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Abstract

In this paper we propose an appearance-based approach

to recognition of facial Action Units (AUs) and their tempo-

ral segments in frontal-view face videos. Non-rigid regis-

tration using free-form deformations is used to determine

motion in the face region of an input video. The extracted

motion fields are then used to derive motion histogram de-

scriptors. Per AU, a combination of ensemble learners and

Hidden Markov Models detects the presence of the AU in

question and its temporal segment in each frame of an input

sequence. When tested for recognition of all 27 lower and

upper face AUs, occurring alone or in combination in 264

sequences from the MMI facial expression database, an av-

erage sequence classification rate of 94.3% was achieved.

1. Introduction

Successful automatic analysis of human facial behaviour
cues is an important step towards a more natural interac-
tion between humans and computers. The current meth-
ods of interaction rely on the use of input devices such as
keyboards and mice for issuing explicit commands. How-
ever, a significant part of human-to-human communication
relies on the use of other channels, such as facial expres-
sions, body gestures, etc. Enabling computers to understand
these messages and adapt the interaction accordingly (e.g.
in terms of the user’s mood) would likely make the commu-
nication more natural, efficient, persuasive and trustworthy
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[16]. The most important signals through which nonverbal
communication occurs are facial expressions [4][5].

Most facial expression recognition systems (FERS) aim
to recognise prototypical expressions of six universal basic
emotions (surprise, anger, happiness, sadness, fear and dis-
gust), as proposed by Ekman and Friesen [4]. For a survey
of such FERS, the reader is referred to [16], [19] and [24].
This categorical representation can be quite useful and in-
tuitive, but it has some important downsides. For one, the
categories form only a subset of the total range of possible
affect displays and classification is therefore often unnatu-
ral. Boredom or interest, for instance, do not seem to fit well
in any of the emotion categories. Also, there is no straight-
forward way of representing the intensity of the emotions.

A different method of categorising facial signals relies
on the detection of atomic facial signals (such as frowning,
smiling, blinking, etc.) and does not attempt an interpreta-
tion of these muscular activities. This interpretation is in-
stead relegated to higher-order systems. The most widely
used facial signal taxonomy developed for this goal is called
the Facial Action Coding System (FACS). FACS was pro-
posed by Ekman and Friesen in 1978 and revised (and sim-
plified) in 2002 [5]. FACS classifies atomic facial signals
into Action Units (AUs) according to the facial muscles that
cause them. It defines 9 upper face AUs and 18 lower face
AUs. It also defines 20 Action Descriptors for eye and head
position. FACS also defines the temporal segments of neu-
tral, onset, apex and offset of each AU display. AUs are
considered to be the smallest visible facial movements and
are independent of age, sex, culture, etc. The aim of this
work is to detect all upper and lower face AUs and their
temporal segments in each frame of an input video.

Previous FERS can also be categorised in terms of
used features.Approaches that use geometric features usu-
ally detect sets of fiducial facial points or fit a face mesh.
These points or shapes are then tracked throughout the
video and their relative and absolute position, mutual spa-
tial position, speed, acceleration, etc., are used for recog-
nition. Appearance-based features concern motion and tex-
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ture changes (deformations of the skin) such as wrinkles,
bulges and furrows. Surveys of the various approaches can
be found in [13] and [19].

A geometric approach that also attempts to automatically
detect temporal segments of AUs is the work of Valstar &
Pantic [20] [21]. They locate and track 20 facial fiducial
points and extract a set of spatio-temporal features from the
trajectories. Then, SVMs are combined with an HMM to
classify each frame into one of the temporal segments. Us-
ing only the movement of 20 feature points makes it difficult
to detect certain AUs that do not lead to a clear movement
of these points, such as AU 11, 14, 17, 28. On the other
hand, these AUs are typical for facial expressions of emo-
tions such as sadness (see EMFACS [5]), and for expres-
sions of more complex mental states including puzzlement
and disagreement [6], which are of immense importance if
the goal is to realise human-centred adaptive interfaces. Our
appearance-based approach is capable of detecting the fur-
rows and wrinkles associated with these AUs and is there-
fore better equipped to recognise them.

