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Abstract—In this paper we propose a new method for the
detection of action units that relies on a novel region-based
face representation and a mid-level decision layer that combines
region-specific information. Different from other approaches, we
do not represent the face as a regular grid based on the face
location alone (holistic representation), nor by using small patches
centred at fiducial facial point locations (local representation). In-
stead, we propose to use domain knowledge regarding AU-specific
facial muscle contractions to define a set of face regions covering
the whole face. Therefore, as opposed to local appearance models,
our face representation makes use of the full facial appearance,
while the use of facial point locations to define the regions
means that we obtain better-registered descriptors compared
to holistic representations. Finally, we propose an AU-specific
weighted sum model is used as a decision-level fusion layer
in charge of combining region-specific probabilistic information.
This configuration allows each classifier to learning the typical
appearance changes for a specific face part and reduces the
dimensionality of the problem thus proving to be more robust.
Our approach is evaluated on the DISFA and GEMEP-FERA
datasets using two histogram-based appearance features, Local
Binary Pattern and Local Phase Quantisation. We show superior
performance for both the domain-specific region definition and
the decision-level fusion respect to the standard approaches when
it comes to automatic facial action unit detection.

I. INTRODUCTION

The Facial Action Coding System (FACS) is a taxonomy
of human facial expressions designed to facilitate human
annotation of facial behaviour. It specifies a list of 32 atomic
facial muscle actions, named Action Units (AUs), and 14
additional descriptors that account for miscellaneous actions.
Automating the AU annotation process is widely regarded
as an important step towards their deployment in a wide
range of problems, including medical applications [12], social
behaviour modelling [3] or security applications [7].

Constructing an effective face representation from images is
a crucial step for successful automatic facial action analysis.
One of the most widely used cues are appearance-based fea-
tures, which aim to capture differences in appearance caused
by muscle actions both in terms of changes of permanent
facial features (e.g. the triangular shape of the mouth corner
when smiling) as well as transient features such as wrin-
kles, bulges and furrows that only appear when an action is
performed. There is a wide range of literature on automatic
AU analysis focusing on the problem of finding the ideal
feature descriptors. For example, the performance of Local
Binary Patterns (LBP) [14], Histograms of Oriented Gradients
(HOG) [5], Local Phase Quantization (LPQ) [13], and Local
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Fig. 1. Different ways to apply appearance descriptors (holistic vs. local
features): whole face, block-based holistic, local appearance based on point
locations, and local appearance based on regions of interest. Pixels indexed
by the same local coordinates have the same semantic meaning (last two),
but pixels indexed by the same global coordinates have different semantic
meanings due to the face shape variation (first two)

Gabor Binary Patterns (LGBP) [17] have been studied for this
particular problem, as well as a number of dynamic appearance
descriptors such as LBP-TOP [14], [23], LPQ-TOP [14], and
LGBP-TOP [2].

However, which parts of the face these descriptors should be
applied to is an important question that has received very little
attention. The only two commonly used approaches are the
holistic and local strategies for feature extraction. In a holistic
approach the whole region defined by the face bounding box
is encoded in the feature representation. This is typically used
in combination with a block-based representation by which
the face is divided into a regular grid, a feature vector is
extracted from each of the grid’s blocks, and the resulting
vectors are concatenated to form the final feature represen-
tation (e.g. [14]). Alternatively, local approaches apply an
appearance descriptor to image patches centred at a number
of facial landmarks. Each landmark-localised patch produces
a feature vector which is then concatenated to create the face
representation [24] (see Fig. 1).

In this work, we discuss the pros and cons of these two
approaches, and propose a novel feature extraction strategy
based on a new definition of the regions from which local
appearance features are computed, which is our first major
contribution. The new definition results from the application
of domain knowledge (expert knowledge of how FACS is
defined), and aims at capturing AU-related changes within a
region.

The second contribution of this paper addresses the way
information from multiple patches is combined. Existing meth-
ods extract features from regions (where the definition of
region can vary), and then proceed to concatenate the extracted
features into a single vector. This is called feature-level fusion,



as the information coming from different sources is combined
into a single feature vector. However, the activation of an AU
only causes appearance changes in a subset of the face patches.
This suggests that a decision-level fusion approach can be
beneficial. Decision-level fusion relies on the application of a
separate classifier for each region considered. This is followed
by the combination of the resulting predictions into a single
prediction by some function, often again a classifier or a
weighted product/sum of the region-based classifiers. Our
second contribution is to adopt this strategy, experimentally
comparing it to existing feature concatenation schemes. In
particular, we consider a linear weighted sum of the region-
based decisions, for which the weights are derived from a
cross-validated performance of each region’s classifier.

