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Abstract

In this paper we address the problem of localization and recognition of human activities in un-

segmented image sequences. The main contribution of the proposed method is the use of an implicit

representation of the spatiotemporal shape of the activity which relies on the spatiotemporal localization

of characteristic ensembles of feature descriptors. Evidence for the spatiotemporal localization of the

activity is accumulated in a probabilistic spatiotemporal voting scheme. The local nature of the proposed

voting framework allows us to deal with multiple activities taking place in the same scene, as well as

with activities in the presence of clutter and occlusion. We use boosting in order to select characteristic

ensembles per class. This leads to a set of class specific codebooks where each codeword is an ensemble

of features. During training, we store the spatial positions of the codeword ensembles with respect to a

set of reference points, as well as their temporal positions with respect to the start and end of the action

instance. During testing, each activated codeword ensemble casts votes concerning the spatiotemporal

position and extend of the action, using the information that was stored during training. Mean Shift

mode estimation in the voting space provides the most probable hypotheses concerning the localization

of the subjects at each frame, as well as the extend of the activities depicted in the image sequences.
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We present classification and localization results for a number of publicly available datasets, and for a

number of sequences where there is a significant amount of clutter and occlusion.

Index Terms

Action Detection, Space-Time Voting

I. INTRODUCTION

The goal of this work is to develop a method able to spatiotemporally localize instances of activities

depicted in an image sequence and assign them to an action category. The problem, termed as activity

detection, has been a long lasting subject of research in the field of computer vision, due to its importance

in applications such as video retrieval, surveillance, and Human-Computer Interaction. Robust activity

detection using computer vision remains a very challenging task, due to different conditions that might be

prevalent during the conduction of an activity, such as a moving camera, dynamic background, occlusions

and clutter. For an overview of the different approaches we refer the reader to [1] [2].

The success of interest points in object detection, their sparsity, and robustness against illumination

and clutter [3] have inspired a number of methods in the area of motion analysis and activity recognition.

A typical example are the space-time interest points of Laptev and Lindeberg [4], which are an extension

of the Harris corner detector in time. Han et al. [5] extract features based on Histograms of Gradients

(HoG) and Histograms of Flow (HoF) around space-time interest points for recognition of actions in

movies. Dollar et al. [6] use 1D Gabor filters in order to capture intensity variations in the temporal

domain. In [7], this approach is refined by using Gabor filters in both spatial and temporal dimensions.

Oikonomopoulos et al. [8] detect spatiotemporal salient points in image sequences by extending in time

the spatial salient points of Kadir and Brady [9]. Lowe introduces the Scale Invariant Feature Transform

(SIFT) in [10], which has been used in a variety of applications, including object (e.g. [11]) and scene

classification (e.g. [12] [13]). Partly inspired by SIFT, the Speeded Up Robust Features (SURF) [14]

utilize second order Gaussian filters and the Hessian matrix in order to detect interest points. Jhuang et

al. [15] use a hierarchy of Gabor filters in order to construct their C-features. Their method is extended by

Schindler and Van Gool [16], by combining both shape and optical flow responses. Finally, Ali and Shah

[17] use kinematic features extracted around optical flow vectors in order to represent human activities.

Visual codebooks have been extensively used for detecting objects, humans and activities. SIFT

descriptors are used in a bag-of-words framework by Li and Fei-Fei [12] for the combined problem

of event, scene, and object classification. Laptev et al. [18] extract HoG and HoF descriptors around
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detected space-time interest points, and use k-means in order to construct a codebook. Similar is the

work presented in [19], where SIFT features are also used. Using the space-time interest points of [4],

Niebles et al. [20] represent each class as a distribution of visual words from the codebook and learn

a pLSA model [21] on each of the representations. Similar to [15], Ning et al. [22] use the responses

of 3D Gabor filter banks in order to build their descriptors. A bag of words model is subsequently used

in order to localize instances of human activities in videos using sliding temporal windows of varying

duration. Finally, Oikonomopoulos et al. [23] create their codebook by extracting sets of descriptors on

B-Spline surfaces, fitted around detected spatiotemporal salient points.

Despite their success in object [11] [24] and scene [12] classification, ‘bag of words’ models are not

particularly suit for localization, since, by using histograms, the information concerning the spatiotemporal

arrangement of the descriptors is lost. Recently, a number of different methods have been proposed in

order to deal with this issue. Leibe et al. [25] propose an implicit shape model for object detection,

consisting of a codebook of visual words in which the relative position of each word with respect to

the object center is maintained. A similar method using edge fragments is proposed by Opelt et al. [26].

In [27], a similar voting scheme is implemented for activity recognition and localization. The latter,

however, is restricted only to the spatial localization of the subjects at each frame. Sivic et al. [28]

propose the use of doublet codewords, while Boiman and Irani [29] propose a matching method based

on feature ensembles in order to detect irregular scenes. A similar method, using constellations of static

and dynamic feature collections is presented in [30]. Areas in images(videos) that share similar geometric

properties and similar spatio(temporal) layouts are matched in [31], using a self similarity descriptor and

the algorithm of [29]. A similar method is presented in [32], where a Self Similarity Matrix (SSM) is

created for human activity recognition. Finally, Gilbert et al. [33] use data mining techniques in order to

recover similar feature clusters from the training database, and detect activities in the presence of camera

motion, occlusion and background clutter.

In this paper, we extend the work of Leibe et al. [25] by proposing a voting scheme in the space-time

domain that allows both the temporal and spatial localization of activities. Our method uses an implicit

representation of the spatiotemporal shape of an activity that relies on the spatiotemporal localization of

ensembles of spatiotemporal features. The latter are localized around spatiotemporal salient points that are

detected using the method described in [8]. We compare feature ensembles using a modified star graph

model that is similar to the one proposed in [29], but compensates for scale changes using the scales

of the features within each ensemble. We use boosting in order to create codebooks of characteristic

ensembles for each class. Subsequently, we match the selected codewords with the training sequences of
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the respective class, and store the spatiotemporal positions at which each codeword is activated. This is

performed with respect to a set of reference points, (e.g. the center of the torso and the lower bound of

the subject) and with respect to the start/end of the action instance. In this way, we create class-specific

spatiotemporal models, that encode the spatiotemporal positions at which each codeword is activated in

the training set. During testing, each activated codeword casts probabilistic votes to the location in time

where the activity starts and ends, as well as towards the location of the utilized reference points in space.

