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ABSTRACT
We propose an Unsupervised method for Extreme States Clas-

sification (UnESC) on feature spaces of facial cues of interest. The
method is built upon Active Appearance Models (AAM) face track-
ing and on feature extraction of Global and Local AAMs. UnESC is
applied primarily on facial pose, but is shown to be extendable for
the case of local models on the eyes and mouth. Given the impor-
tance of facial events in Sign Languages we apply the UnESC on
videos from two sign language corpora, both American (ASL) and
Greek (GSL) yielding promising qualitative and quantitative results.
Apart from the detection of extreme facial states, the proposed Un-
ESC also has impact for SL corpora lacking any facial annotations.

Index Terms— Sign language videos, Active Appearance Mod-
els, face tracking/modeling, head pose, unsupervised classification.

1. INTRODUCTION

Facial events are inevitably linked with human communication and
are more than essential for gesture and sign language comprehen-
sion. Nevertheless, both from the automatic visual processing and
recognition viewpoint, facial events are difficult to detect and model
due to their high variability with respect to their appearance, 3D pose
and lighting conditions. This situation gets even tougher given the
difficulty to annotate Sign Language (SL) corpora at the level of
facial events; a quite expensive procedure w.r.t. time, which justi-
fies the general lack of such annotations apart from specific excep-
tions [1]. Within the context of sign language, facial events such
as head movements, head pose, facial expressions, local actions of
the eyes, mouthings, carry valuable information in parallel with the
other manual cues: this holds for instance in multiple ways or time
scales either at the level of a sign or at the sentence-level, contribut-
ing to the prosody or the meaning of a sign. Given their importance,
the incorporation of facial events and head gestures has received at-
tention [3] within the context of gesture-based communication and
Automatic Sign Language Recognition (ASLR): for instance the de-
tection of facial events with grammatical meaning is addressed by
a wide range of face tracking and modelling [4, 5] methods. Facial
features have received similar attention in other fields too, in which
their accurate detection is essential for many face-related applica-
tions [6, 7]. Unsupervised approaches have also been applied for the
temporal clustering and segmentation of facial expressions [6].

A variety of methods have been proposed for the extraction of
facial features. Many of these are based on deformable models, like
Active Appearance Models (AAMs), due to their ability to capture
both shape and texture variability providing a compact representa-
tion of facial features [9]. Though, face AAMs are not sufficient to
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describe the local variability of the inner-face components since the
derived modes of shape and texture variation from Principal Com-
ponent Analysis (PCA) on the training images describe the face in
a holistic manner. An alternative approach with global AAMs and
sub-models has been proposed in [8] improving facial AAM track-
ing. In the same work, the authors explore AAM parameters and
geometrical distances on the fitted model to detect eye-blinking.

In this work we focus on the unsupervised detection of facial
events that we call extreme: such are the head pose over yaw, pitch
and roll angles and the opening/closing of eyes and mouth. The pro-
posed method, referred to from now on as Unsupervised Extreme
State Classification (UnESC), is formulated to handle in a simple
but effective way facial events as the ones above. The method builds
on the exploitation of Global and Local AAMs, trained in facial re-
gions of interest in order to succesfully track and model the face
and its inner components. Supplementary work in terms of initial-
ization and visual processing is applied so as to increase the presi-
sion of these AAMs. After appropriate feature selection, the UnESC
method first breaks-down the clusters over-partitioning the feature
space and then applies maximum-distance hierarchical clustering to
end-up with the extreme feature clusters. The overall framework is
applied succesfully on video corpora from two different SLs show-
ing intuitive results. For the case of existing facial annotations we
also quantitatively evalutate the method yielding promising results.
Finally, the method is also applied on a multi-person database of still
images showing its person-independent generalization potential.

