
 1

�
��������	
�����

Reinier Zwitserloot
Delft University of Technology, The Netherlands

Maja Pantic
Delft University of Technology, The Netherlands

Copyright © 2005, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

INTRODUCTION

Software agent technology generally is defined as
the area that deals with writing software in such a
way that it is autonomous. In this definition, the word
autonomous indicates that the software has the
ability to react to changes in its environment in a way
that it can continue to perform its intended job.
Specifically, changes in its input channels, its output
channels, and the changes in or the addition or
removal of other agent software should cause the
agent to change its own behavior in order to function
properly in the new environment. In other words, the
term software agent refers to the fact that a certain
piece of software likely will be able to run more
reliably without user intervention in a changing envi-
ronment compared to similar software designed
without the software agent paradigm in mind. This
definition is quite broad; for example, an alarm clock
that automatically accounts for daylight savings time
could be said to be autonomous in this property; a
change in its environment (namely, the arrival of
daylight savings time) causes the software running
the clock to adjust the time it displays to the user by
one hour, preserving, in the process, its intended
function—displaying the current time. A more de-
tailed description of agent technology is available
from Russel and Norvig (2003).

The autonomous nature of software agents makes
them the perfect candidate for operating in an
environment where the available software continu-
ally changes. Generally, this type of technology is
referred to as multi-agent systems (MAS). In the
case of MAS, the various agents running on the
system adapt and account for the other agents
available in the system that are relevant to its own
operation in some way. For example, MAS-aware
agents often are envisioned to have a way of nego-

tiating for the use of a scarce resource with other
agents.

An obvious start for developing MAS is to decide
on a common set of rules to which each agent will
adhere, and on an appropriate communication stan-
dard. These requirements force the need for an
underlying piece of software called an agent frame-
work. This framework hosts the agents, is respon-
sible for ensuring that the agents keep to the rules
that apply to the situation, and streamlines commu-
nication between the agents themselves and exter-
nal sensors and actuators (in essence, input and
output, respectively). This paper will go into more
detail regarding the advantages of MAS and agent
frameworks, the nature and properties of agent
frameworks, a selection of frameworks available at
the moment, and attempts to draw some conclusions
and best practices by analyzing the currently avail-
able framework technology.

BACKGROUND: RESEARCH
MOTIVATIONS

An agent framework and its use as a base for MAS
technology already has been successfully used as
the underlying technology for most teams participat-
ing in the robot soccer tournament (Tambe, 1998).
The robotic soccer tournament requires that all
participating robot teams operate entirely under their
own control without any intervention by their own-
ers. The general idea of independent autonomous
robots working together to perform a common task
can be useful in many critical situations. For ex-
ample, in rescue situations, a swarm of heteroge-
neous (not the same hardware and/or software)
agents controlling various pieces of hardware fitted
onto robots potentially can seek out and even rescue

2

Agent Framworks

people trapped in a collapsed building. The ideal
strived for in this situation is a system whereby a
number of locator robots, equipped with a legged
transport system to climb across any obstacle and
sporting various location equipment such as audio
and heat sensors, will rapidly traverse the entirety of
the disaster area, creating a picture of potential
rescue sites. These, in turn, serve as the basis for
heavy tracked robots equipped with digging equip-
ment, which work together with structure scanning
robots that help the digging robots decide which
pieces to move in order to minimize the chances of
accidentally causing a further collapse in an unstable
pile of rubble. Equipment breaking down or becom-
ing disabled, for example, due to getting crushed
under an avalanche of falling rubble, or falling down
in such a way that it can’t get up, are not a problem
when such a rescue system is designed with MAS
concepts in mind; as all agents (each agent powering
a single robot in the system) are independent and will
adapt to work together with other robots that cur-
rently are still able to operate, there is no single
source of system failure, which is the case when
there is a central computer controlling the system.
Another advantage of not needing a central server is
the ability to operate underground or in faraway
places without a continuous radio link, which can be
difficult under the previously mentioned circum-
stances.

