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Abstract—Automated analysis of human affective behavior has attracted increasing attention from researchers in psychology,

computer science, linguistics, neuroscience, and related disciplines. However, the existing methods typically handle only deliberately

displayed and exaggerated expressions of prototypical emotions, despite the fact that deliberate behavior differs in visual appearance,

audio profile, and timing from spontaneously occurring behavior. To address this problem, efforts to develop algorithms that can

process naturally occurring human affective behavior have recently emerged. Moreover, an increasing number of efforts are reported

toward multimodal fusion for human affect analysis, including audiovisual fusion, linguistic and paralinguistic fusion, and multicue

visual fusion based on facial expressions, head movements, and body gestures. This paper introduces and surveys these recent

advances. We first discuss human emotion perception from a psychological perspective. Next, we examine available approaches for

solving the problem of machine understanding of human affective behavior and discuss important issues like the collection and

availability of training and test data. We finally outline some of the scientific and engineering challenges to advancing human affect

sensing technology.

Index Terms—Evaluation/methodology, human-centered computing, affective computing, introductory, survey.
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1 INTRODUCTION

A widely accepted prediction is that computing will
move to the background, weaving itself into the fabric

of our everyday living spaces and projecting the human
user into the foreground. Consequently, the future
“ubiquitous computing” environments will need to have
human-centered designs instead of computer-centered
designs [26], [31], [100], [107], [109]. Current human-
computer interaction (HCI) designs, however, usually
involve traditional interface devices such as the keyboard
and mouse and are constructed to emphasize the transmis-
sion of explicit messages while ignoring implicit informa-
tion about the user, such as changes in the affective state.
Yet, a change in the user’s affective state is a fundamental
component of human-human communication. Some affec-
tive states motivate human actions, and others enrich the
meaning of human communication. Consequently, the
traditional HCI, which ignores the user’s affective states,
filters out a large portion of the information available in

the interaction process. As a result, such interactions are
frequently perceived as cold, incompetent, and socially
inept. The human computing paradigm suggests that user
interfaces of the future need to be anticipatory and human
centered, built for humans, and based on naturally
occurring multimodal human communication [100], [109].
Specifically, human-centered interfaces must have the
ability to detect subtleties of and changes in the user’s
behavior, especially his/her affective behavior, and to
initiate interactions based on this information rather than
simply responding to the user’s commands.

Examples of affect-sensitive multimodal HCI systems
include the following:

1. the system of Lisetti and Nasoz [85], which combines

facial expression and physiological signals to recog-
nize the user’s emotions, like fear and anger, and

then to adapt an animated interface agent to mirror

the user’s emotion,
2. the multimodal system of Duric et al. [39], which

applies a model of embodied cognition that can

be seen as a detailed mapping between the

user’s affective states and the types of interface

adaptations,
3. the proactive HCI tool of Maat and Pantic [89],

which is capable of learning and analyzing the

user’s context-dependent behavioral patterns from

multisensory data and of adapting the interaction
accordingly,

4. the automated Learning Companion of Kapoor et al.
[72], which combines information from cameras, a

sensing chair, and mouse, wireless skin sensor, and

task state to detect frustration in order to predict

when the user needs help, and
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5. the multimodal computer-aided learning system1 in
the Beckman Institute, University of Illinois, Urbana-
Champaign (UIUC), where the computer avatar
offers an appropriate tutoring strategy based on
the information of the user’s facial expression,
keywords, eye movement, and task state.

These systems represent initial efforts toward the future
human-centered multimodal HCI.

Except in standard HCI scenarios, potential commercial
applications of automatic human affect recognition include
affect-sensitive systems for customer services, call centers,
intelligent automobile systems, and game and entertain-
ment industries. These systems will change the ways in
which we interact with computer systems. For example, an
automatic service call center with an affect detector would
be able to make an appropriate response or pass control
over to human operators [83], and an intelligent automobile
system with a fatigue detector could monitor the vigilance
of the driver and apply an appropriate action to avoid
accidents [69].

Another important application of automated systems for
human affect recognition is in affect-related research (e.g.,
in psychology, psychiatry, behavioral science, and neu-
roscience), where such systems can improve the quality of
the research by improving the reliability of measurements
and speeding up the currently tedious manual task of
processing data on human affective behavior [47]. The
research areas that would reap substantial benefits from
such automatic tools include social and emotional devel-
opment research [111], mother-infant interaction [29],
tutoring [54], psychiatric disorders [45], and studies on
affective expressions (e.g., deception) [65], [47]. Automated
detectors of affective states and moods, including fatigue,
depression, and anxiety, could also form an important step
toward personal wellness and assistive technologies [100].

Because of this practical importance and the theoretical
interest of cognitive scientists, automatic human affect
analysis has attracted the interest of many researchers in
the last three decades. Suwa et al. [127] presented an early
attempt in 1978 to automatically analyze facial expressions.
The vocal emotion analysis has an even longer history,
starting with the study of Williams and Stevens in 1972
[145]. Since the late 1990s, an increasing number of efforts
toward automatic affect recognition were reported in the
literature. Early efforts toward machine affect recognition
from face images include those of Mase [90], and Kobayashi
and Hara [76] in 1991. Early efforts toward the machine
analysis of basic emotions from vocal cues include studies
like that of Dellaert et al. in 1996 [33]. The study of Chen
et al. in 1998 [22] represents an early attempt toward
audiovisual affect recognition. For exhaustive surveys of the
past work in the machine analysis of affective expressions,
readers are referred to [115], [31], [102], [49], [96], [105],
[130], [121], and [98], which were published in 1992 to 2007,
respectively.

Overall, most of the existing approaches to automatic
human affect analysis are the following:

. approaches that are trained and tested on a
deliberately displayed series of exaggerated affective
expressions,

. approaches that are aimed at recognition of a small
number of prototypical (basic) expressions of emo-
tion (i.e., happiness, sadness, anger, fear, surprise,
and disgust), and

. single-modal approaches, where information pro-
cessed by the computer system is limited to either
face images or the speech signals.

Accordingly, reviewing the efforts toward the single-
modal analysis of artificial affective expressions have been
the focus in the previously published survey papers, among
which the papers of Cowie et al. in 2001 [31] and of Pantic
and Rothkrantz in 2003 [102] have been the most
comprehensive and widely cited in this field to date. At
the time when these surveys were written, most of the
available data sets of affective displays were small and
contained only deliberate affective displays (mainly of the
six prototypical emotions) recorded under highly con-
strained conditions. Multimedia data were rare, and there
was no 3D data on facial affective behavior, there was no
data of combined face and body displays of affective
behavior, and it was rare to find data that included
spontaneous displays of affective behavior.

Hence, while automatic detection of the six basic
emotions in posed controlled audio or visual displays can
be done with reasonably high accuracy, detecting these
expressions or any expression of human affective behavior
in less constrained settings is still a very challenging
problem due to the fact that deliberate behavior differs in
visual appearance, audio profile, and timing from sponta-
neously occurring behavior. Due to this criticism received
from both cognitive and computer scientists, the focus of
the research in the field started to shift to the automatic
analysis of spontaneously displayed affective behavior.
Several studies have recently emerged on the machine
analysis of spontaneous facial expressions (e.g., [10], [28],
[135], and [4]) and vocal expressions (e.g., [12] and [83]).

Also, it has been shown by several experimental studies
that integrating the information from audio and video
leads to an improved performance of affective behavior
recognition. The improved reliability of audiovisual ap-
proaches in comparison to single-modal approaches can be
explained as follows: Current techniques for the detection
and tracking of facial expressions are sensitive to head
pose, clutter, and variations in lighting conditions, while
current techniques for speech processing are sensitive to
auditory noise. Audiovisual fusion can make use of the
complementary information from these two channels. In
addition, many psychological studies have theoretically
and empirically demonstrated the importance of the
integration of information from multiple modalities (vocal
and visual expression in this paper) to yield a coherent
representation and inference of emotions [1], [113], [117].
As a result, an increased number of studies on audiovisual
human affect recognition have emerged in recent years
(e.g., [17], [53], and [151]).