2. FACE TRACKING USING AAM AND DATABASES

2.1. Background on Active Appearance Models

In the task of video face tracking, Global AAMs (GAAMs) recover
the parametric description for each face instance via optimization.
We take advantage of adaptive and constrained inverse composi-
tional methods [10, 11] for improved accuracy and performance dur-
ing the fitting. The fitting process estimates the concatenated shape
and texture parameters vector q = [p̃, λ̃]T that minimizes the pe-
nalized functional f(q) = 1

2σ2 ‖E(q)‖22 + Q(q). E(q) is the er-
ror image defined as the discrepancy between the reconstructed tex-
ture and the image texture. To compute this error, the face image
is aligned with the model’s mean shape s0 via the similarity trans-
form S(t) with parameters t1:4 = [t1, t2, t3, t4]. These parameters,
need also to be optimized and are included in the shape parameters
p̃ = [t,p]T . The penalty Q(q) = 1

2
(q−q0)TΣ−1

q,0(q−q0) corre-
sponds to Gaussian prior information with mean q0 and covariance
matrix Σq,0; k is a positive weight parameter adjusting the share
between E(q) and Q(q) in the fitting criterion.

Sign and Image Databases: The presented methods are applied
on parts from a Greek SL (GSL) [13] and an American SL (BU) [1].
We trained two subject-specific GAAMs one for each, using approx-
imately 50 training images. By keeping the 90% of the variance



Fig. 1: AAM fitting initialization and result. Top: Initial image,
skin masks for width and rotation estimation, similarity rotation via
ellipsis. Middle, Bottom: AAM fitting result on GSL and BU.

we end-up with ≈ 30 eigenshapes per database. The main issue for
both databases is the low face resolution which is 2385 and 5624
pixels respectively. Finally, we trained a GAAM on a static images
multiple-person database (IMM) [2].

2.2. AAM Tracking Initialization using Face and Skin Detection

Even though the AAMs are very effective on the detection and track-
ing of high-variation local movements of facial parts, they are not
suitable for robust face tracking within large pose variation, which is
intense in SL tasks. Due to the gradient-based optimization criterion
the fitting is sensitive to initial parameters values and it is difficult
to re-initialize them whenever the fitting fails. We deal with this
initialization issue by employing a robust and accurate method for
skin color and face detection and morphological region extraction to
initialize the similarity transform parameters t1:4.

Skin Color and Morphological Operators: 1) We train a two-
component GMM model on skin color including subject’s hair in or-
der to preserve head symmetry. We use these symmetric skin masks
to find initial face rotation by estimating the orientation of a fitting
ellipsis’ major axis. 2) We use a thresholding-based skin detection
method on HSV colorspace followed by appropriate morphological
operators for hole-filling, reconstruction and segmentation detecting
all facial skin-only pixels. We find the initial face scaling by calcu-
lating the skin mask’s width on the direction of the previous ellipsis’
minor axis. The above steps are illustrated in the top row of Fig. 1.
3) The initial face translation is determined by aligning the centroids
of the GMM skin mask and the GAAM mean shape. However, the
resulting translation is inaccurate due to head pose variation, thus
we apply a minor binary search within a small window around the
ellipsis’ centroid aiming at minimizing the initial MSE.

Face Detection: The selection of facial skin mask among other
skin regions is achieved via Viola-Jones face detection expanded by
Kalman filtering, which guarantees robust detection on the whole
video [12]. The parameters are initialized on each frame without
prior knowledge so as to re-initialize the fitting after a failure.

Fitting and Tracking Results: In this paper we exclude occlu-
sion frames from tracking by detecting them through skin color seg-
mentation. The fitting and tracking is accurate on all non-occlusion
frames. The accuracy of tracking and the effectiveness of the initial-
ization framework are highlighted in cases with extreme mouthings
and pose variations on an SL video. The middle and bottom rows of
Fig. 1 depict some indicative tracking results on both databases.

