail the
conducted baseline experiments. Sec. 6 concludes the paper.

2. Prior work
2.1. Other databases

Various databases containing audiovisual recordings of nat-
uralistic human behaviour have been reported to date. These
include databases of elicited naturalistic emotional responses to
various video material (e.g., AM-FED [19], see [39], [27], for
overviews), databases of broadcast material used in studies on
(machine) analysis of social roles and personality (e.g., see [37]
for an overview), databases of human-avatar interactions (e.g.,
SEMAINE database [21], the work provides also an,overview
of other such databases), and databases of interpersonal inter-
actions where the involved subjects are co-located and recorded
simultaneously (e.g., [12] provides an overview of group meet-
ings data repositories and [9] provides an overview'of data used
in studies on (machine) analysis of dnterpersonal synchrony).
However, most of these data repositories either publicly un-
available (e.g. [30], Spontal [10]),or suffer from some of the
following limitations.

o The recordings are-0f professional actors and it is unclear
whether the recorded interactions are acted or spontaneous
(e.g., as in IEMOCAP [5]).

e The recordings are of short interactions. Research in psy-
chology has shewn that mimicry behaviour becomes more
frequent as interaction progresses [4]; hence, short interac-
tions (less than 5 minutes, e.g., as in NOMCO [26]) have
significantly decreased likelihood of containing mimicry
episodes.

e The recordings are technically suboptimal. The most com-
mon problem is the low accuracy of sensory synchronisa-
tion. To facilitate audio and/or visual analysis of mim-
icking behaviour, analysis of temporal-interdependencies
of behavioural patterns shown by the interacting persons
must be facilitated, and that is possible only if the utilised
sensors (microphones and cameras) are synchronised to a
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high accuracy (of less than 40ms error, given that people
need 40ms to recognise and start mimicking a behaviour
[34]). However most of the currently available data on
interpersonal interaction have an error in the synchroni-
sation of the utilised cameras that is > 40 ms (which is
the duration of one frame in 25fps temporal resolution of
the camera, e.g., as in [6]). Other technical problems in-
clude low-resolution videos (e.g., as in NOMCO [26] and
IFADV [33]), suboptimal view of the subjects (e.g., as in
D64 [23]), and similar.

e The recordings have not been annotated by human experts
in terms of motor mimicry episodes, facial movements,
head and hand gestures, body postutes, etc. (e.g., as is
the case with IFADV [33]). /Building effective and effi-
cient machine learning algorithms for mimicry recogni-
tion depends on having suitable ground truth to learn from.
Hence, an important aspect of making progress in the field
lies in providing suitable"datasets of enough labelled ex-
amples for building robusttools.

As explained insection 3, the MAHNOB Mimicry database has
been collected'asstoraddress these limitations of the currently
available databases of spontaneous dyadic interactions.

2.2. Machine recognition of motor mimicry

Previous.works on mimicry detection have been based on a
measure of correlation between the subjects’ data. The meth-
ods_usually rely on the construction of a control dataset, in
which each subjects data is independently and randomly per-
muted. This permutation is applied to either windows of sam-
ples or individual samples. Generally a synchrony score is
calculated on both the control and the original dataset, and
a hypothesis test is used to either highlight informative vari-
ables, or temporal windows with significant similarity. Ram-
seyer et al. [29] used a proprietary dataset containing 104
sessions of cognitive behavioural therapy, in order to investi-
gate the relationship between synchrony and clinical outcomes.
They calculated windowed cross-correlation of motion energy,
with time lags ranging from -4 to +4 seconds (i.e. for cross-
correlation at time lag L, motion energy extracted from the
first subject S| in the time interval [#;,#,] is compared against
that extracted from the second subject S in the time interval
[t — L,t; — L]). These per-window scores were then aggre-
gated into a global score. The global scores between original
and (window-level) permuted data were compared for signif-
icance to distinguish those with synchrony behaviour. Boker
et al. [3] investigated whether movement synchrony increased
in the presence of acoustic noise. They used a proprietary
dataset of 8 subjects in a conversational setting. Data was
captured from body-mounted inertial sensors. They used win-
dowed cross-correlation and peak-picking, with time lags rang-
ing from -2 to +2 seconds, to estimate synchrony in head move-
ment. Neither of the prior two works report any performance
figures. Sun et al. [36] used the MAHNOB Mimicry Database
to show that subjects tend to mimic body postures, head move-
ments and hand gestures of their counterparts, and to investi-
gate how mimicry evolves during an interaction. They used
windowed cross-correlation of motion intensity histograms to
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Fig. 1: Camera views available from the MAHNOB Mimicry database

