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ABSTRACT

We propose a 3D Constrained Local Model framework for de-

formable face alignment in depth image. Our framework ex-

ploits the intrinsic 3D geometric information in depth data by

utilizing robust histogram-based 3D geometric features that

are based on normal vectors. In addition, we demonstrate the

fusion of intensity data and 3D features that further improves

the facial landmark localization accuracy. The experiments

are conducted on publicly available FRGC database. The re-

sults show that our 3D features based CLM completely out-

performs the raw depth features based CLM in term of fitting

accuracy and robustness, and the fusion of intensity and 3D

depth feature further improves the performance. Another ben-

efit is that the proposed 3D features in our framework do not

require any pre-processing procedure on the data.

Index Terms— Constrained local model, deformable face

alignment, 3D facial geometry, histogram-based 3D feature.

1. INTRODUCTION

Automatic deformable face alignment is a critical step in mul-

tiple tasks of computer vision, for example face recognition,

facial performance transfer and facial expression recognition.

In general, it refers to the problem of localizing the facial

landmarks following a model-based approach [1, 2, 3, 4]. An

accurate alignment of the facial features not only provides po-

sition and structure information for successive tasks, but also

improves the appearance-based recognition algorithms that

rely heavily on accurate registration.

A variety of deformable face models have been proposed

in the past decade, lifting the performance of face alignment

to a higher level. Constrained Local Model (CLM) [3] is one

of the state-of-the-art methods, in that it models the local vari-

ations around each landmark point by training a local detector

(known as patchexpert). Regularized Landmark Mean-Shift

(RLMS), proposed by Saragih et. al. [4], is considered to be

the state-of-the-art CLM fitting method. It employs a non-

parametric estimation of posterior probability and the result-

ing optimization is reminiscent of mean-shift algorithm.

Although varying degrees of success have been achieved

by the CLM, a further improvement is hampered by the ex-

istence of extreme lightening conditions, which raises ques-

tions on the robustness of patch experts. Since the current

methodologies mainly focus on color/grayscale image align-

ment, which possesses large variations in illumination, com-

paratively less attention is drawn on the use of intrinsic 3D

geometric information in depth image. As the commercial 3D

scanners (from Di3D1 dynamic face capturing system, Kon-

ica Minolta 3D scanning devices to Microsoft Kinect) become

more accessible, acquiring accurate and reliable 3D depth im-

age is much easier. Therefore, the use of 3D data and potential

fusion with intensity image for face alignment demand a more

in-depth study.

In this paper, we present a robust CLM framework that

utilizes the histogram-based 3D geometric feature extracted

from the depth data. Our framework takes the advantage

of robust response map generated by the histogram-based

3D features (e.g., Histogram of Oriented Normal Vectors

[5] and Local Normal Binary Patterns (LNBPs) [6]) to per-

form generic face alignment in depth image. We conduct

facial landmark localization experiments on Face Recogni-

tion Grand Challenge (FRGC) [7] without any pre-processing

step, and show that by using 3D feature instead of the raw

depth map, the fitting performance improves drastically. In

addition, we find that a simple fusion of intensity data and 3D

features further improves the performance by a considerable

margin.

2. RELATED WORK

Model-based generic face alignment generally refers to the

alignment of generic facial landmarks (e.g. eye corners, nose

tip) either via a Holistic or Part-based Deformable Model.

Holistic Model aims at modelling the holistic facial texture,

while Part-based Model utilizes the local patch information of

every landmark. Typical examples for the Holistic Model are

Active Appearance Models (AAM) [2] and 3D Morphable

Model (3DMM) [8]. The later category includes Active

Shape Model (ASM) [1], Constrained Local Model (CLM)

[9, 3, 4, 10] and Tree-based pictorial structure [11].

1http://www.di3d.com



Although the current CLM framework has well been es-

tablished and shown to achieve good results on color/grayscale

data, the focus is seldom drawn on exploring the 3D facial

geometry feature on depth data for the CLM. To the best of

our knowledge, CLM-Z framework, proposed by Baltrus̆aitis

et. al. [12], is the only CLM framework tailored for depth

image to perform non-rigid face tracking as well as rigid

head pose tracking. They show that the integration of depth

and intensity response maps can alleviate the aperture prob-

lem. However, CLM-Z does not fully exploit the potential

geometric information in the depth data, since the CLM-Z

uses the depth image in almost the same manner (with mi-

nor difference in patch normalization) as the intensity image.