Earlier systems using appearance-based features have
used optical flow [1], active appearance models [12], Gabor
wavelets [2][3][9] and temporal templates [22]. Bartlett et
al. [2][3] have tried different methods such as optical flow,
Gabor wavelets and others. They report that using Gabor
wavelets renders the best results [13]. In [19] and [25] a
combination of geometric features (parametric descriptions
of facial components) and appearance-based features (Ga-
bor wavelets) was proposed and they claim that the geo-
metric features outperform the appearance-based ones, yet
using both yields the best results.

Those works that aim at recognition of AUs of the
FACS system recognise only subsets of up to 20 AUs
[2][3][19][22][25]. Also, none of the appearance-based
approaches classifies the AUs’ temporal segments (neu-
tral, onset, apex, offset). In contrast to these past efforts
in the field, in this paper we present a novel approach to
appearance-based analysis of facial expressions that recog-
nises all 27 AUs and their temporal segments defined by the
FACS system. Except of geometric-feature-based methods
proposed in [14] [15] [20], none of the existing systems at-
tains automatic recognition of AUs temporal segments.To
the best of our knowledge, the presented system is the first
appearance-based approach that can achieve such a com-
plete analysis of the AUs displayed in an input face video.
It is also the very first effort to model changes in facial ex-
pression by using a non-rigid registration method.

2. Methodology

Fig. 1 gives an overview of the complete system. In the
preprocessing phase, the face is located in the first frame of
the sequence and head motion and inter-subject differences
are suppressed by rigid registration. Next, non-rigid reg-

istration is used to estimate the remaining motion caused
by facial expressions in each frame relative to the previ-
ous frame. For each AU, a quadtree decomposition [7] is
defined based on a separate training set such as to identify
interesting face regions related to that AU. In the regions de-
termined by this decomposition, orientation histogram fea-
ture descriptors are extracted. These descriptors are used in
the classification part of the system, where a combined Gen-
tleBoost classifier and a Hidden Markov Model (HMM) are
used to classify each frame in terms of AUs and their tem-
poral segments. In the remainder of this section the details
of each processing phase are described.

2.1. Rigid registration

In order to locate the face in the first frame of the se-
quence, we assume the face is in a near-frontal position in
that frame and use the fully automatic face and facial point
detection algorithm proposed in [23]. This algorithm uses
an adapted version of the Viola-Jones face detector to lo-
cate the face. 20 facial characteristic points are detected by
using Gabor-feature-based boosted classifiers.

To suppress inter-sequence and intra-sequence variations
(such as respectively facial shape differences and rigid head
motion throughout the sequence), registration techniques
are applied to find a displacement field T that registers each
frame to a neutral, expressionless reference frame. This reg-
istration consists of two parts:

T = Tinter ◦ Tintra (1)

The intra-subject displacement field Tintra is modelled
as a simple affine registration. More specifically, the facial
part of each frame in the sequence is registered to the facial
part of the first frame, using the squared sum of differences
(SSD) of the grey level values as a distance metric, to sup-
press minor head motions.

The inter-subject displacement field Tinter is again mod-
elled as an affine registration. A subset of 10 of the 20 facial
points detected earlier in the first frame that are stable (i.e.,
their location is mostly unaffected by facial expressions) is
registered to a predefined reference set of facial points. The
first frame of the sequence is assumed to be expressionless.
The displacement field Tinter is applied to the entire image
sequence to eliminate inter-subject differences.

2.2. Non-rigid registration

After preprocessing of each video sequence, we estimate
the motion field Mt due to facial expressions between con-
secutive frames t − 1 and t. We use an adapted version of
the technique developed by Rueckert et al. [18], which uses
a free-form deformation (FFD) model based on b-splines as
described in [11]. This method was originally used to reg-
ister breast MR images, where the breast undergoes local
shape changes as a result of breathing and patient motion.



