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Abstract—Emotions are time varying affective phenomena that are elicited as a result of stimuli. Videos and movies in particular are

made to elicit emotions in their audiences. Detecting the viewers’ emotions instantaneously can be used to find the emotional traces of

videos. In this paper, we present our approach in instantaneously detecting the emotions of video viewers’ emotions from

electroencephalogram (EEG) signals and facial expressions. A set of emotion inducing videos were shown to participants while their

facial expressions and physiological responses were recorded. The expressed valence (negative to positive emotions) in the videos of

participants’ faces were annotated by five annotators. The stimuli videos were also continuously annotated on valence and arousal

dimensions. Long-short-term-memory recurrent neural networks (LSTM-RNN) and continuous conditional random fields (CCRF) were

utilized in detecting emotions automatically and continuously. We found the results from facial expressions to be superior to the results

from EEG signals. We analyzed the effect of the contamination of facial muscle activities on EEG signals and found that most of the

emotionally valuable content in EEG features are as a result of this contamination. However, our statistical analysis showed that EEG

signals still carry complementary information in presence of facial expressions.

Index Terms—Affect, EEG, facial expressions, video highlight detection, implicit tagging
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1 INTRODUCTION

VIDEO is a form of visual art that conveys emotions in its
content. Depending on users’ mood and the context

they are in, they prefer different type of emotional content,
for example, users in negative mood are more likely to
prefer a sad stimulus [1]. Affective characterization in
multimedia can be used to improve multimedia retrieval
and recommendation [2]. Emotion detection is an effective
way to unobtrusively identify emotional traces of videos or
other content without interrupting viewers. The collected
emotional trace is more reliable since we do not have to
rely on emotional self-reports that can be influenced by dif-
ferent social and personality factors, e.g., male participants
are less likely to report fear. The focus of this paper is on
continuous emotion recognition in response to videos and
the cross-modality interference between EEG signals and
facial expressions. Emotional highlights of video can be
detected based on the emotions expressed by viewers. The

moments in which emotions are expressed will build an
emotional profile or trace with applications in video sum-
marization, video indexing [3] and movie rating estimation
[4]. For example, a movie trailer can be built based on the
moments which evoke the strongest emotional response in
the audiences.

There are three different perspectives dealing with affect
in multimedia, namely, expressed emotions, felt emotions
and expected emotions [2], [5]. Expressed or intended emo-
tions are the ones that the artist or content creator is intend-
ing to elicit in the audience; independent of the fact that the
users feel those emotions or not. Expected emotions are the
emotions that arise as a result of the content in most of its
audience. Felt emotions are the ones that audience individu-
ally feel and can be personal.

In this work, our main aim was to detect felt emotions; as
we were labeling and detecting expressions and physiologi-
cal responses. However, we also annotated the videos by
the expected emotions and tried to detect the expected emo-
tions from the responses as well.

Psychologists proposed and identified different models
for representing emotions [6]. Discrete emotions such as
happiness and disgust are easier to understand since they
are based on the language. However, they can fall short in
expressing certain emotions in different languages, for
example, there was no exact translation for disgust in Polish
[7]. On the other hand, emotions can be presented in multi-
dimensional spaces which are derived based on studies that
identified the axes that carry the largest variance of all the
possible emotions. Valence, arousal and dominance (VAD)
space is one of the most well known dimensional represen-
tations of emotions. Valence ranges from unpleasant to
pleasant; arousal ranges from calm to activated and can
describe emotions intensity; and dominance ranges from
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not in control to dominant [8]. Given that most of the vari-
ance in emotions comes from two dimensions, i.e., arousal
and valence, continuous annotation and recognition of
emotions are often performed using these dimensions.

The goal of this work was to detect emotions continu-
ously from EEG signals and facial expressions. The utilized
data set consists in viewers responses to a set of emotional
videos. First, five annotators continuously annotated the
emotional responses visible in facial expressions of partici-
pants watching videos. We also annotated the stimuli con-
tinuously for both valence and arousal to indicate the level
of expected arousal and valence with the help of five anno-
tators. The averaged continuous annotations served as the
ground truth for our continuous emotion detection system.
We analyzed EEG signals and facial expressions of multiple
participants and extracted emotional features for continu-
ous emotion detection. Power spectral density (PSD) from
EEG signals and facial landmarks were extracted as fea-
tures. We applied different regression models, including
linear regression, support vector regression (SVR), continu-
ous conditional random fields (CCRF) and recurrent neural
networks, which has been successfully used in the previous
studies [9]. We evaluated the valence detection results in a
10-fold cross validation strategy using averaged correlation
coefficients and root-mean-square error (RMSE) metrics.

We performed statistical analyses to identify the relation-
ship between EEG signals and facial expressions. We were
particularly interested to identify how much of the emotion
detection using EEG signals can be attributed to the electro-
myogenic artifacts caused by facial expressions. We used a
linear mixed-effect model and causality analysis using
Granger causality [10] to answer these questions.