provide a similarity measure for mimicry behaviour. They ob-
served that the mean(s.d.) windowed cross-correlation across
all negotiation scenarios rose from 0.53(0.01) at the start of
a session, to 0.6(0.02) at the end of a session. For discus-
sion scenarios, the average windowed cross-correlation rose
from 0.3(0.02) to 0.5(0.03). These trends were also apparent
in individual sessions. Altmann et al. [1] used a proprietary
dataset of schoolchildren, to investigate how synchrony varies
between friend and non-friend dyads, when placed in compet-
itive and neutral scenarios. They used motion energy features
to compute 2 linear regression models per window. The first
model contained auto-regressive and cross-regressive compo-
nents, whilst the second model contained an auto-regressive
component only. If the difference in R? between the 2 models
was significant (by F-test), it was inferred that the variance ex=
plained by the cross-regressive terms was significant, and hence
an indicator of synchrony between the subjects.<They quantify
synchrony occurrence as the proportion of windows with sta-
tistically significant R* differences. Across all.sessions, they
report mean(s.d.) synchrony occurrences of .0.187(0.11) and
0.120(0.09) for neutral and conflict states,respectively. Feese et
al. [11] used a large, proprietary dataset to quantify behavioural
mimicry. Subjects worked in small groups to rank fictional job
candidates. Data was captured from body-mounted inertial sen-
sors. They used gesture detectors for behavioural events, in-
cluding head, arm and/torso movements. They define positive
output from the detectors closer than a temporal threshold to
be mimicry. Theyreportprecision, recall and F1 scores for de-
tection of their behaviour primitives, but they do not compare
against human-ratedsannotations for mimicry behaviour specif-
ically. They'reportF1 scores of e.g. 0.57 for posture changes,
0.67 for head'nods, and 1.00 for face-touching. Delaherche et
al. [8] used a proprietary dataset of students completing a co-
operative task to quantify behavioural sychrony. They used mo-
tion energy, optical flow, and prosodic features, and calculated
cross-correlation and magnitude coherence between all pairs of
features, in one-second windows. Synchrony was assumed for
a pair of features if the difference in cross-correlation between
the real data and a sample-permuted control dataset was sta-
tistically significant. They quantify synchrony occurrence as
the percentage of windows with statistically significant cross-

correlation (compared to.their control set). This percentage is
high for some feature-pairsi(e.g. 83.3% for both subjects’ mo-
tion history image, [73.2% for both subjects’ motion energy),
and low for others (e.g. 28.9% for cross-correlation between
one subject’s acoustic pitch and the other subject’s motion en-
ergy). None‘of the works mentioned above attempt to compare
their methods to,ground truth of mimicry behaviour. Michelet
et al. /[22] used/a proprietary dataset for sequence classifica-
tion into‘'mimicry and non-mimicry classes. Their dataset con-
tains, 256 clips of posed, gross body movements, set against a
uniformy static background. They used spatio-temporal inter-
est points to extract HOG/HOF features, which were quantized
ito a dictionary. Windows within a sequence were then de-
scribed by a bag-of-words. Cross-correlation and dynamic time
warping (across these windows) were used as a similarity mea-
sure between entire sequences. For each sequence, a threshold
was used to discriminate between mimicry and non-mimicry
classes. ROC (receiver operating characteristic) curves were
reported, giving a best performance of 0.920. Delaherche et
al. [7] proposed a similiar approach to that in [22], using the
likelihood ratios between one-class SVMs as a distance mea-
sure between class distributions. They used the same posed
data from [22]. They reported a maximum area-under-curve
of 0.92, similarly to the results reported in [22]. Bilakhia et
al. [2] did preliminary investigation of long short-term mem-
ory networks. This is currently the only work on mimicry be-
haviour detection in continuous data (i.e. detection of multiple
events in one entire sequence), as opposed to classification of
pre-segmented sequences. They used facial animation parame-
ters (FAPs) and cepstral features, extracted from the MAHNOB
Mimicry database. For both the mimicry class and the non-
mimicry class, an ensemble of regressors was learnt. These
regressors learned to map the features from one subject to the
features from their counterpart, and vice-versa. Given an un-
seen input sequence, the class-specific ensemble of regressors
with the lowest reconstruction error was taken to be the one cor-
responding to the input sequence. Experiments were session-
specific. The results show good recall, between 60%-90%, but
poor precision (between 6%-80%), for each class. This is due
to the class imbalance in the dataset.