Figure 1: Outline of the proposed method

find the 20 facial feature points in the first frame of the sequence
find Tinter (affine transformation to reference facial points) and apply it to the entire sequence
foreach frame t do

find Tintra (affine transformation to frame 1) and apply it
initialise the control point lattice Φ0

foreach control point density d do

calculate the gradient vector of the cost function C in terms of Φd: ∇C =
δC(Φd)

δΦd

while ||∇C|| > ε do

recalculate the control point positions Φd = Φd + µ ∇C

||∇C||

recalculate the gradient vector∇C
end

increase the density of the control point lattice, adding new points to Φd+1 from Φd by b-spline interpolation
end

use b-spline interpolation to derive Mt from Φ

end

Table 1: The registration algorithm. ε is a stopping criterion and µ is the step size in the recalculation of control point
positions. Both are experimentally determined.

To estimate Mt, a lattice of control points is overlaid on
the face box in frame t. These control points are then moved
to find the optimal alignment between frame t and frame t−
1. Next, cubic b-splines are used to interpolate the motion
field in between the control points, resulting in a smooth
and C2-continuous deformation. The advantage of using b-
splines is that they have local support (the interpolation is
only affected by the location of control points in the direct
neighbourhood), so that incremental transformations can be
computed efficiently.

Let Ωt = {(x, y)|0 <= x <= X, 0 <= y <= Y } rep-
resent the part of frame t containing the face (after applying
Tinter and Tintra to the sequence). Let Φ be an nx x ny

lattice of control points φi,j overlaid on Ωt, with uniform
spacing δ. In addition, for a point in Ωt at location (x, y),
let φu,v be the control point at location (x′, y′) that satisfies
the following conditions:

x′ < x < x′ + δ, y′ < y < y′ + δ (2)

The control points are displaced such that a cost func-
tion C describing the alignment of the images is minimised
according to the algorithm displayed in Table 1. Rueckert
et al. [18] use normalised mutual information as the im-
age alignment criterion. However, in the simple 2D low-
resolution case considered in this paper, not enough sample

data is available to make a good estimate of the image prob-
ability density function from the joint histograms. There-
fore, we use the sum of squared differences (SSD) as the
image alignment criterion. Then, to find the new position of
the point at location (x, y), we use a b-spline interpolation
between it’s 16 closest neighbouring control points, which
gives us the displacement field Mt (depicting the motion
between frame t and t − 1) as

Mt(x, y) =
3∑

k=0

3∑

l=0

Bk(a)Bl(b)φ(u+k−1),(v+l−1), (3)

where a = x − x′, b = y − y′ and Bn is the nth basis
function of the uniform cubic b-spline, i.e.:

B0(a) = (−a3 + 3a2 − 3a + 1)/6,

B1(a) = (3a3 + 6a2 + 4)/6,

B2(a) = (−3a3 + 3a2 + 3a + 1)/6,

B3(a) = a3/6.

To speed up the process, a coarse-to-fine search is used,
where the density of the control point lattice is increased
at each iteration (the location of new control points is de-
termined by the b-spline interpolation). To prevent folding
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Figure 2: An illustration of the non-rigid registration pro-
cess. (a) and (b): parts of frames t−1 and t, (c): t deformed
by Mt, (d): visualization of Mt

of the control points (where one control point is moved be-
yond an adjacent one, leading to corruption in the image),
the maximum displacement of control points cannot exceed
the spacing of the lattice at that iteration. The algorithm for
finding the optimal transformation is outlined in Table 1.
Mt gives us a motion field depicting the facial motion be-
tween frame t − 1 and t, from which orientation histogram
features will be extracted.

Since the amount of motion between consecutive frames
is usually small and may not provide enough information
for AU detection, we use a temporal sliding window con-
taining n frames wherein the motion is simply summed. A
sliding window of size n for the current frame tc gives the
following transformation :

Mn
t =

tc+n/2−1∑

t=tc−n/2

Mt (4)

In any given frame, each AU can be in one of four dif-
ferent temporal segments: neutral (inactive), onset, apex,
or offset. Since the system only looks at motion between
successive frames, there is no point in trying to detect the
neutral and apex activation levels (where there is no mo-
tion). Therefore, two GentleBoost classifiers are trained per
AU: one to detect the onset and another to detect the offset.