To summarise, our main contributions are a novel way to
extract facial appearance features, described in full in section
III, and the proposal of a decision-level fusion strategy for
combining the region-level classifiers is described in section
IV. In section V we experimentally show that both of the
proposed contributions result in a performance improvement.
The improvement is consistent using two different appearance
descriptors on two separate datasets. Section VI provides our
concluding remarks and future direction. However, prior to
that, we review some related work in section II.

II. RELATED WORK

Depending on which features are used, automatic AU anal-
ysis works can be divided into appearance-based, geometry-
based, motion-based, or hybrid approaches (those that combine
at least two of the previous approaches). In this work we focus
on appearance-based methods. In turn, existing appearance-
based methods can be divided into holistic methods and local
(or part-based) methods. Holistic methods try to model the
appearance of the whole face by applying an appearance
descriptor over the full face region. Alternatively, local ap-
proaches apply the appearance descriptor at local patches
centred at the facial landmarks.

Some features can be naturally applied in a holistic manner,
as Gabor magnitude features (e.g. [4]), although the resulting
feature dimensionality is very large. Some recently successful
features, like LBP or LPQ, are histogram-based. In these
cases, representing the full face appearance by means of only
one histogram becomes suboptimal. It has been shown that,
then, the use of a block-based representation greatly improves
the results [16], [14], [13]. In particular, in a block-based
representation, the face patch is divided in a grid-like manner
into blocks, and an appearance descriptor is applied to each of
the blocks. Some works use overlapping blocks to improve the
robustness to face registration errors [10]. Furthermore, block-
based representations have also been successfully applied to
non-histogram features like DCT [8]. Notably, this strategy
was used in combination with the use of LGBP features by
the winner of the FERA 2011 AU detection sub-challenge
[17].

This approach, however, also lead to a larger feature dimen-
sionality.

Local appearance-based approaches are typically con-
structed by computing an appearance representation from
regions around the landmark point (a strategy noted as RAP
here). Most features are suited for this approach. Furthermore,
some as SIFT or HOG work best locally, since otherwise
large edges due to the face structure dominate over small
edges related to facial expression information. For example,
the work in [24] studied the performance of Gabor, SIFT and
DAISY features when applied around facial landmarks for AU
detection. They showed that SIFT features worked comparably
to DAISY and slightly outperformed Gabor features.

In terms of classification, the standard approach is to con-
catenate the features extracted from different regions around
points/blocks to form a single vector. Then learning is per-
formed over the concatenated features (e.g. [11], [22], [13]).
Feature selection techniques such as GentleBoost can be
applied to select the most discriminative features (e.g. [18]).
Fusion techniques other than feature-level fusion have been
studied in order to combine different types of features, such as
geometry-based and appearance-based features [17]. However,
to the best of our knowledge, it does not exist in the AU
literature any work that explicitly studies fusion techniques for
combining information extracted from different face regions.

III. REGION DEFINITION AND FEATURE EXTRACTION

Holistic and local feature extraction approaches convey
somewhat different information. Holistic approaches extract
information according to a coordinate system defined by whole
face. On the other hand, local methods use a coordinate system
defined in terms of inner-facial features, for example facial
landmarks (see Fig. 1). Therefore, the level of registration at-
tained by local methods is superior to that of holistic methods.
More specifically, since holistic methods only use Procrustes
analysis to perform the data registration, the physical parts
of the face from which a feature is extracted can change
considerably between different examples. These differences
become particularly evident when dealing with non-frontal
head poses. In contrast, local methods present the advantage
of always encoding the appearance of the same part of the
face, as long as the facial points they depend on are detected
correctly. In contrast, holistic methods present the advantage
of encoding the whole face appearance, while local methods
fail to encode information from some portions of the face. For
example, the cheeks can be a useful cue despite not containing
facial landmarks.

