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Abstract. Recently, Deep Neural Networks (DNNs) have been shown
to outperform traditional methods in many disciplines such as computer
vision, speech recognition and natural language processing. A prereq-
uisite for the successful application of DNNs is the big number of data.
Even though various facial datasets exist for the case of 2D images, there
is a remarkable absence of datasets when we have to deal with 3D faces.
The available facial datasets are limited either in terms of expressions
or in the number of subjects. This lack of large datasets hinders the ex-
ploitation of the great advances that DNNs can provide. In this paper,
we overcome these limitations by introducing MimicMe, a novel large-
scale database of dynamic high-resolution 3D faces. MimicMe contains
recordings of 4, 700 subjects with a great diversity on age, gender and
ethnicity. The recordings are in the form of 4D videos of subjects display-
ing a multitude of facial behaviours, resulting to over 280, 000 3D meshes
in total. We have also manually annotated a big portion of these meshes
with 3D facial landmarks and they have been categorized in the corre-
sponding expressions. We have also built very powerful blendshapes for
parameterising facial behaviour. MimicMe will be made publicly avail-
able upon publication and we envision that it will be extremely valuable
to researchers working in many problems of face modelling and analy-
sis, including 3D/4D face and facial expression recognition†. We conduct
several experiments and demonstrate the usefulness of the database for
various applications.

1 Introduction

Arguably, 3D Morphable Models (3DMMs) have dominated the field of 3D sta-
tistical shape modelling the last 20 years since their introduction by the seminal

∗Authors were with Imperial College London during this work.
†https://github.com/apapaion/mimicme
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Fig. 1: Synthetic 3D faces with random identity, appearance and expression
generated by the non-linear model that we built from the proposed MimicMe
database. The collected large-scale 4D data (4,700 identities and over 280, 000
high-resolution 3D meshes) alongside the proposed especially-designed process-
ing framework yield models and results of unprecedented realism and quality.

work of Blanz and Vetter [5]. They have been used in a variety of applications
and in different fields such as creative media, medical image analysis, biomet-
rics, computer vision, human behavioral analysis, computer graphics, craniofacial
surgery and large-scale facial phenotyping, see e.g. [2,18,44,30,58,19,39,38].

In essence, a face 3DMM is constructed by bringing all the facial 3D meshes
of the training set into dense correspondence and then performing some form of
dimensionality reduction, typically principal component analysis (PCA). When
a set of 3D meshes is in dense correspondence, then vertices with the same index
in different meshes represent the same part (e.g. a vertex with index i represents
the nose tip in every mesh of the set). After the construction of a 3DMM, a new
face shape is represented by a few parameters.

During the last years, the rise of Deep Neural Networks (DNNs), with Convo-
lution Neural Networks (CNNs) as the catalyst, revolutionized computer vision.
It was only natural that 3D shape modelling was among the fields that were sig-
nificantly influenced by this trend. Two main lines of research have emerged. The
first one has attempted to re-model the 3DMMs by introducing some form of non-
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Fig. 2: Expressions included in the dataset. In the first row, the basic expressions
are shown. These snapshots are taken from the video that subjects were watching
in order to mimic the corresponding facial expressions.

linearity replacing the PCA part of 3DMMs with autoencoders [41,10,26,13]. The
other one has attempted to leverage the success of DNNs in 2D images by apply-
ing these models in 2D representations of the 3D images like UV maps [35,23,22].

A common ground for both approaches is the need for large datasets. Even
though this is trivial for the case of 2D images and videos, where numerous
databases have been proposed for various applications, such as 2D-based face
identification, in-the-wild face analysis, age estimation, facial emotion recogni-
tion, etc, the relevant advances in the field of 3D modelling are still rather lim-
ited. This is due to the fact that 3D acquisition devices are usually expensive,
can be found only in specialised products or are used for medical purposes (i.e.
CT, MRI). The majority of previous 3DMMs have been built using either neu-
tral faces, or a small sample size of people under various expressions. Thus, the
community is still lacking a database that combines large numbers in subjects,
expressions and 3D images per subject.

