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ArcFace: Additive Angular Margin Loss for Deep
Face Recognition

Jiankang Deng, Jia Guo, Jing Yang, Niannan Xue, Irene Kotsia, and Stefanos Zafeiriou

Abstract Recently, a popular line of research in face recognition is adopting margins in the well-established softmax loss function to
maximize class separability. In this paper, we rst introduce an Additive Angular Margin Loss (ArcFace), which not only has a clear
geometric interpretation but also signi cantly enhances the discriminative power. Since ArcFace is susceptible to the massive label
noise, we further propose sub-center ArcFace, in which each class contains K sub-centers and training samples only need to be
close to any of the K positive sub-centers. Sub-center ArcFace encourages one dominant sub-class that contains the majority of clean
faces and non-dominant sub-classes that include hard or noisy faces. Based on this self-propelled isolation, we boost the performance
through automatically purifying raw web faces under massive real-world noise. Besides discriminative feature embedding, we also
explore the inverse problem, mapping feature vectors to face images. Without training any additional generator or discriminator, the
pre-trained ArcFace model can generate identity-preserved face images for both subjects inside and outside the training data only by
using the network gradient and Batch Normalization (BN) priors. Extensive experiments demonstrate that ArcFace can enhance the
discriminative feature embedding as well as strengthen the generative face synthesis.

Index Terms Large-scale Face Recognition, Additive Angular Margin, Noisy Labels, Sub-class, Model Inversion
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1 INTRODUCTION ing a certain class. Sphereface [13] introduces the important idea

ACE representation using DCNN embedding is the method 8f @ngular margin, however their loss function requires a series
Fchoice for face recognition [1], [2], [3], [4], [5], [6]. DCNNs of approximations, WhICh. result.slln an unstable training .of the
map the face image, typically after a pose normalization step me,ztwprk. In _ordgr to stabilize training, they propose a hybrlq loss
[8], into a feature that should have small intra-class and |an§gwctlon which includes the standard softmax loss. Empirically,
inter-class distance. There are two main lines of research to trii§ Softmax loss dominates the training process, because the
DCNNs for face recognition. Some train a multi-class classi éfteéger-based multiplicative angular margin makes the target logit
which can separate different identities in the training set, su€Hrve very precipitous and thus hinders convergence.
by using a softmax classier [2], [4], [9], [10], [11], and the In this paper, we propose an Additive Angular Margin
others learn directly an embedding, such as the triplet loss [§]SS [16] to stabilize the training process and further improve
Based on the large-scale training data and the elaborate DCKI§ discriminative power of the face recognition model. More
architectures, both the softmax-loss-based methods [9] and #Ré&cCi cally, the dot product between the DCNN feature and
triplet-loss-based methods [3] can obtain excellent performarié® last fully connected layer is equal to the cosine distance
on face recognition. However, both the softmax loss and the tripféffer feature and center normalization. We utilize the arc-cosine
loss have some drawbacks. For the softmax loss: (1) the learfig@ction to calculate the angle between the current feature and the
features are separable for the closed-set classi cation problem Ejget center. Afterwards, we introduce an additive angular margin
not discriminative enough for the open-set face recognition prof§: the target angle, and we get the target logit back again by the
lem: (2) the size of the linear transformation mawik 2 RN cosine function. Then, we re-scale all logits by a xed feature
increases linearly with the identities numb§r. For the triplet NOrm, and the subsequent steps are exactly the same as in the
loss: (1) there is a combinatorial explosion in the number of fa§@ftmax loss. Due to the exact correspondence between the angle
triplets especially for large-scale datasets, leading to a signi ca®ftd arc in the normalized hypersphere, our method can directly
increase in the number of iteration steps; (2) semi-hard Samﬁ@timize the geodesic distance margin, thus we call it ArcFace.
mining is a quite dif cult problem for effective model training. Even _thOUQh impressive performance has been achieved by

To adopt margin bene t but avoid the sampling problem ih€ margin-based softmax methods [17], [13], [14], [15], they
the Triplet loss [3], recent methods [13], [14], [15] focus orll 'need tq bg tramgd on well-annotated clean datasets [18],
incorporating margin penalty into a more feasible frameworkvhich require intensive human efforts. Wang et al. [18] found
the softmax loss, which has global sample-to-class comparisdfidt faces with label noise signi cantly degenerate the recognition
within the multiplication step between the embedding feature afgcuracy and manually built a high-quality dataset including 1.7M
the linear transformation matrix. Naturally, each column of th§ages of 59K celebrities. However, it took 50 annotators to work

linear transformation matrix is viewed as a class center represeffiitinuously for one month to clean the dataset, which further
demonstrates the dif culty of obtaining a large-scale clean dataset
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Fig. 1. Comparisons of Triplet [3], Tuplet [12], ArcFace and sub-center ArcFace. Triplet and Tuplet conduct local sample-to-sample comparisons
with Euclidean margins within the mini-batch. By contrast, ArcFace and sub-center ArcFace conduct global sample-to-class and sample-to-subclass
comparisons with angular margins.

loss functions [20] according to the current model’s predictiorectivation for a chosen class by employing the gradient from the
can only alleviate the in uence from noisy data to some extent @se-trained classi cation model and some regularizers (e.g. total
the robustness and improvement depend on the initial performanegiance [31] for maintaining piece-wise constant patches). Even
of the model. Besides, the co-mining method [21] requires to tratinough DeepDream can keep the selected output response high
twin networks together thus it is less practical for training large preserve identity, the resulting faces are not realistic, lacking
models on large-scale datasets. natural face statistics. Inspired by the pioneer generative face

To improve the robustness under massive real-world noiggcognition model (Eigenface [32]) and recent data-free methods
we relax the intra-class constraint of forcing all samples close 3], [34], [35] for restoring ImageNet images, we employ the
the corresponding positive centers by introducing sub-classes ifitgtistic prior (e.g. mean and variance stored in the BN layers)
ArcFace [22]. As illustrated in Figure 1, we designsub-centers 10 constrain the face generation. In this paper, we show that the
for each class and the training sample only needs to be close?tgPosed ArcFace can also enhance the generative power. Without
any of theK positive sub-centers instead of the only one positi\féai”ing any additional generator or discriminator like in Genera-
center. If a training face is a noisy sample, it does not belong ¥ Adversarial Networks (GANs) [36], the pre-trained ArcFace
the corresponding positive class. In ArcFace, this noisy sampodel can generate identity-preserved and visually reasonable
generates a large wrong loss value, which impairs the mod@fe images only by using the gradient and BN priors.
training. In sub-center ArcFace, the intra-class constraint enforces The advantages of the proposed methods can be summarized
the training sample to be close to one of the multiple positi&s follows:
sub-centers but not all of them. The noise is likely to form a nomatuitive. ArcFace directly optimizes the geodesic distance margin
dominant sub-class and will not be enforced into the dominaby virtue of the exact correspondence between the angle and arc
sub-class. Therefore, sub-center ArcFace is more robust to noisethe normalized hypersphere. The proposed additive angular
In our experiments, we nd the proposed sub-center ArcFace carargin loss can intuitively enhance the intra-class compactness
encourage one dominant sub-class that contains the majority claad inter-class discrepancy during discriminative learning of face
faces and multiple non-dominant sub-classes that include hardeature embedding.
noisy faces. This automatic isolation can be directly employgtonomical. We introduce sub-class into ArcFace to improve its
to clean the training data through dropping non-dominant sulpbustness under massive real-world noises. The proposed sub-
centers and high-con dent noisy samples. Based on the proposeéter ArcFace can automatically clean the large-scale raw web
sub-center ArcFace, we can automatically obtain large-scale clgéages (e.g. MS1IMVO [37] and Celeb500K [38]) without expensive
training data from raw web face images to further improve thend intensive human efforts. The automatically cleaned training
discriminative power of the face recognition model. data, named IBUG-500K, has been released to facilitate future

In Figure 1, we compare the differences between Triplet [3jgsearch.