Moreover, in terms of facial landmark fitting accuracy and

robustness, the reported results of CLM-Z on depth data are

far worse than that of their intensity counterparts.

In [13], Oreifej et al. verify that direct adoption of con-

ventional color-based methods for depth data causes two ma-

jor issues which degrade the detection performance. The first

issue comes from the spatially and temporally discontinuous

black regions [14], which we refer as the missing values.

And the more important issue is that the depth image con-

tains rich surface information, and it can be converted to a

powerful image descriptor capturing geometric variations of

the object. Hence, we believe that by using histogram-based

features which encode the information from normal vectors,

the overall performance of the depth CLM is very likely to

increase. Therefore, the novelty of our work comes from the

utilization of robust 3D geometric features for CLM fitting.

3. ROBUST 3D CONSTRAINED LOCAL MODEL

In this section, we firstly introduce the commonly used 3D

geometric features for the recognition/detection tasks. Then,

we propose our 3D CLM framework with robust histogram-

based 3D features.

3.1. 3D Geometric Feature

The depth sensor provides the distance d(x, y) between pixel

in position (x, y) and the sensor, hence each pixel in depth

image can be defined as d = [x y d(x, y)]T . Assume the

normal vector of d is n = [nx ny nz]
T , where nx and ny are

the first-order derivatives of d(x, y) with respect to x and y
direction. Generally, the spherical coordinates (Eq. 1) encode

the orientation information better than Cartesian coordinates,

as zenith angle θ and azimuth angle ϕ are natural descriptors

to the surface of the object. In addition, the normal vector

always can be mapped to a plane (i.e. Z = 1), hence nz is a

constant [5], it is redundant to consider radius r in practice.
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Histogram of Oriented Normal Vectors (HONV), pro-

posed by Tang et al. [5], follows the paradigm of the very well

engineered Histogram of Oriented Gradients (HOG) [15] fea-

tures. It divides the search window into m number of cells,

within which the orientation of normal vector (ϕ and θ) at

each pixel is voted into a 2D histogram. The orientation value

is softly binned into the neighbourhood bins using bilinear in-

terpolation so as to avoid boundary effects. Moreover, a 2D

Gaussian smoothing is applied to adjacent cells (also called

block) to minimize spatial boundary effects. The final feature

vector would simply be the concatenation of all the normal-

ized histograms. In this paper, we empirically assign 9 bins

for ϕ and 4 bins for θ, 4 pixels as the cell size and 3 as the

block size.

Local Normal Binary Patterns (LNBPs) proposed in [6]

is an extension of Local Binary Patterns (LBPs) [16]. Two de-

scriptors LNBPOA and LNBPTA are proposed in [6], both

of them use the angle differences between normal vectors to

encode the neighbourhood around the center point xc. Given

a circular neighbourhood of radius r, which covers P points,

we compute the unit normal vectors of xc and its neighbours,

denoted as nc and np respectively.

LNBPOA (Eq. 2) computes the inner product of nc and

np, then compares it with the inner product between nc and

the vector nt that has a certain angle ψ from nc. A P -bit bi-

nary number is generated for every pixel, and the histogram

built from all the numbers becomes a feature vector. Different

from LNBPOA, LNBPTA (Eq. 4 & 5) considers angle dif-

ferences of both ϕ and θ, with ψa and ψz being the threshold

angles respectively. Hence, for each pixel, two binary num-

bers are generated, from which a 2D histogram is computed.

The flattened histogram is used as the feature for further tasks.

Since LNBPOA is reported to achieve a slightly better

average detection score than LNBPTA in [6], and the dimen-

sionality of LNBPOA is 15 times less than that of LNBPTA,

we choose LNBPOA as our 3D feature descriptor in the pro-

posed framework. In all our experiments, we set the radius r
and P to 8, and use π

12 for threshold angle ψ which produces

the best result.