Fig. 2: Mimicry episode of laughter, S32, 9m06s-9m16s

3. Database

In this section we provide a comprehensive description of the
MAHNOB Mimicry Database, a collection of annotated, ac-
curately synchronized (to an error of less than 4ms), multi-
sensorial, audiovisual recordings of naturalistic, dyadic inter-
actions.

Protocol: The dataset consists of 54 recordings of face-to-face
interactions. Of these, 34 are discussions on a contemporary
sociopolitical topic, and 20 remaining are tenancy agreement
negotiations. In both cases, while the participants are given the
topic of discussion, no script was provided - participants were
free to discuss at their leisure. In the latter case, session out-
comes, i.e. whether participants decided to live together, are
provided together with the rest of the data (of these, 18 are pos-
itive). Session lengths range between 5 and 20 minutes, with an
average length of 12 minutes. In total, 11 hours and 40 minutes
of recordings are available.

Recording setup: The corpus was recorded using the following
sensors (see Fig. 1):

e Audio sensors: 1 far-field microphone, 1 head-mounted
microphone per subject

e Visual sensors: 2 frontal cameras per subject, covering
the head and torso (*FaceNear{l, 2})y'3 frontal .Cameras
per subject, covering the head only,(*FaceFar{1, 2, 3}); 2
downward facing cameras per subject, covering the entire
body (*Body{l, 2}); and one profile-oriented camera cov-
ering both subjects (Overview).

Exact details of the utilized sensors, Capture computers, and
sensor fusion and synchronization procedures can be found in
[35]. The frontal camera descriptors “Far” and “Near” refer
to “far-field” and “near-field” measurement. The far-field cam-
era has a longer focal-length than the near-field camera, hence
the subject comprises more of the frame. Highly accurate syn-
chronizatiom(of less than 4ms) of 15 cameras, with 1024x1024
spatial- and 58Hz teémporal resolution, and 3 microphones with
48kHz temporal resolution, is achieved by recording all trigger
signals with a multi-channel audio interface. Each subject also
wore a “tiara” with 9 white markers to provide accurate head
pose estimates, as in Fig. 1 (see [17] for more details). The
head pose data are available in each camera’s respective refer-
ence frame, or the global reference frame.

Participants: 12 confederates and 48 counterparts took part in
the study. Non-confederate subjects were told that the purpose
of the recordings was automatic measurement of behaviour
in debate and negotiation scenarios. Subjects were recruited

from staff and students at Imperial College London, and span a
range of ethnicities and primary languages (primarily Europe or
the Near-East). Subject nationaliti€s include Spanish, French,
Greek, English, Dutch, Portugese,jand Romanian. The sub-
jects’ ages range between 18 and\34 (u=25, 0=4.8). Subjects’
age and nationality are available for all subjects. Subjects were
previously unacquainted. The'database is recorded in English.
There are 29 female/and 31 male subjects, of which 15 wore
eye-glasses.

Annotations: (The datashas been fully annotated for 15 out
of 54 sessiomns, for motor mimicry behaviour of head gestures,
hand gestures, bodyrmovement and facial expressions. The an-
notations in terms of gestures (i.e. which gesture occurs when
in the data) have been attained in a semi-automatic manner - an
automated detector of the target gesture has been run and the
resultsshave been manually inspected and corrected. For head
gestures - nods, shakes, and tilts - the method in [14] has been
used. Postural shifts of the head (in pitch, yaw and roll) have
been tracked by the highly accurate methodology of [17]. For
hand gestures - hand raising of left and right hand - the method
in [24] has been used. For postural shifts in the torso and shoul-
der shrugs, optical flow methodology similar to that used in [36]
has been used. Finally, for facial gestures - smiles, frowns, and
raised eyebrows - we used the facial point tracker and facial
action parameter coder in [25]. As already explained in the in-
troduction, we focus on motor mimicry episodes in this work.
The adopted definition of motor mimicry is similar to that used
in [11], and is illustrated in Fig. 3. The episode onset is taken to
be the onset of the mimickee’s gesture, whilst the offset is taken
to be the offset of the mimicker’s identical gesture. Assume a
behaviour instance bf We define the start and end times of
each behavior instance to be ts(bl.s'”) and te(bis "), respectively.
A behavior of subject S, bf”’, is mimicked by subject §, if a
behavior instance bf " exists that satisfies:

b= by b)) > 1)

ts(b§ ") < t,(b}™) + 4sec!