In this way a set of class-specific voting spaces is created. We use Mean Shift [34] at each voting space

in order to extract the most probable hypotheses concerning the spatiotemporal extend of the activities.

Each hypothesis is subsequently verified by performing action category classification with a Relevance

Vector Machine (RVM) [35]. A flowchart of the proposed method is depicted in Fig. 1, while an overview

of the proposed spatiotemporal voting process is depicted in Fig. 2.

Compared to our previous work on human activity localization and recognition [36], the proposed

framework utilizes feature ensembles which can be seen as a generalization of the codeword pairs that

were used in [36]. Moreover, temporal votes are cast jointly for the start and end frames of the action

instance, making hypotheses extraction a trivial task (i.e. using mean shift mode estimation). By contrast,

in [36], temporal votes were cast for each phase of the action, and a Radon transform was utilized in

order to extract each hypothesis. Finally, by verifying each hypothesis against all class-specific models,

and by utilizing an RVM classification scheme, we managed to improve the classification accuracy of

the proposed method compared to [36] for the same datasets.

The main contributions of the proposed method are as follows:

• We propose an extension in time of the implicit shape model of Leibe et al. [25]. This leads to the

creation of a spatiotemporal shape model, which allows us to perform localization both in space and

in time.

• We propose to use feature ensembles in the proposed model, instead of single features.

• Through the use of boosting we create discriminative class-specific codebooks, where each codeword

is a feature ensemble. This is in contrast to the work in [25], where no feature selection takes

place. Furthermore, we propose a novel weighting scheme, in which votes from ensembles that are

informative (i.e. they are characteristic of the phase of the action) are favored, while votes from

ensembles that are commonly activated (i.e. they are activated in many phases of the action) are

suppressed.

• Since spatiotemporal votes are accumulated from each observed ensemble in the test set, the proposed

method effectively deals with occlusion, as long as a portion of the action is visible. Moreover, the
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Fig. 1: Overview of the proposed approach.

use of class-specific codebooks and spatiotemporal models in a voting framework enables us to deal

with the presence of dynamic background and with activities that occur simultaneously.

We demonstrate the effectiveness of our method by presenting experimental results in three different

datasets, namely the KTH [37], HoHa [18] and the robustness dataset of [38]. Furthermore, we present

results on synthetic and real sequences that have a significant amount of clutter and occlusion.

The remainder of this paper is organized as follows. In section II we present our approach. That

is, the creation of our spatiotemporal models for each class and the way they are used in order to

perform localization and recognition. Section III includes our experimental results, and finally, section

IV concludes the paper.

II. SPATIOTEMPORAL VOTING

We propose to use a probabilistic voting framework in order to spatiotemporally localize human

activities. This framework, described in section II-D, is based on class-specific codebooks of feature

ensembles, where each feature is a vector of optical flow and spatial gradient descriptors. We describe

the utilized feature extraction process in section II-A, while section II-B describes how these features are

combined into ensembles and how ensembles are compared to each other. Each class-specific codebook is

created using a feature selection process based on boosting, which selects a set of discriminative ensembles

for each class. Each codebook is associated with a class-specific spatiotemporal localization model, which
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Fig. 2: Overview of the spatiotemporal voting process. Activated codewords cast spatial and temporal votes with

respect to the center and spatial lower bound of the subject and the start/end frame of the action instance. Temporal

votes for candidate start/end positions are cast jointly. Local maximums in the spatial and temporal voting spaces

are extracted using mean shift and provide estimates for the position of a reference point in each frame of the test

sequence and the temporal boundaries of an action instance respectively.

encodes the spatiotemporal locations and scales at which each codeword is activated in the training set.

This process is described in section II-C. During testing, each activated codeword casts spatiotemporal

probabilistic votes, according to the information that was stored during training. Subsequently, mean shift

is used in order to extract the most probable hypotheses concerning the spatiotemporal localization of an

activity. Each hypothesis is then classified using Relevance Vector Machines. This process is described

in section II-F.

A. Features

The features that we use in this work consist of a combination of optical flow and spatial gradient de-

scriptors, extracted around automatically detected spatiotemporal salient points [8]. However, the proposed

framework can be utilized with any kind of local descriptors. In order to achieve robustness against camera

motion, we detect the salient points on the filtered version of the optical flow field. More specifically,

we locally subtract the median of the optical flow within a small spatial window. Alternatively, a global

method, like an affine model, can be applied in order to compensate for the motion of the camera.

Let us denote with Nc(s,υ) the set of optical flow vectors that lie within a cylindrical neighborhood

of scale s = (s, d), centered at location υ = (x, y, t) of the motion compensated optical flow field of
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the input image sequence, where s, d denote the spatial and temporal scale of the neighborhood. In order

to detect our salient points, we initially calculate the signal entropy HD(s,υ) within the neighborhood

Nc(s,υ):

HD(s,υ) = −
∫

q∈D

pD(q, s,υ) log2 pD(q, s,υ)dq, (1)

where pD(q, s,v) is the probability density of the signal histogram as a function of scale s and position

υ. By q we denote the signal value and by D the set of all signal values. As has been mentioned before,

in this work we use motion compensated optical flow vectors as signal values. We use the histogram

method to approximate the probability density pD(q, s,υ). Alternatively, pD(q, s,υ) can be estimated

using Parzen density estimation or any other density estimation technique. A salient point is detected at

the scales for which the signal entropy is locally maximized, defined by:

Ŝp =
{

s :
∂HD(s,υ)

∂s
= 0

∧ ∂HD(s,υ)
∂d

= 0
∧ ∂2HD(s,υ)

∂s2
< 0

∧ ∂2HD(s,υ)
∂d2

< 0
}

. (2)

A subset of the salient points detected on a frame of a handwaving sequence is shown in Fig. 3(b). We

should note that for the detection of the depicted points, contribute a number of frames before and after

the one shown in Fig. 3(a).