The main contributions of this work are as follows. First,
we detected continuous valence, in both time and space,
using EEG signals and facial expressions. Second, we stud-
ied the correlation between the EEG power spectral features
and features extracted from facial expressions and continu-
ous valence annotations to look for the possible cross
modality effect of muscular electromyogram (EMG) activi-
ties. The analysis included Granger causality tests to iden-
tify the causality relationship between facial expressions
and EEG features. We also performed statistical analyses to
verify whether EEG features provide any additional infor-
mation in presence of features extracted from facial expres-
sions. Finally, we applied the models trained with the
continuously annotated data on EEG responses that could
not be interpreted due to the lack of facial expressions from
the users. We found facial expression analysis in combina-
tion with the LSTM-RNN gives the best results for this
given task. We also observed that an important part of the
affective information in EEG signals is caused by electro-
myogenic interferences from facial expressions. However,
we could not completely rule out the existence of emotion
related information in EEG signals independent of facial
expression analysis. This paper is an extended version of
our previously published work [11]. In comparison to that
work, the following analysis and methods are extended and
added: (i) we redid and simplified the facial expression
analysis which led into improved performance; an extended
description of the facial features are also added (ii) we
added statistical analysis and discussion on the effect of

facial expressions on EEG signals and the band-pass filter
(between 4 Hz-45 H) was removed in EEG pre-processing;
(iii) an analysis of annotation delay and its effect on perfor-
mance was added; (iv) different architectures for the long-
short-term-memory recurrent neural network (LSTM-RNN)
and its parameters were tested; (v) we added the statistical
analysis identifying the relationship between affective infor-
mation in EEG signals and facial expressions and (vi) we
annotated the stimuli continuously for both arousal and
valence dimensions and reported the results for expected
emotional trace detection.

The remaining of this paper is organized as follows. In
Section 2, a background on continuous emotion detection
and emotion detection from physiological signals is given.
The data collection protocols are presented in Section 3. The
method for emotion recognition from facial expressions and
EEG signals are given in Section 4. An analysis on the corre-
lations between EEG signals and facial expressions and
their relationship is given in Section 5. The experimental
results are presented in Section 6. Finally, the paper is
concluded in Section 7.

2 BACKGROUND

2.1 Continuous Emotion Recognition

W€ollmer et al. [12] suggested abandoning the emotional cat-
egories in favor of dimensions and applied it on emotion
recognition from speech. Nicolaou et al. [13] used audio-
visual modalities to detect valence and arousal on SEM-
AINE database [14]. They used support vector regression
and Bidirectional Long-Short-Term-Memory Recurrent
Neural Networks (BLSTM-RNN) to detect emotion continu-
ously in time and dimensions. Nicolaou et al. also proposed
using an output-associative relevance vector machines
(RVM) which smooths the RVM output for continuous emo-
tion detection [15]. Although they showed how it improved
the performance of RVM for continuous emotion detection
they did not compare its performance directly to the BLSTM
recurrent neural network.

One of the major attempts in advancing the state of the
art in continuous emotion detection was the audio/visual
emotion challenge (AVEC) 2012 [16] which was proposed
using SEMAINE database. SEMAINE database includes
the audio-visual responses of participants recorded while
interacting with the sensitive affective listeners (SAL)
agents. The responses were continuously annotated on
four dimensions of valence, activation, power, and expec-
tation. The goal of the AVEC 2012 challenge was to detect
the continuous dimensional emotions using audio-visual
signals. In other notable work, Baltrusaitis et al. [17] used
CCRF to jointly detect the emotional dimensions of AVEC
2012 continuous sub-challenge. They achieved superior
performance compared to the SVR. For a comprehensive
review of continuous emotion detection, we refer the
reader to [9].

2.2 Implicit Tagging for Video Tagging
and Summarization

Implicit tagging refers to identifying metadata describing
the content, including tags and traces, from users’ spontane-
ous reactions [18].
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Movie ratings are indicators of viewers’ desired for
watching movies and are often used in recommendation
applications. Spontaneous reactions were used to estimate
these ratings. In a study on estimating movie ratings [4], gal-
vanic skin responses (GSR) were recorded and analyzed
from movie audience. Their method could achieve better
results incorporating GSR responses in addition to the
demography information for two out of three studied mov-
ies. Bao et al. [19] used facial expressions, acoustic, motion
and user interaction features captured on mobile phones
and tablets to estimate movie ratings. They discovered that
the individual responses are too diverse and unreliable to
be taken into account and focused on processing the collec-
tive responses of the audience. McDuff et al. [20], [21] mea-
sured the level of smile from the video advertisement’s
audience to assess their preference for the content. They col-
lected a large number of samples from users’ webcams who
were recruited using crowdsourcing. Ultimately, they were
able to detect fairly accurately the desire to watch the video
again and whether the viewers liked the videos.

Spontaneous behavioral reactions were also used for
video highlight detection. A video highlight detection
method was proposed using facial expression analysis [3],
[22]. In their study, Joho et al. used a probabilistic emotion
recognition from facial expression analysis to detect emo-
tions. Results were reported for 10 participants watching
eight video clips. Different features were developed for
video highlight detection including expression change rate
and pronounce level. Highly expressive emotions including
surprise and happiness received high pronounce levels
whereas no expression or neutral had low pronounce levels.
Physiological linkage between multiple viewers were pro-
posed for video highlight detection by Chênes et al. [23].
Galvanic skin response and skin temperature were the most
informative signals in detecting video highlights using
physiological linkage. In a more recent study, Fleureau et al.
[24] used GSR responses of a group of audience simulta-
neously to create an emotional trace of movies. The traces
generated from the physiological reposes were shown to
match the user reported highlight.