In this work, we overcome the aforementioned limitations by constructing a
large scale dynamic facial expression database, hereby coined as MimicMe. Our
dataset includes 4, 700 subjects performing various facial expressions. It contains
over 280, 000 high resolution 3D facial scans. Due to the demographic richness of
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our dataset, we expect that MimicMe will become an invaluable asset for many
different problems such as 3D/4D face and facial expression recognition, building
high-quality expressive blendshapes, as well as synthesizing 3D faces for training
deep learning systems. In addition, we revisit LSFM [9], a fully automated and
robust Morphable Model construction pipeline, to incorporate the advances in
landmarks’ localization, and extend it to handle not only neutral faces but also
faces with various expressions. As the number of 3D scans is huge and contains
particularly large demographic variability (the capture process was performed
in a museum with people from various countries), there were some flawed 3d
registrations which we proposed to amend them by exploiting a StyleGan[29].

In summary, the contributions of this paper are the following:

– We introduce MimicMe, a database of 4,700 subjects collected over a period
of three months with over 280,000 3D facial meshes, with various posed facial
behaviours.

– We have a number of 55, 000 3D facial landmarks manually corrected, which
leads to a subspace of sparse representations for 3D facial expressions.

– We revisit LSFM pipeline for registration to take advantage of DNNs’ for
landmarks’ localization and generalize for all facial poses.

– We propose a new method to correct distorted 3D scans by training a Style-
Gan to perform texture completion.

– We build novel expression blendshapes learned from our database that are
more powerful than the off-the-shelf blendshapes provided by other datasets.

– We show that our dataset can be used to generate high-quality faces by
capitalizing on the recent developments on Generative Adversarial Networks
(GANs). We build a novel non-linear model that can synthesize shape, ex-
pression, texture and normals.

2 Related Work

2.1 3D/4D Face datasets

As the existence of a dataset of 3D faces is a crucial factor to build a 3D Mor-
phable Model and an expression blendshape model, there have been attempts
in the past to build as large and diverse datasets as possible. Even though there
are datasets that used 3DMM fitting process to reconstruct 3D faces from im-
ages [57,27], a process called analysis-by-synthesis [19], these datasets are usually
of limited quality. Thus, we focus on datasets that have been created using depth
sensors, scanners or multi-view camera systems. These 4D face datasets can be
categorized according to the kind of facial movements, namely, datasets that
include a variety of expressions (e.g. happiness, sadness, disguise), and datasets
that focus on speech.

One of the first 3D datasets with expressions is BU-3DFE database [53],
which includes articulated facial expressions from 100 adults. The age of subjects
ranges from 18 years to 70 years old and included the 6 prototypic expressions
(happiness, disgust, fear, angry, surprise and sadness). Bosphorus database [42]
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includes similar numbers of 105 individuals with a rich set of 34 expressions
per subject, but it does not contain 3D meshes, as the data are in the form of
depth maps and texture images. BU-4DFE [52] was an extension of BU-3DFE
to dynamic 3D space using the same 6 facial expressions from 101 adults. Face-
Warehouse [12] is one more database which has been used used to build 3D
blendshapes. To this end, it includes both neutral 3D faces and 3D facial expres-
sions. The capture process was implemented with a Kinect (RGBD camera) and
the dataset size is of 150 subjects, aged 7-80 from various ethnic backgrounds.
Expressions include the neutral expression and 19 others such as mouth-opening,
smile, kiss, etc. 4DFAB [14] has been proposed recently and is one of the largest
4D datasets. It consists of over 1,800,000 3D meshes. 4DFAB contains recordings
of 180 subjects captured in four different sessions spanned over a five-year period.
Subjects performed not only the 6 prototypic expressions, but also spontaneous
expressions and 9 words utterances. More recently, Ranjan et al. [41] propose
the framework of convolutional mesh autoencoders (COMA) and introduce for
the needs of their method a dataset of 12 different subjects with 20, 466 meshes
of extreme expressions was also provided.

One other trend of 4D databases is to acquire databases which focus on speech
and word utterance. In this category belongs VOCASET [17] which contains a
collection of audio-4D scan pairs captured for 12 subjects. For each subject, 40
sequences of a sentence spoken in English, each of length three to five seconds
have been collected. 4D Cardiff Conversation Database (4D CCDb) [34] contains
4 subjects captured while discussing topics of their own interest. In total 34
conversations, have been captured at a frame rate of 60 fps leading to 3500-4000
frames per sequence. [47] captured 4D sequences of 2 native and 2 non-native
English speakers reading out the 500 words contained in the publicly-available
Lipreading Words (LRW) in-the-wild dataset [15]. S3DFM [54] is a publicly-
available dataset that focuses on speech-driven 3D facial dynamics across 77
subjects. Each subject read out 10 times a word and the whole process was
captured with a high frame rate 3D video sensor (500 fps).