Our proposed strategy aims to make full use of the face
appearance, yet maintaining the benefit of the strong reg-
istration afforded by the facial landmark points. Therefore,
our proposed descriptor is less sensitive to shape differences
caused by identity and non-frontal head poses than holistic
approaches. To this end, we consider a set of regions defined
by facial landmarks as show in Fig. 2. It is possible to see that
in this case, the whole appearance of the face is considered,
including regions such as the cheeks. Furthermore, the regions
considered do not have a uniform local support. For example,
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Fig. 2. Representation of the AU detection process. Each of the regions produces a separate histogram. Each of these histograms is analysed by means of a
region-specific classifier, and the outputs are combined into a final score as a weighted mean.

the a large portion of the image corresponds to the lips, while
the eyes cover a much smaller region.

The regions were constructed by first considering the De-
launay triangulation used for dividing the face in Active
Appearance Models (AAM) [1]. Each triangle in the mesh is
designed to encode information as homogeneous as possible,
and represents a natural way for dividing the face region.
However, for the task of AU detection some of the triangles
encode very little information. Therefore, we used domain
knowledge regarding FACS AU definitions for joining some
of these triangles into larger regions. For example, R4 and R9
enclose the region of the face in which the contraction of the
corrugator produces furrowing (AU 4). Similarly, R22 and R23
clearly show wrinkling when the depressor supercilli muscle
contracts, which is again related to AU4. Similarly, AU25 is
captured by R3. A full mapping can easily be derived from the
FACS [6]. An overview of mappings between facial muscles
and AUs can be found in Table 2.1 of [19].

Our hypothesis is that in this way relevant changes due
to AUs will be encoded more homogeneously within the
appearance descriptor. While for holistic approaches what is
encoded within a block varies from image to image, local
features encode the aspect of patches such as the corner of
the mouth or the lip contour, but do not necessarily encode
the aspect of the interior of the mouth. Furthermore, even
when parts of the inner mouth are encoded, the appearance is
combined with that of the outer parts of the mouth, producing
less characteristic patterns.

Since the selected regions are now of varying size and
shapes, we are restricted to histogram-based feature represen-
tations, such as LBP and LPQ features1. They have however
been consistently among the best performing features for AU
detection (e.g. [20]). In our case, we present experimental
results for both LBP and LPQ features.

IV. REGION-BASED CLASSIFICATION

In the classical feature-level fusion all the appearance
descriptors from the different regions are concatenated into
a single feature vector. We propose instead a decision-level
fusion where a different classifier is trained for each of the

1HOG features typically use a block-based internal representation of the
represented image patch, rendering it inadequate for our purpose

regions defined in section III. To obtain a final prediction of
an AU being active or not in a given image, the outputs of the
region-based classifiers are fused using a weighted sum of the
individual scores.

This approach is expected to have a number of advantages.
Training a separate classifier for each region allows each
classifier to learn over more specific and uniform parts of the
face, resulting in less class overlap in the features. By means
of the weighted combination of region-based scores, parts of
the face that do not display any visible changes when a target
AU is active will have a reduced impact on the final decision
(in essence the classifier for such a region would be trained
on random noise). Finally, it reduces the dimensionality of the
problem, again making the learning task easier. An example of
region weighting for AU12 when applied to a holistic block-
based approach is shown in figure 3. As expected, the regions
around the mouth and cheeks have the highest impact, some
regions around the eyes also contribute to a lesser degree
(mostly due to the correlation with AU6), while the rest of
the regions produce a low impact on the final decision.

In particular, we use an SVM as the binary classifier for
each region. Since both LBP and LPQ are histogram-based
features, we adopt a histogram intersection kernel. Therefore,
the only parameter to be optimised is the soft margin param-
eter. This is achieved through a grid search strategy, and a
subject-independent cross-validation has been carried out. A
probabilistic score is computed by using the logistic function.
That is to say, given the output of the SVM trained to detect
AU i from the face region j, we compute:

p(ci = 1|xj) =
1

1 + esi,j(xj)
(1)

where ci is a binary indicator of the action of AU i, and xj

is the appearance feature representation of region j.
The per-region scores are joined together as:

p(ci = 1) =

n∑
j=1

wjp(ci = 1|xj) (2)

In order to find the weights wj , we conducted a subject-
independent cross-validation experiment within the training
set for each region. Through this process, we computed a



Fig. 3. The performance of each sub-classifier from 10 × 10 facial regions
for the detection of AU12 in using block-based (BLK) regions.

performance score for each region. In our case, we used the 2-
alternative forced choice task (2AFC) score. The percentage of
correctly classified examples in a 2AFC evaluation framework
is equivalent to the area under the ROC curve (AUC) [9], and
can be computed more efficiently than the AUC itself. The
weights are obtained by averaging the 2AFC score over all
folds. This follows the rationale that the performance of a
region based classifier on a predefined evaluation set gives
a good measure of how relevant the information within the
region is towards the detection of the target AU.