Spontaneous reactions can be also translated into affec-
tive tags, for example, a sad video. Physiological signals
have been used to detect emotions with the goal of implicit
emotional tagging. A video affective representation tech-
nique through physiological responses was proposed in
[25]. In this affective representation study, physiological
responses were recorded from eight participants while
watched 64 movie scenes. Participants’ self-reported emo-
tion were detected from their physiological responses using
a linear regression trained by a relevance vector machine.
Kierkels et al. [26] extended these results and analyzed the
effectiveness of tags detected by physiological signals for
personalized affective tagging of videos. Emotional labels
were reconstructed by mapping the quantized arousal and
valence values. The videos were ranked for retrieval map-
ping queries to valence-arousal space. A similar method
was developed for emotional characterization of music vid-
eos using ridge regression where arousal, valence, domi-
nance, and like/dislike ratings were estimated from the
physiological responses and the stimuli content [27].
Koelstra et al. [28] employed central and peripheral

physiological signals for emotional tagging of music videos.
In a similar study [29], a multimodal emotional tagging was
conducted using EEG signals and pupillary reflex. Abadi
et al. [30] recorded and analyzed Magnetoencephalogram
(MEG) signals as an alternative to the EEG signals with the
ability to monitor brain activities.

3 DATA SET AND ANNOTATIONS

The data set, which was used in this study, is a part of
MAHNOB-HCI database, which is a publicly available
database for multimedia implicit tagging.1 MAHNOB-HCI
database includes recordings from two experiments. The
recordings that were used in this paper are from the experi-
ment where we recorded participants’ emotional responses
to short videos with the goal of emotional tagging.

3.1 Stimuli Video Clips

We chose 20 videos as emotion evoking stimuli to cover the
whole spectrum of emotions. Fourteen out of 20 videos
were excerpts from movies and were chosen based on the
preliminary study. In the preliminary study, the partici-
pants self-reported their felt emotion on nine-point scales,
including arousal (ranging from calm to excited/activated)
and valence (ranging from unpleasant to pleasant). The ini-
tial set of videos in the preliminary study consisted in
155 movie scenes from famous commercial movies, includ-
ing, “The Pianist”, “Love Actually”, “The Shining”; for the
full list of movies from which the scenes were selected we
refer the reader to [31]. To facilitate emotional self-assess-
ment SAM manikins were shown above the ratings [32].
Three additional videos, well-known for eliciting certain
emotions, e.g., funny, were selected based on authors’ judg-
ment from online resources and were added to this set (two
for joy and one for disgust). To have a number of neutral
videos, three old weather forecast reports were selected
from YouTube. Finally, we selected 20 videos to be shown
as stimuli. Video clips were between 34.9 to 117 s long
(M ¼ 81:4s; SD ¼ 22:5s). Psychologists suggested videos
from one to ten minutes long for eliciting single emotions
[33], [34]. In MAHNOB-HCI data collection, the video clips
were kept as short as possible to reduce the chance of co-
occurring emotions or habituation to the stimuli [35]. How-
ever, the clips were kept long enough to convey the content
and elicit the desired emotions.

3.2 Data Collection

Twenty-eight healthy volunteers were recruited on campus,
comprising 12 male and 16 female between 19 to 40 years
old. Different bodily responses were recorded from the par-
ticipants watching video clips. EEG signals were acquired
from 32 active electrodes on 10-20 international system
using a Biosemi Active II system. To capture facial expres-
sion, a frontal view video was recorded at 60 frames per sec-
ond. For a detailed explanation of the synchronization
method, hardware setup and the database, we refer the
reader to the original database article [31].

A subset of 239 trials (every recorded response of a par-
ticipant to a video is a trial) containing visible facial

1. http://mahnob-db.eu/hci-tagging/
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expressions was selected to be annotated in this study. A
large number of these frontal videos from participant faces
do not contain visible facial expressions according to the
authors’ judgment. The lead author initially annotated all
the 540 videos available in this data set and chose the 239
trials that could be further annotated. We then trained five
annotators, including the authors and researches from
Northeastern University to conduct the continuous annota-
tion from participants’ facial expressions in the laboratory.
Valence from the frontal videos were annotated continu-
ously using a software implemented based on FEELTRACE
[36] and a joystick. Unlike SEMAINE database [14] where
the participants were engaged in a conversation with an
agent, in this study, they were quiet and passively watching
videos. Hence, the annotators were unable to annotate
arousal, power or expectation. An example of the continu-
ous annotations and their averaged curve which served as
the ground truth are shown in Fig. 1. We also annotated the
20 stimuli videos by five annotators. We asked the annota-
tors to indicate the level of “expected” valence and arousal
for a given video continuously using a joystick.

We calculated the Cronbach’s alpha from the pairwise
correlation coefficients to measure the inter-rater agreement
for the expression annotations (M ¼ 0:53, SD ¼ 0:41);
48.7 percent of sequences agreement were above 0.7. This is
lower that what is reported for the SEMAINE database [14]
which is due to the difference in the nature of the databases
and the lack of speech in this database. In the case of stimuli
annotations, we again calculated the Cronbach’s alpha from
the pairwise correlations of the annotations; 50 percent of
the sequences’ agreement were above 0.7 for arousal
(M ¼ 0:58, SD ¼ 0:38); and 70 percent of sequences’ agree-
ment were above 0.7 for valence (M ¼ 0:64, SD ¼ 0:40).

4 METHODS

4.1 EEG Signals

EEG signals were available at 256 Hz sampling rate. EEG
signals were re-referenced to the average reference to
enhance the signal-to-noise ratio. Average re-referencing is
performed when there is no reference electrode by subtract-
ing the average amplitude of EEG signals from all the elec-
trodes from every EEG signal recorded from any electrode.
This averaged signal includes noise and artifacts that can be
detected on the scalp but are not originated from the brain,
e.g., electric potentials from cardiac activities.