(a) (b)

(c) (d)
Fig. 2: (a-d): First eigenshapes of GAAM and LAAMs for left eye,
left eyebrow and mouth on GSL database. The middle images dis-
play the mean shapes and the first and third images the instances for
p1 = ±2.5

√
λ1, where λ1 is the corresponding eigenvalue.

Local Active Appearance Models (LAAMs): LAAMs are
trained to model a specific facial area with the advantage to decom-
pose the variance of the selected area from the variance of the rest
of the face. The conversion of GAAM to LAAM is achieved by
projecting the parameters’ values from the eigenvectors of the for-
mer to the latter. Figure 2 shows the variance of the most important
eigenshape for GAAM and LAAMs for the GSL database.

3. UNSUPERVISED EXTREME STATES CLASSIFICATION

Facial features such as pose, eyes and mouthings, share a significant
role in SL communication. For instance, alternations of face pose
could be linked with role shifts and mouthings could differentiate the
meaning whilst keeping the same manual articulation. We propose
the UnESC method for the unsupervised detection of such low level
visual events which can further be exploited for higher level linguis-
tic analysis and automatic processing. This shall have great impact
especially for corpora missing such annotations. The method can be
applied to other cases of feature spaces with similar assumptions as
the ones described in the following sections.

Consider the example in Fig. 3 showing an eight frames se-
quence. The facial cue that we aim to detect is the change in pose
over the yaw angle from left to right. Specifically we focus on de-
tecting the extreme states of the pose and not the precise pose angle.
These extreme states can be observed on the two first and last frames
of the continuous video stream.

3.1. Feature Selection

There is a wide variety of features that can be extracted from the
AAM tracking results, depending on the facial event to be de-
tected. Some of the options are the GAAM and the various LAAMs
eigenvectors’ parameters or even some geometrical measures on
the shape’s landmark points of cartesian coordinates. The designer
selects the eigenvector that best describes the facial event of interest,
which results in dealing with a single-dimensional (1D) feature.
That way we achieve simplicity in the selection of appropriate clus-
ters for the training of probabilistic models. The detection of more
complex facial events with high dimensionality is synthesized by the
individual 1D detections. The synthesis process of GAAM, LAAM
shape instances is done using the formulation s = s0 +

∑Ns
i=1 pisi

where pi are the AAM parameters and si are the eigenvectors.
Hence, the facial event variation is linearly related to the 1D feature
space. This means that the observations with extreme parameter
value are the most representative for each of the extreme states.

3.2. Hierarchical Breakdown

The target is to select representative clusters - positioned on the two
edges and the centre of the 1D feature space - that will be used to



(a) fr# 6778-L (b) fr# 6779-L (c) fr# 6780-U (d) fr# 6781-U (e) fr# 6782-U (f) fr# 6783-U (g) fr# 6784-R (h) fr# 6785-R

Fig. 3: GSL sequence of pose left (L) to right (R); labels (L/R/Undefined) showing the detected state after application of the UnESC.

train probabilistic models. However, the straightforward applica-
tion of a clustering method requesting these three clusters would
take into account the inter-distances of points and result into large
surface clusters that spread towards the centre of the feature space.
More specifically, if the two edges of the feature space have large
inequality in data points density, then there is the danger one of the
two clusters to capture intermediate states. Consequently, the models
corresponding to the extreme states would also include some neutral
states from the centre of the feature space.

We apply Agglomerative Hierarchical Clustering selecting a
low-level horizontal cut on the occuring dendrogram in order to
get a large number of clusters, approximately half the number of
observations. This hierarchical overclustering, neutralizes the den-
sity differences of the feature space and creates small groups that
decrease the number of considered observations.