LNBPOA(xc) =

P−1∑
p=0

2pd(nc·np,nc·nt), (2)

where nc·nt = cos(ψ) and function d is defined as

d(x1, x2) =

{
1 if x1 < x2

0 otherwise
. (3)

LNBP a
TA(xc) =

P−1∑
p=0

2pd(cos(|ϕc − ϕp|), cos(ψa)), (4)

LNBP z
TA(xc) =

P−1∑
p=0

2pd(cos(|θc − θp|), cos(ψz)). (5)



3.2. CLM on Histogram-based 3D Features

In this section, we explain our CLM framework based on the

histogram-based 3D features discussed in Section 3.1. Our

main contribution lies in the exploration of histogram-based

3D features from the depth image for CLM framework, as

well as the fusion between intensity and depth information.

Our CLM framework is defined by the model M = {S,P}.
S models the shape information, it can be either 2D or 3D

Point Distribution Model (PDM) [1]. In this paper, we mainly

use 3D PDM due to its robustness and compactness [17].

3.2.1. Patch Experts

Model P includes the patch experts discriminatively trained

for each facial landmark. It can be described as a group of

linear classifiers P = {wi, bi}ni=1, where wi and bi are the

weights and bias of the ith patch expert. The probability for

the ith landmark being correctly aligned (ai = 1) at location

x of depth image D is modelled by a logistic function [9, 4]:

p (ai = 1 | x,D) = 1

1 + e−{β0+β1(wT
i h(x;D)+bi)} , (6)

where β0 and β1 are the regression intercept and coefficient

respectively. h(x;D) denotes the features computed from the

local area centered around location x in D. In this paper,

h(x;D) refers to either raw local patch or the 3D features. For

each patch expert, we compute features on the positive and

negative samples selected from training data, and use Linear

Support Vector Machine (SVM) [18] to train the classifier due

to its computational advantage. Cross-validation is performed

to select the best parameters for SVM.

Fusion of Patch Experts: For the intensity image I corre-

sponding to the depth imageD, the same training scheme can

be applied to train the intensity-based patch experts, with the

alignment probability denoted as p (ai = 1 | x, I). Further-

more, through a element-wise addition of the response maps

(Eq. 6) obtained from the respective intensity and depth patch

experts, the fusion response map is computed as:

p (ai | x, I,D) = p (ai | x, I) + p (ai | x,D)
2

. (7)

We would show that the fusion of raw intensity image and

robust 3D geometric feature increases the fitting accuracy and

robustness by considerable margin, while the the fusion of

raw intensity and depth image degrades the performance.

3.2.2. CLM Fitting

Once we obtain the probability of alignment for each land-

mark point, the objective function of CLM fitting can be for-

mulated as:

p0 = argmax
p
{p(s | {ai = 1}ni=1,D)}

= argmax
p
{p(p) p({ai = 1}ni=1 | s,D)},

(8)

where s = [x1,x2, . . . ,xn], and xi is the ith landmark of the

shape. p is the set of 3D PDM parameter which contains the

deformation information of shape s.

To simplify this problem, it is assumed that the detection

of every landmark point is conditionally independent to each

other. Therefore we can interpret (8) as:

p0 = argmax
p
{p(p)

n∏
i=1

p(ai = 1 | xi(p),D)}. (9)

Regularized Landmark Mean-Shift (RLMS): RLMS [4]

assumes a homoscedastic isotropic Gaussian kernel density

estimate in a set of fixed locations {Ψi}ni=1 for every part i:

p(ai = 1|xi(p),D) =∑
yi∈Ψi

p(ai = 1 | yi,D) · N (xi(p) | yi, ρI),
(10)

the objective function (9) can be reinterpreted as:

p0 =argmax
p

{
p(p)

n∏
i=1

∑
yi∈Ψi

p(ai = 1 | yi,D) · N (xi(p) | yi, ρI)
}
.

(11)

In 3D PDM, non-rigid shape parameters q are generally as-

sumed to follow Gaussian distribution, which leads to the reg-

ularization term p(p):

p(p) ∝ N (q;0,L), (12)

where L are the eigenvalues obtained from PCA, and ρ is the

mean value of L.