A crucial part of such a redundancy-based sys-
tem, where there are no single sources of failure, is
to have backup sensor equipment. In the case of
conflicts between separate sensor readings that
should have matched, agents can negotiate among
themselves to decide on the action to take to resolve
the discrepancy. For example, if a teacup falls to the
floor, and the audio sensor is broken, the fact that the
video and image processing equipment registered
the fall of the teacup will result in a negotiation
session. The teacup fell according to the agent
controlling video analysis, but the audio analyzer
determined that the teacup did not fall—there was
no sound of the shattering cup. In these cases, the
two agents most likely will conclude the teacup did
fall in the end, especially if the audio agent is capable
of realizing something may be wrong with its sensors
due to the video backup. Or the agents together can
determine if further detail is required and ask an
agent in control of a small reconnaissance robot to

move to the projected site where the teacup fell and
inspect the floor for cup fragments. The system will
still be able to determine the need to order new
teacups, even though the audio sensor that usually
determines the need for new teacups currently is
broken. This example displays one of the primary
research motivations for multi-agent systems and
agent frameworks—the ability to continue operation
even if parts of the system are damaged or unavail-
able. This aspect is in sharp contrast to the usual
state of affairs in the world of computer science; for
example, even changing a single bit in a stream of
code of a word processor program usually will break
it to the point that it will not function at all.

Another generally less important but still signifi-
cant motivation for MAS research is the potential
benefit of using it as a basis for systems that exhibit
emergent behavior. Emergent behavior refers to
complex behavior of a system of many agents, even
though none of the individual components (agents)
has any kind of complex code. Emergent behavior is
functionally equivalent to the relatively complex
workings of a colony of ants capable of feeding the
colony, relocating the hive when needed, and fend-
ing off predators, even though a single ant is not
endowed at all with any kind of advanced brain
function. More specifically, ants always will dispose
of dead ants at the point that is farthest away from
all colony entrances. A single ant clearly cannot
solve this relatively complex geometrical problem;
even a human being needs mathematical training
before being able to solve such a geometric problem.
The ability to find the answer to the problem of
finding the farthest point from a set of points is an
emergent ability displayed by ant colonies. The goal
of emergent behavior research is to create systems
that are robust in doing a very complex job, even with
very simple equipment, contrasted to products that
are clunky to use, hard to maintain, and require
expensive equipment, as created by traditional pro-
gramming styles. Areas where emergent behavior
has proven to work can be found first and foremost
in nature: Intelligence is evidently an emergent prop-
erty; a single brain cell is government by extremely
simple rules, whereas a brain is the most complex
computer system known to humankind. This ex-
ample also highlights the main problem with emer-
gent behavior research; predicting what, if any,
emergent behavior will occur is almost impossible.

 3

Agent Frameworks

�
Conversely, figuring out why a certain observed
emergent behavior occurs, given the rules of the base
component, usually is not an easily solved problem.
While the neuron is understood, the way a human
brain functions is not. Still, research done so far is
promising. The most successes in this area are being
made by trying to emulate emergent behavior ob-
served in nature. Bourjot (2003) provides an example
of this phenomenon. These promising results also are
motivating agent framework research in order to
improve the speed and abilities of the underlying
building blocks of emergent behavior research—
simple agents operating in an environment with many
such simple agents.

PROPERTIES OF AGENT
FRAMEWORKS

Many different philosophies exist regarding the de-
sign of an agent framework. As such, standardization
attempts such as MASIF, KQML, and FIPA mostly
restrict themselves to some very basic principles,
unfortunately resulting in the virtual requirement to
offer features that exceed the specification of the
standard. Possibly, this aspect is the main reason that
standards adherence is not common among the vari-
ous agent frameworks available. Instead, a lot of
frameworks appear to be developed with a very
specific goal in mind. As can be expected, these
frameworks do very well for their specific intended
purpose. For example, hive focuses on running large
amounts of homogenous (i.e., all agents have the
same code) agents as a way to research emergent
behavior and is very useful in that aspect. This
section analyzes the basic properties of the various
agent frameworks that are currently available.