3.3. Maximum-Distance Cluster Selection

The selection of appropriate clusters on the edges of the feature
space is based on maximum-distance criterion and is followed by
the creation of a third central cluster containing approximately the
same number of observations. This cluster selection is different than
clustering. The method selects observations to be included in a clus-
ter for the final training and rejects the rest. This selection of clusters
requires a configuration by the designer through an intuitive param-
eter that we refer to as Subjective Perceived Threshold (SPThres).
This threshold practically determines the spread of each of the edge
clusters towards the central part of the 1D feature space as we apply
the maximum-distance criterion and select observations beginning
from outter to inner ones. SPThres is named after the way human
perception defines an extreme state of a facial event, as for instance
at which state the pose is considered extreme right or left.

3.4. Final Clusters and Model Training

A central cluster represents the intermediate states. If the extreme
conditions of the event in a facial cue are detected correctly, then the
knowledge of the intermediate states are of no importance. To clarify
this see the example of Fig. 3. We expect our UnESC method to
assign the left and right pose labels on the one or two at most frames
of the beginning and ending of the sequence respectively. The frames
of Figs. 3(c)-3(f) are the intermediate states and it is easily predicted
that they portray the transition from left to right pose. These states
of the central cluster can be labeled as undefined or neutral in certain
cases where the term has a physical interpretation.

Hence, after appropriate automatic selection of the three rep-
resentative clusters, which replace the need for annotation on
databases, the final step is to train a Gaussian Model for each
cluster. New observations are classified to a state by comparing the
posterior probabilities of each Gaussian distribution. Consequently,
following the example of Fig. 3, the final extreme pose detection
is summarized in the subcaptions. Figure 4 illustrates the training
steps of the method for the facial event of Fig. 3.

Fig. 4: UnESC initial feature space (sorted) and cluster selection.

Unsupervised Character: UnESC builds on the AAM fitting re-
sults, thus its unsupervised character refers to the processing after
the landmark points annotation and the AAM training. The user in-
tervention consists only of 1) the selection of the 1D feature that is
closely related to the event to be detected; 2) the selection of the
SPThres, which can configure the looseness of the model w.r.t. the
event to be detected. Step (1) is inherent for the application of the
approach since UnESC has the potential to detect many different
phenomena. Step (2) depends on the physical characteristics of the
cue. For example the strictness of the range at which the states are
considered extreme differs between the events of pose right/left and
eyes open/close.

4. EXPERIMENTAL RESULTS

4.1. Application on multiple Facial Cues for SL Videos

Extreme Face Pose and Global AAMs: The training of GAAMs
for face tracking determines the directions of highest variance as oc-
cured by PCA. In practice, the variance demonstrates the ammount
of displacement caused on the mean shape’s landmark points be-
cause of a specific eigenvector. Consequently, for the pose detection
over yaw, pitch and roll angles, which demonstrates high variance on
SL videos, we use the first and second eigenshape’s parameter and
the similarity transform parameters t1:2 respectively. The presented
example of Fig. 3 shows the application on yaw angle.

Extreme Eyes States and Local Geometrical Measurements:
On contrary to the two most important GAAM eigenshapes, the rest
of the eigenvectors express multiple facial alterations which is in-
convenient for the detection of independent facial cues. In order to
encounter these dependencies we employ the euclidean distances be-
tween appropriately selected landmark points. For example, in the
case of eyes extreme opening and closing states, the feature space
consists of the distances between two points located on the upper
and lower eyelid from the GAAM face mask. Figures 5(a)-5(e) il-
lustrate the results of this application on a continuous GSL video.

Extreme Mouth States and Local AAMs: For the detection of
finer-scale events we project the GAAM parameters into LAAMs,
appropriately trained to represent the variance of a specific face area.
For example, an LAAM trained using the inner lips landmark points
produces a linear space of five eigenvectors, with the first two cover-
ing the 83.5% of the variance and representing the most character-
istic mouthings - smile/frown and circle/straight lips. Using the sec-
ond eigenshape’s parameter we detect the mouth’s opening/closing



(a) Eye-O (b) Eye-O (c) Eye-O (d) Eye-U (e) Eye-C

(f) Mouth-O (g) Mouth-O (h) Mouth-U (i) Mouth-C (j) Mouth-C

Fig. 5: Qualitative results of UnESC on GSL video. Figures 5(a)-
5(e): Left eye (O)pening/(C)losing using geometrical measurements.
Figures 5(f)-5(j): Mouth (O)pening/(C)losing using LAAM.

as shown in Figs. 5(f)-5(j) for the GSL database.