This paper introduces and surveys these recent advances
in the research on human affect recognition. In contrast to
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previously published survey papers in the field, it focuses
on the approaches that can handle audio and/or visual
recordings of spontaneous (as opposed to posed) displays of
affective states. It also examines the state-of-the-art methods
that have not been reviewed in previous survey papers but
are important, specifically for advancing human affect
sensing technology. Finally, we discuss the collection and
availability of training and test data in detail. This paper is
organized as follows: Section 2 describes the human
perception of affect from a psychological perspective.
Section 3 provides a detailed review of the related studies,
including multimedia emotion databases and existing
human affect recognition methods. Section 4 discusses
some of the challenges that researchers face in this field. A
summary and closing remarks conclude this paper.

2 HUMAN AFFECT (EMOTION) PERCEPTION

Automatic affect recognition is inherently a multidisciplin-
ary enterprise involving different research fields, including
psychology, linguistics, computer vision, speech analysis,
and machine learning. There is no doubt that the progress
in automatic affect recognition is contingent on the progress
of the research in each of those fields [44].

2.1 The Description of Affect

We begin by briefly introducing three primary ways that
affect has been conceptualized in psychological research.
Research on the basic structure and description of affect is
important in that these conceptualizations provide informa-
tion about the affective displays that automatic emotion
recognition systems are designed to detect.

Perhaps the most long-standing way that affect has been
described by psychologists is in terms of discrete categories,
an approach that is rooted in the language of daily life [40],
[41], [46], [131]. The most popular example of this
description is the prototypical (basic) emotion categories,
which include happiness, sadness, fear, anger, disgust, and
surprise. This description of basic emotions was specially
supported by the cross-cultural studies conducted by
Ekman [40], [42], indicating that humans perceive certain
basic emotions with respect to facial expressions in the same
way, regardless of culture. This influence of a basic emotion
theory has resulted in the fact that most of the existing
studies of automatic affect recognition focus on recognizing
these basic emotions. The main advantage of a category
representation is that people use this categorical scheme to
describe observed emotional displays in daily life. The
labeling scheme based on category is very intuitive and thus
matches people’s experience. However, discrete lists of
emotions fail to describe the range of emotions that occur in
natural communication settings. For example, although
prototypical emotions are key points of emotion reference,
they cover a rather small part of our daily emotional
displays. Selection of affect categories that can describe the
wide variety of affective displays that people show in daily
interpersonal interactions needs to be done in a pragmatic
and context-dependent manner [102], [105].

An alternative to the categorical description of human
affect is the dimensional description [58], [114], [140], where
an affective state is characterized in terms of a small

number of latent dimensions rather than in terms of a small
number of discrete emotion categories. These dimensions
include evaluation, activation, control, power, etc. In
particular, the evaluation and activation dimensions are
expected to reflect the main aspects of emotion. The
evaluation dimension measures how a human feels, from
positive to negative. The activation dimension measures
whether humans are more or less likely to take an action
under the emotional state, from active to passive. In contrast
to categorical representation, dimensional representation
enables raters to label a range of emotions. However, the
projection of the high-dimensional emotional states onto a
rudimentary 2D space results, to some degree, in the loss of
information. Some emotions become indistinguishable (e.g.,
fear and anger), and some emotions lie outside the space
(e.g., surprise). This representation is not intuitive, and
raters need special training to use the dimensional labeling
system (e.g., the Feeltrace system [30]). In automatic
emotion recognition systems that are based on the 2D
dimensional emotion representation (e.g., [17] and [53]), the
problem is often further simplified to two-class (positive
versus negative and active versus passive) or four-class
(quadrants of 2D space) classification.

One of the most influential emotion theories in modern
psychology is the appraisal-based approach [117], which
can be regarded as the extension of the dimensional
approach described above. In this representation, an
emotion is described through a set of stimulus evaluation
checks, including the novelty, intrinsic pleasantness, goal-
based significance, coping potential, and compatibility with
standards. However, translating this scheme into one
engineering framework for purposes of automatic emotion
recognition remains challenging [116].

2.2 Association between Affect, Audio, and Visual
Signals

Affective arousal modulates all human communicative
signals. Psychologists and linguists have various opinions
about the importance of different cues (audio and visual
cues in this paper) in human affect judgment. Ekman [41]
found that the relative contributions of facial expression,
speech, and body gestures to affect judgment depend both
on the affective state and the environment where the
affective behavior occurs. On the other hand, some studies
(e.g., [1] and [92]) indicated that a facial expression in the
visual channel is the most important affective cue and
correlates well with the body and voice. Many studies have
theoretically and empirically demonstrated the advantage
of the integration of multiple modalities (vocal and visual
expression) in human affect perception over single mod-
alities [1], [113], [117].

Different from the traditional message judgment, in
which the aim is to infer what underlies a displayed
behavior such as affect or personality, another major
approach to human behavior measurement is the sign
judgment [26]. The aim of sign judgment is to describe the
appearance, rather than the meaning, of the shown behavior
such as facial signal, body gesture, or speech rate. While
message judgment is focused on interpretation, sign
judgment attempts to be an objective description, leaving
the inference about the conveyed message to high-level
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decision making. As indicated by Cohn [26], the most
commonly used sign judgment method for the manual
labeling of facial behavior is the Facial Action Coding
System (FACS) proposed by Ekman et al. [43]. FACS is a
comprehensive and anatomically based system that is used
to measure all visually discernible facial movements in
terms of atomic facial actions called Action Units (AUs). As
AUs are independent of interpretation, they can be used for
any high-level decision-making process, including the
recognition of basic emotions according to Emotional FACS
(EMFACS) rules2, the recognition of various affective states
according to the FACS Affect Interpretation Database
(FACSAID)2 introduced by Ekman et al. [43], and the
recognition of other complex psychological states such as
depression [47] or pain [144]. AUs of the FACS are very
suitable to use in studies on human naturalistic facial
behavior, as the thousands of anatomically possible facial
expressions (independent of their high-level interpretation)
can be described as combinations of 27 basic AUs and a
number of AU descriptors. It is not surprising, therefore,
that an increasing number of studies on human sponta-
neous facial behavior are based on automatic AU recogni-
tion (e.g., [10], [27], [135], [87], and [134]).

Speech is another important communicative modality in
human-human interaction. Speech conveys affective infor-
mation through explicit (linguistic) and implicit (paralin-
guistic) messages that reflect the way that the words are
spoken. As the linguistic content is concerned, some
information about the speaker’s affective state can be
inferred directly from the surface features of words, which
were summarized in some affective word dictionaries and
lexical affinity [110], [142], and the rest of affective
information lies below the text surface and can only be
detected when the semantic context (e.g., discourse infor-
mation) is taken into account. However, findings in basic
research [1], [55] indicate that linguistic messages are rather
unreliable means of analyzing human (affective) behavior,
and it is very difficult to anticipate a person’s word choice
and the associated intent in affective expressions. In
addition, the association between linguistic content and
emotion is language dependent, and generalizing from one
language to another is very difficult to achieve.

When it comes to implicit paralinguistic messages that
convey affective information, basic researchers have not
identified an optimal set of voice cues that reliably
discriminate among emotions. Nonetheless, listeners seem
to be accurate in decoding some basic emotions from
prosody [70] and some nonbasic affective states such as
distress, anxiety, boredom, and sexual interest from
nonlinguistic vocalizations like laughs, cries, sighs, and
yawns [113]. Cowie et al. [31] provided a comprehensive
summary of qualitative acoustic correlations for proto-
typical emotions.

In summary, a large number of studies in psychology
and linguistics confirm the correlation between some
affective displays (especially prototypical emotions) and
specific audio and visual signals (e.g., [1], [47], and [113]).
The human judgment agreement is typically higher for
facial expression modality than for vocal expression

modality. However, the amount of the agreement drops
considerably when the stimuli are spontaneously displayed
expressions of affective behavior rather than posed ex-
aggerated displays. In addition, facial expression and the
vocal expression of emotion are often studied separately.
This precludes finding evidence of the temporal correlation
between them. On the other hand, a growing body of
research in cognitive sciences argues that the dynamics of
human behavior are crucial for its interpretation (e.g., [47],
[113], [116], and [117]). For example, it has been shown that
temporal dynamics of facial behavior represent a critical
factor for distinction between spontaneous and posed facial
behavior (e.g., [28], [47], [135], and [134]) and for categor-
ization of complex behaviors like pain, shame, and
amusement (e.g., [47], [144], [4], and [87]). Based on these
findings, we may expect that the temporal dynamics of each
modality (facial and vocal) and the temporal correlations
between the two modalities play an important role in the
interpretation of human naturalistic audiovisual affective
behavior. However, these are virtually unexplored areas of
research.