The power spectral densities of EEG signals in different
bands are correlated with emotions [37]. The power spectral
densities were extracted from 1 second time windows with
50 percent overlapping. We used all the 32 electrodes for
EEG feature extraction. The logarithms of the PSD from
theta (4Hz < f < 8Hz), alpha (8Hz < f < 12Hz), beta
(12Hz < f < 30Hz) and gamma (30Hz < f) bands were
extracted to serve as features. In total, the number of EEG
features of a trial for 32 electrodes and four bands is
32� 4 ¼ 128 features. These features were available at 2 Hz
temporal resolution due to the STFT window size (256).

4.2 Analysis of Facial Expressions

A face tracker was employed to track 49 facial fiducial
points or landmarks [38]. In this tracker, a regression model
is used to detect the landmarks from features. It then calcu-
lates translational and scaling difference between the initial
and true landmark locations. The main idea for feature
tracking is to use supervised descent method (SDM) for the
detection in each frame by using the landmark estimate of
the previous frame. The model is trained with 66 land-
marks, and provides the coordinates of 49 points in its out-
put (see Fig. 2). The facial points were extracted after
correcting the head pose. An affine transformation was
found between a neutral face of each subject and an aver-
aged face of all the subjects and all the tracked points of
sequences were registered using that transformation. A ref-
erence point was generated by averaging the coordinates of
the inner corners of eyes and nose landmarks. We assumed
this reference point to be stationary. The distances of
38 point including eyebrows, eyes, and lips to the reference
point were calculated and averaged to be used as features.

4.3 Dimensional Affect Detection

Four commonly used regression models for similar studies
were utilized for continuous emotion detection, namely,
multi-linear regression (MLR), SVR, CCRF [17], and LSTM-
RNN [39].

4.3.1 Long Short Term Memory Neural Networks

LSTM-RNN have shown to achieve top performances
in emotion recognition studies for audio-visual modalities

Fig. 1. The continuous annotations for one sequence and their averaged
curve (the strong red line) are shown.

Fig. 2. Examples of the recorded camera view including tracked facial
points.

20 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2016



[9], [13]. LSTM-RNN is a network which has one or more
hidden layers including LSTM cells. These cells contain a
memory block and some multiplicative gates which will
determine whether the cell stores, maintains or resets its
state. In this way, the network learns when to remember
and forget information coming in a sequence over time and
therefore it is able to preserve long-range dependencies in
sequences. Recurrent neural networks are able to remember
the short term input events through their feedback connec-
tions. LSTM adds the ability to also remember the input
events from a longer period using the gated memory cell.

An open source implementation of LSTM2 which is
powered by NVIDIA Inc., compute unified device archi-
tecture (CUDA) technology was used in this paper. We
chose to have two hidden layers containing LSTM cells for
all the three configurations that we used based on the
results we obtained trying different configurations (see
Section 6.3). The number of hidden neurons were set to a
quarter of the number of the input layer neurons, or fea-
tures. The learning rate was set to 1E-4 with the momen-
tum of 0.9. The sequences were presented in random
order in training and a Gaussian noise with the standard
deviation of 0.6 has been added to the input to reduce the
problem of over-fitting. The maximum epochs in training
were 100. If there was no improvement on the perfor-
mance, i.e., sum of squared errors, on the validation set
after 20 epochs, the training was stopped with the early
stopping strategy.

4.3.2 Continuous Conditional Random Fields

Conditional random fields (CRF) are frameworks for build-
ing probabilistic models to segment and classify sequential
data. Unlike hidden Markov models (HMM), they do not
assume that the observations are conditionally independent
and therefore are good alternatives for cases where there is
a strong dependency between observations. CCRF [17] were
developed to extend the CRFs for regression. CCRF in this
configuration acts as a smoothing operator on the per sam-
ple estimations from another model; in this work, we fed
CCRF with the outputs estimated by a multi-linear regres-
sion. CCRF models a conditional probability distribution
with the probability density function:

P ðyjXÞ ¼ expðCÞ
R1
�1 expðCÞdy ; (1)

where
R1
�1 expðCÞdy is the normalization function which

makes the probability distribution a valid one (by making it
sum to 1).

C ¼
X

i

XK1

k¼1

akfkðyi;XÞ þ
X

i;j

XK2

k¼1

bkgkðyi; yj;XÞ: (2)

In this equation, C is the potential function, X ¼ x1;f
x2; . . . ; xng is the set of input feature vectors (matrix with
per frame observation as rows, valence estimation from
another regression technique such as MLR in our case),
Y ¼ y1; y2; . . . ; ynf g is the target, ak is the reliability of fk

and bk is the same for edge feature function gk. fk, the Ver-
tex feature function, (dependency between yi and Xi;k) is
defined as:

fkðyi;XÞ ¼ �ðyi �Xi;kÞ2 (3)

And gk, the Edge feature function, which describes the rela-
tionship between two estimation at steps i and j, is defined as:

gkðyi; yj;XÞ ¼ � 1

2
S
ðkÞ
i;j ðyi � yjÞ2: (4)

The similarity measure, SðkÞ, controls how strong the con-
nections are between two vertices in this fully connected
graph. There are two types of similarities:

S
ðneighborÞ
i;j ¼ 1; ji� jj ¼ n

0; otherwise

�

(5)

S
ðdistanceÞ
i;j ¼ exp � jXi �Xjj

s

� �

: (6)

The neighbor similarity, in Equation (5), defines the connec-
tion of one output with its neighbors and the distance
similarity, in Equation (6), controls the relationship between
y terms based on the similarity of x terms (by distance s).