It is common to further apply an output-smoothing step in
order to enforce temporal consistency on the predicted outputs,
for example using a first order Markov chain. In our case, we
avoid this step as our aim is to compare the performance of
the proposed steps respect to equivalent standard procedures.
However, when designing an expression recognition system
one would expect to make use of the temporal consistency.

V. EXPERIMENTAL RESULTS

In order to show the improvement attained by each of
the proposed contributions, we conducted experiments on
two datasets commonly used for automatic AU analysis.
In particular, we use the Denver Intensity of Spontaneous
Facial Actions (DISFA) database [15], and the GEMEP-FERA
challenge dataset [21]. We also show experimental results
when using both LPQ and LBP features, as they are some
of the most common features for automatic AU analysis. In
order to show that each of the proposed steps result in a
performance improvement, we conduct two experiments. The
first experiment compares the performance of holistic and local
feature extraction approaches against our region definition,
while maintaining the standard feature-level fusion strategy.
The second experiment shows that the performance is further
increased by using the decision-level fusion, independently
on the feature extraction strategy used and, in particular,
is optimal when combined with the proposed region-based
strategy. In the following we describe the experimental setting
in more detail.

A. Experimental setting

The DISFA dataset contains videos of 27 participants in
a controlled lab environment. Expressions were elicited by
showing videos to the subjects. Since the subjects are looking
to a screen placed in front of them, the head poses are

typically frontal or near-frontal. Frame-based AU activation
and intensity labels manually annotated by two FACS experts
for 12 AUs are provided. The dataset also includes precise per-
frame facial landmark locations for 66 points, obtained through
subject-specific AAM. The accuracy of the landmarks might
be unrealistic under more general conditions.

The GEMEP-FERA challenge dataset is a subset of the
GEMEP dataset recently used for a challenge on AU detection
[20]. All the expressions are acted. However, the participants
are trained actors. In consequence, the expressions displayed
are of similar characteristics to spontaneous ones. Non-frontal
head poses are more common in this dataset, as the subjects
have an unconstrained range of head motions. The dataset is
split into a training set (including 7 actors), and a test set.
We only use the training partition and perform a leave-one-
subject-out cross validation to evaluate the performance. Since
no tracked points are provided in this dataset, we automatically
detected the facial landmark points using the AAM tracker
proposed in [1]. We do not use subject-specific models for the
tracking, making the results more generalizable. We put no
effort in correcting the tracked points, except for eliminating
glaring errors.

The performance measure used in this work is the 2-
alternative forced choice task (2AFC). The percentage of
correctly classified examples in a 2AFC evaluation framework
is equivalent to the area under the Receiver Operator Charac-
teristic curve (AUC), and can be computed more efficiently
than the AUC.

B. Evaluation results

The first experiment shows how using our definition of
regions affects performance. In this experiment we follow a
standard feature-level fusion strategy instead of the proposed
decision-level fusion approach. In this way, it is possible to
judge the relative merits of each contribution on their own. As
can be seen from Fig. 4, the proposed method results in higher
average performance than both holistic and local approaches
for the 4 combinations of datasets and features considered. It
is interesting to see that the relative performance of the holistic
approach is lower in the GEMEP-FERA dataset than on the
DISFA dataset. The reason for this is likely to be the poorer
face registration that Procrustes analysis can attain when the
face is in a non-frontal position. GEMEP-FERA contains a lot
of non-frontal head pose so a good registration is crucial for
that dataset. Thus, the benefit of using inner facial structures
to define the face regions is relatively higher. The average
performances are 0.78, 0.77 and 0.80 2AFC for holistic, local
and our approach for the combination of LBP and DISFA, and
0.78, 0.78 and 0.81 when LPQ features are used instead. For
the GEMEP-FERA these numbers are 0.57, 0.60, and 0.62 for
LBP, and 0.57, 0.59, 0.65 for LPQ.