Tuplet [12], ArcFace and sub-center ArcFace. Triplet loss [3] ongasy. ArcFace only needs several lines of code and is extremely
considers local sample-to-sample comparisons with Euclideaasy to implement in the computational-graph-based deep learning
margins within the mini-batch. Tuplet loss [12] further enhancdsameworks, e.g. MxNet [39], Pytorch [40] and Tensor ow [41].
the comparisons by using all of the negative pairs within theurthermore, contrary to the works in [13], [42], ArcFace does
mini-batch. By contrast, the proposed ArcFace and sub-centert need to be combined with other loss functions in order to have
ArcFace conduct global sample-to-class and sample-to-subclstble convergence.

comparisons with angular margins. Ef cient. ArcFace only adds negligible computational complexity

As the proposed ArcFace is effective for the mapping frofiuring training. The proposed center parallel strategy can easily
the face image to the discriminative feature embedding, we aeépport millions of identities for training on a single server (8
also interested in the inverse problem: the mapping from a lofPUs).
dimensional latent space to a highly nonlinear face space. S¥ffective. Using IBUG-500K as the training data, ArcFace
thesizing face images [23], [24], [25], [26], [27], [28], [29] hasachieves state-of-the-art performance on ten face recognition
recently brought much attention from the community. DeepDreabenchmarks including large-scale image and video datasets
[30] is proposed to transform a random input to yield a high outpabllected by us. Impressively, our model reach@¥:27%
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TPR@FPR=1e-4 on IJB-C. Code and pre-trained models hdwe its position in the target logit distribution and presented a
been made available. noise-tolerant end-to-end paradigm by employing the idea of
Engaging.ArcFace can not only enhance the discriminative poweveighting training samples. Zhong et al. [20] devised a noise-
but also strengthen the generative power. By accessing the netwadistant loss by introducing a hypothetical training label, which
gradient and employing the statistic priors stored in the BN layeis, a convex combination of the original label with probability
the pre-trained ArcFace model can restore identity-preserved andnd the predicted label by the current model with probability
visually plausible face images for both subjects inside and outsitle . However, computing time-varying fusion weight [19] and
the training data. designing piece-wise loss [20] contain many hand-designed hyper-
parameters. Besides, re-weighting methods are susceptible to the
performance of the initial model. Wang et al. [21] proposed
a co-mining strategy which uses the loss values as the cue to
Face Recognition with Margin Penalty. As shown in Figure simultaneously detect noisy labels, exchange the high-con dence
1, the pioneering work [3] uses the Triplet loss to exploit tripletlean faces to alleviate the error accumulation caused by the
data such that faces from the same class are closer than fa@apling bias, and re-weight the predicted clean faces to make
from different classes by a clear Euclidean distance margin. Evéiem dominate the discriminative model training. However, the
though the Triplet loss makes perfect sense for face recogniti@o-mining method requires training twin networks simultaneously
the sample-to-sample comparisons are local within mini-batch aadd it is challenging to train large networks (e.g. ResNet100 [58])
the training procedure for the Triplet loss is very challengingn a large-scale dataset (e.g. MS1IMVO [37] and Celeb500K [38]).
as there is a combinatorial explosion in the number of tripleEace Recognition with Sub-classesRractices and theories that
especially for large-scale datasets, requiring effective samplilegad to sub-class have been studied for a long time [59], [60].
strategies to select informative mini-batch [43], [3] and choosknhe concept of sub-class applied in face recognition was rst
representative triplets within the mini-batch [44], [12]. As théntroduced in [59], [60], where a mixture of Gaussians was used
Triplet loss trained with semi-hard negative mining convergee approximate the underlying distribution of each class. For
slower due to the ignorance of too many examples, a doublastance, a persons face images may be frontal view or side view,
margin contrastive loss is proposed in [45] to explore moresulting in different modalities when all images are represented
informative and stable examples by distance weighted samplimgthe same data space. In [59], [60], experimental results showed
thus it converges faster and more accurately. Some other wotlkat subclass divisions can be used to effectively adapt to different
tried to reduce the total number of triplets with proxies [46}ace modalities thus improve the performance of face recognition.
[47], i.e., sample-to-sample comparison is changed into samplgan et al. [61] further proposed a separability criterion to divide
to-proxy comparison. However, sampling and proxy methods ondyery class into sub-classes, which have much less overlaps. The
optimize the embedding of partial classes instead of all classesigw within-class scatter can represent multi-modality information,
one iteration step. therefore optimizing this within-class scatter will separate differ-
Margin-based softmax methods [13], [17], [14], [15] focuse@nt modalities more clearly and further increase the accuracy of
on incorporating margin penalty into a more feasible frameworkace recognition. However, these work [59], [60], [61] only em-
softmax loss, which has extensive sample-to-class comparisquisyed hand-designed feature descriptor on tiny under-controlled
Compared to deep metric learning methods (e.g., Triplet [3]atasets.
Tuplet [44], [12]), margin-based softmax methods conduct global Concurrent with our work, Softtriple [62] presents a multi-
comparisons at the cost of memory consumption on holding tbenter softmax loss with class-wise regularizer. These multi-
center of each class as illustrated in Figure 1. Sample-to-claghters can depict the hidden distribution of the data [63] due to
comparison is more ef cient and stable than sample-to-samplee fact that they can capture the complex geometry of the original
comparison as (1) the class number is much smaller than samgd¢éa and help reduce the intra-class variance. On the ne-grained
number, and (2) each class can be represented by a smootlisdal retrieval problem, the Softtriple [62] loss achieves better
center vector which can be updated online during training. Terformance than the softmax loss as capturing local clusters is
further improve the margin-based softmax loss, recent works foaessential for this task. Even though the concept of sub-class
on the exploration of adaptive parameters [48], [49], [50], intekas been employed in face recognition [59], [60], [61] and ne-
class regularization [51], [52], mining [53], [54], grouping [55],grained visual retrieval [62], none of these work has considered
etc. the large-scale (e.g. 0.5 million classes) face recognition problem
Face Recognition under NoiseMost of the face recognition under massive noise (e.g. aroubf% noisy samples within the
datasets [56], [37], [9], [38] are downloaded from the Internetaining data).
by searching a pre-de ned celebrity list, and the original labeBace Synthesis by Model Inversion.dentity-preserving face
are likely to be ambiguous and inaccurate [18]. Learning witlpeneration [64], [65], [66], [29] has been extensively explored
massive noisy data has recently drawn much attention in fageder the framework of GAN [36]. Even though GAN models can
recognition [57], [19], [20], [21] as accurate manual annotationgeld high- delity images [67], [68], training a GAN’s generator
can be expensive [18] or even unavailable. requires access to the original data. Due to the emerging concern
Wu et al. [57] proposed a semantic bootstrap strategy, whioh data privacy, an alternative line of work in security focuses
re-labels the noisy samples according to the probabilities of tbe model inversion, that is, image synthesis from a single CNN.
softmax function. However, automatic cleaning by the bootstraptodel inversion can not only help researchers to visualize neural
ping rule requires time-consuming iterations (e.g. twice re nemengetworks to understand their properties [69] but also can be used
steps are used in [57]) and the labelling quality is affected bgr data-free distillation, quantization and pruning [33], [34], [35].
the capacity of the original model. Hu et al. [19] found that th€redrikson et al. [70] propose the model inversion attack to obtain
cleanness possibility of a sample can be dynamically re ectetfiss images from a network through a gradient descent on the
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Fig. 2. Training the deep face recognition model by the proposed ArcFace loss (K =1) and sub-center ArcFace loss (e.g. K =3). Based on a
‘5 normalization step on both embedding feature x; 2 R5!2 and all sub-centers W 2 R512N K "we get the subclass-wise similarity score
S 2 RN K by a matrix multiplication W T x; . After a max pooling step, we can easily get the class-wise similarity score S92 RN 1 . Afterwards, we
calculate the arccos y; and get the angle between the feature x; and the ground truth center Wy, . Then, we add an angular margin penalty m on
the target (ground truth) angle vy, . After that, we calculate cos( y; + m) and multiply all logits by the feature scale s. Finally, the logits go through
the softmax function and contribute to the cross entropy loss.

input. As the pixel space is so large compared to the feature space, T ,
optimizing the image pixels by gradient descent [31] requires // \

heavy regularization terms, such as total variation [31] or Gaussian
blur [71]. Even though previous model inversion methods [70],
[30] can transform an input image (random noise or a natural
image) to yield a high output activation for a chosen class, it
leaves intermediate representations constraint-free. Therefore, the
resulting images are not realistic, lacking natural image statistics. (a) Norm-Softmax (b) ArcFace

The pioneer generative face recognition model is Eigen-
face [32], which can project a training face image or a new fad#gd. 3. Toy examples under the Norm-Softmax and ArcFace loss on 8
image (mean-subtracted) on the eigenfaces and thereby record [ % 20 featires Dots ndcate sampes i ines rfer 1o e
that face differs from the mean face. The eigenvalue associaifidace features are pushed to the arc space with a xed radius. The
with each eigenface represents how much the image vary frgavdesic distance margin between closest classes becomes evident as
the mean image in that direction. The recognition process wilf additive angular margin penalty is incorporated.

the eigenface method is to project query images into the face- | q di ity for i | | hich Its i
space spanned by eigenfaces calculated, and to nd the clog@df'ples and diversity for inter-class samples, which results in a

match to a face class in that face-space. Even though raw piggfformance degeneration _fo_r deep face recogn_itic_)n under large
features used in Eigenface are substituted by the deep con'vneir-""'CIaSS appearance variations (e.g. pose varlatlgns [74], [75]
lutional features, the procedure of employing the statistic pri?rnOI age gaps [76], [77]) and large-scale test scenarios [78], [79],
(e.g. mean and variance) to reconstruct face images can be“an" o . .

inspiration. Recently, [33], [34], [35] have proposed a data-free FOT Simplicity, we x theT biash = 0 as in [13]. Then, we
method employing the statistics (e.g. mean and variance) stofea1sform the logit [81] a®j” x; = kW; kkx;kcos j, where

in the BN layers to restore ImageNet images. Inspired by theSgn€ angle between the weighf and the feature;. Following
works, we synthesize face images by inverting the pre-trainbtfl: [14]. [82], we x the individual weightkW;k = 1 by

ArcFace model and considering the face prior (e.g. mean arfd "ormalization. Following [8‘3]' (14], [82], [15], we also x
variance) stored in the BN layers. the embedding featurkx;k by ‘> normalization and re-scale it

to s. The normalization step on features and weights makes the
predictions only depend on the angle between the feature and the

3 PROPOSED APPROACH weight. The learned embedding features are thus distributed on a
3.1 ArcFace hypersphere with a radius ef
The most widely used classi cation loss function, softmax loss, is escos y,
presented as follows: L, = log P : 2)
@SCos y; 4 T ee @S Cos |
ew;xi+byl j=1j 6=y
L= log PN Wi ip 1) Since the embedding features are distributed around each
j=1 €7 7 feature center on the hypersphere, we employ an additive angular

wherex; 2 RY denotes the deep feature of theh sample, Margin penaltyn betweerx; andWy, to simultaneously enhance
belonging to they;-th class. The embedding feature dimensiof'€ intra-class compactness and inter-class discrepancy as illus-
d is set t0512 in this paper following [72], [73], [13], [14]. trated in Figure 2. Since the proposed additive angular margin
W; 2 RY denotes thg -th column of the weightv 2 RIN penalty is equal to the geodesic distance margin penalty in the
b 2 RN is the bias term, and the class numbeNis Traditional Normalized hypersphere, we name our method as ArcFace.
softmax loss is widely used in deep face recognition [4], [9].