The CCRF can be trained using stochastic gradient
descent. Since the CCRF model can be viewed as a multivar-
iate Gaussian, the inference can be done by calculating the
mean of the resulting conditional distribution, i.e., P ðyjXÞ.

5 ARTIFACTS AND THEIR EFFECT

There is often a strong interference of facial muscular
activities and eye movements in the EEG signals. The facial
muscular artifacts and eye movements are usually more
present in the peripheral electrodes and higher frequencies
(beta and gamma bands) [40]. We, hence, expected that the
contamination from the facial expressions in the EEG sig-
nals to contribute to the effectiveness of the EEG signals
for valence detection. In this Section, the EEG features
were extracted from all the 32 electrodes (128 features
from four bands).

To study this assumption, we used a linear mixed-effect
model to test the effect of EEG features on estimating valence
(annotated from the expressions) given the information from
eye gaze and facial expressions (see Equation (7)). Linear
mixed-effect model enables us to model the between partici-
pant variations in a random effect term while studying the
effect of the independent variables (EEG, face and eye gaze)
on the dependent variable, valence. The eye movements
were taken from the data recorded by the Tobii eye gaze
tracker at 60 Hz which we resampled to 4Hz to match the
other modalities. The facial point movements were defined
by how much they moved from one sample to the next. We
calculated this in our feature set (see Section 4.2)

vi ¼ b0 þ
XN

j¼1

bkxij þ
Xq

k¼1

bkzi þ �: (7)

In this equation, vi is the valence at ith sample, xij is the
feature, including facial, EEG and eye gaze; zi is the random2. https://sourceforge.net/p/currennt
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effect variable representing different subjects and is only
one when the sample i belongs to the kth subject; and � is
the random error that is normally distributed with zero
mean. The result of the analysis showed that the coefficients
of the majority of the EEG features were significantly differ-
ent from zero. The percentage of the features with signifi-
cant effect on valence estimations in different bands are as
follows: theta band: 41 percent alpha band: 47 percent beta
band: 50 percent and gamma: 81 percent; significance was
defined by the results of the ANOVA test rejecting the null
hypothesis with p-value smaller than 0.05. In total, the per-
centage of the EEG coefficient which was significantly dif-
ferent from zero was 55 percent. The average (absolute) b
for the face features was 0.057 in comparison to 0.002 for
EEG and 0.0005 for gaze. Given that the face features and
eye gaze features were present in the model as fixed effect,
this shows that the EEG features add information which
was not in the facial movements detected by face tracker
and useful for valence detection. It is however, unclear
whether this information was originally related to the facial
movement artifacts which were not detected by the com-
puter vision based face trackers or not.

We also calculated the correlation between EEG spectral
power in different bands and all the electrodes with the
valence labels. The topographs in Fig. 3 show that the
higher frequency components from electrodes positioned
on the frontal, parietal and occipital lobes have higher
correlation with valence measurements.

In order to check how much of the variation of EEG sig-
nals are correlated with the facial movement, we used a
multi-linear regression model to estimate the EEG features
from eye gaze, head pose and face features. In this analysis,
we used a larger set of samples including the trials in which
the participants did not show any visible facial expression.
Eye gaze movement and head pose could not predict the
EEG features, however, the features extracted from facial
expressions could detect different EEG features with differ-
ent degrees. Eye movements usually affect low frequency
components of EEG signals which were discarded in these
set of EEG features. The R-squared results of the estimation

of the EEG features from face features are shown in Fig. 4.
The association between EEG signals and facial expressions
cannot be as a result of motor cortex activation since Mu
rhythms are associated with motor cortex activation origi-
nated by movement (9-11Hz) [41] were not very strong. Mu
Rhythm has the same frequency as alpha waves and origi-
nated from the motor cortex; see the alpha activity in Fig. 4.
Comparing Figs. 3 and 4, we can see a large overlap
between the features detecting valence and the features
with a strong correlation and dependency on face features.
Even though, using the linear mixed-effect model we found
that the EEG features were still significant in detecting
valence in the presence of face features, most of the variance
which was useful in detecting valence was strongly corre-
lated with facial muscle artifacts. The most effective facial
points on EEG signals included the landmarks on lips.

We wanted to further clarify whether the effect is origi-
nated from facial expressions or EEG signals. In order to
detect the relationship between two time series, we used
Granger causality test. Granger [10] stated that y Granger
causes x, if adding time series y to the auto regressive time
series x reduces the variance of prediction error of x. Given
time series x ¼ x1; x2; . . . ; xnf g that can be described by an
auto regressive model

xi ¼
Xkx

j¼1

wðkx�jÞxði�jÞ þ �x; (8)

where kx is the model order for auto regressive time series,
calculated using model selection criteria, like Baysian infor-
mation criterion (BIC) or akaike information criterion (AIC).
If time series y is:

yi ¼
Xky

j¼1

w0
ðky�jÞyði�jÞ þ �y (9)

we can reconstruct x by:

xi ¼
Xkx

j¼1

wðkx�jÞxði�jÞ þ
Xky

j¼1

w00
ðky�jÞyði�jÞ þ �xy: (10)

Fig. 3. The correlation maps between PSD and continuous valence for
theta, alpha, beta, and gamma bands. The correlation values are aver-
aged over all sequences. In these topographs the frontal lobe, the nose,
is positioned on the top.