The start time of a mimicking event is given by te(bis’"), while
the end time is given by te(bf”). Mimicry episodes have sig-
nificant variability in their temporal structure, as seen in Fig.
3. These generally fall into four cases. Fig. 3a illustrates

IAs explained in the introduction, the value of this threshold has been de-
termined experimentally for the data in the MAHNOB Mimicry database.



Table 1: Per-session mimicry incidence statistics

Session # 1 21 3 41 5| 6|11 |21 |30|32|33]|35]|42]| 44 | 53 | Total
Smile | 10 | 2| 5 100161011 | 7|11 23| 6|14 |28 | 18| 5 176

Laughter | 6 | 0| O 51 40| 1| 7| 8] 7] 0| O0[13] 3 1 55

Frown | 0| 1| O 1y 0o 0] O O] O] O O O] 1] 0| O 3

Eyebrowraise | 0| 0| O 0 0 0] 0| O| O 1 0| 2| 4] 0] O 7

Headnod | 32 | 8|21 | 90 | 68 | 56 | 40 | 41 | 12 | 48 | 27 | 13 | 38 |22 | 4| 520

Mimicry Headshake | 5| 0| 1 21 41 1 1| 0] O 1| 2] 1 1| 5] 0 24
type Head pose shift | 6 | 2| 2 3 1 41 61 0] 0] 8 1 51 0 0 O 38
Shoulder shrug | 3| 0| O o) 0oy 0} 2| 0| O O] O] O O O] O 5

Left hand movement | 3 | O 1 1 21 0] 0 2| 2 1 0 1 0| 6| 0 19

Right hand movement | 3 | O 1 2| 4 | 0| 4] 3| 4| 0| 363 8| O 36

Torsoshift | 1| 0| 3 0} 0| 0] 3 1| 2] 2] 0| 34 0 1| 0 16

Total | 69 | 13 | 34 | 114 | 99 | 72 | 64 | 62 | 38 | 95 | 36 €42 88 | 63 | 10 | 900

the case where only short time delay exists between the on-
sets and offsets of corresponding behaviours (e.g. in S16 at
13m07s). Fig. 3b illustrates the case where a short-duration
initial behaviour (such as a monosyllabic laughter episode) trig-
gers a much longer response by the counterpart (e.g. in S26 at
1mO08s). The inverse can also occur, where a long-duration ini-
tial behaviour triggers a much shorter response by the counter-
part. Several mimicry occurrences can also be aggregated into
the same episode, as illustrated in Fig. 3c and Fig. 3d. Fig.
3c shows “reflective” mimicry, where subject 2 mimics an ac-
tion of subject 1, which is subsequently mimicked by subject 1,
such as in contagious laughter (e.g. in S28 at 2m7s). Episodes
of reflective mimicry contain 3 or more displays of the sarme
behaviour. Fig. 3d shows multiple mimicry, where the onset
of a behaviour subsequently mimicked occurs before the offset
of a previously mimicked behaviour (e.g. in S19 at 1m54s).
These mimicry episodes are concatenated togethér due to tem-
poral overlap. However, unlike reflective mimicryythey are not
required to contain mimicry of the same behaviour display. For
example, a multiple mimicry episode may contain an instance
of smile mimicry concatenated to an instance of nod mimicry.

All motor mimicry episodes haye:been annotated by two an-
notators using the ELAN annotation software [38]. If discrep-
ancies in annotation occurred, (e.g. in the exact timing of on-
set/offset of an episode), theése were discussed to reach an agree-
ment. Table 1 shows annotated session statistics for these motor
mimicry episodes, peri mimicked gesture. Mimicry episodes of
head nods, smilessand laughter are the most numerous - this is
not surprising, as the confederates and their counterparts were
previously unacquainted. Research in psychology has shown
that people try“to,be liked by new acquaintances and tend to
mimic positivé emotions, characterised by laughter, smiles, and
nods, more often [15]. An example of ideal motor mimicry of
laughter is illustrated in Fig. 2.