Table 1 provides a summary of the most recent 3D and 4D datasets, with
details such as the the number of subjects, the year of acquisition and the quality
of their meshes.

2.2 3DMM and blendshape models

The construction of a 3DMM, as introduced by the seminal work of Blanz and
Vetter [5], consists of four main steps, namely data pre-processing, bringing the
facial meshes into a common space by removing rotation, scale and translation,
establishing group-wise dense correspondence between a training set of facial
meshes, and finally performing some kind of statistical analysis, usually PCA,
on the registered data to produce a low-dimensional model. Variations on steps
of the aforementioned process led to different versions of 3DMMs. Lüthi [33]
proposes to use Gaussian Process (GP) in order to construct 3DMMs, which
was shown to exhibit better capacity in this respect. A different approach was
suggested in [20] where a dictionary learning was used to form a 3D face shape
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Dataset Year Type Unique
Partic-
ipants

No vertices Expressions Public
Avail-
able

Coverage

BU-4DFE [52] 2008 4D 101 35,000 6 Yes Face
BOSPHORUS [42] 2008 3D 105 - 34 Yes Face

BP4D-Spontaneous [56] 2014 4D 41 30,000-50,000 27 AU Yes Face
FaceWarehouse [12] 2014 4D 150 11,000 20 Yes Face

4D CCDb [34] 2015 4D 4 30,000 Speech Yes Face
LSFM [9] 2016 3D 10, 000 60, 000 Neutral only No Face
LYHM [18] 2017 3D 1, 200 180, 000 Neutral only Yes Head
4D-FAB [14] 2018 4D 180 75, 000 6 No Face
COMA [41] 2018 4D 12 5023 11 Yes Face
S3DFM [54] 2019 4D 77 - Speech Yes Face

VOCASET [17] 2019 4D 127 5023 Speech Yes Face
SIAT-3DFE [51] 2020 4D 12 500K-1M 16 Yes Face
FaceScape [50] 2020 4D 938 29, 587 20 Yes Face

MimicME (proposed) 2022 4D 4,700 60, 000 20 Yes Face

Table 1: 3D and 4D facial datasets.

model leading to better performance in terms of reconstruction and fitting ac-
curacy than the PCA-based 3DMM. [31] introduced Gaussian mixture model
in 3DMMs by assuming that the global population was a mixture of Gaussian
sub-populations, each with its own mean and a shared covariance.

In a similar manner, blendshapes models (or expression models) are 3DMMs
that consider the identity and expression as two distinguishable parts and create
two different models for each of these parts. Depending on the way that these
two parts are combined, the models in the literature can be classified to three
categories: additive, multiplicative, and nonlinear models [19].

Additive models represent the expressions as the offset between a shape
with expression and the neutral shape of a subject [4,3,45]. Multiplicative
models combine identity and expression in a multiplicative manner, which in
most of the cases is done by exploiting tensors. The main concept is to stack
the 3D face data into a tensor and performing higher-order tensor decomposition
(HOSVD) instead of PCA [48,6,11,7,49]. These models are characterized by their
expressiveness and simplicity but require data with semantic correspondence,
specified by expression labels. Finally, in nonlinear models, facial variations
are modelled with nonlinear transformations, such as a physical simulation [28]
or Gaussian mixture models to represent facial shape and texture [31]. Li et
al. [32] introduce FLAME, a non-linear 3D expressive head model that combines
explicit control over jaw articulation with expression blendshapes. They register
the 3D meshes based on a non-rigid ICP method regularized by the face model.
Many of the recent DNN methods belong to this category. Several recent deep
learning approaches adopt autoencoder frameworks to build nonlinear 3DMMs
by learning a relevant latent space, see e.g. [1,46].
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2.3 Appearance models

In most cases, 3DMMs include also a modelling of the facial appearance. As
in the case of the shape model, the appearance model of a 3DMM is built by
performing statistics on the appearance information of the training shapes, which
is represented either in terms of per-vertex values or as a texture in the so-called
UV-space [19]. The latter is more popular as it does not require the shape and
appearance to have the same resolution and the texture in the UV-space is
treated as a 2D image, meaning that standard techniques for image processing
and analysis are easily applied.