Different AUs have different onset and offset durations,
therefore we consider several sizes of the sliding window
n. The onset of AU 45 (blink), for instance, has an average
duration of 2.4 frames (in our data set). Conversely, the
offset of AU 12 (smile) lasts 15.4 frames on average. A
window of 2 frames is well-suited to find the onset of AU
45, but larger windows can make it harder to detect. Thus,
several sizes of the window, ranging from 2 to 20 frames,
are tested. A window size of 20 frames is large enough to
encompass 96.4% of all segments in our data set.

2.3. Feature Extraction

The face region in each frame of an input image se-
quence is divided into sub-regions and for each sub-region
an orientation histogram of 8 directions, the divergence, the

(a) (b) (c) (d) (e) (f)

Figure 3: Quadtree decompositions: (a,b,c) Onset of AU
12(smile); (d,e,f) Onset of AU 46L(left eye wink). Shown
for each AU are the three projections Pmag (a,d), Ptx (b,e),
Pty (c,f), as well as the resulting quadtree decompositions.

curl, and the motion magnitude are calculated, resulting in
11 features per sub-region. Some AUs are very much alike
in appearance but differ greatly in the temporal domain. For
instance, AU 43 (close and open eyes) looks exactly like AU
45 (blink) but lasts significantly longer. Therefore, we also
use a number of temporal regions to extract features. To
decide where to extract features, we first select the set of
all sliding windows Θ in a labelled training set that show a
specific AU and a specific temporal segment. Then, three
projections of this set are made showing the motion magni-
tude, the motion over time in the x-direction, and the motion
over time in the y-direction:

Pmag(x, y) =
∑

θ∈Θ

∑

t∈θ

ut(x, y)2 + vt(x, y)2, (5)

Ptx(t, x) =
∑

θ∈Θ

∑

y

ut(x, y)2, (6)

Pty(t, y) =
∑

θ∈Θ

∑

x

vt(x, y)2, (7)

where ut(x, y) and vt(x, y) are the components of the mo-
tion vector at location (x, y) of frame t in window θ. Since
any classification algorithm can only handle a limited num-
ber of features, we aim to allocate the amount of features
we can use such that unimportant areas are less covered
than important ones. The projections mentioned show us
exactly where there occurs much motion for a particular AU
and temporal segment and where there is less. Quadtree de-
compositions were introduced in 1974 by Finkel & Bentley
[7] and are an efficient and simple method to partition a
2D image. We use these to partition the regions so that ar-
eas showing much motion are divided in a large number of
smaller sub-regions, while those showing little motion are
divided into a small number of large sub-regions. Examples
of motion magnitude images and resulting quadtree decom-
positions are shown in Fig. 3.

After generating the quadtree decompositions, the fea-
tures mentioned above are extracted from each defined re-
gion in each of the projections for each frame.



2.4. Classification

To reduce the amount of features used for classification
we use the GentleBoost algorithm [8], which proved suc-
cessful for classification and feature selection in the domain
of face and object detection. For each AU and each tem-
poral segment (onset, offset), we train a dedicated one-vs-
all GentleBoost classifier. Since our data set is rather un-
balanced (over 95% of the frames depict neutral faces), to
prevent all frames being classified as neutral we initialise
the weights such that both the positive and negative classes
carry equal weight. The GentleBoost algorithm is used to
select a linear combination of features one at a time until
the classification no longer improves by adding more fea-
tures or a maximum of 100 features is reached.

Each onset/offset GentleBoost classifier returns a single
number per frame indicating the confidence that that frame
depicts the target AU in the target temporal segment. In
order to combine the onset/offset GentleBoost classifiers
into one AU recogniser, a continuous HMM is used. Us-
ing an HMM enables us to use the information contained
in the training set about the prior probabilities of each tem-
poral segment of an AU and its duration (represented in the
HMM’s transition matrix). Hence, an HMM is trained for
the classification of each AU, where the outputs of the Gen-
tleBoost classifiers are used as the emissions for the HMM.

The HMM facilitates a degree of temporal filtering. For
instance, given the training data, it’s very unlikely to have
an apex followed by a neutral phase. Also, the HMM tends
to smooth out the results of the GentleBoost classifiers (for
instance, short incorrect detections are usually filtered out).
However, it only captures the temporal dynamics to a lim-
ited degree, for example, the HMM does not explicitly pre-
vent onsets that last only one frame (even though minimum
onset durations are much longer). Using HMMs with state
duration models may help remediate this issue.