However, the softmax loss function does not explicitly optimize Ly= |
the feature embedding to enforce higher similarity for intra-class

es cos( y; +m)

o . 3
gescos( yi tm) 4 ~ jN:1 J 62y @S Cos | ©)
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10000

5, we compare the decision boundaries under the binary classi -
cation case. The proposed ArcFace has a constant linear angular
margin throughout the whole interval. By contrast, SphereFace
and CosFace only have a nonlinear angular margin.
The minor difference in margin designs can have a signi cant
in uence on model training. For example, the original SphereFace
[13] employs an annealing optimization strategy. To avoid diver-
" ot tn s T " oo oo oo gence at the beginning of training, joint supervision from softmax
(a) ; Distributions (b) Target Logits Curves is used in SphereFace to weaken the multiplicative integer margin
penalty. We implement a new version of SphereFace without the
Fig. 4. Target logit analysis. (a) ; distributions from start to end during  integer requirement on the margin by employing the arc-cosine
é;i';a%eoggggg%nglgf;gﬁteggﬂaﬁg{r‘]’%z ;‘;It;o(fct?sm Spfer;e':)acer'nAgc‘ function instead of using the complex double angle formula. In
’ ! 28 our implementation, we nd tham = 1:35 can obtain similar

e & performance compared to the original SphereFace without any
| / 01
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convergence dif culty.
Other Intra and Inter Losses. Other loss functions can be
designed based on the angular representation of features and

Softmax SphereFace CosFace ArcFace centers. For examples, we can design a loss to enforce intra-class
compactness and inter-class discrepancy on the hypersphere.
Fig. 5. Decision margins of different loss functions under binary classi - Intra-Loss is designed to improve the intra-class compactness

cation case. The dashed line represents the decision boundary, and the by decreasing the angle/arc between the sample and the ground
grey areas are the decision margins. truth center

We select face images from 8 different identities containing Ls=Lo+ 1 yi - (5)
enough samples (around 1’.500 images/class) to train 2-D fea'Inter-Loss targets at enhancing inter-class discrepancy by in-
ture embeddl'ng networks with th? qum-Softmax and ArCFa%(?easing the angle/arc between different centers.
loss, respectively. As illustrated in Figure 3, all face features
are pushed to the arc space with a xed radius based on the 1 T
feature normalization. The Norm-Softmax loss provides roughly ~ Le = L2 N D arccos(W, W;):  (6)
separable feature embedding but produces noticeable ambiguity =11 6=y
in decision boundaries, while the proposed ArcFace loss c&@ enhance inter-class separability, RegularFace [51] explicitly
obviously enforce a more evident margin between the nearédéstances identities by penalizing the angle between an identity
classes. and its nearest neighbor, while Minimum Hyper-spherical Energy
Numerical Similarity. In SphereFace [13], [42], ArcFace, andMHE) [84] encourages the angular diversity of neuron weights in-
CosFace [14], [15], three different kinds of margin penalty argpired by the Thomson problem. Recently, xed classi er methods
proposed, e.g. multiplicative angular margin, additive angular [85], [86], [87] exhibit little or no reduction in classi cation per-
margin m,, and additive cosine margims, respectively. From formance while allowing a noticeable reduction in computational
the view of numerical analysis, different margin penalties, neg@mplexity, trainable parameters and communication cost. In these
matter add on the angle [13] or cosine space [14], all enforgeethods, inter-class separability is not learned but inherited from
the intra-class compactness and inter-class diversity by penalizéhgre-de ned high-dimensional geometry [87].
the target logit [81]. In Figure 4(b), we plot the target logit Triplet-loss aims at enlarging the angle/arc margin between
curves of SphereFace, ArcFace and CosFace under their tiéptet samples. In FaceNet [3], Euclidean margin is applied on
margin settings. We only show these target logit curves withthe normalized features. Here, we employ the triplet-loss by the
[20 ;100 ] because the angles betweW, andx; start from angular representation of our featuresaascos(¥’*°xi) + m
around90 (random initialization) and end at aroud® during afCCOSO{]egXi)-

ArcFace training as shown in Figure 4(a). Intuitively, there are
three numerical factors in the target logit curves that affect thgp gy p-center ArcFace

performance, i.e. the starting point, the end point and the slope . . .
- . . . ven though ArcFace has shown its power in ef cient and ef-
By combining all of the margin penalties, we implemenf . ] . L
; . 8 tive face feature embedding, this method assumes that training
SphereFace, ArcFace and CosFace in a united framework wi o .
My, M, andms as the hyper-parameters data are clean. However, this is not true especially when the dataset
12 3 is in large scale. How to enable the margin-based softmax loss to

gs(cos(m 1, +m 2) m ) be robust to noise is one of the main challenges impeding the
Ls= log os(cos(m 1 5, +m 2)m 3) 4 P N escos | O de_velopment of face re_cognitiqn [18]. In_this paper, we address
=1 6=y this problem by proposing the idea of using sub-classes for each

As shown in Figure 4(b), by combining all of the above-motioneidientity, which can be directly adopted by ArcFace and will
margins (cos(m + my) mg3), we can easily get some othersigni cantly increase its robustness.

target logit curves which also achieve high performance. As illustrated in Figure 2, we sdf sub-centers for each
Geometric Difference.Despite the numerical similarity betweenidentity. Based on &, normalization step on both embedding
ArcFace and previous works, the proposed additive angular marégaturex; 2 R%? and all sub-centersy 2 R512N K e
has a better geometric attribute as the angular margin has the egattthe subclass-wise similarity sco8s2 RN K by a matrix
correspondence to the geodesic distance. As illustrated in FigumaltiplicationW T ;. Then, we employ a max pooling step on the
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(a) Example of Sub-classes (b) Clean Data Isolation

Fig. 6. (a) The sub-classes of one identity from the CASIA dataset [56]
after using the sub-center ArcFace loss (K = 10). Noisy samples
and hard samples (e.g. pro le and occluded faces) are automatically
separated from the majority of clean samples. (b) Angle distribution of
samples from the dominant and non-dominant sub-classes. Clean data
are automatically isolated by the sub-center ArcFace.

I Dominant and Clean (57.24%)
I Dominant and Noisy (12.40%)

Image Numbers

0
0 10 20 30 40 50 60 70 80 90 100 110 120
Angles Between Dominant Samples and Closest Sub-centers

(a) K =1, All (b) K =3, Dominant

/I Non-dominant and Clean (4.28%)
/I Non-dominant and Noisy (26.08%)

I Non-dominant and Clean (4.28%)
I Non-dominant and Noisy (26.08%)

Image Numbers
~ ©
Image Numbers
~ ©

H
-

0 10 20 30 40 50 60 70 80 90 100 110 120
Angles Between Non-dominant Samples and Closest Sub-centers

0 10 20 30 40 50 60 70 80 90 100 110 120
Angles Between Non-dominant Samples and Dominant Sub-centers

(c) K =3, Non-dominant (d) K =3 # 1, Non-dominant
Fig. 7. Data distribution of ArcFace (K =1) and the proposed sub-center
ArcFace (K =3) before and after dropping non-dominant sub-centers.
MS1MVO [37] is used here. K = 3 # 1 denotes sub-center ArcFace with
non-dominant sub-centers dropping.

6

a hard threshold (e.g. angle 77 or cosine 0:225). Since
sub-center ArcFace can automatically divide the training samples
into dominant sub-classes and non-dominant sub-classes, clean
samples (in red) can be separated from hard and noisy samples (in
blue). More speci cally, the majority of clean faces (85:6%) go to
the dominant sub-class, while the rest hard and noisy faces go to
the non-dominant sub-classes.

Even though using sub-classes can improve the robustness
under noise, it undermines the intra-class compactness as hard
samples are also kept away as shown in Figure 6(b). In [37],
MS1MVO (around 10M images of 100K identities) is released
with the estimated noise percentage arodidl% 54:4%[18].