Another largely unexplored area of research is that of
context dependency. The interpretation of human behavior-
al signals is context dependent. For example, a smile can be
a display of politeness, irony, joy, or greeting. To interpret a
behavioral signal, it is important to know the context in
which this signal has been displayed, i.e., where the
expresser is (e.g., inside, on the street, or in the car), what
the expresser’s current task is, who the receiver is, and who
the expresser is [113].

3 THE STATE OF THE ART

Rather than providing exhaustive coverage of all past
efforts in the field of automatic recognition of human affect,
we focus here on the efforts recently proposed in the
literature that have not been reviewed elsewhere, that
represent multimodal approaches to the problem of human
affect recognition, that address the problem of the auto-
matic analysis of spontaneous affective behavior, or that
represent exemplary approaches to treating a specific
problem relevant for achieving a better human affect
sensing technology. Due to limitations on space and our
knowledge, we sincerely apologize to those authors whose
work is not included in this paper. For exhaustive surveys
of the past efforts in the field, readers are referred to the
following articles:

. Overviews of early work on facial expression
analysis: [115], [101], and [49].

. Surveys of techniques for automatic facial muscle
action recognition and facial expression analysis:
[130] and [98].

. Overviews of multimodal affect recognition meth-
ods: [31], [102], [105], [121], [68], and [152] (this is a
short preliminary version of the survey presented in
this current paper).

In this section, we first offer an overview of the existing
databases of audio and/or visual recordings of human
affective displays, which provide the basis of automatic
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affect analysis. Next, we examine available computing
methods for automatic human affect recognition.

3.1 Databases

Having enough labeled data of human affective expressions
is a prerequisite in designing automatic affect recognizer.
Authentic affective expressions are difficult to collect
because they are relatively rare, short lived, and filled with
subtle context-based changes that make it difficult to elicit
affective displays without influencing the results. In
addition, manual labeling of spontaneous emotional ex-
pressions for the ground truth is very time consuming, error
prone, and expensive. This state of affairs makes the
automatic analysis of spontaneous emotional expression a
very difficult task. Due to these difficulties, most of the
existing studies on the automatic analysis of human
affective displays have been based on the “artificial”
material of deliberately expressed emotions, elicited by
asking the subjects to perform a series of emotional
expressions in front of a camera and/or the microphone.

However, increasing evidence suggests that deliberate
behavior differs in visual appearance, audio profile, and
timing from spontaneously occurring behavior. For exam-
ple, Whissell shows that the posed nature of emotions in
spoken language may differ in the choice of words and
timing from corresponding performances in natural settings
[142]. When it comes to facial behavior, there is a large body
of research in psychology and neuroscience demonstrating
that spontaneous deliberately displayed facial behavior has
differences both in utilized facial muscles and their
dynamics (e.g., [47]). For instance, many types of sponta-
neous smiles (e.g., polite) are smaller in amplitude, longer
in total duration, and slower in onset and offset times than
posed smiles (e.g., [28], [47], and [134]). Similarly, it has
been shown that spontaneous brow actions (AU1, AU2, and
AU4 in the FACS system) have different morphological and
temporal characteristics (intensity, duration, and occurrence
order) than posed brow actions [135]. It is not surprising,
therefore, that methods of automated human affect analysis
that have been trained on deliberate and often exaggerated
behaviors usually fail to generalize to the subtlety and
complexity of spontaneous affective behavior.

In addition, most of the current human affect recognizers
are evaluated using clear constrained input (e.g., high-
quality visual and audio recording, nonoccluded, and front-
or profile-view face), which is different from the input
coming from a natural setting. In addition, most of the
emotion expressions that occur in a realistic interpersonal or
HCI are nonbasic emotions [32]. Yet, the majority of the
existing systems for human affect recognition aim at
classifying the input expression as the basic emotion
category (e.g., [31], [102], and [105]).

These findings and the general lack of a comprehensive
reference set of audio and/or visual recordings of human
affective displays motivated several efforts aimed at the
development of data sets that could be used for training and
test of automatic systems for human affect analysis. Table 1
lists some noteworthy audio, visual, and audiovisual data
resources that were reported in the literature. For each
database, we provide the following information:

1. affect elicitation method (i.e., whether the elicited
affective displays are posed or spontaneous),

2. size (the number of subjects and available data
samples),

3. modality (audio and/or visual),
4. affect description (category or dimension),
5. labeling scheme, and
6. public accessibility.

For other surveys of existing databases of human affective
behavior, the readers are referred to [32], [59], and [106].

As far as the databases of deliberate affective behavior
are concerned, the following databases need to be
mentioned. The Cohn-Kanade facial expression database
[71] is the most widely used database for facial expression
recognition. The BU-3DFE database of Yin and colleagues
[148] contains 3D range data of six prototypical facial
expressions displayed at four different levels of intensity.
The FABO database of Gunes and Piccardi [63] contains
videos of facial expressions and body gestures portraying
posed displays of basic and nonbasic affective states (six
prototypical emotions, uncertainty, anxiety, boredom, and
neutral). The MMI facial expression database [106], [98] is,
to our knowledge, the most comprehensive data set of
facial behavior recordings to date. It contains both posed
expressions and spontaneous expressions of facial beha-
vior. The available recordings of deliberate facial behavior
are both static images and videos, where a large part of
video recordings were recorded in both the frontal and the
profile views of the face. The database represents a facial
behavior data repository that is available, searchable, and
downloadable via the Internet.3 Although there are many
databases of acted emotional speech,4 a large majority of
these data sets contain unlabeled data, which makes them
unsuitable for research on automatic vocal affect recogni-
tion. The Banse-Scherer vocal affect database [8] and the
Danish Emotional Speech database5 are the two most
widely used databases in the research on vocal affect
recognition from acted emotional speech. Finally, the
Chen-Huang audiovisual database [21] is, to our knowl-
edge, the largest multimedia database containing facial
and vocal deliberate displays of basic emotions and four
cognitive states:

1. interest,
2. puzzlement,
3. frustration, and
4. boredom.

The existing data sets of spontaneous affective behavior
were collected in one of the following scenarios: human-
human conversation, HCI, and use of a video kiosk.
Human-human conversation scenarios include face-to-face
interviews (e.g., [10], [38], [111], and [65]), phone conversa-
tions (e.g., [34]), and meetings (e.g., [15] and AMI6). HCI
scenarios include Wizard of Oz scenarios (e.g., [13] and
SAL7) and computer-based dialogue systems (e.g., [83] and

ZENG ET AL.: A SURVEY OF AFFECT RECOGNITION METHODS: AUDIO, VISUAL, AND SPONTANEOUS EXPRESSIONS 43

3. http://www.mmifacedb.com/.
4. http://emotion-research.net/wiki/Databases.
5. http://cpk.auc.dk/~tb/speech/Emotions/.
6. http://corpus.amiproject.org/.
7. http://emotion-research.net/toolbox/toolboxdatabase.2006-09-

26.5667892524.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on November 30, 2008 at 10:10 from IEEE Xplore.  Restrictions apply.



[86]). In the video kiosk settings (e.g., [95], [98], and [123]),
the subjects’ affective reactions are recorded while the
subjects are watching emotion-inducing videos.

In most of the existing databases, discrete emotion

categories are used as the emotion descriptors. The labels
of prototypical emotions are often used, especially in the
databases of deliberate affective behavior. In databases of
spontaneous affective behavior, coarse affective states like
positive versus negative (e.g., [15] and [83]), dimensional
descriptions in the evaluation-activation space (e.g., SAL),

and some application-dependent affective states are usually

used as the data labels. Some typical examples of the used

application-dependent affect-interpretative labels (e.g., [95],

[63], [13], and [111]) are the following:

1. interest,
2. boredom,
3. confusion,
4. frustration,
5. fatigue,
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6. empathy,
7. stress,
8. irony,
9. annoyance,
10. amusement,
11. helplessness,
12. panic,
13. shame,
14. reprehension, and
15. rebelliousness.

As explained above, AUs are very suitable to describe
the richness of spontaneous facial behavior, as the thou-
sands of anatomically possible facial expressions can be
represented as combination of a few dozens of AUs. Hence,
the labeling schemes used to code data include FACS AUs
(e.g., [10], [71], [106], [98], and [111]), the Feeltrace system
for evaluation-activation dimensional description (e.g., [38]
and SAL), self report (e.g., [123] and [65]), and human-
observer judgment (e.g., [13], [15], [83], [95], and [98]).