Fig. 4. The R-squared topographs depicting how much the EEG power
spectral features could be estimated and as a result of facial movements
or expressions.
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In Equation (10) the first component is x being described
using an autoregressive model, see Equation (8), and the
second component models reconstructing x from the lagged
values of y. The presence of Granger causality can be
determined by an F-test using the following F-value:

F ¼ ð�2x � �2xyÞ=ky
�2xy=ðn� ðkx þ ky þ 1ÞÞ : (11)

We can then verify whether the null hypothesis, or the
absence of Granger causality, can be rejected or not; in this
paper we used the significance level of 5 percent.

We generated the squared EEG signals resampled to
60 Hz to represent their energy and to match the facial
expressions sampling rate. We then performed the Granger
causality test from each of 38 facial points to each of 32 EEG
signals from all the electrodes and back. We found that in
average 28 percent of the causality test are positive when we
test whether the facial expressions are Granger caused by
EEG signals whereas this percentage was 54 percent for EEG
signals being under influence of facial expressions. In Fig. 5,
we show the averaged percentage of causality tests that came
positive for different electrodes when we tested the causality
from facial expressions to EEG signals.We can observe that it
has a similar pattern to the correlation analysis and further
strengthens the idea that a large part of the variance in EEG
signals is as a result of facial expressions artifacts.

6 EXPERIMENTAL RESULTS

6.1 Analyses of Features

We calculated the correlation between different facial
expression features and the ground truth for each sequence
and averaged them over all sequences. The features with
the highest correlation coefficients were related to the
mouth/lip points, e.g., lower lip angle (r ¼ 0:23), left and
right lip corner distance (r ¼ �0:23), etc. The results
showed that the lip points were the most informative fea-
tures for valence detection. The openness of mouth and
eyes were also strongly correlated with valence.

6.2 Analysis of the Lag of Annotations

Mariooryad and Busso [42] analyzed the effect of lag on
continuous emotion detection on SEMAINE database [14].
They found a delay of 2 seconds will improve their emotion
detection results. SEMAINE database is annotated by

Feeltrace [36] using a mouse as annotation interface. In con-
trast, our database is annotated using a joystick which we
believe has a shorter response time and is easier to use for
such purpose. We shifted our annotations and considered
delays from 250ms up to 4 seconds and calculated the aver-
aged correlation coefficients for the valence detection results
from different modalities and their combinations. The
results, in Fig. 6, showed that in our case the delay of
250 ms increased the detection performance whereas longer
delays deteriorated it. Therefore, we observed the advan-
tage of using joystick over mouse in this context.

6.3 LSTM Structure

We experimented different LSTM structures from one hid-
den layer to two hidden layers and with different number
of LSTM cells. The results are summarized in Table 1. Two
hidden layers yielded higher detection performance com-
pared to one. We tested with different number of neurons
in the hidden layer including 1/8, 1/4, and 1/2 the input
layer neurons or the number of features. Different number

Fig. 5. The average percentage of significant causation from facial
points to different EEG signals.

Fig. 6. The resulting �r for different hypothetical annotation delays.

TABLE 1
The Performance of Continuous Valence Detection

Using Different Structures of LSTM Network

One hidden layer Two hidden layers

#cells �r RMSE �r RMSE

EEG

16 0.24 � 0.34 0.053 � 0.029 0.25 � 0.34 0.052 � 0.028
32 0.25 � 0.34 0.052 � 0.028 0.26 � 0.33 0.052 � 0.029
64 0.22 � 0.35 0.053 � 0.029 0.26 � 0.35 0.053 � 0.028

Face

5 0.48 � 0.37 0.043 � 0.026 0.48 � 0.37 0.045 � 0.027
10 0.47 � 0.37 0.044 � 0.026 0.49 � 0.37 0.043 � 0.025
19 0.47 � 0.39 0.044 � 0.025 0.47 � 0.38 0.044 � 0.027

Face and EEG (feature fusion)

21 0.40 � 0.33 0.047 � 0.025 0.42 � 0.34 0.047 � 0.024
42 0.39 � 0.34 0.048 � 0.025 0.40 � 0.35 0.047 � 0.025
83 0.35 � 0.34 0.050 � 0.023 0.40 � 0.35 0.047 � 0.024
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of neurons did not change the results significantly; we con-
firmed this with performing a one-sided non-parametric
rank-sum test. Therefore, we chose a quarter of the input
neurons with two hidden layers for the final settings.
Weninger et al. [43] reported that adding the differences
between the consecutive targets as outputs improved their
regression performance in music emotion estimation from
content features. They argue that adding the target differen-
ces acts like regularization of the weights. We tried the
same technique in which we added the difference between
the targets of each point with its neighboring samples
(DðvÞ=DðtÞ) in the training phase and discard those output
during testing. Unlike [43], the results of including the tar-
get differences (DðvÞ=DðtÞ) did not have any significant
effect on the performance. Hence, we did not use the extra
differential targets in our final model.