3. Experiments

The used data set consists of 264 image sequences, dis-
tributed over 15 subjects, taken from the MMI facial ex-
pression database [17] (www.mmifacedb.com). Each image
sequence depicts a near-frontal view of a face showing one
or more AUs, with some sequences exhibiting significant
out-of-image-plane head motion. The image sequences are
chosen such that each AU is present in at least 10 sequences.
The image sequences on average last 3.4 seconds and were
all manually coded for the presence of AUs. Ten-fold cross-
validation was used, where the folds were divided such that
each fold contains at least one example of each AU. Unfor-
tunately, due to this constraint, we could not perform leave-
one-out cross-validation, since some AUs are not performed
by all subjects.

Fig. 4 shows two typical results. Fig. 4a shows the op-

AU NUM WIN CR RC PR F1

1 13 20 97.73 61.54 88.89 72.73
2 11 20 97.73 66.67 80.00 72.73
4 35 20 91.29 74.29 65.00 69.33
5 12 20 93.56 66.67 38.10 48.48
6 17 20 96.21 82.35 66.67 73.68
7 11 8 92.05 54.55 27.27 36.36
9 11 20 96.97 81.82 60.00 69.23
10 14 20 97.35 78.57 73.33 75.86
11 18 12 94.70 77.78 58.33 66.67
12 17 20 93.56 82.35 50.00 62.22
13 10 12 95.45 90.00 45.00 60.00
14 16 16 91.29 75.00 38.71 51.06
15 12 8 94.70 75.00 45.00 56.25
16 14 16 96.97 85.71 66.67 75.00
17 93 16 83.71 75.27 77.78 76.50
18 22 16 91.67 63.64 50.00 56.00
20 11 20 95.08 45.45 41.67 43.48
22 11 12 93.18 72.73 34.78 47.06
23 12 16 92.42 58.33 31.82 41.18
24 18 16 89.39 61.11 34.38 44.00
25 75 8 90.53 92.00 78.41 84.66
26 33 20 95.45 81.82 81.82 81.82
27 13 20 99.62 100.00 92.86 96.30
28 14 16 93.56 92.86 44.83 60.47
28B 11 16 95.45 72.73 47.06 57.14
28T 10 12 92.42 80.00 30.77 44.44
43 15 20 95.08 60.00 56.25 58.06
45 109 8 93.56 90.83 93.40 92.09
46L 11 8 99.24 90.91 90.91 90.91
46R 11 8 99.24 81.82 100.00 90.00

avg - - 94.31 75.73 59.66 65.12
AU=Action Unit, NUM=Number of instances
WIN=Optimal window size, CR=Classification Rate
RC=Recall Rate, PR=Precision Rate, F1=F1-measure

Table 2: Results for testing the system for 27 AUs (+4 par-
tial AUs) on 264 sequences.

timal situation; the GentleBoost classifiers yield very good
results and the resulting labelling is almost perfect. In Fig.
4b a temporal window width of 2 frames was used, and we
can see that the GentleBoost classifiers yield less smooth
results. Even so, the HMM filters out the jitter effectively.

Fig. 5 shows the results for all AU classifiers for all
tested window widths. AU 46 (wink) has been split up into
46L and 46R, since the appearance differs greatly depend-
ing on which eye is used to wink. Similarly, AU 28 (lip
suck) is scored when both lips are sucked into the mouth,
and AU 28B and AU 28T are scored when only the lower or
upper lip is sucked in. The F1-measure, which is defined as

F1 =
2 · recall · precision

recall + precision
, (8)

is a good indicator of the quality of the results. Overall,
we clearly see that the F1-measure improves as the tempo-
ral window increases. Exceptions include AUs with short
durations, such as 7 (eye squint), 45 (blink), 46L, and 46R.

Table 2 gives a more in-depth look into the results of
the best classifiers (per AU, the window width that gave the
highest F1-score is mentioned). The relatively high values
of the classification rate, defined as the ratio of correct se-
quences to the total number of sequences, can be explained
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Figure 4: Example classification results. The output of the GentleBoost-classifiers are shown in the top plots. The true and
the estimated frame labels are shown in the bottom plots. n is the size of the used temporal window.