The current situation of emotion database research is
considerably different from what was described in the
comprehensive surveys written by Pantic and Rothkrantz
[102] and Cowie et al. [31]. The current state of the art is
advanced and can be summarized as follows:

. A database of 3D recordings of acted facial affect
[148] and a database of face-and-body recordings
of acted affective displays [63] have been made
available.

. A collection of acted facial affect displays made from
the profile view is shared on the Internet [106].

. Several large audio, visual, and audiovisual sets of
human spontaneous affective behavior have been
collected, some of which are released for public use.

The existence of these data sets of spontaneous affective
behavior is very promising, and we expect that this will
produce a major shift in the course of the research in the
field: from the analysis of exaggerated expressions of basic
emotions to the analysis of naturalistic affective behavior.
We also expect subsequent shifts in research in various
related fields such as ambient intelligence, transportation,
and personal wellness technologies.

3.2 Vision-Based Affect Recognition

Because of the importance of face in emotion expression
and perception, most of the vision-based affect recognition
studies focus on facial expression analysis. We can
distinguish two main streams in the current research on
the machine analysis of facial expressions [26], [98]: the
recognition of affect and the recognition of facial muscle
action (facial AUs). As explained above, facial AUs are a
relatively objective description of facial signals and can be
mapped to the emotion categories based on a high-level
mapping such as EMFACS and FACSAID or to any other
set of high-order interpretation categories, including com-
plex affective states like depression [47] or pain [144].

As far as automatic facial affect recognition is concerned,
most of the existing efforts studied the expressions of the six
basic emotions due to their universal properties, their
marked reference representation in our affective lives, and
the availability of the relevant training and test material

(e.g., [71]). There are a few tentative efforts to detect
nonbasic affective states from deliberately displayed facial
expressions, including fatigue [60], [69], and mental states
like agreeing, concentrated, interested, thinking, confused,
and frustrated (e.g., [48], [72], [73], [129], and [147]).

Most of the existing works on the automatic facial
expression recognition are based on deliberate and often
exaggerated facial displays (e.g., [130]). However, several
efforts have been recently reported on the automatic
analysis of spontaneous facial expression data (e.g., [9],
[10], [11], [27], [28], [67], [88], [123], [135], [149], [87], [4], and
[134]). Some of them study the automatic recognition of
AUs, rather than emotions, from spontaneous facial dis-
plays (e.g., [9], [10], [11], [27], [28], [135], and [134]). Studies
reported in [28], [135], [134], and [87] investigated explicitly
the difference between spontaneous and deliberate facial
behavior. In particular, the studies of Valstar et al. [135],
[134] and the study of Littlewort et al. [87] are the first
reported efforts to date to automatically discern posed from
spontaneous facial behavior. It is interesting to note that,
confirming with research findings in psychology (e.g., [47]),
the systems proposed by Valstar et al. were built to
characterize temporal dynamics of facial actions and
employ parameters like speed, intensity, duration, and the
co-occurrence of facial muscles activations to classify facial
behavior present in a video as either deliberate or
spontaneous.

Some of the studies on the machine analysis of
spontaneous facial behavior were conducted using the data
sets listed in Table 1 (e.g., [10], [149], and [134]). For other
studies, new data sets were collected. Overall, the utilized
data were collected in the following data-elicitation scenar-
ios: human-human conversation (e.g., [10], [11], [28], [135],
[149], and [4]), Wizard of Oz scenarios (e.g., [67]), or TV
broadcast (e.g., [147]). The studies reported in [123] and
[147] explored the automatic recognition of a subset of basic
emotional expressions. The study of Zeng et al. [149]
investigated separating emotional state from nonemotional
states during the Adult Attachment Interview. Studies on
separating posed from genuine smiles were reported in [28]
and [134], and studies on the recognition of pain from facial
behavior were reported in [4] and [87].

Most of the existing facial expression recognizers employ
various pattern recognition approaches and are based on
2D spatiotemporal facial features. The usually extracted
facial features are either geometric features such as the
shapes of the facial components (eyes, mouth, etc.) and the
location of facial salient points (corners of the eyes, mouth,
etc.) or appearance features representing the facial texture,
including wrinkles, bulges, and furrows. Typical examples
of geometric-feature-based methods are those of Chang
et al. [19], who used a shape model defined by 58 facial
landmarks, of Pantic et al. [98], [99], [103], [135], [134], who
used a set of facial characteristic points around the mouth,
eyes, eyebrows, nose, and chin, and of Kotsia and Pitas [77],
who used the Candide grid. Typical examples of appear-
ance-feature-based methods are listed as follows:

1. Bartlett et al. [9], [10], [11], [87] and Guo and Dyer
[64], who used Gabor wavelets,

2. Whitehill and Omlin [143], who used Haar features,

ZENG ET AL.: A SURVEY OF AFFECT RECOGNITION METHODS: AUDIO, VISUAL, AND SPONTANEOUS EXPRESSIONS 45

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on November 30, 2008 at 10:10 from IEEE Xplore.  Restrictions apply.



3. Anderson and McOwen [2], who used a holistic
spatial ratio face template,

4. Valstar et al. [136], who used temporal templates,
and

5. Chang et al. [18], who built a probabilistic recogni-
tion algorithm based on the manifold subspace of
aligned face appearances.

As suggested in several studies (e.g., [99]), using both
geometric and appearance features might be the best choice
for designing automatic facial expression recognizers.
Typical examples of hybrid geometric and appearance-
feature-based methods are those proposed by Tian et al.
[130], who used facial component shapes and the transient
features like crow-feet wrinkles and nasal-labial furrows,
and that of Zhang and Ji [158], who used 26 facial points
around the eyes, eyebrows, and mouth, and the transient
features proposed by Tian et al. Another example of such a
method is that proposed by Lucey et al. [88], who used the
Active Appearance Model (AAM) to capture the character-
istics of the facial appearance and the shape of facial
expressions.

Most of the existing 2D-feature-based methods are
suitable for the analysis of facial expressions under a small
range of head motions. Thus, most of these methods focus
on the recognition of facial expressions in near-frontal-view
recordings. An exemplar exception is the study of Pantic
and Patras [99], who explored automatic analysis of facial
expressions from the profile-view face.

A few approaches to automatic facial expression analysis
are based on 3D face models. Huang and colleagues (i.e.,
[25], [123], [141], and [149]) used features extracted by a 3D
face tracker called the Piecewise Bezier Volume Deforma-
tion Tracker [128]. Cohn et al. [27] focused on the analysis of
brow AUs and head movement based on a cylindrical head
model [146]. Chang et al. [20] and Yin et al. [139], [148] used
3D expression data for facial expression recognition. The
progress of the methodology based on 3D face models may
yield view-independent facial expression recognition,
which is important for spontaneous facial expression
recognition, because the subject can be recorded in less
controlled real-world settings.

Some efforts are reported to decompose multiple factors
(e.g., the facial expression, face style, or pose) from face
images. Typical examples are those of Wang and Ahuja
[137], who used a multilinear subspace method, and of Lee
and Elgammal [81], who proposed decomposable nonlinear
manifold to estimate facial expression and face style
simultaneously. The study of Zhu and Ji [160] used a
normalized SVD decomposition to recover facial expression
and pose.

Relatively few studies investigated the fusion of the
information from facial expressions and head movement
(e.g., [27], [69], [158], [160], and [134]), the fusion of facial
expression and body gesture (e.g., [7], [61], [62], and [134]),
and the fusion of facial expressions and postures from a
sensor chair (e.g., [72] and [73]), with the aim of improving
affect recognition performance.

Finally, virtually all present approaches to automatic
facial expression analysis are context insensitive. Exceptions

to this overall state of the art in the field include just a few

studies. For example, Pantic and Rothkrantz [104] and Fasel

et al. [50] investigated the interpretation of facial expres-

sions in terms of user-defined interpretation labels. Ji et al.