4.2. Quantitative Evaluation and Results

UnESC vs Supervised Classification vs Kmeans on SL: Next, we
present experiments on the BU database which has facial annota-
tions. We compute the face tracking on the non-occluded video
frames (23.8% of all frames), with a subject-specific trained GAAM.
We next employ only frames that result on low AAM tracking error.
TheseM = 2196 frames are annotated for face pose over yaw angle
with labels right, slightly-right, slightly-left and left.

UnESC: For pose detection over the yaw angle we use the first
eigenshape of GAAM. We apply the UnESC method for various
SPThres values and consider the right and left labels as extreme
and the slightly-right/left, as neutral. The SPThres denotes the po-
sition of the threshold as a percentage of the axis range, thus it
controls the spread of the central region with simultaneous shrink
of the edge regions. By setting a large range of SPThres values,
we conduct 729 experiments. Assuming that the number of feature
points selected during the cluster selection training step are N =
Nleft+Nneutral+Nright, the testing set consists of the rest M−N
frames for each experiment. Supervised: For the Supervised Clas-
sification we partition the feature space in 3 clusters (left, neutral,
right) according to the manual annotations. Subsequently, we apply
uniform random sampling on the annotated sets in order to equal-
ize them w.r.t. the number of data points - Nleft, Nneutral, Nright
- chosen by UnESC. These points are then employed to train one
Gaussian distribution per annotation cluster. K-means: Thereafter,
we apply K-means on the initial feature space requiring 3 clusters.
Similarly as above, we equalize the number of data points N em-
ployed for model training. All test sets are equally sized.

Comparison: Figure 6 illustrates the ROC curve of the averaged
for right and left extreme poses precision and recall percentages for
all experiments, along with the percentages separately for 3 selected
ones, for all three methods. The UnESC key concept indicates that
it is not necessary to detect all the frames corresponding to a facial
event; it is rather essential that all the extreme state detections to be
correct. This explains the high precision percentages, whilst other
methods dominate on the recall percentages. In other words we are
interested in our right/left detections to be correct, thus to correspond
to frames where the pose is actually extreme right/left, even if we
miss some of these frames.

Application on Multiple Person Database of Static Images:
We also apply the UnESC method on the IMM database for pose
detection over the yaw angle. This database consists of 40 persons
static images, with 6 images per person, with pose annotations. For
SPThres values in the range 25 − 45%, the resulting Fscore values
are in the range of 95.2−96.3%. Even though the task is easier, due
to the more clear extreme poses, these results indicate the subject-
independency of UnESC. This experiment strengthens the fact that

Fig. 6: UnESC vs Supervised classification vs K-means on BU
video. Left: ROC of averaged over right and left pose percentages
for different values of SPThres. Right: Precision and recall average
percentages for 3 selected experiments.

UnESC requires only a few initial points (≈ 10) for training.

5. CONCLUSIONS

We present a simple yet efficient unsupervised approach for the de-
tection of extreme states of facial events. The method is applied after
facial image processing on video streams from continuous sign lan-
guage without any facial annotation of the events, and succesfully
detects extreme head turns, the opening and closing of the eyes and
mouth. We are based on the tracking and feature extraction of appro-
priate Global+Local AAM shape parameters, that are responsible for
each of the above phenomena, ending up in an 1D feature space. The
overall approach is evaluated both qualitatively and quantitatively on
multiple databases with multiple subjects showing promissing and
intuitive results, opening in this way generic perspectives with im-
pact on the automatic annotation of large corpora.
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