4. Baseline experiments: Setup

Here we describe the setup for the conducted baseline experi-
ments. We consider face and head movements, tracked by the
state-of-the-art-trackers, in 10 annotated sequences (S3, S4, S5,
S6, S11, S21, S32, S33, S42, S44) described in Table 1, and
report on binary classification of these video sequences into
mimicry and non-mimicry categories based on the following

Significant overlap, little extraneous
behaviour

Short initial behaviour triggers long
response

(a)ddealised motor mimicry (b) Short stimulus, long response

Reflective mimicry aggregated
into single mimicry episode

Multiple mimicry instances aggregated
into single mimicry episode

(c) Reflective mimicry (d) Multiple mimicry

Fig. 3: Mimicry episode construction (black dashed lines define episode bound-
aries)

widely-used methodologies: two similarity-based methods and
the state-of-the-art temporal classifier (LSTM-RNN). We con-
duct two sets of experiments. The first one is based on facial
cues only, where positive examples consist of sequences con-
taining motor mimicry of facial movements only. Hence (for
the first experimental scenario only) an example sequence con-
taining a mimicry episode of head nods is considered as a nega-
tive example. The second experimental setup is based on facial
and head motions, and positive examples are sequences con-
taining motor mimicry of facial and head movements. In both
scenarios, all data from each session is used. Performance of
the methods is evaluated against the ground truth, representing
human annotations of motor mimicry behaviour.

Data: To account for the extreme inter-session and inter-subject
variability, all experiments were performed on a per-session ba-
sis. We used 10 sessions in all experiments. As can be seen
from Table 1, these sessions have enough positive examples
of motor mimicry of both facial and head movements. The
mimicry episodes in these sessions are also of reasonable in-
tensity, in contrast to others where subject expressions are very
subtle (such as session 1). Hence our choice to use these ses-




sions. For each session, the data was split into 3 disjoint subsets
for training, model validation, and testing. The training data
consisted of the first part of the session such that it contained
half of all mimicry episodes encountered during that session.
The second part of the session containing the next quarter of all
the mimicry episodes formed the validation set. The remain-
ing data was used for testing. Splitting of the data per session
into the training, validation and testing sets could have been
done differently, e.g. based on the median and third-quartile
of duration. However, such approaches would be suboptimal
as positive examples are sparse and unevenly distributed over
time. Hence, such an approach could cause one of the sets, e.g.
the validation set, to have no positive examples. We also en-
countered another problem. As our data is fully spontaneous
data, non-mimicry episodes in such data are significantly more
frequent and longer than mimicry episodes. Hence, classifica-
tion of such episodes into mimicry and non-mimicry classes is
trivial using a simple threshold on episode length. To avoid
this pitfall, we artificially segment long negative examples (i.e.
non-mimicry episodes), with segment boundaries drawn from
a Gamma distribution, fit to the empirical distribution of posi-
tive examples’ (i.e. mimicry episodes’) lengths. In that way we
obtain positive and negative examples of comparable temporal
lengths.

Features: For head movements, we use the millimetre-
precision 6-DOF head pose estimator in [17] and calculate three
rotation velocities as the features to be used in further process-
ing. Velocities were obtained using finite-differences of the
smoothed head pose and were then scaled to the interval [0, 1].
Smoothing has been carried out using a cubic polynomial fit to
a sliding window of 15 frames. For facial movements, wesuse
facial point tracker in [25] and adopt Facial Animation Param-
eters (FAPs), directly calculated by the utilised tracker, as the
features to be used in further processing. We chese not to use
raw facial points and instead use the FAPs/(corresponding to
the upper lip position, jaw drop, lip width;\inner brow height,
lip corner position, and outer brow height), as\they are repre-
sentative of facial motion and descriptive of facial expressions.
This results in 9 features (6 FAPs.and 3 head rotation velocities)
for each video frame of a target video sequence.
Cross-correlation: Analogousto the"work in [22], we use a
DXSI X DXS2 cross-correlation matrix P, where DXS] and st2
are the feature dimensionalities of data matrices X;, and X,.
These data matrices.correspond to the features of subjects S
and S, respectively, for a given input sequence. A scalar mea-
sure of similarity is then calculated from this cross-correlation
matrix. To 'this end, we take the trace of the cross-correlation
matrix, as we,are interested in (homogeneous) motor mimicry -
i.e. mimicry of the same gestures, (i.e. the same features). We
account for reaction delay by calculating this measure across
different time-lags. We define time-lag relative to subject S;.
A cross correlation matrix with time-lag 7, P'(X,Y), is defined
element-wise as:

o e = )k = )
ij =
VS G = 8 S — )2
1 <i<Dx ,1<j<Dx,,n=len(Xy) = len(Xy,)

ey
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The final similarity measure between the two sequences is then
taken to be the mean of these traces:

T

xeorr dist(X,,, X)) = tr(P"(Xy,, X,,)) )
i=1

Vi=1.T

where T is the size of the set of time-lags, and tr() is the matrix
trace function.