We use the algorithm in [39] for computing the optical flow, due to its robustness to motion disconti-

nuities and to outliers to the optical flow equation. We use a C++ implementation of the algorithm, which

is implemented in a multiscale fashion and runs at ∼2 frames per second for 120x160 pixel images on a

2Ghz Intel Centrino with 1GB memory. There are recent real-time dense optical flow algorithms which

would be more appropriate if we aimed for an optimized implementation. However, we felt that this was

beyond the scope of our research. In order to form our descriptors, we take into account the optical flow

and spatial gradient vectors that fall within the area of support of each salient point. This area is defined

by the spatiotemporal scale (s) at which each salient point is detected. Using their horizontal and vertical

components, we convert these vectors into angles and bin them into histograms using a bin size of 10

degrees.

B. Feature ensemble similarity

We use ensembles of spatiotemporal features instead of single features in order to increase the spa-

tiotemporal specificity of the proposed method. By doing so, sets of features that have similar spatiotem-

poral configuration between the training and test sets are matched. We form ensembles by sampling
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Fig. 3: (a) Estimated optical flow field for an instance of a handwaving action and (b) a subset of detected salient

points.

individual features as seeds and subsequently taking into account their N−1 nearest neighbors. We discard

points that have a significant degree of overlap with the seed. In our implementation, two points have a

significant degree of overlap if their normalized Euclidean distance with respect to their spatiotemporal

scale is smaller than a specific threshold.

Let ed = (cd, {vi
d, l

i
d}i=1...M) be an ensemble in the database consisting of M features, where cd

is the spatiotemporal center of the ensemble, and v i
d, l

i
d are, respectively, the descriptor vector and the

spatiotemporal location of the ith feature. In this work we used 5 features for each ensemble, that is,

M = 5. We calculate the similarity between ensembles using a modification of the star graph model of

[29]. More specifically, we model the joint probability P (ed, eq) between the database ensemble ed and

the query ensemble eq proportional to:

P (ed, eq) ∝ P (cd, v
1
d, ..., l

1
d, ..., cq , v

1
q , ..., l

1
q , ...). (3)

The likelihood in Eq. 3 can be factored as:

P (cd, v
1
d , ..., l1d, ..., cq, v

1
q , ..., l1q , ...) = α

∏

i

max
j

(P (ljq |lid, cd, cq)P (vj
q |vi

d))P (vi
d|lid). (4)

The first term in the maximum in eq. 4, that is, P (ljq|lid, cd, cq), expresses the similarity in the topology of

the ensembles, and the second term expresses the similarity in their descriptor values. Consequently, each

feature i of the ensemble ed is matched to the feature j of the ensemble eq with the maximum similarity

in descriptor value and relative location within the ensemble. We model the first term as follows:
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P (ljq|lid, cq, cd) = z−1
1 exp(−((ljq − cq)Sj

q − (lid − cd)Si
d)

TS−1((ljq − cq)Sj
q − (lid − cd)Si

d)) (5)

where z1 is a normalization term, and S is a fixed covariance matrix controlling the allowable deviations

in the relative feature locations. Due to the low resolution of the utilized datasets, S was fixed in such a

way so that the maximum allowable deviation to be around 5 pixels. However, for image sequences of

higher resolution, larger deviations can be tolerated. Due to the use of the relative location of each feature

with respect to the spatiotemporal center of the ensemble that the feature belongs to, the expression in

eq. 5 is invariant to the translational motion of the subject. Finally, S i
d, S

j
q are diagonal matrices containing

the inverse spatiotemporal scales of the points located at locations l i
d, l

j
q respectively. That is,

Si = diag((σi,σi, τi)−1) (6)

where σi, τi are the spatial and temporal scales of the ith feature. By normalizing the distance between

the individual features and the ensemble center, we achieve invariance to scaling variations. We model

the second term in the maximum in eq. 4, that is, P (vq
j |vd

i ), as follows:

P (vj
q |vi

d) ∝ z−1
2 exp

(
−z−1

3 D(vj
q , v

i
d)

)
, (7)

where z2, z3 are normalization terms, and D(., .) is the χ2 distance. The latter is a popular measure

for comparing histograms, and is essentially a weighted Euclidean distance. More specifically, in the χ 2

distance, the square distance between the bin entries of two histograms is weighted by the inverse sum of

the bin entries. Weighting compresses the variation in the components’ values, by assigning less weight

to components with large values.

The last term in Eq. 4 expresses the relations within the ensemble ed, i.e. the relation between the

feature descriptor and its location. Similar to [29], we model this term using examples from the database:

P (vd|ld) =
{ 1 (vd, ld) ∈ DB

0 otherwise ,
(8)

where vd, ld are, respectively, an arbitrary descriptor and location. That is, P (vd|ld) is equal to one if

and only if the feature descriptor vd appears in location ld in the database.
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C. Feature Selection and Codebook Creation

We use Gentleboost [40] in order to select characteristic ensembles that will form the codewords for

each class-specific codebook E. Our goal is to select feature ensembles that appear with high likelihood

in the positive and with low likelihood in the negative examples. Let us assume that the examples of the

positive class consist in total of N ensembles. To perform feature selection for this class, we sample at

random L (e.g. 5000) ensembles from the initial population of N ensembles. Using Eq. 3, we match the

sampled L ensembles to the remaining N −L ensembles of the positive set and the ones in the negative

set. The latter consists of the ensembles that belong to all available classes other than the positive class.

By performing this procedure, we expect that ensembles characteristic of the positive set will have a high

likelihood of match to ensembles in the examples belonging to that set, and a low likelihood of match

to ensembles in the examples belonging to all other classes (i.e. the negative set). Since each sequence

in the training set comprises of a few thousand of features, we keep the N ′ best matches from each

one, in order to make the selection tractable. This procedure results in N ′Mp positive training vectors of

dimension 1×L and N ′Mn negative training vectors of the same dimension, where Mp and Mn are the

total number of the positive and negative image sequences in the training set respectively. Using these

training vectors, Gentleboost selects a set of characteristic ensembles for the positive class. This set is a

subset of the initial set of L ensembles. By performing this process for each class we end up with a set

of characteristic ensembles for each class. An example of the training vectors that are created is depicted

in Fig. 4. As can be seen, several features, namely the first 15, are not characteristic of the class, since

their likelihood of match in both positive and negative examples is low (dark areas in the figure).