Figure 5: F1-measure per AU for different window sizes

by the high number of true negative sequences for each AU.
AUs that give the best performance are the ones that are not
easily confused with other AUs and are usually less sub-
tle, such as AU 27 (mouth stretch) and 45 (blink). The F1-
measure is reasonably high for most AUs, but there is still
room for improvement. In particular, there are many false
positives. Most of these occur in AUs that have a similar
appearance. The worst results are achieved for AUs 5 (eye
opener), 7 (eye squint) and 23 (mouth tightener). For all
three AUs, the reasons for the inaccurate performance lie
in the confusion of the target AU with other AUs. For in-
stance, the onset of AU 7 is often confused with the onset
of AU 45, the offset of AU 5 is very similar to the onset of
AU 45 (and vice versa), and AU 23 is often confused with
AU 24 (lips presser). Another cause of false positives is the
sometimes poor performance of the rigid registration meant
to stabilise the face throughout the sequence. Out-of-image-
plane head motions for instance, are not handled very well.
As a result, many classifiers will classify remaining rigid
face motions as AU activations. One can see clearly from
the results that AUs with shorter durations such as AU 45
benefit from a smaller window size, whereas most others
perform best with the largest window size tested.

We were also interested in the timings of the temporal

segment detections with respect to the timings delimited by
the ground truth. This test was run using the optimal win-
dow widths as summarised in Table 2. Only sequences that
were correctly classified were considered in this test. Four
different temporal segment transitions can be detected, neu-
tral → onset, onset → apex, apex → offset, and offset →
neutral. Fig. 6 shows the average absolute frame deviations
per AU and temporal segment transition. The overall aver-
age deviation is 2.46 frames. 44.12% of the detections are
early and 38.18% are late. The most likely cause of late
detection is that most AUs start and end in a very subtle
manner, visible to the human eye but not sufficiently pro-
nounced to be detected by the system. Early detections usu-
ally occur when a larger temporal window width is used,
where the AU’s segment in question is already visible in the
later frames of the window, but it is not actually occurring at
the frame under consideration (this can also be seen in Fig.
4a). In general, AUs of shorter duration also show smaller
deviations. Also, the transitions that score badly are usually
subtle ones. The high deviations for apex → offset in AUs
6 (cheek raiser and lid compressor) and 7 (eye squint) can
be explained by considering that these transitions are first
only slightly visible in the higher cheek region before be-
coming readily apparent in the motion of the eyelids. Since



Figure 6: Average detection offsets per AU and temporal segment transition.

the eyelid motion is much clearer, our method targets that
motion and misses the cheek raising in the start of the tran-
sition. Similarly, the offset → neutral transition in AU 14
(lip corner dimpler) has almost all of the motion in the first
few frames and then continues very slowly and subtly. Our
method picks up only the first few frames of this transition.

We also performed a test on the Cohn-Kanade (CK) data
set [10], arguably the most often used data set in the field.
This data set consists of 500 image sequences over 100 sub-
jects. We only tested the system on those AUs for which
more than ten examples existed in the data set, resulting in
20 AUs in 143 sequences. The data set does not contain off-
sets; the sequences are cut in the middle of apex segments.
The image sequences are therefore a lot shorter than in the
MMI data set; on average 0.8 seconds versus 3.4 seconds.
The 10-fold cross-validation results are shown in Table 3.
As a reference, the F1-scores for the tests done on the MMI
data set are repeated. The results achieved for the CK data
set are in general better than those achieved for the MMI
data set. One of the reasons is that out-of-image-plane head
motions are rare in the CK data set. Exceptions are AUs 16
(lower lip depressor) and 26 (jaw drop). An explanation for
the differences in the results lies in the differences in ground
truth labelling. More specifically, in the CK database, trace
activations (FACS intensity A) were also coded, especially
in AU 26, whereas in the MMI data set only AUs of FACS
intensity B and higher were considered. Also contributing
to the differences is the higher co-occurrence of AU acti-
vations in the CK data set, making it harder to distinguish
individual AUs. Another difference between the results is
that for the CK data set, lower window sizes are selected
than for the MMI data set. This is due to the CK sequences
ending at the apex of the expression, meaning there are no
offset segments. This means that no GentleBoost classifiers
could be trained for the detection of offsets and the HMM
classification relies solely on the onset detections. Since on-
sets are generally shorter than offsets, an increased window
size does not benefit the classification as much.