6.4 Continuous Emotion Detection

In this Section, we present the results of continuous emo-
tion detection in case of felt-emotions. All the features
and annotations were re-sampled to 4 Hz from their
original sampling rates. To recall, EEG features were the
power spectral densities in different bands and facial
expression features were extracted from the facial land-
marks detected in each frame. This re-sampling enabled
us to perform multimodal fusion on different levels. All
the features were normalized by removing the average
value of the features in the training set and dividing by
their standard deviation. The results were evaluated in a
10-fold cross validation which is not participant-indepen-
dent. However, the training, validation and test sets do
not contain information from the same trials. In every
fold, the samples were divided in three sets. Ten percent
were taken as the test set, 60 percent of the remaining
samples (54 percent of the total number of samples)
were taken as the training set and the rest were used as
the validation set. For the MLR, only the training sets
were used to train the regression models and the valida-
tion sets were not used. A linear �-SVR with L2 regulari-
zation, from Liblinear library [44], was used and its
hyper-parameters were found based on the lowest RMSE
on the validation set. We used the validation sets in the
process of training the LSTM-RNN to avoid overfitting.
The output of MLR on the validation set was used to
train the CCRF. The trained CCRF was applied on the
MLR output on the test set. The CCRF regularization

hyper-parameters were chosen based on a grid search
using the training set. The rest of the parameters were
kept the same as [17].

Two fusion strategies were employed to fuse these two
modalities. In the feature level fusion (FLF), the features of
these modalities were concatenated to form a larger feature
vector before feeding them into models. In the decision level
fusion (DLF), the resulting estimation of valence scores from
different modalities were averaged.

The emotion recognition results are given in Table 2. We
reported the averaged Pearson correlation to show the simi-
larity between the detected curves and the annotations.
Root-mean-squared error (RMSE) is also reported to show
how far the estimations were in average compared to the
ground truth. RMSE penalizes the larger errors more than
the smaller ones. Consistently, facial expressions outper-
formed EEG features. This might be as a result of the bias of
the data set towards the trials with expressions. We could
show that in this particular case unlike the work of Koel-
stara and Patras [45], facial expressions can outperform
EEG signals for valence detection. It is worth noting that the
facial landmark detector used in this study is a more recent
landmark tracking technique compared to the one in [45]
whereas the EEG features are identical. Moreover, com-
pared to the previous work, we were using a different set of
labels which were not based on self-reports. Finally, [45]
was a single trial classification study whereas here we are
detecting emotions continuously.

A one sided Wilcoxon test showed that the difference
between the performance of the decision level fusion com-
pared to the results of a single modality facial expression
analysis using LSTM-RNN was not significant. Therefore,
we conclude that the fusion of EEG signals is not beneficial
and the LSTM-RNN on a single modality, i.e., facial expres-
sions, performed the best in this setting. Using the non-
parametric Wilcoxon test, we found that the difference
between correlations resulted from LSTM-RNN and CCRF
is not significant, however, RMSE is significantly lower for
LSTM-RNN (p < 1E � 4). Although, direct comparison of
the performance is not possible with the other work due to
the difference in the nature of the databases, the best
achieved correlation is in the same range as the result of
[46], the winner of AVEC 2012 challenge, on valence and
superior to the correlation value reported on valence in a
more recent work, [47]. Unfortunately, the previous papers
on this topic did not report the standard deviation of their
results; thus its comparison was impossible. We have also

TABLE 2
To Evaluate the Detection Performances from Different Modalities and Fusion Schemes the Averaged

Pearson Correlation Coefficient (�r) and RMSE Are Reported

Model MLR SVR CCRF LSTM-RNN

Metric �r RMSE �r RMSE �r RMSE �r RMSE

EEG 0.22 � 0.36 0.055 � 0.030 0.21 � 0.35 0.060 � 0.027 0.26 � 0.49 0.048 � 0.035 0.24 � 0.34 0.053 � 0.029
Face 0.38 � 0.35 0.049 � 0.026 0.38 � 0.36 0.051 � 0.025 0.44 � 0.41 0.053 � 0.027 0.48 � 0.37 0.043 � 0.026
FLF 0.38 � 0.34 0.049 � 0.025 0.33 � 0.33 0.055 � 0.024 0.44 � 0.40 0.53 � 0.028 0.40 � 0.33 0.047 � 0.025
DLF 0.38 � 0.37 0.047 � 0.028 0.36 � 0.37 0.050 � 0.026 0.42 � 0.46 0.050 � 0.029 0.45 � 0.35 0.044 � 0.026

The RMSE was calculated after scaling the output and labels between [-0.5, 0.5]. The reported measures are averaged for all the sequences for MLR, SVR, CCRF
and LSTM recurrent neural network (LSTM-RNN). Modalities and fusion schemes were EEG, facial expressions (face), FLF and DLF. For �r higher is better,
and for RMSE the lower is better. The best results are shown in boldface font.

24 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2016



tested the BLSTM-RNN, but their performance was inferior
compared to the simpler LSTM-RNN for this task.

Two examples of detection results are given in Fig. 7. We
observed that positive emotions were easier to detect com-
pared to the negative ones. Smiles are strong indicators of
pleasantness of emotions and there are a large number of
instances of smile in the current data set. It was also shown
that smile detection has a high performance in spontaneous
expression recognition [48]. Our analysis on the face fea-
tures also showed that most of the highly correlated features
were the points on lips.