A decision threshold 6 is then used to discriminate between
mimicry and non-mimicry. This is empirically determined by
optimizing over the range of similarity values calculated on a
validation set S:

0" = argmax 2TV +v) ! 3)
0
where:
_ >N i A Sy
511 Vi Zf; Vi

0" € [min(xcorr'dist(Xy i, Xs,1),i = 1...N),
max(xeorr=dist(Xy, i, Xs,i),,1 = 1..N)]

¥i = I xcorr_dist(X;, i, Xs,.i) > 6°]

S A&, 15 Xy 1, Y1) (X, 20 X5,.25 ¥2)-- (X N> Xy v0 YN}

wherey;.is the true class label for example sequence i, y; is the
predicted class label for example sequence i, N is the number
of.example sequences, 6" is the optimal decision threshold, 7 is
precision, v is recall, and I[] is the indicator function.
Generalized time-warping: Generalized time-warping
(GTW) [40] aligns sequences of multivariate data. It does so
by jointly finding a low-dimensional projection for each se-
quence that maximises the projections’ cross-correlation, and a
warping that maximises the alignment of these discovered pro-
jections. The GTW objective cost at convergence can be used
as a similiarity measure between sequences, gtw_dist(X;,, X, ).
Note however, that in this case a higher score will indicate
dissimilarity between sequences. As with the cross-correlation
similarity measure above, we use a decision threshold 6* given
by Eq. 3 to discriminate between mimicry and non-mimicry.
However, when using gtw_dist(Xy,,X,,), the comparison
operator in the indicator function is reversed compared to Eq.
3, as a higher value for the grw_dist(X;,, Xs,) score indicates
that sequences are dissimiliar.

Long short-term memory: The long short-term memory re-
current neural network (LSTM-RNN) [32] is a recurrent neu-
ral network model that can preserve long-range dependencies
in sequential data. They outperform standard recurrent neu-
ral networks, which suffer from gradient diffusion as the er-
ror is backpropagated during training. LSTM-RNNSs preserve
the error signal through a different choice of activation function
and recurrent connection weight. We perform binary classifica-
tion by concatenating the features of each subject together for
the whole episode, and train with gradient-descent and resilient
backpropagation using the ground-truth labels as output. We
use the PyBrain [31] implementation of LSTM-RNN.
Classifier training: As cross-correlation and GTW are unsu-
pervised, we combine the training set and validation sets to



estimate the hyperparameters. For the cross-correlation sim-
ilarity measure, the trace of cross-correlation matrix for each
sequence is calculated, for both positive and negative time-lags
(in order to account for the fact that any subject could mimick
their counterpart). We used time lags of {-24, 0, 24} samples,
ie. wedefine {t; : i = 1..T} = {-24, 0, 24} in xcorr_dist.
Given that the utilised cameras record at 58Hz, a time lag of 24
frames amounts to approximately 0.5s. This value was deter-
mined in an experimental fashion by inspecting the annotated
motor mimicry sequences. The majority of motor mimicry oc-
curred within 0.5s of the display of the mimicked behaviour
in our data. Hence we opted to use 0.5s as the longest time
lag considered. Preliminary experiments showed that longer
time lags had no effect on performance. The optimal hyper-
parameters are taken to be those which produce the best F1 per-
formance on the validation set. Due to severe class-imbalance
we use a skewed cost-matrix for model validation, to prevent
selecting a classifier that just returns the negative class. The
skew was set proportional to the class imbalance. For LSTM-
RNNSs, we use a single hidden layer. The only hyper-parameter
is the number of LSTM-RNN blocks in this hidden layer (i.e.
the rank of the hidden representation of the data), chosen ex-
perimentally by inspecting the performance for [15, 25, 35, ...,
75] blocks, and selecting the best performing one on the vali-
dation set. It is well known that the number of model param-
eters greatly increases with model depth. In turn, the risk of
overfitting on small datasets is significantly augmented. Hence
we chose to use a single hidden layer of moderate size, to pre-
vent this risk. LSTM-RNNs were trained using resilient back-
propagation, and training was stopped when the error gradient
fell below some small threshold €, or the number of tfaining
epochs (i.e. model parameter updates during learning) reached
500. LSTM networks are trained and tested 10 timesywith the
hyper-parameters found during the validation pfocedure, to ac-
count for the stochastic learning procedure.