• Programming Language: Implementing the
agent will require writing code or otherwise
instructing the framework on how to run the
agent. Hence, one of the first things noted when
inspecting an agent framework is which
language(s) can be used. A lot of frameworks
use Java, using the write-once-run-anywhere
philosophy of the language designers to accen-
tuate the adaptable nature of agent software.
However, C++, Python, and a language speci-
fication specialized for creating distributed soft-

ware called CORBA also are available. Some
frameworks take a more specific approach
and define their own language or present some
sort of graphical building tool as a primary
method of defining agent behavior (e.g.,
ZEUS). A few frameworks (e.g., MadKit)
even offer a selection of languages. Aside
from the particulars of a potential agent au-
thor, the programming language can have a
marked effect on the operation of the frame-
work. For example, C++ based frameworks
tend not to have the ability to prevent an agent
from hogging system resources due to the way
natively compiled code (such as that produced
by a C++ compiler) operates. Java programs
inherently can be run on many different sys-
tems, and, as a result, most Java-based frame-
works are largely OS and hardware indepen-
dent. Frameworks based on CORBA result in
a framework that has virtually no control or
support for the agent code but is very flexible
in regard to programming language. Due to the
highly desirable properties of system indepen-
dence offered by the Java programming lan-
guage, all frameworks reviewed in the next
section will be based on the Java language.

• State Saving and Mobility: The combina-
tion of the autonomous and multi-agent para-
digm results in a significant lowering of the
barrier for distributed computing. The agent
software is already written to be less particu-
lar about the environment in which it is run,
opening the door for sending a running agent to
another computer. Multi-agent systems them-
selves also help in realizing distributed com-
puting. An agent about to travel to another
system can leave a copy of itself behind to
facilitate communication of its actions on the
new system back to its place of origin. As a
result, a lot of agent frameworks offer the
ability to move to another host to its agents
(e.g., Fleeble, IBM Aglets, NOMADS, Voy-
ager, Grasshopper). The ability to travel to
other hosts is called mobility. Advantages of
mobility include the ability of code, which is
relatively small, to move to a large volume of
data, thus saving significant bandwidth. An-
other major advantage is the ability to use
computer resources (i.e., memory, CPU) that

4

Agent Framworks

are not otherwise being used on another com-
puter—the creation of a virtual mega computer
by way of combining the resources of many
ordinary desktop machines. Inherent in the
ability to move agents is the ability to save the
state of an agent. This action freezesthe agent
and stores all relevant information (the state).
This stored state then either can be restored at
a later time or, alternatively, can be sent to
another computer to let it resume running the
agent (mobility). The difficulty in true mobility
lies in the fact that it is usually very difficult to
just interrupt a program while it is processing.
For example, if an agent is accessing a file on
disk while it is moved, the agent loses access to
the file in the middle of an operation. Demand-
ing from the agent framework that it check in
with the framework often, in a state where it is
not accessing any local resources that cannot
be moved along with the agent, generally solves
this problem (Tryllian).

• Communication Strategy: There are various
communication strategies used by frameworks
to let agents talk to each other and to sensors
and actuators. A common but hard-to-scale
method is the so-called multicast strategy, which
basically connects all agents on the system to
all other agents. In the multicast system, each
agent is responsible for scanning all incoming
communications for whether or not an agent
should act or account for the data. A more
refined version of the multicast strategy is the
publish/subscribe paradigm. In this system,
agents can create a chat room, usually called a
channel, and publish information to it, in the
form of messages. Only those agents that have
been subscribed to a particular channel will
receive the messages. This solution is more
flexible, especially when the framework hosts
many agents. Other, less frequent strategies
include a direct communication where data
can only be sent to specific agents, or, for some
systems, no communication ability exists at all.

• Resource Management: Exhausting the lo-
cal system’s processing power and memory
resources is a significant risk when running
many agents on one system, which, by defini-
tion, run continuously and all at the same time.
Some frameworks take control of distributing

the available system resources (i.e., memory,
CPU, disk space, etc) and will either preven-
tively shut down agents using too many re-
sources or simply deny access to them. Unfor-
tunately, the frequent monitoring of the system
required to schedule the available resources
results in a fairly significant CPU overhead and
sometimes impedes the flexibility of the frame-
work. For example, NOMADS uses a modified
version of the Java runtime environment to
implement its monitoring policy, unfortunately
causing NOMADS to be out of date, compared
to Sun’s current version of the Java runtime
environment at the time of writing. While many
frameworks choose to forego resource man-
agement for these reasons, a framework that
supports resource management can create a
true sandbox for its agents, a place where the
agent cannot harm or impact the host computer
in any way, thus allowing the safe execution of
agents whose code is not currently trusted.
Such a sandbox system can enable the ability to
run agents shared by other people, even if you
don’t particularly trust that their systems are
free of viruses, for example. In addition to
CPU and memory resource management, a
proper sandbox system also needs to restrict
and monitor access to data sources, such as
access to the network and system storage,
such as a hard drive. Some programming lan-
guages, including Java, have native support for
this kind of security measure. As a result, some
frameworks exist that implement this aspect of
agent frameworks (SeMoA). By itself, this
limited form of resource management will pre-
vent direct damage to the local system by, for
example, using the computer’s network con-
nection to attack a Web site, but can’t stop an
agent from disabling the host system. Due to
the nature of C++, no C++ based frameworks
support any kind of resource management.