[69] investigated the influence of context (work condition,

sleeping quality, circadian rhythm, environment, and

physical condition) on fatigue detection, and Kapoor and

Picard [73] investigated the influence of the task states

(difficulty level and game state) on interest detection.
Table 2 provides an overview of the currently existing

exemplar systems for vision-based affect recognition with

respect to the utilized facial features, classifier, and

performance. While summarizing the performance of the

surveyed systems, we also mention a number of relevant

aspects, including the following:

1. type of the utilized data (spontaneous or posed, the
number of different subjects, and sample size),

2. whether the system is person dependent or inde-
pendent,

3. whether it performs in a real-time condition,
4. what the number of target classification categories is,
5. whether and which other cues, aside from the face,

have been used in the classification (head, body,
eye, posture, task state, and other contexts),

6. whether the system processes still images or videos,
and

7. how accurately it performs the target classification.

A missing entry means that the matter at issue was not

reported or it remained unclear from the available

literature. For instance, some studies did not explicitly

indicate whether the recordings of the same subjects were

used as both the testing data and the training data. Hence, it

remains unclear whether these systems perform in a

subject-independent manner. It is important to stress that

we cannot rank the performances of the surveyed systems

because each of the relevant studies has been conducted

under different experimental conditions using different

data, different testing methods (such as person dependent/

independent), and different performance measurements

(accuracy, equal error rate, etc.).
The research on the machine analysis of facial affect has

seen a lot of progress when compared to that described in

the survey paper of Pantic and Rothkrantz [102]. The

current state of the art in the field is listed as follows:

. Methods have been proposed to detect attitudinal
and nonbasic affective states such as confusion,
boredom, agreement, fatigue, frustration, and pain
from facial expressions (e.g., [69], [72], [129], [147],
and [87]).

. Initial efforts were conducted to analyze and
automatically discern posed (deliberate) facial dis-
plays from genuine (spontaneous) displays (e.g.,
[135] and [134]).

. First attempts are reported toward the vision-based
analysis of spontaneous human behavior based on
3D face models (e.g., [123] and [149]), based on
fusing the information from facial expressions and
head gestures (e.g., [27] and [134]), and based on
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fusing the information from facial expressions and
body gestures (e.g., [61]).

. Few attempts have also been made toward the
context-dependent interpretation of the observed
facial behavior (e.g., [50], [69], [72], and [104]).

. Advanced techniques in feature extraction and
classification have been applied and extended in
this field. A few real-time robust systems have been
built (e.g., [11]) thanks to the advance of relevant
techniques such as real-time face detection and
object tracking.

3.3 Audio-Based Affect Recognition

Research on vocal affect recognition is also largely

influenced by a basic emotion theory. In turn, most of the

existing efforts in this direction aim at the recognition of a

subset of basic emotions from speech signals. However, a

few tentative studies were published recently on the

interpretation of speech signals in terms of certain applica-

tion-dependent affective states. These studies are those of

the following:
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TABLE 2
Vision-Based Affect Recognition

exp: Spontaneous/Posed expression, per: person Dependent/Independent, Im/Vi: Image/Video based, cues: other cues aside from the face (Head/
Body/Eye/Skin/Posture/Task state/pressure Mouse/User-defined classes/otherContext), rea: real time (Y: yes, and N: no), class: number of classes,
sub: number of subjects, samp: sample size, acc: Accuracy, AUs: AUs corresponding to AU detection, min: minutes, EER: equal error rate, FAR:
false acceptance rate, and GP: Gaussian process.
AAI, BU, CH, CK, FABO, MMI, RU, and SD are the database names listed in Table 1.
EH: the Ekman-Hager database, OD: Other database, and ?: missing entry.
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1. Hirschberg et al. [65] and Graciarena et al. [57], who
attempted deception detection,

2. Liscombe et al. [84], who focused on detecting
certainty,

3. Kwon et al. [79], who reported on stress detection,
4. Zhang et al. [157], who investigated speech-based

analysis of confidence, confusion, and frustration,
5. Batliner et al. [12], who aimed at detecting trouble,
6. Ang et al. [3], who explored speech-based recogni-

tion of annoyance and frustration, and
7. Steidl et al. [125], who conducted studies on the

detection of empathy.

In addition, few efforts toward the automatic recognition of
nonlinguistic vocalizations like laughters [133], coughs [91]
and cries [97] have also been reported recently. This is of
particular importance for the research on the machine
analysis of human affects since recent studies in cognitive
sciences showed that listeners seem to be rather accurate in
decoding some nonbasic affective states such as distress,
anxiety, boredom, and sexual interest from nonlinguistic
vocalizations like laughs, cries, sighs, and yawns [113].

Most of the existing systems for automatic vocal affect
recognition were trained and tested on speech data that was
collected by asking actors to speak prescribed utterances
with certain emotions (e.g., [6] and [79]). As the utterances
are isolated from the interaction context, this experimental
strategy precludes finding and using correlations between
the paralinguistic displays and the linguistic content, which
seem to play an important role for affect recognition in daily
interpersonal interactions.

Based on the above consideration, researchers started to
focus on affect recognition in naturalistic audio recordings
collected in call centers (e.g., [35], [82], [83], and [94]),
meetings (e.g., [94]), Wizard of Oz scenarios (e.g., [12]),
interviews (e.g., [65]), and other dialogue systems (e.g., [14]
and [86]). In these natural interaction data, affect displays
are often subtle, and basic emotion expressions seldom
occur. It is therefore not surprising that recent studies in the
field, which are based on such data, attempt to detect either
coarse affective states, i.e., positive, negative, and neutral
states (e.g., [82], [83], [86], and [94]) or application-
dependent states mentioned above rather than basic
emotions.

Most of the existing approaches to vocal affect recogni-
tion used acoustic features as classification input based on
the acoustic correlation for emotion expressions that were
summarized in [31]. The popular features are prosodic
features (e.g., pitch-related feature, energy-related features,
and speech rate) and spectral features (e.g., MFCC and
cepstral features). Many studies show that pitch and energy
among these features contribute the most to affect recogni-
tion (e.g., [79]). An exemplar effort is that of Vasilescu and
Devillers [36], who show the relevance of speech disfluen-
cies (e.g., filler and silence pauses) to affect recognition.

With the research shift toward the analysis of sponta-
neous human behavior, the analysis of acoustic information
will not only suffice for identifying subtle changes in vocal
affect expression. As indicated by Batliner et al. [12], “The
closer we get to a realistic scenario, the less reliable is
prosody as an indicator of the speaker’s emotional state.” In

the preliminary experiments of Devillers and Vidrascu [35],

using lexical cues resulted in a better performance than

using paralinguistic cues to detect relief, anger, fear, and

sadness in human-human medical call conversations. In

turn, several studies investigated the combination of

acoustic features and linguistic features (language and

discourse) to improve vocal affect recognition performance.

Typical examples of linguistic-paralinguistic fusion meth-

ods are those of the following:

1. Litman and Forbes-Riley [86] and Schuller et al.
[120], who used spoken words and acoustic features,

2. Lee and Narayanan [83], who used prosodic features,
spoken words and information of repetition,

3. Graciarena et al. [57], who combined prosodic,
lexical and cepstral features, and

4. Bartliner et al. [12], who used prosodic features, part
of speech (POS), dialogue act (DA), repetitions,
corrections, and syntactic-prosodic boundary to infer
the emotion.

Litman et al. [86] and Forbes-Riley and Litman [52] also

investigated the role of the context information (e.g.,

subject, gender, and turn-level features representing local

and global aspects of the dialogue) on audio affective

recognition.
Although the above studies indicated recognition im-

provement by using information on language, discourse,

and context, the automatic extraction of these related

features is a difficult problem. First, existing automatic

speech recognition (ASR) systems cannot reliably recognize

the verbal content of emotional speech (e.g., [5]). Second,

extracting semantic discourse information is even more

challenging. Most of these features are typically extracted

manually or directly from transcripts.
Table 3 provides an overview of the currently existing

exemplar systems for audio-based affect recognition with

respect to the utilized auditory features, classifier, and

performance. As in Table 2, we specify relevant aspects in

Table 3 to summarize the reported performance of surveyed

systems.
The current state of the art in the research field of

automatic audio-based affect recognition can be summar-

ized as follows:

. Methods have been proposed to detect nonbasic
affective states, including coarse affective states such
as negative and nonnegative states (e.g., [83]),
application-dependent affective states (e.g., [3],
[12], [65], [79], [157], and [125]), and nonlinguistic
vocalizations like laughter and cry (e.g., [133], [91],
and [97]).

. A few efforts have been made to integrate para-
linguistic features and linguistic features such as
lexical, dialogic, and discourse features (e.g., [12],
[35], [57], [83], [86], and [120]).