Evaluation measures: Classification performance on the test
set is measured using sequence-level negative predicted value
(NPV), specificity, precision and recall:

NPV N ificit N
= — specifici ==
TN + FN i, 2 FP+TN

.. TP TP
precision = ————=— recall =
TP +(FP TP+ FN

where TP, FP, TN, FN corréspond to true positive, false posi-
tive, true negative, and false negative respectively.

5. Baseline experiments: Results

As explained above, we decided on session-dependent ex-
periments because of high inter-subject and inter-session vari-
ability. This would have adversely affected the simple cross-
correlation-based and GTW-based classifiers due to their low
learning capacity. For example, one could imagine a session
with very expressive subjects, where excess extraneous motion
drives down similarity globally. This would cause the learned
classifier to perform even worse for some other session where
subjects are less expressive and display only simple gestures
(pushing up similarity globally).
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Results for cross-correlation based classification in scenario
1 are shown in Fig. 5a. In most cases, precision is poor, and
recall is highly variable, from 33% to 87% (precision/recall of
0 indicates no true-positive predictions). This is mainly due to
the sparsity in positive examples and low class-separability that
cross-correlation-based classification can achieve. Positive ex-
ample sparsity depresses precision, as misclassifying a small
proportion of negative examples inflates the number of false
positives relative to true positives. Non-separability arises from
cross-correlation’s inadequacy for temporal data. For example,
both subjects sitting motionless gives a high cross-correlation
value, whereas complex movements (even'when being a part of
a mimicry episode) give a low correlationyvalue. Examples can
be seen in Fig. 6a, where negative examplesigive high similar-
ity e.g. in S5, 7500 < ¢ < 8000; due'to neutral facial expres-
sions in both subjects. Sometimes croess-correlation performs
reasonably well e.g. in S325:4500°< ¢ < 5000 (Fig. 6b), cor-
responding to the intensé laughter episode shown in Fig. 2. It
also captures well motor mimicry in S32, 2700 < ¢ < 3800,
where a series of intense smile-mimicry episodes occur with
small time delay between-behaviours. Both above-mentioned
cases correspond:to idealised motor mimicry (as in Fig. 2(a)),
which cross-cerrelation can detect well. In the second experi-
mental scenario (see Fig. 5b), cross-correlation has lower per-
formanee. Ititends to give lower specificity and precision, and
higherwwecall. This is due to the introduction of head nods and
shakes into the task, greatly increasing the number of positive
examples. However cross-correlation is unsuitable for periodic
motion, as illustrated in Fig. 4, where an example of idealised
mimicry is shown (low time delay, high overlap between ac-
tions). The bottom-left panel shows the first derivative of head-
pitch for both subjects from a nod mimicry episode in S44. Pe-
riodicity is evident in the time domain, whilst their power spec-
tra in Figs. 4a and 4b are similar, with a defined peak power
between 3-5Hz. This corresponds to the frequency range for
head nods and shakes. However cross-correlation gives very
low similarity, as seen in Fig. 4d.

In the first experimental scenario, GTW has worse perfor-
mance than cross-correlation in terms of specificity and preci-
sion (Fig. 5c), as its objective cost is also unrepresentative of
gesture similarity. The sequence S5, 2000 < ¢ < 3200, (Fig.
6a) contains intense smile mimicry episodes, but their time-
warping cost is high compared to other non-mimicry sequences
in the test set (note that lower cost indicates higher similarity).
As with cross-correlation, this is due to intra-gesture variability
and weak coupling - one subject smiles with well-defined on-
set/offset (and constant apex), whilst the other smiles intensely
but significant lip movement from enunciated speech is also
present. Similarly to cross-correlation in the second experimen-
tal scenario, GTW proves inadequate for alignment of periodic
data, as the performances in Fig. 5d show. Its requirement that
the temporal warping be monotonic precludes alignment of sig-
nals with different numbers of periods. This reduces similarity
for complex, semantically equivalent gestures, raising the opti-
mal decision-threshold on the validation set. This leads to more
false positive classifications, giving high recall and NPV.