6.5 Expected Emotion Detection

If the goal of emotion detection is to identify the emotional
highlight and emotional trace of videos, then the ground
truth should reflect the expected emotions. For this reason,
we repeated the same procedure for detecting the expected
emotion this time using both continuous arousal and
valence labels given to the stimuli. When we annotated the
stimuli directly we did not have the same limitation as
annotating facial expressions that made annotating arousal
impossible. This time, we only report the results of the best
performing model, i.e., LSTM-RNN. The results are given in
Table 3. Again the facial expressions results are superior to
the EEG signals and fusion of two modalities do not outper-
form facial expressions. It is worth noting that even without
the labels crated based on the expressions, see Section 6.4,
facial expressions outperform the EEG signals. The results
are in average inferior to the results obtained using the
expression-based labels in Section 6.4. This might be as a
result of different factors that we summarize as follows. Not
all the viewers at all times feel the emotions that are
expected; e.g., a person might have already watched a sur-
prising moment in a movie scene and it is surprising to her
for the second time. Often times we only express or feel

high level of emotion or arousal only in the first moment of
facing a stimulus; the emotional response usually decays
afterward due to the habituation to the stimulus [35]. More-
over, the personal and contextual factors, such as mood,
fatigue and familiarity with the stimuli have effect on what
we feel in response to videos [2]. One solution to these prob-
lems can be to combine several users’ responses. Multi-user
fusion has been shown to achieve superior results in
emotional profiling of videos using physiological signals
compared to single-user response [24].

In order to verify whether the model trained on anno-
tations based on facial expression analyses can reflect on
the case without any facial expressions. We chose one of
the videos with distinct emotional highlight moments, the
church scene from “Love Actually”, and took the EEG
responses of the 13 participants who did not show any
significant. Since these responses did not include any visi-
ble facial expressions, they were not used for the annota-
tion procedure and were not in any form in our training
data. We extracted the power spectral features from their
EEG responses and fed it into our models and averaged
the output curves. Fig. 8 show that despite the fact that
the participants did not express any facial expressions
and likely did not have very strong emotions, the valence
detected from their EEG responses covaries with the
highlight moments and the valence trend in the video.
The CCRF provides a smoother trace which matches bet-
ter with the overall trend compared to the other methods.
The snapshots in Fig. 8, show the frames corresponding
to three different moments. The first one, at 20 seconds, is
during the marriage ceremony. The second and third
frames are the surprising and joyful moments when the

Fig. 7. Two examples of the detected valence traces. The results
depicted on top (rFLF ¼ 0.80, RMSEFLF ¼ 0.034) is a good example of
correct detection of the trend in a positive stimulus. The example shown
in the bottom (rFLF ¼ -0.11, RMSEFLF ¼ 0.036), on the other hand is an
example where the detection did not pick up the correct trend for this
negative stimulus.

TABLE 3
The Detection Results with the Aim of Recovering the

Expected Emotion Using the Labeled Stimuli

Model Arousal Valence

Metric �r RMSE �r RMSE

EEG 0.16 � 0.29 0.145 � 0.047 0.14 � 0.34 0.205 � 0.083
Face 0.27 � 0.38 0.142 � 0.053 0.26 � 0.42 0.188 � 0.087
FLF 0.21 � 0.30 0.143 � 0.050 0.21 � 0.34 0.193 � 0.083
DLF 0.25 � 0.32 0.143 � 0.049 0.25 � 0.37 0.185 � 0.077

Fig. 8. The average valence curve, emotional trace, resulted from the
EEG signals of participants who did not show any facial expressions
while watching a scene from Love Actually. The general trend is corre-
lated with the emotional moments. The labels given directly to the stimu-
lus were divided by 10 for visualization purposes and are in green dash
dots. The figure is best seen in color.
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participants bring their musical instruments in sight and
start playing a romantic song unexpectedly.

7 CONCLUSIONS

We presented a study of continuous detection of valence
using EEG signals and facial expressions. Promising results
were obtained from EEG signals and facial expressions. We
expected the results from facial expressions to be superior
due to the bias of the ground truth towards the expressions,
i.e., the ground truth was generated based on the judgment
of the facial expressions. The results from the statistical test
on the linear mixed-effect model showed that EEG modality
carries useful information for detecting valence. The infor-
mation gain from including EEG signals however did not
improve the performance of the detection in our different
fusion approaches. It is also possible that the rest of the
valence related information in EEG signals were also
related to subtle facial expressions which were not cap-
tured by the machine vision based face tracker. The
results of detecting the labeled stimuli again demon-
strated that facial expressions had superior performance
compared to the EEG signals for emotion detection. In
summary, facial expressions outperformed EEG signals
for emotion detection in this study. The data set that was
used in this study consisted of responses with apparent
facial expressions with face videos captured in high qual-
ity with limited head movements and pose variance.
However, this conclusion cannot be generalized to all
conditions and all emotion detection scenarios as the
opposite was reported previously [45].

Even with inferior performance, EEG signals can still be
considered in applications where we cannot record users’
faces. The current wearable headsets, e.g., EMOTIV,3 dem-
onstrate the potentials in EEG analysis. Moreover, with cor-
rect electrode placement electromyogenic signals and the
artifacts from facial expression on EEG signals can be used
to detect facial expressions to replace the need for a front-
facing camera capturing users’ faces.

The analyses of the correlation between the EEG signals
and the ground truth showed that the higher frequency
components of the signals carry more important informa-
tion regarding the pleasantness of emotion. The analysis of
correlation and causation between EEG signals and facial
expressions further showed that the informative features
from EEG signals were mostly originated from the contami-
nation from facial muscular activities. The analysis of the
valence detection also showed that the results were superior
for the sequences with positive emotions compared to the
negative ones. The continuous annotation of facial expres-
sions suffers from a lag and we showed the superior time
response of annotators while using joystick instead of using
a mouse [14], [42].

In the future work, it will be beneficial to record multi-
modal data for the sole aim of understanding the
correlation and causation relationships between facial
expressions and EEG signals. Recordings of the future
work can include acted and spontaneous expressions in
different situations.
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