A cross-database test was also performed, training on the
MMI data set and testing on the CK data set. The results are

AU NUM WIN CR RC PR F1 F M

1

1 61 2 88.81 86.89 86.89 86.89 72.73
2 39 4 94.41 92.31 87.80 90.00 72.73
4 57 20 74.83 85.96 63.64 73.13 69.33
5 29 2 92.31 75.86 84.62 80.00 48.48
6 19 16 94.41 84.21 76.19 80.00 73.68
7 25 16 71.33 72.00 34.62 46.75 36.36
9 19 8 93.01 89.47 68.00 77.27 69.23
10 15 16 89.51 46.67 50.00 48.28 75.86
11 12 4 88.81 50.00 37.50 42.86 66.67
12 20 8 95.10 90.00 78.26 83.72 62.22
14 10 8 93.01 33.33 42.86 37.50 51.06
15 19 8 92.31 68.42 72.22 70.27 56.25
16 11 2 89.51 27.27 30.00 28.57 75.00
17 51 4 83.92 72.55 80.43 76.29 76.50
20 34 20 90.91 73.53 86.21 79.37 43.48
24 17 4 90.21 70.59 57.14 63.16 44.00
25 82 2 95.10 92.68 98.70 95.60 84.66
26 20 16 75.52 30.00 22.22 25.53 81.82
27 22 8 95.80 95.45 80.77 87.50 96.30
45 27 2 92.31 81.48 78.57 80.00 92.09
avg - - 89.06 70.93 65.83 67.63 67.42
AU=Action Unit, NUM=Number of instances, WIN=Optimal window size
CR=Classification Rate, RC=Recall Rate, PR=Precision Rate

F1=F1-measure, F M

1
=F1-measure on MMI data set

Table 3: Results for testing the system for 20 AUs on 143
sequences of the Cohn-Kanade data set

MMI→CK MMI →MMI CK→ CK
Classification Rate 85.75% 91.57% 88.53%
Recall Rate 51.30% 72.48% 68.51%
Precision Rate 68.89% 47.99% 69.48%
F1-measure 53.04% 55.88% 68.19%
MMI→CK: trained on MMI data set, tested on CK data set
MMI→MMI: trained on MMI data set, tested on MMI data set
CK→CK: trained on CK data set, tested on CK data set
All three are average results of 20 AUs with window size n = 20 frames

Table 4: Results for cross database testing

shown in Table 4. Due to space constraints, only average
results are shown. The tests were run on those AUs avail-
able in both data sets using a temporal window size of 20
frames. The average result is slightly lower than the result
for training and testing on the MMI data set, but this is to
be expected given the different coding styles and other dif-
ferences between the data sets.



4. Conclusion and Future Work

In this paper we have used non-rigid registration using
free-form deformations to model facial motion in frontal
face image sequences. From this motion, motion orien-
tation histograms were extracted as feature descriptors to
train a classification system for the automatic frame-by-
frame recognition of AUs and their temporal dynamics us-
ing a combination of ensemble learning and HMMs. To
the best of our knowledge, this is the first appearance-based
facial expression recognition system that can detect all 27
AUs and their temporal segments. On average, the system
achieved a 76% recall and 60% precision rate when tested
on the MMI facial expression database. For each correctly
detected temporal segment transition, the mean of the off-
set between the actual and the predicted time of its occur-
rence is 2.46 frames. For the Cohn-Kanade database, the
system achieved on average a 71% recall and 66% precision
rate. The proposed system still suffers from the detection of
many false positives, mainly due to confusion between AUs
that are very similar in appearance. These AUs, though very
similar in appearance, differ in the temporal domain. In fu-
ture work we will look at employing HMMs with explicit
state duration models.
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