. Few investigations have been conducted to make use
of contextual information to improve the affect
recognition performance (e.g., [52] and [86]).

. Few reported studies have analyzed the affective
states across languages (e.g., [94] and [133]).
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. Some studies have investigated the influence of
ambiguity of human labeling on recognition perfor-
mance (e.g., [3] and [86]) and proposed measures of
comparing human labelers and machine classifiers
(e.g., [125]).

. Advanced techniques in feature extraction, classifi-
cation, and natural language processing have been
applied and extended in this field. Some studies
have been tested on commercial call data (e.g., [83]
and [35]).

3.4 Audiovisual Affect Recognition

In the survey of Pantic and Rothkrantz [102], only four
studies were found to focus on audiovisual affect recogni-
tion. Since then, an increasing number of efforts are
reported in this direction. Similar to the state of the art in
single-modal affect recognition, most of the existing
audiovisual affect recognition studies investigated the

recognition of the basic emotions from deliberate displays.

Relatively few efforts have been reported toward the

detection of nonbasic affective states from deliberate

displays. Those include the work of Zeng et al. [150],

[153], [154], [155] and that of Sebe et al. [122], who added

four cognitive states, considering the importance of these

cognitive states in HCI:

1. interest,
2. puzzlement,
3. frustration, and
4. boredom.

Related studies conducted on naturalistic data include

that of Pal et al. [97], who designed a system for detecting

hunger and pain, as well as sadness, anger, and fear, from

infant facial expressions and cries, and that of Petridis

and Pantic [108], who investigated separating speech
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TABLE 3
Audio-Based Affect Recognition

exp: Spontaneous/Posed expression, per: person Dependent/Independent, cont: contextual information (Subject/Gender/Task/SpeakerRole/
Speaker-DependentFeature), class: the number of classes, sub: the number of subjects. samp: sample size (the number of utterances), acc:
accuracy, ?: missing entry, BL: Baseline, EER: equal error rate, NPN: negative/neutral/positive, NnN: negative/nonnegative, EnE: emotional/
nonemotional, M: male, F: female, A: actor data, R: reading data, W: data of Wizard of Oz, and OD: other database.
ACC, AIBO, CSC, and ISL are the database names listed in Table 1.
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from laughter episodes based on both facial and vocal
expression.

Most of the existing methods for audiovisual affect
analysis are based on deliberately posed affect displays
(e.g., [16], [56], [66], [122], [124], [138], [150], [153], [154], and
[155]). Recently, a few exceptional studies have been
reported toward audiovisual affect analysis in spontaneous
affect displays (e.g., [17], [53], [74], [97], [151], and [108]).
Zeng et al. [151] used the data collected in psychological
research interview (Adult Attachment Interview), Pal et al.
[97] used recordings of infants [97], and Petridis and Pantic
[108] used the recordings of people engaged in meetings
AMI corpus. On the other hand, Fragopanagos and Taylor
[53], Caridakis et al. [17], and Karpouzis et al. [74], used the
data collected in Wizard of Oz scenarios. Since the available
data were usually insufficient to build a robust machine
learning system for the recognition of fine-grained affective
states (e.g., basic emotions), the recognition of coarse
affective states was attempted in most of the aforemen-
tioned studies. The studies of Zeng et al. focus on
audiovisual recognition of positive and negative affect
[151], while other studies report on the classification of
audiovisual input data into the quadrants in the evaluation-
activation space [17], [53], [74]. The studies reported in [17],
[53], and [74] applied the Feeltrace system that enables
raters to continuously label changes in affective expres-
sions. However, note that the study discussed in [53]
reported on a considerable labeling variation among four
human raters due to the subjectivity of audiovisual affect
judgment. More specifically, one of the raters mainly relied
on audio information when making judgments, while
another rater mainly relied on visual information. This
experiment actually also reflects the asynchronization of
audio and visual expression. In order to reduce this
variation of human labels, the studies of Zeng et al. [151]
made the assumption that facial expression and vocal
expression have the same coarse emotional states (positive
and negative) and then directly used FACS-based labels of
facial expressions as audiovisual expression labels.

The data fusion strategies utilized in the current studies
on audiovisual affect recognition are feature-level, decision-
level, or model-level fusion. Typical examples of feature-
level fusion are those reported in [16], [118], and [156],
which concatenated the prosodic features and facial
features to construct joint feature vectors, which are then
used to build an affect recognizer. However, the different
time scales and metric levels of features coming from
different modalities, as well as increasing feature-vector
dimensions influence the performance of an affect recogni-
zer based on a feature-level fusion. The vast majority of
studies on bimodal affect recognition reported on decision-
level data fusion (e.g., [16], [56], [66], [97], [151], [153], [155],
[138], and [108]). In the decision-level data fusion, the input
coming from each modality is modeled independently, and
these single-modal recognition results are combined in the
end. Since humans display audio and visual expressions in
a complementary redundant manner, the assumption of
conditional independence between audio and visual data
streams in decision-level fusion is incorrect and results in

the loss of information of mutual correlation between the

two modalities. To address this problem, a number of

model-level fusion methods have been proposed which aim

at making use of the correlation between audio and visual

data streams and relaxing the requirement of synchroniza-

tion of these streams (e.g., [17], [53], [122], [124], [150], and

[154]). Zeng et al. [154] presented a Multistream Fused

HMM to build an optimal connection among multiple

streams from audio and visual channels according to the

maximum entropy and the maximum mutual information

criterion. Zeng et al. [150] extended this fusion framework

by introducing a middle-level training strategy, under

which a variety of learning schemes can be used to combine

multiple component HMMs. Song et al. [124] presented a

tripled HMM to model the correlation properties of three

component HMMs that are based individually on upper

face, lower face, and prosodic dynamic behaviors. Frago-

panagos and Taylor [53] proposed an artificial neural

network (NN) with a feedback loop called ANNA to

integrate the information from face, prosody, and lexical

content. Caridakis et al. [17], Karpouzis et al. [74], and

Petridis and Pantic [108] investigated combining the visual

and audio data streams by using NNs. Sebe et al. [122] used

a Bayesian network (BN) to fuse the facial expression and

prosody expression.
Table 4 provides an overview of the currently existing

exemplar systems for audiovisual affect recognition with
respect to the utilized auditory and visual features,
classifier, and performance. As in Tables 2 and 3, we also
specify a number of relevant issues in Table 4 to summarize
the reported performance of surveyed systems.

In summary, research on audiovisual affect recognition
has witnessed significant progress in the last few years as
follows:

. Efforts have been reported to detect and interpret
nonbasic genuine (spontaneous) affective displays in
terms of coarse affective states such as positive and
negative affective states (e.g., [151]), quadrants in the
evaluation-activation space (e.g., [17], [53], and [74]),
and application-dependent states (e.g., [122], [154],
[97], and [108]).

. Few studies have been reported on efforts to
integrate other affective cues aside from the face
and the prosody such as body and lexical features
(e.g., [53] and [74]).

. Few attempts have been made to recognize affective
displays in specific naturalistic settings (e.g., in a car
[66]) and in multiple languages (e.g., [138]).

. Various multimodal data fusion methods have been
investigated. In particular, some advanced data
fusion methods have been proposed, such as
HMM-based fusion (e.g., [124], [154], and [150]),
NN-based fusion (e.g., [53] and [74]), and BN-based
fusion (e.g., [122]).

4 CHALLENGES

The studies reviewed in Section 3 indicate two new trends
in the research on automatic human affect recognition: the
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analysis of spontaneous affective behavior and the multi-
modal analysis of human affective behavior, including
audiovisual analysis, combined linguistic and nonlinguistic
analysis, and multicue visual analysis based on facial
expressions, head movements, and/or body gestures.
Several previously recognized problems have been ad-
dressed, including the development of more comprehensive
data sets of training and testing materials. At the same time,
several new challenging issues have been recognized,
including the necessity of studying the temporal correla-
tions between the different modalities (audio and visual)
and between various behavioral cues (e.g., facial, head, and
body gestures). This section discusses these issues in detail.