In [88], MS1IMVO is re ned by a semi-automatic approach into a
clean dataset named MS1MV3 (around 5.1M images of 93K iden-
tities). Based on these two datasets, we can get the clean and noisy
labels on MS1MVO. In Figure 7(b) and Figure 7(c), we show the
angle distributions of samples to their closest sub-centers (training
settings: [MS1MVO0, ResNet50, Sub-center ArcFdce3]). In
general, there are four categories of samples: (1) easy clean sam-
ples belonging to dominant sub-classes (57:24%), (2) hard noisy
samples belonging to dominant sub-classes (12:40%), (3) hard
clean samples belonging to non-dominant sub-classes (4:28%),
and (4) easy noisy samples belonging to non-dominant sub-classes
(26:08%). In Figure 7(a), we show the angle distribution of
samples to their corresponding centers from the ArcFace model
(training settings: [MS1MVO, ResNet50, ArcFadé=1]). By
comparing the percentages of noisy samples in Figure 7(b) and
Figure 7(a), we nd that sub-center ArcFace can signi cantly
decrease the noise rate to around one third (fl@8m47% to
12:40%) and this is the reason why sub-center ArcFace is more
robust under noise. During the training of sub-center ArcFace,
samples belonging to non-dominant sub-classes are pushed to be
close to these non-dominant sub-centers as shown in Figure 7(c).
Since we have not set any constraint on sub-centers, the sub-
centers of each identity can be quite different and even orthogonal.
In Figure 7(d), we show the angle distributions of non-dominant
samples to their dominant sub-centers. By combining Figure 7(b)

subclass-wise similarity sco® 2 RN K to get the class-wise and Figure 7(d), we nd that the clean and noisy data have some
similarity scoreS® 2 RN ! . The proposed sub-center ArcFacé@Verlaps but a constant angle threshold (betwéénand 80 )

loss can be formulated as:
cos( y; +m)
e’ Yi

gescos( y tm) 4 N

L, = lo
i=1j6=y €

)

cos '

where ; = arccos maxx W x; ,k2f1l; ;Kg.

can be easily searched to drop most of the high-con dent noisy
samples.

Based on the above observations, we propose a straightforward
approach to recapture intra-class compactness. We directly drop
non-dominant sub-centers after the network has enough discrimi-
native power. Meanwhile, we introduce a constant angle threshold

In Figure 6(a), we have visualized the clustering results of ote drop high-con dent noisy data. After that, we retrain the

0162-8828 (c) 2021 IEEE, Personal use is permitted, but re

identity from the CASIA dataset [56] after employing the subArcFace model from scratch on the automatically cleaned dataset.
center ArcFace loss (K= 10) for training. It is obvious that the

proposed sub-center ArcFace loss can automatically cluster fadek Inversion of ArcFace

such that hard samples and noisy samples are separated away fronn the above sections, we have explored how the proposed Ar-
the dominant clean samples. Note that some sub-classes are empace can enhance the discriminative power of a face recognition
asK = 10 is too large for a particular identity. In Figure 6(b),model. In this section, we take a pre-trained ArcFace model as a
we show the angle distribution on the CASIA dataset [56]. We&hite-box and reconstruct identity preserved as well as visually
use the pre-trained ArcFace model to predict the feature centeptdusible face images only using the gradient of the ArcFace loss
each identity and then calculate the angle between the sample and the face statistic priors (e.g. mean and variance) stored in the
its corresponding feature center. As we can see from Figure 6(BN layers. As shown in Figure 8 and illustrated in Algorithm 1, the
most of the samples are close to their centers, however, there preetrained ArcFace model has encoded substantial information of
some noisy samples which are far away from their centers. Thiee training distribution. The distribution, stored in BN layers via
observation on the CASIA dataset matches the noise percentagaing mean and running variance, can be effectively employed
estimation (9:3%  13:0%) in [18]. To automatically obtain to generate visually plausible face images, avoiding convergence
a clean training dataset, the noisy tail is usually removed lytside natural faces with high con dence.
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TABLE 1
Face datasets for training and testing. (D) refers to the distractors.
IBUG-500K is the training data automatically re ned by the proposed
sub-center ArcFace. LFR2019-Image and LFR2019-Video are the
proposed large-scale image and video test sets.

Datasets #ldentity | #lmage/Video
CASIA [56] 10K 0.5M
VGG2 [9] 9.1K 3.3M
Fig. 8. ArcFace is not only a discriminative model but also a generative MS1MVO [37] 100K 10M
model. Given a pre-trained ArcFace model, a random input tensor can MS1MV3 [88] 93K 5.1M
be gradually updated into a pre-de ned identity by using the gradient of Celeb500K [38] 500K 50M
the ArcFace loss as well as the face statistic priors stored in the Batch IBUG-500K 493K 11.96M
Normalization layers. CFW [89] 5749 13.233
Algorithm 1 Face Image Generation from the ArcFace Model YTF [90] 1,595 3,425
Input: modelM with L BN layers, class labe; CPP-FP [74] 500 7,000
" " N CPLFW [75] 5,749 11,652
Output: a batch of generated face |magb‘s. AgeDB [76] 568 16,488
Generate random datd from Gaussian (=0; =1) CALFW [77] 5,749 12,174
Get i; i from BN layersofM, i 2 0;:::;L MegaFace [78] 530 1M (D)
forj=1;2;:::;T do 1IB-B [79] 1,845 76.8K
Forward propagat®(I ") and calculate ArcFace loss LFRzlngéclrL?a(g);]e[SS] %5;?(1 1154§ME;(||<3)
Get~ and~ _fro_m mtermgdll_ate arit|vat|onzs,2 O;r: oL , LFR2019-Video|[88] 10K 200K
Compute statistic lossin =, Kk~ iks + k~i iKs,
Backward propagate and updatfe
end for 4 EXPERIMENTS

4.1 Implementation Details

Training Datasets. As given in Table 1, we separately employ
Besides the ArcFace loss (Eq. 3) to preserve identity, we algag|a [56], VGG2 [9], MSIMVO [37] and Celeb500K [38] as
consider the following statistic priors during face generation: gy training data in order to conduct fair comparison with other
methods. MS1MVO (loose cropped version) [37] is a raw data
L, = S o ke ke ®) with the estimated noise percentage arouti1%  54:4%
0 : 2 : ' [18]. MS1MV3 [88] is cleaned from MS1MVO [37] by a semi-
automatic approach. We employ ethnicity-speci ¢ annotators (e.g.
where lr/ II’ are the mean/standard deviation of the distribution N:frican’ Caucasian’ Indian and Asian) for |arge_sca|e face image
layeri, and i/ i are the corresponding mean/standard deviatifhnotations, as the boundary cases (e.g. hard samples and noisy
parameters stored in thieth BN layer of a pre-trained ArcFace samples) are very hard to distinguish if the annotator is not
model. After jointly optimizing Eq. 3and Eq. 8 @+ L g; = familiar with the identity. Celeb500K [38] is collected in the
0:05) forT steps as in Algorithm 1, we can generate faces, wh@@me way as MS1MVO [37], using the celebrity name list [37]
fed into the network, not only have same identity as the pre-de ne@ search identities from Google and download the top-ranked
identity but also have a statistical distribution that closely matchggce images. We download 25M images of 500K identities, and
the original data set. employ RetinaFace [8] to detect faces larger thBn 50from the
The above approach exploits the relationship between an inpuiginal images. By employing the proposed sub-center ArcFace,
image and its class label for the reconstruction process. As the can automatically clean MS1MVO [37] and Celeb500K [38].
output similarity score is xed according to prede néd classes, After removing the overlap identities (about 50K) through the
the reconstruction is limited on images of training subjects. T® string, we combine the automatically cleaned MS1MVO and
solve open-set face generation from the embedding feature, teleb500K and obtain a large-scale face image dataset, named
constraints on prede ned classes need to be removed. TherefoBt)G-500K, including 11.96 million images of 493K identities.
we substitute the classi cation loss to thg loss between feature Figure 9 illustrates the gender, race, pose, age and image number
pairs. Open-set face generation can restore the face image fidigtributions of the proposed IBUG-500K dataset.
any embedding feature, while close-set face generation only Test DatasetsDuring training, we explore ef cient face veri ca-
constructs face images from the class centers stored in the lingawi datasets (e.g. LFW [89], CFP-FP [74], AgeDB [76]) to check
weight. the convergence status of the model. Besides the most widely used
Concurrent with our work, [33], [34], [35] have proposed dFW [89] and YTF [90] datasets, we also report the performance
data-free method employing the BN priors to restore ImageNeft ArcFace on the recent datasets (e.g. CPLFW [75] and CALFW
images for distillation, quantization and pruning. Their moddl7]) with large pose and age variations. We also extensively
inversion results contain obvious artifact in the background duest the proposed ArcFace on large-scale image datasets (e.qg.
to the translation augmentation during training. By contrast, oegaFace [78], IJB-B [79], IJB-C [80] and LFR2019-Image [88])
ArcFace model is trained on normalized face crops without backnd large-scale video datasets (LFR2019-Video [88]). Detailed
ground, thus the restored faces exhibit less artifact. Besides, thdataset statistics are presented in Table 1. For the LFR2019-Image
data-free methods only considered close-set image generationdathset, there are 274K images from the 5.7K LFW identities [89]
ArcFace can freely restore both close-set and open-set subjectarid 1.58M distractors downloaded from Flickr. For the LFR2019-
this paper, we show that the proposed additive angular margin Id4deo dataset, there are 200K videos of 10K identities collected
can also improve face generation. from various shows, Ims and television dramas. The length of
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(a) Gender (b) Race (c) Pose (Yaw) (d) Age (e) Image Number