Appearance models of the facial texture in UV-space are grouped into lin-
ear and nonlinear. Linear models include the original work by Blanz and
Vetter [5], the work of [18] for head and the work of [8] for face, to name a few.
Nonlinear models include most of the recent deep learning-based approaches,
which learn a joint shape and texture model, see e.g. [23,22]. For the successful
training of these models, the existence of a large scale dataset of UV maps plays a
crucial role. However, the solutions of the existing literature are not satisfactory
and this is a gap that we fill with the proposed database.

3 MimicMe Database

3.1 Data Acquisition

The proposed database (MimicMe) was collected during a special exhibition in
the Science Museum, London, over a period of 3 months. A large number of
museums’ visitors (4,700) volunteered to be recorded by a 3dMD∗ face capture
system while performing various expressions. To avoid a biased dataset due to
people’s difficulties to act naturally, especially for the case of specific expres-
sions [19], each subject had to watch twice a video of actors performing the
expressions shown in Fig. 2. During the fist playback, the subject familiarized
herself with the expressions she had to perform and in the second playback,
when the capture process was happening, she had to mimic the actors’ expres-
sions. In that way, 20 expressions had been recorded. The frame rate of capture
was between 2 and 4 frames per second. We also kept demographics information
for each subject such as ethnicity, gender and age as it can be seen in Table 2
and Fig. 3. For each subject, a sequence of 70-120 3D images was created. The
3D triangular surface composed of approximately 120,000 vertices joined into
approximately 250,000 triangles, along with a high-resolution texture map. The
total number of captured 3D images is roughly 280, 760, which is larger than all
previous expression-controlled 3D face datasets.

3.2 Annotation and registration process

In order to be able to use the 3D data in a statistically meaningful way, we need
to register them into a common template such that all the meshes share the

∗https://3dmd.com/
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Fig. 3: Distribution of age and gender
in MimicMe database.

Ethnicity Number Proportion

Caucasian 3,545 75.43%
Asian 612 13.02%
Black 112 2.38%
Mixed 326 6.94%
Other 105 2.23%

Table 2: Ethnicity distribution in Mim-
icMe database.

same number of vertices joined into a common triangulation. In literature, the
methods for performing 3D registration are classified into two categories based
on the space where registration is done. The first category of methods exploits
the advances of algorithms in 2D images and perform the dense registration in
the 2D projections of the 3D meshes, namely their UV counterparts [40,16]. The
second class of methods registers directly (i.e. in the 3D space) the mesh and
the template [3,36].

As the former methods present some drawbacks like introducing non-linearities
into the process and the need of rasterizing the UV image [8], we chose to register
our 3D meshes using a method from the latter class of methods, namely per-
forming the registration in the 3D space. There are plenty of methods and frame-
works in this family like [59,25,8]. We opt for the framework used in building the
LSFM [8], which is open source, publicly available and is based on Non-rigid It-
erative Closest Point (NICP) for the 3D mesh registration. Since LSFM pipeline
is used mainly on datasets with neutral faces, it is not suitable for datasets with
faces with expressions. To address this problem, we need to adapt the template
to handle each deformed face. We follow the updated approach of LSFM pre-
sented in [47] where the template used for registration is not the same for all the
meshes to be registered but it is deformed driven by a set of landmarks of each
mesh and the expression blendshape model built in [14] .

More precisely, a face detection and alignment model [55] is applied to each
mesh and its corresponding color image. Then, a set of 68 sparse 2D landmarks
is predicted which are easily projected in their corresponding 3D landmarks
by exploiting the correspondence between the color image and the depth map.
The predicted 3D landmarks are used to align the mesh to the template. To
reduce effects from the identity difference between the template and the mesh,
we register the neutral shape of each person, and we calculate the blendshape
parameters cb for a mesh through linear regression between the landmarks of
the registered neutral shape and mesh’s landmarks as follows:

||lxk
−A(xn +Ubcb)||2F (1)
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Fig. 4: Registration pipeline. The process starts by extracting 2D landmarks from
the texture image, and then their corresponding position on the 3D mesh. By
applying a regression between the 3D landmarks of the raw mesh and the neutral
registered mesh, we create an adaptive template. Using this template and the
3D shape of the raw mesh, NICP can accurately register the raw mesh.

where lxk
∈ R3m is a vector with the m landmarks, A ∈ R3m×K is an

indicator matrix, xn ∈ R3n is the neutral registered shape, Ub ∈ R3n×s is a
matrix with the blendshapes and cb ∈ Rs is a vector with parameters for the
blendshapes.