THE STATE OF THE ART

Table 1 summarizes the properties of the currently
available Java-based agent frameworks with re-
spect to the following issues (Pantic et al., 2004):

 5

Agent Frameworks

�
1. Does the developer provide support for the

tool?
2. Is the tool available for free?
3. Are useful examples readily available?
4. Is the related documentation readable?
5. Is synchronous agent-to-agent communication

(i.e., wait for reply) supported?
6. Is asynchronous agent-to-agent communica-

tion (continuing immediately) supported?
7. What is the communication transmission form?
8. Can the framework control agents’ resources

(e.g., disk or network capacity used)?
9. Can the framework ask an agent to shut down?
10. Can the framework terminate the execution of

a malfunctioning agent?
11. Can the framework store agents’ states be-

tween executions?
12. Can the framework store objects (e.g., a data-

base) between executions?
13. Does a self-explicatory GUI per agent exist?
14. Does the GUI support an overview of all

running agents?

A detailed description of agent frameworks 1-5,
7, 9-18, and 20-24 can be found at AgentLink (2004).

A detailed description of CIAgent framework is
given by Bigus and Bigus (2001). More information
on FIPA-OS is available at Emorphia Research
(2004). Pathwalker information is provided by Fujitsu
Labs (2000). More information on Tagents can be
found at IEEE Distributed Systems (2004). Informa-
tion on the Fleeble Framework is available from
Pantic et al. (2004). The chart shows the emergence
of certain trends. For example, termination of mal-
functioning agents (i.e.: those that take too many or
restricted resources) is offered by only a very small
number of frameworks, as shown by columns 8 and
10. Another unfortunate conclusion that can be
made from columns 3 and 4 is the lack of proper
documentation for most frameworks. The learning
curve for such frameworks is needlessly high and
seems to be a factor contributing to the large selec-
tion of frameworks available.

Sharing a framework so that it is used in as many
places as possible has many advantages due to the
nature of a framework; namely, to serve as a
standard for which agents can be written. Hence, a
simple learning curve, supported by plenty of ex-
amples and good documentation is even more impor-
tant than is usual in the IT sector.

Name 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1. Agent Factory

� � � � � � PP � � � � � � �
2. IBM Aglets

� Free � � � � PP � � � � � � �
3. AMETAS

� � � � � � M � � � � � � �
4. Beegent

� � � � � � PP � � � � � � �
5. Cougaar

� Free � � � � M � � � � � � �
6. CIAgent

� $ � � � � PP � � � � � � �
7. DECAF

� � � � � � PP � � � � � � �
8. FIPA-OS

� Free � � � � PP � � � � � � �
9. Grasshopper

� � � � � � M � � � � � � �
10. Hive

� Free � � � � None � � � � � � �
11. JACK

� $ � � � � PP � � � � � � �
12. JADE

� Free � � � � M � � � � � � �
13. JAFMAS / Jive

� � � � � � M � � � � � � �
14. Kaariboga

� Free � � � � PP � � � � � � �
15. LIME

� Free � � � � PS � � � � � � �
16. MadKit

� Free � � � � M � � � � � � �
17. NOMADS

� Free � � � � None � � � � � � �
18. OpenCybele

� Free � � � � PS � � � � � � �
19. Pathwalker

� Free � � � � PP � � � � � � �
20. SeMoA

� Free � � � � None � � � � � � �
21. Tagent

� Free � � � � PP � � � � � � �
22. Tryllian

� $ � � � � PP � � � � � � �
23. Voyager

� $ � � � � PS � � � � � � �
24. ZEUS

� Free � � � � PP � � � � � � �
25. Fleeble

� Free � � � � PS � � � � � � �
Legend: � = “yes”, � = “no”, � = unknown, PP = Peer to Peer, M = Multicast, PS = Publish-Subscribe