Fig. 9. IBUG-500K statistics. We show the (a) gender, (b) race, (c) yaw pose, (d) age and (e) image number distributions of the proposed large-scale
training dataset.

each video ranges frotto 30 seconds. Both the LFR2019-Image TABLE 2
dataset and the LFR2019-Video dataset are manually clean&@ri cation results (%) of different loss functions ([CASIA, ResNet50,
to ensure the unbiased evaluation of different face recognition Loss™)).

models Loss Functions LFW | CFP-FP| AgeDB
- . . ArcFace (0.4) 99.53| 9541 94.98
Experimental Settings. For data prepossessing, we follow the ArcFace (0.45) 99.46| 95.47 94.93
recent papers [13], [14] to generate the normalized face crops ArcFace (0.5) 9953| 9556 95.15
(112 112) by utilizing ve facial points predicted by RetinaFace ArcFace (0.55) 99.41| 95.32 95.05

[8]. For the embedding network, we employ the widely used CNN SphereFace [13] 99.42 - -
architectures, ResNet50 and ResNet100 [58], [91] without the SphereFace (1.35) | 99.11| 94.38 | 91.70

bottleneck structure. After the last convolutional layer, we explore CosFace [14] 99.33 - -
CosFace (0.35) 99.51| 95.44 94.56

the BN [92]-Dropout [93]-FC-BN structure to get the nall2-

, . . CM1 (1,0.3,0.2) 99.48| 95.12 | 94.38
D embedding feature. In this paper, we use ([t.ralnlng Qataset, CM2 (0.9, 0.4, 0.15) 9950 | 9524 94.86
network structure, loss]) to facilitate understanding of different Softmax 99.08| 94.39 | 92.33
experimental settings. Norm-Softmax (s=64) | 98.56 | 89.79 88.72
We follow [14] to set the feature scageto 64 and choose the Norm-Softmax (s=20) | 99.20| 94.61 92.65
angular margirm of ArcFace aD:5. All recognition experiments Norm-Softmax+intra | 99.30| 94.85 | 93.58

Norm-Softmax+Inter 99.22 | 94.73 92.94

in this paper are implemented by MXNet [39]. We set the batch Norm-Softmax+intratinterl 99.31| 9488 9376

size to512and train models on eight NVIDIA Tesla P40 (24GB)

GPUs. We set the momentum @9 and weight decay tbe 4. ;:é@gégﬁ]?a ggzg gégg gi?g
For the ArcFace training, we employ the SGD optimizer and ArcFace+Inter 99.43| 95.25 | 94.55
follow [14], [9] to design the learning rate schedules for different ArcFace+Intra+Inter 99.43| 95.42 95.10
datasets. On CASIA, the learning rate starts frOm and is ArcFace+Triplet 99.50| 95.51 | 94.40

divided by 10 at 20, 28 epochs. The training process is nished

at 32 epochs. On VGG2, the learning rate is decreased at 6y gnework in Eq. 4, it is easier to set the margin of SphereFace
epochs and we nish training at 12 epochs. On MSIMV3 anghy cosFace which we nd to have optimal performance when
IBUG-500K, we refer to the veri cation accuracy on CFP-FP andgtting at1:35 and 0:35, respectively. Our implementations for
AgeDB to reduce the learning rate at 8, 14 epochs and termingign SphereFace and CosFace can lead to excellent performance
at 18 epochs. without observing any dif culty in convergence. The proposed
For the training of the proposed sub-center ArcFace Qfycrace achieves the highest veri cation accuracy on all three
MS1MVO [37], we also employ the same learning rate schedulgs; sets. In addition, we perform extensive experiments with the
as on MS1IMV3 to train the rstround of model (K3). Then, we  ¢ompined margin framework (some of the best performance is
drop non-dominant sub-centers (K 3 # 1) and high-con dent onqerved for CM1 (1, 0.3, 0.2) and CM2 (0.9, 0.4, 0.15)) guided
noisy data (> 75 ) by using the rst round model through any, ihe target logit curves in Figure 4(b). The combined margin
off-line way. Finally, we retrain the model from scratch using thgamework leads to better performance than individual SphereFace
automatically cleaned data. For the experiments of the sub-ceniff cosFace but upper-bounded by the performance of ArcFace.
ArcFace on Celeb500K [38], the only difference is the leamning  gegjges the comparison with margin-based methods, we con-
rate schedule, which is same as on IBUG-500K. duct a further comparison between ArcFace and other losses which

During testing of the face recognition models, we only kKeefy, ¢ enforcing intra-class compactness (Eq. 5) and inter-class
the feature embedding network without the fully connected Iayﬁfscrepancy (Eq. 6). As the baseline, we choose the softmax

(160MB for ResNet50 and 250MB for ResNet100) and eXtraﬁBss. After weight and feature normalization, we have observed
the 512-D features (8:9ms/face f_or ResNet50 anth:4 ms/face obvious performance drops on CFP-FP and AgeDB with the
for ResNet100) for each normalized face. To get the embedd'f%%ture re-scale parameter set as64. To obtain comparable

features for templates (e.g. 1JB-B and 1JB-C) or videos (€.9. YTfo tormance as the softmax loss, we have searched the best scale
and LFR2019-Video), we simply calculate the feature center of ?Jgrametels = 20 for Norm-Softmax. By combining the Norm-
images from the template or all frames from the video. Softmax with the intra-class loss, the performance improves on

) CFP-FP and AgeDB. However, combining the Norm-Softmax
4.2 Ablation Study on ArcFace with the inter-class loss only slightly improves the accuracy.
In Table 2, we rst explore the angular margin setting for ArcFacEmploying margin penalty within triplet samples is less effective
on the CASIA dataset with ResNet50. The best margin observéadn inserting margin between samples and centers as in ArcFace,
in our experiments i9:5. Using the proposed combined margirindicating local comparisons in the Triplet loss are not as effective
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TABLE 3 TABLE 4
Ablation experiments of different settings of the proposed sub-center Veri cation performance (%) of different methods on LFW and YTF.
ArcFace on MS1MVO0, MS1MV3 and Celeb500K. The 1:1 veri cation ([Dataset*, ResNet100, ArcFace])
accuracy (TPR@FPR=1e 4) is reported on the IJB-B and 1JB-C Method #lmage | LFW | YTF
datasets. ((MS1MVO0 / MS1IMV3 / Celeb500K, ResNet50, Sub-center DeepID [1] 0.2M 99.47 | 93.20
, ArcFace])) Deep Face [2] 44M | 97.35| 91.4
Settings _ VB-B  1JB-C VGG Face [4] 2.6M | 98.95| 97.30
(1) MS1IMVO,K=1 87.87  90.27 FaceNet [3] 200M | 99.63| 95.10
(2) MS1IMVO,K=3 _ 91.70 93.72 Baidu [95] 1.3M 99.13 -
(3) MS1MVO0,K =3, softmax pooling [62]| 91.53 93.55 Center Loss [72] 0.7M 09.28 | 94.9
(4) MS1IMVO,K=5 91.47  93.62 Range Loss [73] 5M 99.52 | 93.70
(5) MS1MV0,K=10 63.84 67.94 Marginal Loss [17] 3.8M | 99.48| 95.98
(6) MSIMVO,K =3 #1, drop> 70 94.44 95091 SphereFace [13] 0.5M | 99.42| 95.0
(7) MSIMVO,K =3 #1, drop> 75 9456 95.92 SphereFace+ [84] 05M | 99.47| -
(8) MS1IMVO,K =3 #1, drop> 80 94.04 95.74 CosFace [14] 5M 99.73| 97.6
(9) MSIMVO,K =3 #1, drop> 85 93.33 9510 RegularFace [51] 3.1M | 99.61| 96.7
(10) MS1IMVO,K =3, regularizer [62] 91.53 93.64 UniformFace [52] 6.1M 99.8 | 97.7
(11) MS1IMVO0,Co-mining [21] 91.80 93.82 DAL [96] 0.5M 99.47 -
(12) MS1IMVO,NT [19] 91.57 93.65 FTL [97] 5M 99.55 -
(13) MSIMVO,NR [20] 91.58 93.60 Fair Loss [98] 0.5M | 99.57| 96.2
(14) MS1IMV3,K =1 95.13 96.50 Unequal-training [20] 0.55M | 99.53 | 96.04
(15) MS1IMV3,K =3 94.84 96.35 Noise-Tolerant [19] 1M noisy | 99.72 | 97.36
(16) MSIMV3,K =3 #1 94.87 96.43 AdaptiveFace [50] 5M 99.62| -
(17) Celeb500KK =1 90.96 92.15 AFRN [99] 3.1M 99.85| 97.1
(18) Celeb500KK =3 93.76  94.90 PFE [100] 4.4M 99.82| 97.36
(19) Celeb500KK =3 #1 95.65 96.91 DUL [101] 3.6M | 99.78| 96.78
RDCFace [102] 1.7M 99.80| 97.10
. . . . HPDA [103] 5M 99.80 -
as global comparisons in ArcFace. Finally, we incorporate the URFace [104] 5M 99.78| -
Intra-loss, Inter-loss and Triplet-loss into ArcFace, but no obvious CircleLoss [105] 3.6M 99.73 | 96.38
improvement is observed, which leads us to believe that ArcFace is GroupFace [55] 5.8M 99.85| 97.8
already enforcing intra-class compactness, inter-class discrepancy  BioMetricNet [106] 3.8M | 99.80 | 98.06
and classi cation margin. BroadFace [107] 5.8M 99.85| 98.0
MS1MV3, R100, ArcFace 5.1M 99.83 | 98.02
IBUG500K, R100, ArcFace 11.96M | 99.83 | 98.01