We subsequently use each class-specific codebook in order to create a spatiotemporal model for each

class. Each model is created by accumulating information over the spatiotemporal positions at which

each codeword is activated in the training set. For each class-specific codebook, we iterate through the

training sequences that belong to the same class as the codebook and activate each ensemble e d whose

likelihood of match is above a threshold. In this work we used a threshold of 0.1, which translates to a

likelihood value of at least 0.8 for each of the 5 features in each ensemble in terms of their topology

and descriptor similarity with the corresponding features in the codeword ensembles. Subsequently, we

store all the positions θd at which each ed was activated relative to a set of reference points in space and

time, and a diagonal matrix Sd containing the spatiotemporal scale at which codeword ensemble ed was

activated. The scale is taken as the average of the scales of the features that constitute e d. An illustration

of this process is depicted in Fig. 5(a). During testing, the values {θd}, {Sd} are used in order to cast
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Fig. 4: Visualization of a feature selection matrix. In this example, selection is performed from 50 features, using

40 positive and 60 negative examples.

votes concerning the spatiotemporal extend of an activity in the test set, given that the codeword e d is

activated. This process is explained in section II-D.

If n is the number of patches in each ensemble of the codebook, M is the number of codewords and

N is the total number of patches in a test sequence, then the ensemble matching process is of complexity

O(nMN). For ensembles consisting of 5 patches, typical codebook size of 500 words and for a typical

size of 20K patches in a test sequence consisting of approximately 500 frames, this process took about

15 min on a 2Ghz Intel Centrino with 1GB memory. However, the implementation of a progressive

elimination algorithm similar to the one in [29] can significantly speed up the process to linear time with

respect to N .

D. Probabilistic framework

Given a codebook and a spatiotemporal localization model for each class, our goal is to estimate a set

of parameters {θs}, {θt} that define, respectively, the location in space-time of a human activity depicted

in an unknown image sequence. We denote with θs, the location of a set of reference points positioned

on the subject, that define its location at each frame of the image sequence. Furthermore, we denote with

θt, the temporal extend of the activity, that is, the frame at which it starts and the frame at which it ends.

In order to acquire a probability distribution over {θs} and {θt}, we propose the use of a spatiotemporal

voting scheme, which is an extension in time of the implicit shape model proposed by Leibe et al. [25]. In
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the proposed model, an activated codeword in the test set casts probabilistic votes for possible values of

θs,θt, according to information stored during training. We use ensembles of spatiotemporal features as

codewords, modeled using the star-graph model of [29]. In the following, and without loss of generality,

we drop the subscripts on the θs,θt parameters, and describe the utilized probabilistic framework for

the generalized parameter θ. The probability of θ can be formulated as:

P (θ) =
Q∑

q=1

P (θ|eq)P (eq), (9)

where {eq} is the set of observed ensembles and P (eq) is the prior probability of observing eq. In the

absence of prior knowledge, we model this probability as a uniform distribution, i.e. P (eq) = 1/Q, where

Q is the number of observed ensembles. Each observed ensemble e q is matched against each codeword

ed from the codebook E, which was created according to the procedure of section II-C. By marginalizing

P (θ|eq) on ed ∈ E we get:

P (θ|eq) =
∑

ed∈E

P (θ|ed, eq)P (ed|eq). (10)

The term P (ed|eq) expresses the likelihood of match between codeword ed and the observed ensemble

eq, and is calculated according to the process of section II-B. After matching eq to ed, we consider

P (θ|ed, eq) as being independent of eq. P (θ|ed) expresses the probabilistic vote on location θ given

that the activated codebook entry is ed. Let us denote with {θd} the set of the votes associated with the

activated codebook entry ed. These votes express the spatiotemporal positions at which ed was observed

in the training set, relatively to the subject/action reference system, and are learned, during training,

according to the process of section II-C. P (θ|ed) can be modeled as:

P (θ|ed) = wd

∑

θd

P (θ|θd, ed)P (θd|ed), (11)

where wd is a weight learned during training, which expresses how important the ensemble ed is, in

accurately localizing the action in space and time. The way wd is calculated is described in section II-E.

The first term of the summation in Eq. 11 is independent of ed, since votes are cast using the θd values.

Votes are cast according to the following equation:

θ = θq + SqS
−1
d θd, (12)

where Sq,Sd are diagonal matrices containing the scale of the eq, ed ensembles respectively and θq

denotes the location of the observed ensemble eq . The concept of eq. 12 for the spatial case is depicted
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in Fig. 5(b), where the position of the center is given by the vector addition of θq, the position of the

observed ensemble eq, and SqS
−1
d θd. The latter is the scale-normalized position at which the codeword

ensemble ed (with which eq is matched) was observed in the training set with respect to the center of

the subject. By normalizing with SqS
−1
d we achieve invariance to scale differences between the observed

and the activated ensemble codeword. Sd,Sq are calculated as the average spatiotemporal scales of the

features that consist the ensembles. Since we only use the stored θd and Sd values for casting our votes,

we can model P (θ|θd) as:

P (θ|θd) = δ(θ − θq − SdS
−1
q θd), (13)

where δ(.) is the Dirac delta function. Finally, we model P (θd|ed) using a uniform distribution, that is,

P (θd|ed) = 1/V , where V is the number of θd values associated with ed. Alternatively, this probability

can be modeled using a density estimation method. That is, a larger probability can be assigned to the

θd values that were more commonly observed.

The probabilistic framework that is described in this section applies for both spatial and temporal votes.

For the spatial case, Sq,Sd contain the spatial scales of the test and database ensembles respectively,

while θq denotes the spatial location of the observed ensemble in absolute coordinates. Therefore, θ

encodes the displacement from the center and lower bound of the subject. Similarly for the temporal

case, Sq,Sd contain temporal scales, while θq denotes the temporal location of the observed ensemble

with respect to either the start or the end of the image sequence. Therefore, θ can encode two scalar

temporal offsets, one to the start and one to the end of the action. We should note, finally, that in the

proposed framework spatial voting is performed first, followed by voting in time. While in spatial voting

we take into account the votes from all of the activated codewords, in temporal voting we take into

account the votes of activated codewords that additionally contributed to the most probable spatial center.