Finally, we perform dense registration with NICP between the adaptive tem-
plate and the mesh. In addition, we compute the corresponding texture for each
registered mesh. We use a rectangular UVmap for representation of the extracted
texture as shown in Fig. 6 in order to make the training of GAN simpler.

As compared to [47], our pipeline has several advantages that increase the
accuracy of model building in such dynamic scenarios. The most crucial one
is the automatic correction of the predicted landmarks. After predicting the
3D landmarks for each mesh, we manually selected one neutral and the apex
meshes (meshes with maximum facial change) of each expression per person and
corrected the 3D landmarks (Fig. 5) using a 3D landmarking tool¶. In total,
55, 000 meshes were manually annotated. A statistical shape model for the 3D
landmarks was built using the manually corrected landmarks. This model was
used to correct the rest of the automatic predicted 3D landmarks, adding one
more step in our pipeline 4.

3.3 Texture Completion

During the collection of such large-scale dataset, it is inevitable to obtain scan
failures for some portion of the data. Such failures are often due to misplacement
of the subject with respect to the camera or self-occlusions, e.g. occlusions due
to hair, clothes, accessories. We estimated that a non-negligible portion of our

¶https://github.com/menpo/landmarker.io
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Fig. 5: Definition of the 68 3D facial
landmarks (left) and an example of
annotated template (right). Land-
marks with the same color belong
to the same semantic group (e.g. or-
ange for the left eye).

Fig. 6: UV maps examples of regis-
tered meshes

Fig. 7: Texture Completion by projecting visible part of the texture to a GAN
that is trained with complete textures, as explained in [21].

dataset is affected by such scanning failures and propose the following approach
to inpaint missing parts of the texture maps.

We first gather a subset with samples where the subjects have been scanned
properly and train a StyleGANv2 [29] from this subset dataset. Then, we project
the remaining incomplete textures by using the method explained in [21], with a
mask of visible texture, in order to hallucinate missing parts. Finally, we inpaint
the texture by alpha blending between the original and hallucinated parts to
achieve completed texture map. Some examples of this approach are shown in
Fig. 7

3.4 Creating Expression Blendshapes

One of the ways that we have exploited our rich dynamic dataset was by using
it to build a blendshape model following the standard process used in additive
models, see e.g. [37]. In particular, we used the registered meshes from the pre-
vious step and the neutral shape of each sequence. For each of the sequences, we
subtracted the neutral mesh of the sequence from each frame. After that, for each
subject, we have a sequence of difference vectors, namely d ∈ R3n which were
then stacked into a matrix D = [d1, . . . ,dk] ∈ R3n×k, where n is the number of
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Method AN DI FE HA SA SU PA

FW 65.4 57.8 44.4 84.9 67.8 78.6 49.2
4DFAB 66.6 59.0 44.2 85.8 70.2 81.4 53.8
Ours 69.4 61.7 44.0 86.1 70.6 81.6 62.9

Table 3: Recognition Rates (RR) [%] obtained from facial expression experi-
ments using 7 expressions (AN-Anger, DI-Disgust, FE-Fear, HA-Happiness, SA-
Sadness, SU-Surprise, PA-Pain)

vertices in our mesh. Finally, incremental PCA was applied to our difference ma-
trix D to identify the deformation components. We keep 28 blendshapes which
correspond to 99.9% of the total variance.

4 Experiments

4.1 Facial expression recognition

We performed the standard FER experiments on all the expressions, namely the
6 prototypic expressions anger, fear, disgust, surprise, happiness, sadness, and
some proposed expressions like pain, flaring of nostrils, inflating of cheeks, pout,
showing the teeth, winking each eye, biting the upper and lower lip and moving
the mouth left and right. We selected 700 subjects of our dataset that haven’t
been used for the creation of our blendshape model for training and testing. In
total, almost 7000 meshes were utilised. We created a 10-fold partition, every
time one fold was used for testing, the others were used for training.