4.1 Databases

Acquiring valuable spontaneous affective behavior data
and the related ground truth is far from being solved. While
it is relatively easy to elicit joyful laughter by showing the
subjects clips from comedies, the majority of affective states
are much more difficult (if possible at all) to elicit (e.g., fear,
stress, sadness, or anger, which is particularly difficult to
elicit in any laboratory setting, including face-to-face
conversation [23]). Social psychology has provided a host
of creative strategies for inducing emotion, which seem to
be useful for collecting affective expressions that are
difficult to elicit in the laboratory and affective expressions
that are contextually complex (such as embarrassment) or

for research programs that emphasize the “mundane
realism” of experimentally elicited emotions [23]. However,
engineers, who are usually the designers of the databases of
human behavior data, are often not even aware of these
strategies, let alone putting them into practice. This
situation needs to be changed if the challenging and crucial
issue of collecting valuable data on human spontaneous
affective behavior is to be addressed.

Although many efforts have been done toward the
collection of databases of spontaneous human affective
behavior, most of the data contained in the available
databases currently lack labels. In other words, no metadata
is available which could identify the affective state dis-
played in a video sample and the context in which this
affective state was displayed. There are some related issues.

First, it is not clear which kind of metadata needs to be
provided. While data labeling is easy to accomplish in the
case of prototypical expressions of emotions, it becomes a
real challenge once we move beyond the six basic emotions.
To reduce the subjectivity of data labeling, it is generally
accepted that human facial expression data need to be
FACS coded. The main reason is that FACS AUs are
objective descriptors and independent of interpretation and
can be used for any high-level decision-making process,
including the recognition of affective states. However, while
this solves the problem of attaining objective facial behavior
coding, how one can objectively code vocal behavior
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TABLE 4
Audiovisual Affect Recognition

Fusion: Feature/Decision/Model-level, exp: Spontaneous/Posed expression, per: person-Dependent/Independent, class: the number of classes,
sub: the number of subjects, samp: sample size (the number of utterances), cue: other cues (Lexical/Body), acc: accuracy, RR: mean with weighted
recall values, FAP: facial animation parameter, and ?: missing entry.
AAI, CH, SAL, and SD are the database names listed in Table 1.
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remains an open issue. Nonlinguistic vocalizations like
laughter, coughs, cries, etc., can be labeled as such, but there
is no set of interpretation-independent codes for labeling
emotional speech. Another related issue is that of culture
and context dependency. The metadata about the context in
which the recordings were made, such as the utilized
stimuli, the environment, and the presence of other people,
is needed, since these contextual variables may influence
masking of the emotional reactions.

Second, even if labeled data are available, engineers
responsible for designing an automated human affect
analyzer usually assume that the data are accurately
labeled. This assumption may or may not be accurate [26],
[125]. The reliability of the coding can be ensured by asking
several independent human observers to conduct the
coding. If the interobserver reliability is high, the reliability
of the coding is assured. Interobserver reliability can be
improved by providing thorough training to observers on
the utilized coding schemes such as FACS. When it comes
to data coding in terms of affect labels, a possible method is
to use a multilabel multi-time-scale system in order to
reduce the subjectivity of human judgment and to represent
comprehensive properties of affect displays [37], [80].

Third, human labeling of affective behavior is very time
consuming and expensive. In the case of facial expression
data, it takes more than 1 hour to manually score 100 still
images or 1 minute of video sequence in terms of AUs [43].
A remedy could be the semisupervised active learning
method [159], which combines semisupervised learning [24]
and active learning [51]. The semisupervised learning
mechanism aims at making use of the unlabeled data, and
the active learning mechanism aims at enlarging the useful
information conveyed by human feedback (annotation in
this application) and provides the annotators with the most
ambiguous samples according to the current emotion
classifier. More specifically, several promising prototype
systems were reported in the last few years which can
recognize deliberately produced AUs in either (near-)
frontal view face images (e.g., [98] and [130]) or profile-
view face images (e.g., [99]). Although these systems will
not be always able to be generalized to the subtlety and
complexity of human affective behavior occurring in real-
world settings, they can be used to attain an initial data
labeling that can be subsequently controlled and corrected
by human observers. However, as this has not been
attempted in practice, there is no guarantee that such an
approach will actually reduce the time needed for obtaining
the ground truth. Future research is needed to determine
whether this attempt is feasible.

Although much effort has been done toward the
collection of databases of spontaneous human affective
behavior, many of these data sets are not publicly available
(see Table 1). Some are still under construction, some are in
the process of data publication, and some seem to have dim
prospects of being published due to the lack of appropriate
agreement of subjects. More specifically, spontaneous dis-
plays of emotions, especially in audiovisual format, reveal
personal and intimate experience; privacy issues jeopardize
the public accessibility of many databases.

Aside from these problems concerned with acquiring
valuable data, the related ground truth, and the agreement
of subjects to make the data publicly available, another

important issue is how one can construct and administer
such a large affective expression benchmark database. A
noteworthy example is the MMI facial expression database
[98], [106], which was built as a Web-based direct-
manipulation application, allowing easy access and easy
search of the available images. In general, in the case of
publicly available databases, once the permission for usage
is issued, large unstructured files of material are sent. Such
unstructured data is difficult to explore and manage. Pantic
et al. [102], [106] and Cowie et al. [32] emphasized a number
of specific research and development efforts needed to
build a comprehensive readily accessible reference set of
affective displays that could provide a basis for benchmarks
for all different efforts in the research on the machine
analysis of human affective behavior. Nonetheless, note that
their list of suggestions and recommendations is not
exhaustive of worthwhile contributions.

4.2 Vision-Based Affect Recognition

Although several of the efforts discussed in Section 3.2 were
recently reported on the machine analysis of spontaneous
facial expressions, the problem of the automatic analysis of
facial behavior in unconstrained environments is still far
from being solved.

Existing methods for the machine analysis of facial affect
typically assume that the input data are near frontal- or
profile-view face image sequences, showing nonoccluded
facial displays captured under constant lighting condition
against a static background. In real interaction environ-
ments, such an assumption is often invalid. The develop-
ment of robust face detectors, head, and facial feature
trackers, which will be robust to arbitrary head movement,
occlusions, and scene complexity like the presence of other
people and dynamic background, forms the first step in the
realization of facial affect analyzers capable of handling
unconstrained environments. View-independent facial ex-
pression recognition based on 3D face models (e.g., [20] and
[148]) or multiview face models (e.g., [160]) may be a (part
of the) solution.

As mentioned already in Section 2, a growing body of
research in cognitive sciences argues that the dynamics of
human behavior are crucial for its interpretation (e.g., [47]
and [113]). For instance, it has been shown that spontaneous
smiles are longer in the total duration, can have multiple
apexes (multiple rises of the mouth corners), appear before
or simultaneously with other facial actions such as the rise
of the cheeks, and are slower in the onset and offset times
than the posed smiles (e.g., a polite smile) [28]. In spite of
these findings, the vast majority of the past work in the field
does not take the dynamics of facial expressions into
account when analyzing shown facial behavior. Some of the
past work in the field has used aspects of temporal structure
of facial expression such as the speed of a facial point
displacement or the persistence of facial parameters over
time (e.g., [87], [132], and [158]). However, just a few recent
studies analyze explicitly the temporal structure of facial
expressions (e.g., [98], [99], [135], [132], and [134]). In
addition, it remains unresolved how the grammar of facial
behavior can be learned and how this information can be
properly represented and used to handle ambiguities in the
input data [100], [102].

Except for a few studies (e.g., [27] and [61]), existing
efforts toward the machine analysis of human facial
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behavior focus only on the analysis of facial gestures
without taking into consideration other visual cues like
head movements, gaze direction, and body gestures.
However, research on cognitive science reports that human
judgments of behavioral cues are the most accurate when
both the face and the body are taken into account (e.g., [1]
and [117]). This seems to be of particular importance when
judging certain complex mental states such as embarrass-
ment [75]. However, integration, temporal structures, and
temporal correlations between different visual cues are
virtually unexplored areas of research. One noteworthy
study that investigated fully the automatic coding of human
behavior dynamics with respect to both the temporal
segments (onset, apex, offset, and neutral) of various visual
cues and the temporal correlation between different visual
cues (facial, head, and shoulder movements) is that of
Valstar et al. [134], who investigated separating posed from
genuine smiles in video sequences.

4.3 Audio-Based Affect Recognition

One challenge in audio expression analysis is how we can
identify affect-related features in speech signals. When our
aim is to detect spontaneous emotion expressions, we have
to take into account both linguistic and paralinguistic cues
that mingle together in audio channel. Although a number
of linguistic and paralinguistic features (e.g., prosodic,
dysfluency, lexicon, and discourse features) were proposed
in the body of literature on vocal affect recognition, the
optimal feature set has not yet been established.