In experimental scenario 1 (Fig. 5e) LSTM-RNNs have high
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Fig. 4: Cross-correlation based similarity measures are unsuitable for dynamic
phenomena. Though the power spectra are very similar, especially when com-
pared to the power spectrum of miscellaneous head motion as in (d), cross-
correlation in the time domain is sensitive to e.g. phase, changing intensity
over the episode duration, and non-stationarity.

NPV, and specificity performance between 50-70%, with low
precision. As the LSTM-RNN is not constrained to a linear
separator, it does not need to learn a decision boundary that
misclassifies large volumes of the negative-class to get a few
true positives. However, whilst they make positive predictions
in temporal proximity to mimicry episodes, they suffer from
large numbers of false positives. Their performance isighly:
variable when trained repeatedly. This is because the train-
ing data contains mimicry episodes with no significant over-
lap between gestures, due to reaction-delay or duration differ-
ence. Hence samples corresponding to a behaviout,in one sub-
ject are aligned with samples corresponding to~a different be-
haviour (or a neutral state) in the other subject (similarly to Fig.
3a). The classifier learns to associaté these non-matching be-
haviours with mimicry, causing false, positives at the onset of
a non-reciprocated gesture. In scenario 2, precision and speci-
ficity improve significantly across all'sessions, though recall de-
creases.

The LSTM-RNNSs generally have better precision, with more
stable recall across the sessions. Session-specific performance
is consistent across all models, e.g most methods perform better
on S42 and S44, whilst-all perform poorly on S6. Table 2 shows
average performance across all sessions for scenario 1, reveal-
ing the classifiers’ positive bias. For scenario 2, despite the re-
duced class imbalance, performance is degraded for correlation
and GTW. This is because they are unsuitable for characteris-
ing oscillatory motion. LSTM-RNN performance does not de-
grade as significantly. Table 3 shows the average performance
across all sessions for scenario 2. We see that NPV and speci-
ficity drop for nearly all classification methods compared sce-
nario 1, whilst precision and recall increase. The performances
shown in these experiments indicate that more advanced learn-
ing methods are needed to accommodate for the variability in
human motor-mimicry behaviour.
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Table 2: Per-method performance (mean/std) averaged over all sessions, sce-
nario 1 (facial mimicry only experiments)

negative
Model | predicted | specificity | precision recall
value
C(fs::‘ 82.2(8.3) | 81.4(6.4) | 29.0(18.4) | 45.9(21.4)
GTW 84.7(15.4) | 51.9(28.5) | 11.8(8.0) | 47.5(29.3)
LSTM 87.7(8.9) | 59.9(6.0) | 17.7(12.8) | 47.7(9.7)

Table 3: Per-method performance (mean/std) averaged over all sessions, sce-
nario 2 (facial+head mimicry experiments)

negative
Model | predicted | specificity. | /precision recall
value
Ccrgfrs 56.3(30.8) | 24.927.3) 26.1(8.9) | 76.1(24.0)
GTW | 68.1(28.3) [~30.7(31.2) | 22.0(10.6) | 66.6(34.2)
LSTM | 76.1(8.3) | 67:9(5.53) | 28.8(10.0) | 37.8(7.9)

6. Conclusion

In thiscpaperswepresent the MAHNOB Mimicry database,
a set of highly-accurately synchronised multi-sensory audio-
visual recordings of naturalistic dyadic interactions, suitable
for.investigating mimicry and negotiation behaviour. The
amount of mimicry data captured and annotated is significant.
Thevdatabase can be used for other applications as well, in-
cluding facial point tracking, continuous interest prediction,
or automatic speech recognition. The database is not yet
fully annotated, however raw data and current annotations are
publicly available for non-commercial use, at http://mahnob-
db.eu/mimicry. In this paper we also presented experimental
studies considering motor mimicry of facial and head move-
ments and widely-used classifiers including two similarity-
based methods (cross-correlation and generalized time warp-
ing), and a state-of-the-art temporal classifier (LSTM-RNN).
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Fig. 6: Similiarity values for test data from S5 and S32 (scenario 1). Note that
high similarity values can occur for sequences with no (facial) mimicry present,
e.g. for sequences where both subjects have static facial pose. High values
for cross-correlation, and low values for time-warping cost, indicate “similar”
seqgences. A ground truth value of 1 indicates a sequence containing a mimicry
episode. Green horizontal lines represent decision boundaries.