This process is described in more detail in section II-F.

The use of class-specific codebooks/spatiotemporal localization models enables us to deal with the

presence of dynamic background and multiple activities in the test set. The purpose of such models is

to search for activities of a specific class in an unknown image sequence. Ideally, observed ensembles

localized around activities of different class, or around any other kind of motion in the background will not

match well with the codewords in the codebook, and therefore their votes according to the corresponding

model will be assigned a very small probability. This is evident from eq. 10. Finally, the use of a voting

framework for localization increases the robustness of proposed method to partial occlusion. Since votes
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θd

Sd

θ
θq

Sq
SqSd

−1θd

(a) (b)

Fig. 5: Voting example. (a) During training, the position θ d and average spatiotemporal scale Sd of the activated

ensemble is stored with respect to one or more reference points (e.g., the center of the subject, marked with the

blue cross). (b) During testing, votes are cast using the stored θd values, normalized by SqS
−1
d in order to account

for scale changes. (Best viewed in color.)

are cast from each observed ensemble in the test set, a good estimate can be acquired, as long as a good

portion of the activity is still visible.

E. Localization accuracy

In this section we will describe a methodology to learn wd, that is, the weight that is used in eq. 11

and expresses the importance of ensemble ed in accurately localizing an activity in space and time.

More specifically, we would like to favor votes from ensembles that are characteristic of the location at

which they appear within the action instance and suppress votes from ensembles that are activated at

many locations in the action instance. Let us denote by Pd(l) the probability that the ensemble ed was

activated at location l. This distribution is learned during training. Then, the votes of each ensemble e d

are weighted as follows:

wd = e−
∫

Pd(l) log Pd(l)dl, (14)

The exponent in Eq. 14 is the Shannon entropy of the distribution of the votes that the ensemble e d

casts. Ensembles that are only activated at specific parts of the action will have a distribution with low

entropy, since their votes will be concentrated in a few values, resulting in a large weight. An example is
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Fig. 6: Ensemble weighting example for the temporal case. Ensembles that are activated at a specific phase of the

action receive a large weight (top row). Conversely, ensembles that are activated at more than one instances receive

a smaller weight (bottom row).

given in Fig. 6 for a handwaving action. More specifically, the ensemble in Fig. 6(a) is activated almost

exclusively around the middle of the action, and describes the upward motion of the right hand of the

subject. By contrast, the ensemble depicted in Fig. 6(b) is activated both at the start and at the end of

the action, as shown in the histogram of votes at the top of the figure, and describes the motion were

the hands of the subject are joined around the head. In the latter case, the votes of the corresponding

codeword will receive a lower weight that the codeword in the former case. Let us note that since both

codewords were selected by the process of section II-C they are both considered informative for the class.

However, since the first codeword provides more clear evidence concerning the phase of the action, it

will receive a larger weight during the voting process.

F. Activity detection

The goal of activity detection is to spatiotemporally localize and classify an activity depicted in an

unsegmented image sequence. Using the probabilistic framework of section II-D, the proposed algorithm

initially casts spatial votes according to the information stored in the training stage. Since the class of the

human activity is unknown, this procedure is performed for each class-specific codebook/spatiotemporal

localization model. We use Mean Shift Mode [34] in order to localize the most probable centers and
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lower bounds of the subjects at each frame of the image sequence. Given the sparsity of each voting

space, the computational cost of the application of the mean shift algorithm is negligible. In addition, we

apply a Kalman filter [41] using as observations the raw estimates of these points as they are given by

mean shift mode. Kalman filtering has the effect of smoothing the estimates of the points from frame to

frame, and increases robustness against outliers in the mean shift mode estimation. Using the estimates

of these two points, we are able to fit a bounding box around the subject, as depicted in Fig. 7. To reduce

the influence of clutter, we cast temporal votes by only taking into account the ensembles that contributed

to the most probable center in the spatial voting space. Finally, using Mean Shift Mode estimation on

the resulting temporal voting spaces, the most probable hypotheses concerning the temporal extend of

the activity are extracted. An example is depicted in the top row of Fig. 7, where the y-axis indicates

the frame at which the instance starts and the x-axis the frame at which it ends. Since the votes for the

start/end frames are cast jointly, most votes are concentrated above the main diagonal, reflecting the fact

that the start frame position must temporally precede the end frame position. To illustrate the evolution of

the temporal votes as time progresses, we also depict, in the same figure, 1D projections of the temporal

voting space along horizontal and vertical lines that pass through one of the local maximums. As shown

in the figure, as time progresses, more evidence is accumulated concerning the most probable position

in time where the action instance starts and ends.

Depending on the voting space from which each hypothesis is extracted, a class label can be assigned

directly to it. We perform instead a hypothesis verification stage. Let us denote with e tm the maximum

response of the m spatial voting space at frame t, as this is given by mean shift mode, where m denotes

the class. That is, each etm expresses the belief of the voting algorithm that the center of the subject is

at a specific location at frame t for model m. Other points (i.e. the lower bound of the subject), or a

combination of them can also be used for this purpose. Furthermore, let us denote an extracted hypothesis

with Fij , where i, j are the indexes of the frames at which, according to the hypothesis, the activity starts

and ends respectively. Our hypothesis verification step relies on the calculation of the following measure:

Rijm =
1

(j − i)

j∑

t=i

etm. (15)

That is, each Rijm is the average sum of the mean shift output of the m spatial voting space, between

frames i, j. Using Rijm, we define a thin plate spline kernel for an RVM classification scheme:

Kijm = Rijm log Rijm. (16)
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Start frame projections

End frame

Start frame

Fig. 7: Illustration of the spatiotemporal voting scheme. First row: evolution of the temporal voting space. Second,

third row: Start/end frame projections along lines passing from a local maximum. Evidence is accumulated as

time progresses, resulting in more votes at the most probable positions. Fifth, sixth row: Spatial voting spaces,

showing the most probable positions of the center and lower bound of the subject. Fourth row: Fitted bounding

boxes resulting from the maximum responses in the spatial voting spaces.