4.3 Ablation Study on Sub-center ArcFace

In Table 3, we conduct extensive experiments to investigate threshold ((6)95:91%, (7)95:92%and (8)95:74%), and

the proposed sub-center ArcFace on noisy training data (6.9  we selec75 as the threshold for dropping high-con dent
MS1MVO [37] and Celeb500K [38]) Models trained on the noisy Samp|es in the fo"owing experimentsl

manually cleaned MS1MV3 [88] are taken as the reference. We Co-mining [21] and re-weighting methods [19], [20] can
train ResNet50 networks under different Settings and evaluate also improve the robustness under massive noise’ but sub-
the performance by adopting TPR@FPR=1e-4 on 1JB-C, which center ArcFace can do better through automatic clean and
is more objective and less affected by the noise within the test noisy data isolation during training ((85:92%vs. (11)
data [94]. . . 93:82%, (12)93:65%and (13)93:60%).
From Table 3, we have the following observations: On the clean dataset (MS1MV3), sub-center ArcFace
ArcFace has an obvious performance drop (from (14) achieves similar performance as ArcFace ((96)43%

96:50%to (1) 90:27%) when the training data is changed vs. (14) 96:50%). By employing the threshold a5
from the clean MSIMV3 to the noisy MSIMVO. By on MS1MV3, 4:18% hard samples are removed, but the

performance only slightly decreases, thus we estimate
MS1MV3 still contains some noises.

Too many sub-centers (too larée) can obviously under- The proposed s_ub-center ArcFace trained on noisy
mine the intra-class compactness and decrease the accu- MS1MVO can achieve comparable performance compared
racy (from (2)93:72%to (5) 67:94%). This observation to ArcFace trained on manually cleaned MSIMV3 ((7)
indicates that noise tolerance and intra-class compactness 95:92%vs. (14)96:50%).

should be balanced during training. Considering the GPU By _enlargi_ng the training data, sub-center Arc_F_ace pan
memory consumption, we sele€t=3 in this paper. easily achieve better performance even though it is trained

The nearest sub-center assignment by the max pooling is  [T0M noisy web faces ((196:91%vs. (13)96:50%).
slightly better than the softmax pooling [62] ((28:72%

vs. (3)93:55%). Thus, we choose the more ef cient mag-4 Benchmark Results

pooling operator in the following experiments. Results on LFW, YTF, CFP-FP, CPLFW, AgeDB, CALFW.
Dropping non-dominant sub-centers and high-con deritFW [89] and YTF [90] datasets are the most widely used bench-
noisy samples can achieve better performance than addimgrk for unconstrained face veri cation on images and videos.
regularization [62] to enforce compactness between sulo+ this paper, we follow theunrestricted with labelled outside
centers ((795:92%vs. (10)93:64%). Besides, the perfor-data protocol to report the performance. As reported in Table
mance of our method is not very sensitive to the constafif ArcFace models trained on MS1MV3 and IBUG-500K with

contrast, sub-center ArcFace is more robust 92)72%)
under massive noise.
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TABLE 5 TABLE 6
Veri cation performance (%) of different methods on CFP-FP, CPLFW, Face identi cation and veri cation evaluation of different methods on
AgeDB and CALFW. ([Dataset*, ResNet100, ArcFace]) MegaFace Challengel using FaceScrub as the probe set. Id refers to
the rank-1 face identi cation accuracy with 1M distractors, and Ver
Method CFP-FP CPLFW | AgeDB CALFW refers to the face veri cation TPR at 106 FPR. R refers to data
CenterLoss [72] - 77.48 - 85.48 re nement on both probe set and 1M distractors of MegaFace. ArcFace
SphereFace [13] - 81.40 - 90.30 obtains state-of-the-art performance under both small and large
VGGFace2 [9] - 84.00 - 90.57 protocols.
MV-Softmax [53] 98.28 92.83 97.95 96.10 Methods Id (%) [ Ver (%)
S aceorph(i00] | 9690 227 | o752 9567 Sofimax [L3] S48y ] e592
aceGra| . . . . ;

Curricularl‘:)ace [54] 98.36 93.13 98.37 96.05 Cont.[r.ﬁ;tlgte[]ljg]ss[[;jg]’ (1 gz;; ;ggg
MS1MV3, R100, ArcFace | 98.79 93.21 98.23 96.02 ' ' '
IBUG500K, R100, ArcFace 98.87  93.43 | 98.38  96.10 Center Loss[72] 65.49 | 80.14

SphereFace [13] 72.729 | 85.561
CosFace [14] 77.11 | 89.88
AM-Softmax [15] 72.47 84.44
SphereFace+ [84] 73.03 -
RegularFace [51] 70.23 | 84.07
CASIA, R50, ArcFace 77.42 | 91.69
CASIA, R50, ArcFace, R 91.12 | 93.56
FaceNet [3] 70.49 86.47
CosFace [14] 82.72 | 96.65
UniformFace [52] 79.98 | 95.36
(@) LFW (99:83%) (b) YTF (98:01%) A(?a%%uv':g;ig,e I[?5[15]0] gg:g% gé:éi
MV-Softmax, R [53] 98.00 98.31
P2SGrad,R [48] 97.25 -
Adocos, R [49] 97.41 -
PFE [100] 78.95 92.51
Fair Loss [98] 77.45 | 92.87
Search-Softmax, R [108] 96.97 | 97.84
Domain Balancing, R [110] | 96.35 | 96.56
URFace [104] 78.60 95.04
DUL, R [101] 98.60 -
(c) CFP-FP (98:87%) (d) CPLFW (93:43%) CircleLoss, R [105] 98.50 | 98.73
CurricularFace, R [54] 98.25 | 98.44
GroupFace, R [55] 98.74 | 98.79
MC-FaceGraph, R [109] 99.02 98.94
SST, R [111] 96.27 96.96
BroadFace, R [107] 98.70 | 98.95
MS1MV3, R100, ArcFace 80.71 97.46
MS1MV3, R100, ArcFace, R| 98.51 98.74
IBUG-500K, R100, ArcFace | 81.43 97.63
IBUG-500K, R100, ArcFace,R 98.98 99.08
(e) AgeDB (98:38%) (f) CALFW (96:10%)

Fi 10, Andle distribui  both bosit g ‘ _ terparts by an obvious margin on the pose-invariant and age-
Y%:’ CI-:PH?P'ECI'DSEEV\‘?XS:SB a?]t " ng_'lt:"\’/g. and ?:3?\?;3;2”;5&'5222 invariant face recognition. In Figure 10, we show the results of
positive pairs while the blue histogram indicates negative pairs. All ArcFace model trained on IBUG-500K by illustrating the angle
angles are represented in degree. ([IBUG-500K, ResNet100, ArcFace])  distributions of both positive and negative pairs on LFW, YTF,
CFP-FP, CPLFW, AgeDB and CALFW. We can clearly nd that
ResNet100 beat the baselines (e.g. SphereFace [13] and CosRagéintra-variance due to pose and age gaps signi cantly increases
[14]) on both LFW and YTF, which shows that the additive anguldhe angles between positive pairs thus making the best threshold
margin penalty can notably enhance the discriminative powfar face veri cation increasing and generating more confusion
of deeply learned features, demonstrating the effectivenessregions on the histogram.
ArcFace. As the margin-based softmax loss has been widely usgsults on MegaFaceThe MegaFace dataset [78] includes 1M
in recent methods, the performance begins to be saturated aropiglges of 690K different individuals as the gallery set and 100K
99:8% and 98:0% on LFW and YTF, respectively. However, photos 0f530 unique individuals from FaceScrub [112] as the
the proposed ArcFace is still among the most competitive fapeobe set. As we observed an obvious performance gap between
recognition methods. identi cation and veri cation in the previous work (e.g. CosFace
Besides on LFW and YTF datasets, we also report the p¢t4]), we performed a thorough manual check in the whole
formance of ArcFace on the recently introduced datasets (eMgegaFace dataset and found many face images with wrong labels,
CFP-FP [74], CPLFW [75], AgeDB [76] and CALFW [77]) which signi cantly affects the performance. Therefore, we man-
which show large pose and age variations. Among all of theally re ned the whole MegaFace dataset and report the correct
recent face recognition models, our ArcFace models trained performance of ArcFace on MegaFace. In Table 6, we use R
MS1MV3 and IBUG-500K are evaluated as the top-ranked fate denote the re ned version of MegaFace and the performance
recognition models as shown in Table 5, outperforming counemparisons also focus on the re ned version.
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TABLE 7
1:1 veri cation (TPR@FPR=1e-4) on 1JB-B and IJB-C.
Method I1JB-B (%) | 1IB-C (%)
ResNet50 [9] 78.4 82.5
SENet50 [9] 80.0 84.0
MN-vc [113] 83.1 86.2
DCN [94] 84.9 88.5
Crystal Loss [114] - 92.29
AIM [115] - 89.5
(a) CMC (b) ROC P2SGrad [48] - 92.25
Adocos [49] - 92.4
Fig. 11. CMC and ROC curves of different models on MegaFace. Re- PFE [100] N 93.3
sults are evaluated on both original and re ned MegaFace dataset. MV-Softmax [53] 93.6 95.2
AFRN [99] 88.5 93.1
PFE [100] - 93.25
DUL [101] - 94.61
URFace [104] - 96.6
CircleLoss [105] - 93.95
CurricularFace [54] 94.86 96.15
GroupFace [55] 94.93 96.26
BroadFace [107] 94.61 96.03
VGG2, R50, ArcFace 89.8 92.79
(2) ROC for 178-B (b) ROC for 138-C MS1MV3, R100, ArcFace |  95.42 96.83
. o IBUG-500K, R100, ArcFace  96.02 97.27
Fig. 12. ROC curves of 1:1 veri cation protocol on 1JB-B and 1JB-C.
([Dataset*, ResNet100, ArcFace]) TABLE 8
On MegaFace, there are two testing scenarios (identi cation1 L ver C,Ejg?g gﬁ%’fgﬁf&:{geﬁg dR]é’s\ll\llgfln&)?EX:'?:rlla(?e?; k-1) on
and veri cation) under two protocols (large or small training set). ‘ 1JB-B [JB-C