Another challenge is how we can reliably extract these
linguistic and paralinguistic features from the audio signals
in an automatic way. When prosody is analyzed in a
naturalistic conversation, we have to consider the multiple
functions of prosody that include information about the
expressed affect and a variety of linguistic functions [93]. A
prosodic event model that could reflect both linguistic and
paralinguistic (affective) functions simultaneously would
be an ideal solution. Automatic extraction of spoken words
from spontaneous emotional speech is still a difficult
problem: the recognition rate of the exiting ASR systems
drops significantly as soon as emotional speech needs to be
processed. Some tentative studies on adapting an ASR
system to emotional speech were reported in [5] and [119].
We hope that, in the future, more such studies will be
conducted. In addition, automatic extraction of high-level
semantic linguistic information (e.g., DA, repetitions,
corrections, and syntactic information) is an even more
challenging problem in the research field of natural
language processing.

It is interesting to note that some mental states such as
frustration and boredom seem to be identifiable from
nonlinguistic vocalizations like sighs and yawns [113].
Few efforts toward the automatic recognition of nonlin-
guistic vocalizations like laughers [133], [108], cries [97],
and coughs [91] have also been recently reported. However,
no effort toward human affect analysis based on vocal
outbursts has been reported so far.

4.4 Audiovisual Affect Recognition

The research on audiovisual affect analysis in naturalistic
data is still in its pioneering phase. While all agree that
multisensory fusion, including audiovisual data fusion,
linguistic and paralinguistic data fusion, and multivisual

cue data fusion, would be highly beneficial for the machine
analysis of human affect, it remains unclear how this should
be accomplished. Studies in neurology on the fusion of
sensory neurons [126] are supportive of early data fusion
(i.e., feature-level data fusion) rather than of late data fusion
(i.e., decision-level fusion). However, it is an open issue
how one can construct suitable joint feature vectors
composed of features from different modalities with
different time scales, different metric levels, and different
temporal structures. Simply concatenating audio and video
features into a single feature vector, as done in the current
human affect analyzers that use feature level data fusion, is
obviously not the solution to the problem.

Due to these difficulties, most researchers choose
decision-level fusion, in which the input coming from each
modality is modeled independently, and these single-modal
recognition results are combined in the end. Decision-level
fusion, also called classifier fusion, is now an active area in
the machine learning and pattern recognition fields. Many
studies have demonstrated the advantage of classifier
fusion over the individual classifiers due to the uncorre-
lated errors from different classifiers (e.g., [78] and [112]).
Various classifier fusion methods (fixed rules and trained
combiners) have been proposed in the literature, but
optimal design methods for classifier fusion are still not
available. In addition, since humans simultaneously employ
the tightly coupled audio and visual modalities, the
multimodal signals cannot be considered mutually inde-
pendent and should not be combined only in the end, as in
the case of decision-level fusion.

Model-level fusion or hybrid fusion that aims at
combining the benefits of both feature-level and decision-
level fusion methods may be a good choice for this fusion
problem. However, based on existing knowledge and
methods, how one can model multimodal fusion based on
multilabel multi-time-scale labeling scheme mentioned
above is largely unexplored. A number of issues relevant
to fusion require further investigation, such as the optimal
level of integrating these different streams, the optimal
function for the integration, and the inclusion of suitable
estimations of the reliability of each stream. In addition,
how one can build context-dependent multimodal fusion is
an open and highly relevant issue.

Here, we want to stress that temporal structures of the
modalities (facial and vocal) and their temporal correlations
play an extremely important role in the interpretation of
human naturalistic audiovisual affective behavior (see
Section 2 for a discussion). Yet, these are virtually
unexplored areas of research due to the fact that the facial
expression and vocal expression of emotion are usually
studied separately.

4.5 A Few Additional Related Issues

Context. An important related issue that should be
addressed in all visual, vocal, and audiovisual affect
recognition is how one can make use of information about
the context (environment, observed subject, or the current
task), in which the observed affective behavior was
displayed. Affects are intimately related to a situation being
experienced or imagined by humans. Without context,
humans may misunderstand the observed person’s emotion
expressions. Yet, with the exception of a few studies that

ZENG ET AL.: A SURVEY OF AFFECT RECOGNITION METHODS: AUDIO, VISUAL, AND SPONTANEOUS EXPRESSIONS 53

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on November 30, 2008 at 10:10 from IEEE Xplore.  Restrictions apply.



investigated the influence of context on affect recognition
(e.g., [50], [52], [69], [72], [86], and [104]), virtually all
existing approaches to the machine analysis of human affect
are context insensitive. Building a context model that
includes person ID, gender, age, conversation topic, and
workload need help from other research fields like face
recognition, gender recognition, age recognition, topic
detection, and task tracking. Since the problem of context
sensing is very difficult to solve, pragmatic approaches
(e.g., activity and/or subject-profiled approaches) should be
taken.

Segmentation. Almost all of the existing methods are
tested just on presegmented emotion sequences or images,
except for a few studies (e.g., [11] and [25]) that use
heuristic methods for segmenting the emotions from videos.
Automatic continuous emotion recognition is a dynamic
searching process that continuously makes emotion infer-
ence in the presence of signal ambiguity and context. This is
rather complicated, since the search algorithm has to
consider the possibility of each emotion starting at any
arbitrary time frame. Furthermore, the number of emotions
changing in a video is not known, and the boundaries
between different emotional expressions are full of ambi-
guity. It becomes more challenging in multimodal affect
recognition because different modalities (e.g., face, body,
and vocal expressions) have different temporal structures
and often do not synchronize. If we aim at developing a
practical affect recognizer, the emotion segmentation is one
of the most important issues but has not been largely
unexplored so far.

Evaluation. The existing methods for the machine
analysis of human affect surveyed and discussed through-
out this paper are difficult to compare because they are
rarely (if ever) tested on a common data set. United efforts
of the relevant research communities are needed to specify
evaluation procedures that could be used for establishing
reliable measures of systems’ performance based on a
comprehensive readily accessible benchmark database.

5 CONCLUSION

Research on the machine analysis of human affect has
witnessed a good deal of progress when compared to that
described in the survey papers of Pantic and Rothkrantz in
2003 [102] and Cowie et al. in 2001 [31]. At those times, a
few small-sized data sets of affective displays existed, and
almost all methods for the machine analysis of human affect
were unimodal based on deliberate displays of either facial
expressions or vocal expressions of six prototypical emo-
tions. Available data was not shared among researchers,
multimedia data and multimodal human affect analyzers
were rare, and the machine analysis of spontaneous
displays of affective behavior seemed to be in a distant
future. Today, several large collections of acted affective
displays are shared by the researchers in the field, and some
data sets of spontaneously displayed expressions have been
recently made available. A number of promising methods
for vision-based, audio-based, and audiovisual analysis of
human spontaneous behavior have been proposed. This
paper focused on surveying and discussing these novel
approaches to the machine analysis of human affect and on

summarizing the issues that have not received sufficient
attention but are crucial for advancing the machine
interpretation of human behavior in naturalistic contexts.
The most important of these issues yet to be addressed in
the field include the following:

. building a comprehensive readily accessible refer-
ence set of affective displays, which could provide a
basis for benchmarks for all different efforts in the
research on the machine analysis of human affective
behavior, and defining the appropriate evaluation
procedures,

. developing methods for spontaneous affective beha-
vior analysis, which are robust to observed person’s
arbitrary movement, occlusion, and complex and
noisy background,

. devising models and methods for human affect
analysis, which take into consideration the temporal
structures of the modalities and the temporal
correlations between the modalities (and/or multi-
ple cues) and context (subject, the task, and
environment), and

. developing better methods for multimodal fusion.

Since the complexity of these issues concerned with the
interpretation of human behavior at a deeper level is
tremendous and spans several different disciplines in
computer and social sciences, we believe that a large
interdisciplinary international program directed toward
computer understanding of human behavioral patterns
should be established if we are to experience true break-
throughs in this and the related research fields. The
progress in research on the machine analysis of human
affect can aid in the creation of a new paradigm for HCI
(affect-sensitive interfaces and socially intelligent environ-
ments) and advance the research in several related fields,
including psychology, psychiatry, and education.
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