We selected the apex frames of each expression sequence, so for each subject
we had 20 meshes. For each mesh, the difference from the neutral mesh of the
sequence was calculated and then the weights were found by projecting the dif-
ference to each blendshape model. In this way, every mesh was represented by
a set of 30 parameters. After this, a multi-class SVM was employed to classify
expressions. Radial Basis Function (RBF) kernel was selected, whose parame-
ters were chosen by an empirical grid search. We achieved a recognition rate
of 66.1%, 63.9%, and 68.3%, for 4DFAB, FaceWarehouse and our blendshape
model, respectively. Table 3 shows the recognition rate for some expressions.

4.2 Evaluation of the expression blendshape model

We compare our blendshape model with FaceWarehouse (FW) [12] and 4DFAB [14]
models in expression reconstruction. We randomly selected 2079 frames from 192
subjects that display various expressions, from which, we computed the facial
deformation in the same way as described in [14] and reconstructed it using both
blendshape models. We calculate the reconstruction error and plot the cumula-
tive error curves for models with different number of expression components in
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Fig 8. To provide a fair comparison with FW and 4DFAB, we report the perfor-
mance of our model using the same number of components as the other models. It
is clear that our blendshape model largely outperforms FW and 4DFAB models.

Fig. 8: Cumulative reconstruction errors achieved with different blendshapes over
randomly selected expressions from our database.

Additionally, we plot some 3D expression transfer examples in Fig 9. For
visualization reasons, we removed the ears and neck from the faces. For each
expression transfer, the facial deformation from the corresponding neutral face
was calculated and the blendshape parameters were computed using the afore-
mentioned blendshape models. We then cast the reconstructed expression on
a mean face for visualisation. Note that we fixed the number of our expression
components to be identical for every model. Our blendshape model can faithfully
reconstruct expressive faces with correct expression meaning.

4.3 Non-linear 3D Expression Model

Generating realistic faces in 3D is of high importance for many computer graph-
ics and computer vision applications. In recent studies [23,24,43], Generative
Adversarial Networks (GANs) have been trained by large-scale private datasets
to generate high-quality textures of faces. However, since these datasets are pri-
vate, it is difficult to explore the potential of such direction.

In order to demonstrate that MimicMe dataset is useful for training more
sophisticated 3D face models such as GANs, we train a joint GAN model [22]
that can synthesize shape, expression, texture and normals. Figures 1 and 10
shows some random generations from this generator. It is worth observing how
the expression is reflected to both shape and texture and that the generator can
synthesize wide range of expressions as well as identity.
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Fig. 9: Comparison of FaceWarehouse[12] blendshape model, 4DFAB[14] and our
expression blendshape model. The face in which the blendshapes are applied is
the mean face, namely we do not transfer details of face identity

Generally, the deformation caused by expressions is often split between shape
and texture in the current capture systems. However, the modelling of expression
is isolated from the modelling of shape and texture, placing a fundamental limit
to the synthesis of semantically meaningful 3D faces. Therefore, our dataset
becomes particularly useful for exploiting the correlation between expression,
texture and shape by deep generative models.

5 Conclusion

We have presented MimicMe, a large-scale detailed 3D facial dataset that can be
used for biometric applications, facial expression analysis and generation of real-
istic faces in 3D for computer graphics. Compared to previous public large-scale
3D face datasets, MimicMe provides the largest diverse population, with high
geometric quality. We demonstrate the usefulness of the database in a series of
recognition experiments. Promising results are obtained with basic features and
standard classifiers, thus we believe that even better results can be obtained us-
ing more recent deep methods. We built a powerful expression blendshape model
from this database, which outperforms the state-of-the-art blendshape models
and a Non-linear 3D Expression Model, which generated high-quality textures
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(a) Nor-
mals

(b) Tex-
ture

(c) Ren-
dered

(d) Rend.
30◦

(e) Nor-
mals

(f) Tex-
ture

(g) Ren-
dered

(h) Rend.
30◦

Fig. 10: Random synthetic faces generated by our model that is trained by our
dataset. Please note the correlation between expression, texture and shape as well
as the identity and expression diversity. Such correlation can be only achieved
using a dataset that consists of large number of different identities under various
expression, such as MimicMe.

of synthetic faces. We make MimicMe database publicly available for research
purposes, which we anticipate to have a significant impact on the research in
this field.
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