The training set is de ned as large if it contains more than 0.5M  11@ining Datasets

0 0 0, 0,
images. For the fair comparison, we train ArcFace on CASIA CASIA [56] Vgg'(él/;) Igé/;)o Vgg(e/i) Igé(/)o)s
and IBQG-SOOK under the small p'rotocol and large protocol, IMDB-Face [18] 64.87 93.41| 66.85 94.52
respectively. In Table 6, ArcFace trained on CASIA achieves the VGG?2 [9] 41.64 93.20| 59.33 94.44
best single-model identi cation and veri cation performance, not MS1MV1 [17] 80.27 92.19| 88.16 93.54
only surpassing the strong baselines (e.g. SphereFace [13] and MS1IMV2[16] 89.33 94.50| 9315  95.72
CosFace [14]) but also outperforming other published methodsMC-FaceGraph [109] 92.82  95.76]| 9562  96.93
[72], [84] MS1MV3 91.27 95.04| 95.56 96.94

' ) IBUG-500K 93.48 95.94| 96.07 97.21

Under the large protocol, ArcFace trained on IBUG-500K
surpasses ArcFace trained on MS1MV3 by a clear margin (0:47%
improvement on identi cation), which indicates that large-scalee compare the TPR (@FPR=1e-4) of ArcFace with the previous
training data is very bene cial and the proposed sub-center Arstate-of-the-art models. We rst employ the VGG2 [9] dataset as
Face is effective for automatic data cleaning under different ddtee training data and the ResNet50 as the embedding network
scales. As shown in Figure 11, ArcFace trained on IBUG-5001 train ArcFace for the fair comparison with the most recent
forms an upper envelope of other models under both identi cati@oftmax-based methods [9], [113], [94]. As we can see from
and veri cation scenarios. Compared to MC-FaceGraph [109]he results, the proposed additive angular margin can obviously
ArcFace trained on IBUG-500K obtains comparable results doost the performance on both 1JB-B and 1JB-C compared to the
identi cation and better results on veri cation. Considering 18.8Msoftmax loss (abou8 5%, which is a signi cant reduction in
images of 636K identities are used in MC-FaceGraph [109], thiee error).
performance of our method is very impressive, as we only use Drawing support from more training data (IBUG-500K) and
images automatically cleaned from noisy web data. Similar tteeper neural network (ResNetl00), ArcFace can further im-
LFW, the identi cation results on MegaFace are also saturatgpdove the TPR (@FPR=1e-4) @6:02% and 97:27% on 1JB-
(around 99%). Therefore, the performance gap @04% on B and 1IB-C, respectively. Compared to the joint margin-based
identi cation is negligible and our model is among the mosand mining-based method (e.g. CurricularFace [54]), our method
competitive face recognition methods. further decreases the error rate 28:57%and29:09%on 1IB-B
Results on IJB-B and IJB-C. The IJB-B dataset [79] containsand IIB-C, which indicates that the automatically cleaned data
1,845 subjects with21:8K still images anb5K frames from by the proposed sub-center ArcFace are effective to boost the
7,011 videos. The 1IB-C dataset [79] is a further extension gferformance. In Table 8, we compare the proposed sub-center
IJB-B, having3; 531subjects witt31:3K stillimages and17:5K ArcFace with FaceGraph [109] on large-scale cleansing. In Face-
frames from11;779videos. On IJB-B and 1JB-C datasets, ther&raph [109], one million celebrities (87.0M face images) [37] are
are two evaluation protocols, 1:1 veri cation and 1:N identi ca-cleaned into a noise-free dataset named MC-FaceGraph (including
tion. 18.8M face images of 636.2K identities) by employing a global-

For the widely used 1:1 veri cation protocol, there d2;115 local graph convolutional network. Even though the proposed
templates witHL0;270genuine matches ar@M impostor matches sub-center ArcFace is only applied to half million identities, the
on IJB-B, and there ar23;124 templates with19;557 genuine cleaned dataset, IBUG-500K (including 11.96M face images of
matches and 5;639K impostor matches on IJB-C. In Table 7493K identities), still outperforms MC-FaceGraph [109]. Under
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TABLE 9
Veri cation results (%) on the LFR2019-Image (TPR@FPR=1e-8) and
LFR2019-Video (TPR@FPR=1e-4) datasets. ([Dataset*, Network*,

ArcFace])
Methods Image | Video
YMJ' [116] 88.78 -
counf [117] 88.42 -
NothingLC® 88.14 -
NothingLC" - 63.23
Rhapsod§ - 61.87
xfr 3 - 61.05
Our Method 88.65 | 63.60
MS1MV3, Ef cientNet-BO, ArcFace| 86.44 | 61.47
MS1MV3, R100, ArcFace 92.75 | 64.89
(a) ROC for LFR2019-Image (b) ROC for LFR2019-Video

Fig. 13. ROC curves of 1:1 veri cation protocol on the LFR2019-Image
and LFR2019-Video datasets. ([MS1MV3, Ef cientNet-B0O, ArcFace])

the evaluation metric of TPR@FPR=1e-5, the ArcFace model _ o
trained on IBUG-500K surpasses the counterpart trained on M. 14. Close-set face generation. ArcFace can generate identity-
preserved face images only by using the model parameters without
FaceGraph by0:66% and 0:45% on 13B-B and 1JB-C, respec- raining any additional discriminator and generator like in GAN. The rst
tively. In Figure 12, we show the full ROC curves of the proposegblumn is the identity from the training data. Column 2 to 4 are the
ArcFace on IJB-B and 1JB-C, and ArcFace achieves impressigPuts from our ArcFace model. Column 5 to 7 are the outputs from

. . the baseline CosF del.
performance even at FPR=1e-6 setting a new baseline. @ haseline osrace mofe TABLE 10

For the 1:N end-to-end mixed protocol, there 26270probe  Fp and cosine similarity of different model inversion results. ArcFace
templates containin@0;758 still images and video frames on  model (ResNet50) for inversion is trained on MS1IMV3, but the

1JB-B, and there ar&9;593probe templates containiri27;152  generated face images also exhibit high similarity from the view of the
still m;a es and video’ frames on 1JB-C. In Table 8. we ré ort tf?éore powerful ArcFace model (ResNet100) trained on IBUG-500K. The
g : ! p margin parameter for each method is given in the bracket.

Rank-1 identi cation accuracy of our method compared to base- Method FID  Cosine Similarity
line models. ArcFace trained on IBUG-500K achieves impressive Softmax 75.59 0.5612
performance on both 1JB-B (95:94%) and 1JB-C (97:21%), setting SphereFace (1.35) 73.18 0.5919
a new record on this benchmark. CosFace (0.35) | 71.64 0.6176
Results on LFR2019-Image and LFR2019-VideoLightweight ArcFace (0.5) | 70.39 0.6248

Face Recognition (LFR) Challenge [88] targets on bench-marking
face recognition methods under strict computation constraints (i(@) the ArcFace loss (2) the, regression loss betweesil2-D
computational complexitx 1.0 GFlops). For a fair comparison,features of the teacher and student networks, and (3) the KL
all participants in the challenge must use MS1MV3 [88] as thess [119] between class-wise similarities predicted by the teacher
training data. On LFR2019-Image, trillion-level pairs betweeand student networks. The weights of theregression loss and
gallery and probe set are used for evaluation and TPR@FPR=fe KL loss is set tdl:0 and 0:1, respectively. With knowledge
8 is selected as the main evaluation metric. On LFR2019-Videgistillation, our method nally achieve$8:65% on LFR2019-
billion-level pairs between all videos are used for evaluation anghage and63:60%on LFR2019-Video. As shown in Figure 13,
TPR@FPR=1e-4 is employed as the main evaluation metric. our method obtains comparable performance with the champion
In Table 9, we compare the performance of ArcFace wiibf the LFR2019-Image track and envelops the ROC curves of
the top-ranked competition solutions [88]. For the design @il top-ranked challenge solutions in the LFR2019-Video track,
our lightweight model, we explore Ef cientNet-BO [118] as thesurpassing the champion By37%.
backbone. When training from scratch with the proposed Ar-
cFace loss, EfcientNet-BO can obtai6:44% on LFR2019-
Image and61:47%on LFR2019-Video, respectively. FoIIowingA"5
the top-ranked solutions, we also employ knowledge distillatiobhis section demonstrates the capability of the proposed ArcFace
[119] to boost the performance of our lightweight model. Armodel in terms of effectively synthesizing identity-preserved face
cFace trained on MS1MV3 with ResNetl00 provides a higlmages from subject’s centers (the close-set setting) or features
performance teacher network, achievifg:75% on LFR2019- (the open-set setting).
Image andb4:89%on LFR2019-Video. With the assistance of the We adopt the ArcFace (ResNet50) trained on MS1MV3 to
teacher network, our lightweight model is trained by minimizingonduct the inversion experiments, which include two settings,