Equation (11) is solved by the Expectation-Maximization

(EM) algorithm. The E-step involves computing the posterior
distribution ωyi

= p(yi|ai = 1,xi,D) over latent variable

{yi}ni=1. The maximization step minimizes:

Q(p) = ||q||−1
L +

n∑
i=1

∑
yi∈Ψi

ωyi

ρ
||xi(p)− yi||2,

which can be solved using a Gauss-Newton optimization.

4. EXPERIMENTAL RESULTS

To evaluate the fitting performance of our 3D CLM frame-

work, we conduct the landmark localization experiments

on Face Recognition Grand Challenge (FRGC) [7]. FRGC

database [7] is initially designed for the task of improving

face recognition algorithm, it consists of 50,000 recordings

of high quality still images as well as the corresponding 3D

scans. For our experiment, we annotate 4910 images (with 66

facial landmarks) from 520 different subjects [19, 20]. The

annotations are then split into training and testing sets, with

400 subjects (3993 images) selected for training, while the

rest 120 subjects (917 images) are used for testing.



We initialize the fitting procedure with the mean shape

centered at the bounding box perturbed by ±10 pixels in

translation and 10% in scale, w.r.t to the ground-truth bound-

ing box. This replicates the initialization error that will

normally be obtained by using any face detector. We employ

Shape Root-Mean Square (RMS) error normalized w.r.t. the

inter-ocular distance of the face to measure fitting perfor-

mance, which is unbiased for different size of faces.

4.1. Individual Feature Results

The fitting results of using individual feature (i.e., Depth, In-

tensity, LNBPs and HONV) in Figure 1 show that histogram-

based 3D features LNBPs and HONV completely outperform

the raw depth feature.

As for the improvement achieved by the proposed meth-

ods over the raw depth feature, considering the normalized

error (i.e. Shape RMS error as the fraction of inter-ocular dis-

tance) of 0.03 as the benchmark for accurate landmark local-

ization, LNBPs and HONV show astonishing improvements

of 50% and 65% over the raw depth descriptor respectively.

This proves that by exploiting the potential 3D geometric in-

formation and using it in CLM framework, the negative effect

of missing values in depth data can be minimized, which

leads to a much better performance. On the other hand, the

use of histogram feature based CLM does not require any

additional pre-processing procedure on the depth data. It is

interesting to see that HONV shows an improvement of 7%
over the intensity, which indicates the richness of information

in 3D geometry data. Sample fitting results of HONV CLM

can be found in Figure 2, we plot the fitting points in the color

image instead of depth image for the ease of visualization.

4.2. Feature Fusion Results

To test the performance of fusion proposed in Section 3.2.1,

we fuse the intensity feature based patch expert with those of

the raw depth, LNBPs and HONV. In Figure 1, we observe

that the fusion of intensity and raw depth data lowers the

CLM fitting accuracy by 6% comparing with the raw inten-

sity. Meanwhile, the fusions of intensity data and histogram-

based 3D features improve the corresponding individual fea-

tures, among which the fusion with HONV generates the best

result (sample fittings are displayed in Figure 2). Considering

the normalized error of 0.03 as the benchmark of accurate fit-

ting, the fusion of intensity and HONV achieves a significant

improvement of nearly 10% over the single HONV descriptor

and 15% over the intensity. This result shows the advantage

of combining 3D depth feature and intensity information, and

it provides us the motivation on investigating more advanced

feature fusion techniques in the future work.

5. CONCLUSIONS

We present a robust 3D Constrained Local Model framework

based on the histogram-based 3D facial geometry features
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Fig. 1. Experimental results on FRGC database.

(i.e. HONV [5] and LNBPs [6]). We conduct facial land-

mark localization experiments on Face Recognition Grand

Challenge (FRGC) [7] database to test the proposed 3D CLM

framework. The result shows that by using histogram-based

3D features instead of the raw depth feature, the performance

of CLM improves drastically. In addition, we find that a sim-

ple fusion of intensity data and 3D feature further improves

the performance by a significant margin.
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(a) Depth.

(b) HONV.

(c) Fusion of HONV and Intensity.

Fig. 2. Examples of CLM fittings on FRGC database. Top

row is raw depth, middle row is HONV and bottom row is

fusion of Intensity and HONV.
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