We train L different classifiers, in an one against all fashion. Each classifier outputs a conditional

probability of class membership given the hypothesis, Pm(l|Fij), 1 ≤ m ≤ L. Subsequently, each

hypothesis Fij is assigned to the class for which this conditional probability is maximized. That is,

Class(Fij) = arg max
m

(Pm(l|Fij)). (17)

Note that we assign a label to each hypothesis that is extracted and not to the whole video. This is more

sensible, since a video might contain activities of more than one class. Finally, let us note that since

each hypothesis Fij is extracted from a class-specific voting space it could be written as F ijm, where

m indicates the class of the voting space from which the hypothesis is extracted. However, since at this

stage the class is not fixed and assigned by the RVM, we avoid such a notation.
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III. EXPERIMENTAL RESULTS

We use three different datasets in order to provide experimental evaluation of the proposed algorithm.

Namely, the KTH [37], the Hollywood Human actions (HoHA) [18] and the robustness dataset of [38].

Furthermore, we present results on synthetic and real sequences in which there is a significant amount of

clutter and occlusion. The KTH dataset contains 6 different actions; boxing, hand-clapping, hand-waving,

jogging, running, and walking, performed by 25 subjects several times under different conditions. These

include scale changes, indoors/outdoors recordings, and varying clothes. The main challenges in this

dataset include small camera motion, noise in the otherwise uniform background, shadows, and large

variability in the conduction of the activities by the subjects.

Containing video samples from 32 movies, the HoHA dataset is one of the most challenging ones in

the area of activity recognition. Each sample is labeled according to one or more of 8 action classes: An-

swerPhone, GetOutOfCar, HandShake, HugPerson, Kiss, SitDown, SitUp, StandUp. The main challenge

of this dataset is the huge variability of the actions depicted, due to different view-points, cluttered and

dynamic background and significant camera motion.

The sequences in the robustness dataset of [38] have non-uniform, static backgrounds, and include

walking activities under varying conditions. These include different viewpoints and 11 ‘deformation’

sequences, like walking with a dog. We use this dataset only for testing, while training is performed

using the walking actions of the KTH dataset.

To test the performance of the proposed algorithm in the presence of occlusion, we selected 10

sequences per class from the KTH dataset, i.e. 10% of the data, and placed an artificial occluding bar

of varying width in areas that are important for the recognition of that action, like, e.g., on the moving

legs of subjects, in classes like walking. Finally, we use synthetic and real sequences in order to test

the robustness of the proposed method against dynamic background, as well as to its ability to localize

multiple activities in the same scene.

A. Training set

We consider a single repetition of an activity as an action instance, like e.g. a single hand-clap or a

single walking cycle. To create a training set, we manually select a subset of action instances for each

class and we register them in space and time, by spatially resizing the selected instances so that the

subjects in them have the same size. Moreover, we linearly stretch the selected instances so that the

depicted actions in each class have the same duration. Finally, we manually localize and store the subject

centers and lower bounds in the registered training set, where each center is defined as the middle of the
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torso. We used 20 instances per class in order to create each class specific model for the KTH dataset.

These consist of 5 subjects, each performing an activity 4 times. All instances that were performed by a

specific subject were extracted by a single image sequence, which was not included in the test set. That

leaves about 95 sequences per class for testing, i.e. 95% of the data. For the HoHa dataset, we used 10

sequences per class in order to create each model, due to the smaller number of videos compared to the

KTH dataset.

B. Classification

We use activity instances pre-segmented in time in order to evaluate the classification accuracy of the

proposed algorithm and compare it to the state of the art. We use the process of section II-F in order

to perform classification, where each hypothesis corresponds to a pre-segmented example. That is, we

calculate, for each example, its similarity to each of the trained models according to eq. 15 and use this

similarity in order to define a kernel for the RVM, according to eq. 16. Classification is performed in a

leave-one-subject-out manner, using eq. 17. That is, in order to classify an activity instance performed

by a specific subject, we trained the RVM classifiers using all available instances apart from the ones

performed by the subject in question. In Fig. 8(a), the confusion matrix for the KTH dataset is depicted.

As can be seen from the figure, the largest degree of confusion is between the classes jogging and

running. As noticed by Schuldt et al [37], these confusions are in fact reasonable, since what appears to

some people as running may appear to others as jogging and vice versa. The average recall rate achieved

by the RVM classifier for the KTH dataset is 88%. By contrast, using just the measure of eq. 15 and

a 1-NN classifier, the average recall rate was about 75.2%. The largest improvement was noted on the

running class, with an increase from 53% to 85% in the recall rate.

In Fig. 8(b), we present the confusion matrix for the HoHa dataset. Due to the small number of repre-

sentative examples, we discard classes GetOutOfCar, HandShake, SitUp. Furthermore, due to the presence

of several examples in which the lower bound of the subjects is not visible, we only used the subject

centers as reference points for this dataset. It can be observed that there are several confusions between

classes that are not very similar. The largest confusion, however, is between the classes HugPerson and

Kiss, since both involve two persons coming progressively closer to each other.

We use a cross-dataset approach in order to acquire classification results on the robustness dataset of

[38]. That is, we consider the latter only for testing, using the models that we created on the KTH dataset.

Our algorithm was able to correctly classify 9 out of the 11 sequences of the deformed set and 6 out

of the 10 sequences of the multi-view set, with all confusions being between the walking and jogging
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(a) (b)

Fig. 8: Confusion Matrices for the (a) KTH and (b) HoHA datasets.

classes. While Blank et al. [38] report 100% recognition rate on this dataset, their training is based on

the Weizmann dataset of human actions [38], which does not include the jogging class. By removing the

jogging class from our classification process, our classification rate on this dataset also reaches 100%.