Inversion of ArcFace
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(a) ArcFace Inversion for the Young

(b) ArcFace Inversion for the Old

(c) ArcFace Inversion for Different Races

(d) ArcFace Inversion under Pose Variations

(e) ArcFace Inversion under Occlusions

(f) Bad Cases of ArcFace Inversion (Gender Confusion)

Fig. 15. Open-set face generation from the pre-trained ArcFace model. We show the ArcFace inversion results (right) under age, gender, race, pose
and occlusion variations by only using the embedding features from LFW [89] test samples (left). In the bottom, we show some bad cases (e.qg.
gender confusion) generated from the ArcFace inversion.

Fig. 16. Open-set face generation without and with BN constraints. The rst row is the original LFW [89] samples. The second row is the ArcFace
inversion results without BN constraints, and the third row is the ArcFace inversion results with BN constraints.

TABLE 11 mode, embedding features predicted by the pre-trained models are

FID, cosine similarity and veri cation accuracy on LFW of different used as the targets to generate face images. Identity preservation
model inversion results. The cosine similarity and the veri cation

accuracy are tested by the ArcFace model (ResNet100) trained on ?S ConStraine_d by & _IOSS'_ '_:or each time, We_synthesi2§6fa§:e
IBUG-500K. The margin parameter for each method is given in the images of different identities at the resolution bf2 112in
bracket. _ ] one mini-batch using one NVIDIA V100 GPU. We employ Adam
Mef:hod FID__ Cosine Sim LFW Acc (% optimizer [120] at a learning rate @25 and the iteration lasts
Softmax 7185 0.5504 90.14 20K steps. Regularization parameters [30] for total variance and
SphereFace (1.35) 75.16 0.5687 92.05 .
CosFace (0.35) | 74.02 0.5762 92.69 2 norm of the generated faces are setlas 3 andle 4,
ArcFace (0.5) | 73.16  0.5849 93.30 respectively.

In order to quantitatively validate how well the proposed
i.e. close-set and open-set. In the close-set mode, centers stonethod can preserve the identity of the subject and how visu-
in the linear layer are selected as the targets to generate fallg plausible the reconstructed face image is, three metrics are
images. ldentity preservation is constrained by a classi cation loadopted: (1) Frechet Inception Distance (FID) [121]; (2) cosine
(e.g. Softmax, SphereFace, CosFace and ArcFace). In the operssetlarity from a third-party model ([IBUG-500K, ResNet100,

0162-8828 (c) 2021 IEEE, Personal use is permitted, but reFublication/redistribution requires IEEE permission. See http://www,ieee.org/%ublications standardsé)ublications/ri hts/index.html for more information.
Authorized licensed use limited to: Imperial College London. Downloaded on September 27,2021 at 15:50:54 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2021.3087709, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF IBTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

ArcFace]); and (3) face veri cation accuracy on LFW for open-sé8N constraints. As we can see from these results, constraints
experiments. from the BN layers can enforce the generated face more visually
Close-set Face Generatiorin Table 10, we quantify the realism plausible. Without the BN constraints, the resulting face images
and identity preservation of the reconstructed faces from differdatk natural image statistics and can be quite easily identi ed as
face recognition models. For each model, we synthesize trainimgnatural.

identities by using the 5K randomly selected class indexes. For

each identity, different random inputs are gradually updated By CONCLUSIONS

the network gradient into identity-preserved face images. TI§ this paper, we rst propose an Additive Angular Margin
proposed ArcFace model obviously outperforms the baselipgss function, named ArcFace, which can effectively enhance
methods (e.g. softmax, SphereFace and CosFace) in the image discriminative power of deep feature embedding for face
quality, achieving the FID score of0:39. By employing the recognition. We further introduce sub-class into ArcFace to relax
powerful ArcFace model trained on IBUG-500K, we calculate ajhe intra-class constraint under massive real-world noises. The
cosine similarities between real training faces and correspondmposed sub-center ArcFace encourages one dominant sub-class
generated faces. The average cosine similarity of ArcFacetfigt contains the majority of clean faces and non-dominant sub-
0:6248, surpassing all the baseline models by a clear margin. ¢jasses that include hard or noisy faces. This automatic isola-
In Figure 14, we show the synthesized faces from the proposgsh can be employed to clean large-scale web faces and we
ArcFace in comparison with the baseline CosFace model. As c@monstrate that our method consistently outperforms the state
be seen, ArcFace is able to reconstruct identity-preserved fagesne art through the most comprehensive experiments. Apart
only by using the model parameters without training any addiom enhancing discriminative power, ArcFace can also strengthen
tional discriminator and generator like in GAN [36]. Consideringhe model’s generative power, mapping feature vectors to face
the image quality is only constrained by the classi cation '0%ages. The pre-trained ArcFace model can generate identity-
and the BN priors, it is quite understandable that there exist SOM@served face images for both subjects inside and outside the
identity-unrelated artifacts in the generation results. Besides, thgrﬁning data only by using the network gradient and BN priors.
are many grey images in MS1IMV3 and this statistic informatiofs the proposed ArcFace inversion only focuses on approximating
is also stored in the BN parameters, thus some generated faggStarget identity feature, the facial poses and expressions are not
are not colorful. Compared to the baseline CosFace model, Qhtrollable. In the future, we will explore controlling intermediate
ArcFace can depict better facial features of the real faces in termsron activations to target speci ¢ facial poses and expressions
of identity preservation and image quality. during inversion. In addition, we will also explore how to make the
Open-set Face Generationin Table 11, we compare inversionface recognition model not invertible so that face images cannot

results of different models on LFW. For each pre-trained modgje easily reconstructed from model weights to protect privacy.
we rst calculate the embedding features of 13,233 face images

from LFW, and then we generate faces constrained to these targ@{x NoWLEDGMENT
features through a; loss. As we can see, ArcFace maintain e are thankful to NVIDIA for the hardware donation and

best reconstruction quality and identity preservation, consisten Yazon Web Services for the cloud credits. The work of Jiankang

outperforming the baseline models in both FID and avera . . . ;
cosine similarity metrics. On the real faces of LFW, the ArcFac%eeng was partially funded by Imperial Presidents PhD Schol-

model (ResNet50) achiev&@9:81%veri cation accuracy. On the ?r:zhg)bggg V;th)x;ﬁteggizéﬂ?”ﬁg? ;Vasscglz rtlsarl]lg fg”:ﬁgl t?lls
generated faces, the veri cation accuracy slightly drop@to/5% P ; g P Y

by using the same model ([MS1MV3, ResNet50, ArcFace]) fOf Deformak?le Models of Hgmans .(EP/SO.10203/1), FAC.:.ERZVM:
- . . . ace Matching for Automatic Identity Retrieval, Recognition, Ver-

testing. For unbiased evaluation, we report the matching accuracy . nd Management (EPIN007743/1), and a Google Facult

on LFW by employing the powerful ArcFace model (ResNeth(?ezward 9 ’ 9 y

trained on IBUG-500K and this model is more susceptible to '

artifacts in the generated results. Even though there is a further

drop in the veri cation accuracy (93:30%), the results compared

to the baseline models further demonstrate the advantages of Jiankang Deng is a Ph.D. candidate in the In-

ArcFace in th? inversion problem. _ telligent Behaviour Understanding Group (IBUG)

Figure 15 illustrates our synthesis from features of LFW faces at Imperial College London (ICL), supervised
that contain appearance variations (e.g. age, gender, race, pose and Egriifeg‘rgfs’isd ezn‘?;,fg"lgohUDagghgf;‘rdsi?psbyl_:geis'”i‘r;
occlusion). Slmllgr to t.he previous experiment, our ArcFace model the project of EPSRC FACER2VM (Face Match-
robustly depicts identity-preserved faces. The success of robustly ing for Automatic Identity Retrieval, Recogni-
handling with those challenging factors comes from two proper- tion, Veri cation and Management). His Ph.D.
ties: (1) the ArcFace network was trained to ignore those facial research topic is face analysis (face detection,

- .. . T, face alignment, face recognition and face gen-
variations in its embedding features, and (2) real face distributions eration). During his PhD studies, he has organ-

stored in the BN layers can be effectively exploited for face imagged the Menpo 2D Challenge (CVPR 2017), the Menpo 3D Challenge
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