Our second experiment shows the performance increase
obtained by using the proposed decision-level fusion strategy.
Tables I and II show the performance obtained when using our
proposed definition of regions, and either a feature-level or
decision-level fusion strategy. The reported experiments again
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Fig. 4. Results in terms of 2AFC when using LBP (left column) and LPQ (right column) on the DISFA dataset (top row) and the GEMEP-FERA training
set (bottom row). (RAP: region around points, BLK: block-based, RDP - region defined by points)

TABLE I
RESULTS (2AFC) FOR TESTING THE SYSTEM ON THE DISFA DATABASE
USING LBP AND LPQ FOR FEATURE-LEVEL FUSION AND THE PROPOSED

DECISION-LEVEL FUSION

LBP LPQ
AU feat-lev dec-lev feat-lev dec-lev
1 0.67 0.70 0.59 0.69
2 0.82 0.79 0.73 0.76
4 0.74 0.78 0.68 0.78
5 0.86 0.84 0.77 0.88
6 0.90 0.92 0.88 0.93
9 0.80 0.85 0.77 0.87
12 0.91 0.93 0.90 0.93
15 0.63 0.73 0.69 0.74
17 0.70 0.68 0.73 0.74
20 0.72 0.74 0.77 0.78
25 0.87 0.85 0.88 0.85
26 0.76 0.77 0.75 0.76

AVG 0.78 0.80 0.76 0.81

include all 4 combinations of datasets and features, and for
each of them the proposed decision-level fusion performs best.

We provide a summary of the performance increases of the
different feature configuration approaches in figure 5. To this
end, we have averaged the performance across all AUs, and all
features (LBP and LPQ) and datasets (DISFA and GEMEP-
FERA) used in this work. It is possible to see how both of the
proposed novelties yield a performance increase. In particular,
the best performing configuration that does not use any of
the proposed improvements attain an averaged performance
of 0.67 2AFC, while the proposed configuration yields 0.74

TABLE II
RESULTS (2AFC) FOR TESTING THE SYSTEM ON THE GEMEP-FERA

TRAINING SET USING LBP AND LPQ FOR FEATURE-LEVEL FUSION AND
THE PROPOSED DECISION-LEVEL FUSION

LBP LPQ
AU feat-lev dec-lev feat-lev dec-lev
1 0.63 0.64 0.61 0.69
2 0.68 0.72 0.68 0.67
4 0.47 0.53 0.60 0.51
6 0.64 0.72 0.63 0.69
7 0.59 0.68 0.71 0.71

10 0.57 0.66 0.60 0.66
12 0.66 0.74 0.62 0.76
15 0.63 0.53 0.66 0.53
17 0.71 0.70 0.68 0.72
18 0.72 0.75 0.72 0.82
25 0.61 0.57 0.58 0.59
26 0.55 0.53 0.57 0.55

AVG 0.62 0.65 0.64 0.66

2AFC of average performance. This is a very large jump in
relative performance of 11.1%. To put this into perspective,
[13] and [2] recently proposed the use of appearance descrip-
tors of spatio-temporal volumes as an alternative to frame-
based appearance descriptors, attaining a 7% and 4% relative
performance increase, respectively. Similarly, the performance
boost between the baseline results on the FERA challenge and
the winners of the challenge is of 13.7% [21].
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VI. CONCLUSIONS

In this paper, we have proposed a novel definition of
face regions from which to extract appearance features for
automatic AU analysis. To this end, we proposed to use
the triangulation constructed for AAM, and to merge the
triangles of the resulting mesh based on domain knowledge.
Furthermore, we have proposed a decision-level fusion strat-
egy that is shown to improve over feature-level fusion for
all of the feature extraction settings considered. These two
contributions account to an average 11% performance increase
over the baseline method, and we show that each of the
proposed improvements increase the performance in every
single experiment performed. In particular, the superiority of
our region definition respect to holistic and local methods
was shown in 4 different settings, while the superiority of
the decision-level fusion was shown in 12 cases (i.e., for all
combinations of feature, dataset, and region definition). The
region-based approach currently does not make use of any
information contained in the geometric parameters of the facial
regions, such as the width or height of the mouth region. In
future work we will include this information as part of our
decision level fusion framework.
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