We present, in Table I, comparative classification results between the proposed method and several

methods proposed in the literature. As can be seen from Table I, the classification results that we obtained

outperform the ones in, e.g., [42] [37]. Furthermore, we achieve similar results as the ones reported in

[43] [44] [17]. Compared to these works, we also provide the means for localization of the actions in

space and time. Furthermore, we do not assume a stationary camera as these works do. Instead, by using

filtered optical flow we minimize the effect of camera motion in the extracted features. Furthermore, we

do not perform any preprocessing prior to feature detection, contrary to Fathi and Mori [45], who use

stabilized sequences of cropped frames centered on the human figure. Similarly, Wong and Cipolla [46]

temporally normalize their sequences to have similar length. Instead, we handle temporal variations by

automatically detecting temporal scale in the spatiotemporal salient point detection step and by using

this scale throughout our proposed algorithm. Finally, we do not perform any background subtraction

before detecting our features, as opposed to [15] [44], who use a Gaussian Mixture Model (GMM) in

order to identify foreground pixels. In the proposed method, we achieve a similar effect by detecting the

spatiotemporal salient points at areas in which there is significant amount of motion, as described in [8].
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TABLE I: Comparisons of the proposed method to various methods proposed elsewhere for the KTH dataset
Methods Accuracy (%)

Our method 88.0

Ke et al. [42] 62.97

Schuldt et al. [37] 71.83

Ahmad and Lee [44] 88.3

Dollar et al. [6] 81.17

Wong and Cipolla [46] 86.7

Niebles et al. [20] 81.5

Fathi and Mori [45] 90.5

Jhuang et al. [15] 91.7

Rapantzikos et al. [43] 88.3

Ali and Shah [17] 87.7

C. Localization

1) Spatial Localization: In this section we evaluate the accuracy of the proposed algorithm in localizing

a subject at each frame of an image sequence. Here, we assume, that the activity class that the subject

is performing is given. Following the process of section II-F, the proposed algorithm is able to provide

an estimate of the subject center and lower bound for each frame of a sequence. To account for the

smooth motion of the subjects, we apply a Kalman filter to the estimates of the subject location. The

results achieved for each class of the KTH dataset are depicted in Fig. 9. Using just the raw estimates,

our algorithm is able to localize the center of the subject in 70% of all frames in the dataset on average,

with the estimate’s distance from the ground truth annotation being smaller or equal to 15 pixels. Given

that the width of the subjects is on average 20 pixels, our estimate, in most cases, falls within its range.

The worst performing class is running, which, for the same distance from the ground truth yields around

55% accuracy in the localization of the subject center. By applying a Kalman filter on the raw estimates,

we achieve an increase in performance of about 10% for boxing, handclapping and handwaving, while

there was a smaller increase in the performance for jogging, running and walking.

2) Temporal localization: In this section we evaluate the accuracy of the proposed algorithm in

localizing in time several instances of a known activity that occur in an image sequence. For this

experiment, we apply the process of section II-F, and compare each extracted hypothesis with the ground

truth annotation. The latter was performed in such a way so that each annotated instance includes a

single repetition of the activity, e.g. a single punch in boxing. Each extracted hypothesis specifies the
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Fig. 9: Spatial localization results achieved for the subject center and lower bound, for each class of the KTH dataset.

The increase in performance when applying a Kalman filter is more prominent for the boxing, handclapping and

handwaving classes. x-axis: distance from ground truth annotation in pixels. y-axis: percentage of frames in the

database at which the localization estimate’s distance from the ground truth was less or equal to the values in the

x-axis

frames in the image sequence at which the action instance starts and ends. The error of each hypothesis

was calculated as the difference in frames between the ground truth annotation and the start/end frames

specified by the hypothesis. In this way, we were able to construct Fig. 10, which plots the percentage

of the recovered hypotheses as a function of this frame difference.

We compare these results with the ones acquired by [31]. More specifically, we compute self-similarity

descriptors for all sequences in KTH and apply their progressive elimination algorithm to match a query

to each sequence. Matching was performed using 5 query sequences per class from our training set and

averaging the results. This gives us an estimate of the spatiotemporal extend of each recovered instance.

This is similar to the hypothesis extraction process of our method, and is the reason why we chose to

perform comparison with the method of [31]. The localization accuracy achieved is depicted in Fig. 10.

As can be seen from the figure, the results achieved are similar to the ones achieved by the algorithm of

[31] for boxing and slightly better for jogging and running. For handwaving and handclapping, 70% of

the extracted hypotheses are localized within 3 frames from the ground truth on average, in comparison

to 15% achieved by [31].
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Fig. 10: Comparative temporal localization results for the 6 classes of the KTH dataset, between the proposed

algorithm (ST-Voting) and the Self-Similarity with Progressive Elimination (SS-PE) algorithm of [31]. x-axis:

distance from ground truth annotation in frames. y-axis: percentage of recovered instances.

D. Joint Localization and Recognition

In this section, we present experimental evaluation for localizing and classifying human activities that

occur in an unsegmented image sequence, where both the localization and the class of the activities that

occur in the sequence are unknown. Given an image sequence, each class-specific model created during

training, results in a different voting space for this sequence. Using mean shift mode, a set of hypotheses is

extracted from each voting space, and classified to a specific action category. Each hypothesis corresponds

to an interval in time in which the activity takes place, and is assigned a weight, equal to the response

in the voting space at the point at which the hypothesis was extracted. A low weight on a hypothesis

means that the proposed algorithm does not have a strong belief on its validity. Therefore, by setting up

a threshold on the weights, we can control which of the hypotheses are considered as being valid by

the algorithm. By varying this threshold, we construct the ROC curves depicted in Fig. 11. Note that all

curves are well above the main diagonal, meaning that regardless of the threshold value, the number of

true positives is always larger than the number of false positives. Furthermore, the incompleteness of the

depicted ROC curves reveals that a number of ground truth annotations are not detected by the algorithm.

The reason is that, while the mean shift mode process is able to successfully extract the corresponding

hypotheses, these are subsequently misclassified by the RVM. Therefore, the recall rate never reaches
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Fig. 11: Joint Localization and recognition: ROC curves corresponding to each class of the KTH dataset.

100%. Such misclassifications occur either due to the inherent similarity between certain actions (e.g.

between running and jogging) or due to the low values of the corresponding region of the voting space

from which these hypotheses were extracted. Such low values can result from insufficient evidence (i.e.

number of detected salient points) at certain parts of the image sequence (e.g. when the person is far,

due to camera zoom).

E. Occlusions

We use synthetic image sequences to demonstrate the robustness of our method against occlusion,

where we used vertical or horizontal bars to occlude parts of human activities, as depicted in Fig. 12. We

performed our experiments using 10 sequences from each class, i.e. 10% of the data, with a variable bar

width. To determine the effect of the occlusion in classification accuracy, we selected sequences that were

correctly classified in the classification stage of section III-B. Despite the occlusion, our algorithm was

able to correctly classify all of the selected sequences. We present, in Fig. 13, average spatial localization

results for all of the selected examples as a function of the degree of occlusion. The latter is defined as

the ratio between the activity extend in space and the width of the occluding bar. Note that for actions

like handclapping, the spatial activity extend only covers the moving hands of the subject. As can be

seen from Fig. 13, our method is robust to relatively small amounts of occlusion. For 60% of occlusion,

that is, the largest degree tested, there was a 20% drop in the localization accuracy of the subject center

compared to no occlusion at all, with the estimate of the center being within a radius of 10 pixels from

the ground truth annotation. However, our method behaves very well for smaller amounts of occlusion,
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Fig. 12: Occlusion settings for the boxing, handclapping, handwaving and walking classes. The setting for the

jogging and running classes is similar to that of the walking class.

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance in pixels from ground truth.

Pe
rc

en
ta

ge
 o

f f
ra

m
es

.

 

 

10%
35%
60%
No occlusion

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance in pixels from ground truth.

Pe
rc

en
ta

ge
 o

f f
ra

m
es

.

 

 

10%
35%
60%
No occlusion

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance in pixels from ground truth.

Pe
rc

en
ta

ge
 o

f f
ra

m
es

.

 

 

Center−No occlusion
Lower bound−No occlusion
Center−Limbs occluded
Lower bound−Limbs occluded

(a) (b) (c)

Fig. 13: Average spatial localization results for the selected occluded sequences. (a) Center of the subject (b) Lower

bound of the subject. (c) Average localization accuracy achieved for the center and lower bound of the subject

when the tips of the limbs are occluded.

with an average drop of about 10% in performance for a 35% degree of occlusion.

Finally, we performed experiments where the synthetic bar occludes the limbs of the subjects during the

apex (e.g. in handwaving) or throughout the conduction of the activity (e.g. in walking). The localization

accuracy achieved, compared with no occlusion at all is depicted in Fig. 13(c). As can be seen from the

figure, there is only a small drop in localization performance. We conclude, therefore, that the proposed

method is able to sufficiently localize a subject, as long as a good portion of the activity is not affected

by the occlusion.

F. Dynamic background/Multiple activity detection

We use synthetic and real sequences in order to demonstrate the robustness of the proposed algorithm

against dynamic background. Our goal is to demonstrate that the proposed algorithm is not distracted

by movement that is due to a varying background or irrelevant activities in the scene. To simulate such

conditions, we create synthetic sequences in which more that one activities are depicted in the same

frame, as shown in Fig. 14(a). Our goal is to localize each activity regardless of the presence of the
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Fig. 14: Voting spaces for center and lower bound derived using the (a) boxing and (b) handwaving models, and

rectangles fitted around the subjects using these voting spaces. Notice that each model favors votes belonging to

the activity it was trained for.

other. A depiction of the spatial voting spaces derived by the application of the boxing and handwaving

models for one instance of the activity is given in Fig. 14. As can be seen from the figure, each model

manages to suppress the information coming from activities other than its class. For instance, the votes

attained by the boxing model are concentrated around the subject that performs this activity. The reason

for this is that ensembles that are localized around the handwaving subject do not match well or at all the

codewords in the boxing codebook. In Fig. 15 we present the effect of this experiment to the achieved

spatial localization, after applying a Kalman filter on the outcomes of the mean shift mode estimator. For

comparison, we also plot the same estimates for the clean sequences. As can be seen from the figure,

due to false codeword matches, the localization accuracy of the center of the subject drops about 10%,

while for the subject’s lower bound the effect is more severe. We depict, in Fig. 16, the temporal voting

spaces created using the boxing and handwaving models. As can be seen, there are 6 peaks in the boxing

and 2 peaks in the handwaving temporal voting space, corresponding to the number of instances of these

activities depicted in the image sequence under consideration. Using Mean Shift mode, we extract the

corresponding hypotheses, and following the process of section II-F, the spatiotemporal volumes that

correspond to those hypothesis are classified in an RVM based classification scheme. Finally, we depict,

in Fig. 17, the spatial voting spaces acquired using the handclapping and boxing models for an instance of

the multi-KTH dataset. As can be seen from the figure, and similar to the synthetic sequences presented

earlier, each model manages to suppress information coming from activities other than its class.



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

27

0 5 10 15 20 25 30 35 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance in pixels from ground truth

Pe
rc

en
ta

ge
 o

f f
ra

m
es

 

 

Center (clean)
Lower bound (clean)
Center (dynamic)
Lower bound (dynamic)

Fig. 15: Average spatial localization accuracy results achieved for the sequences depicting multiple activities. For

comparison, the accuracy achieved on the clean sequences is also depicted.
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Fig. 16: Temporal voting spaces corresponding to the image sequence of Fig. 14, for (a) boxing and (b) handwaving.

Using Mean Shift, 6 instances of boxing are extracted from (a) and 2 instances of handwaving in (b).

IV. CONCLUSIONS

In this work we presented a framework for the localization and classification of actions. The voting

nature of the proposed method allows us to perform spatiotemporal localization and classification in

sequences that have not been pre-segmented. The proposed method uses class-specific codebooks of

characteristic ensembles and class-specific models that encode the spatiotemporal positions at which the

codewords in the codebook are activated during training. The codebook-model pairs are utilized during

testing, in order to accumulate evidence for the spatiotemporal localization of the activity in a probabilistic

spatiotemporal voting scheme. We presented results on publicly available datasets and demonstrated the

robustness of the proposed method in the presence of occlusion and dynamic background. Furthermore,

we showed the ability of the proposed method in localizing and classifying multiple activities that take
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Fig. 17: Spatial localization example on the multi-KTH sequence. Voting spaces and localization result achieved

for handclapping (top row) and boxing (bottom row) .

place in the same scene. Finally, we demonstrated the effectiveness of the proposed method by presenting

comparative classification and localization results with the state of the art.
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