Table 1. Overview of the available Java-based agent frameworks

6

Agent Framworks

FUTURE TRENDS: SIMPLICITY

Fulfilling the MAS ideal of creating a truly adaptive,
autonomous agent is currently impeded by steep
learning curves and lack of flexibility in the available
frameworks. Hence, a promising new direction for
the agent framework area is the drive for simplicity,
which serves the dual purpose of keeping the soft-
ware flexible while making it relatively simple to
write agents for the framework. Newer frameworks
such as Fleeble forego specialization to try to attain
this ideal. The existence of emergent behavior proves
that simplistic agents are still capable of being used
to achieve very complex results. Frameworks that
give its agents only a limited but flexible set of
commands while rigidly enforcing the MAS ideal
that one agent cannot directly influence another
enables the use of such a framework in a very wide
application domain, from a control platform for a
swarm of robots to a software engineering paradigm
to reduce bugs in complex software by increasing
the level of independence between parts of the
software, thereby offering easier and more robust
testing opportunities. Another area in which simplic-
ity is inherently a desirable property is the field of
education. The ability to let agents representing the
professor or teacher inspect and query agents writ-
ten to complete assignments by students represents
a significant source of time-saving, enabling adding
more hands-on practical work to the curriculum. A
framework that is simple to use and understand is a
requirement for basing the practical side of CS
education on writing agents. More information on
using agent frameworks as a teaching tool is avail-
able from Pantic (2003).

CONCLUSION

Agent framework technology lies at the heart of the
multi-agent systems branch of artificial iIntelligence.
While many frameworks are available, most differ
substantially in supported programming languages,
ability to enable agents to travel (mobility), level of
resource management, and the type of communica-
tion between agents that the framework supports.

Emergent behavior, a research area focusing on
trying to create complex systems by letting many
simple agents interact, along with a need for flexibil-
ity, is driving research toward providing more robust
and less complex frameworks.

REFERENCES

AgentLink (2004). http://www.agentlink.org/re-
sources/agent-software.php

Bigus, J.P., & Bigus J. (2001). Constructing intel-
ligent agent using Java. Hoboken, NJ: Wiley &
Sons.

Bourjot, C., Chevrier, V., & Thomas, V. (2003). A
new swarm mechanism based on social spiders
colonies: From Web weaving to region detection.
Web Intelligence and Agent Systems: An Interna-
tional Journal, 1(1), 47-64.

Emorphia Research. (2004). http://
www.emorphia.com/research/about.htm

Fujitsu Labs. (2000). http://www.labs.fujitsu.com/
en/freesoft/paw/

IEEE Distributed Systems. (2004). http://
dsonline.computer.org/agents/projects.htm

Pantic, M., Zwitserloot, R., & Grootjans, R.J. (2003).
Simple agent framework: An educational tool intro-
ducing the basics of AI programming. Proceedings
of the IEEE International Conference on Infor-
mation Technology: Research and Education
(ITRE ’03), .

Pantic, M., Zwitserloot, R., & Grootjans, R.J. (2004).
Teaching introductory artificial intelligence using a
simple agent framework [accepted for publication].
IEEE Transactions on Education.

Russell, S., & Norvig, P. (2003). Artificial intelli-
gence: A modern approach. Upper Saddle River,
NJ: Pearson Education.

Tambe, M. (1998). Implementing agent teams in
dynamic multiagent environments. Applied Artifi-
cial Intelligence, 12(2-3), 189-210.

 7

Agent Frameworks

�
KEY TERMS

Agent Framework: A software agent frame-
work is a program or code library that provides a
comprehensive set of capabilities that are used to
develop and support software agents.

Autonomous Software Agent: An agent with
the ability to anticipate changes in the environment
so that the agent will change its behavior to improve
the chance that it can continue performing its in-
tended function.

Distributed Computing: The process of using a
number of separate but networked computers to solve
a single problem.

Emergent Behavior: The behavior that results
from the interaction between a multitude of entities,
where the observed behavior is not present in any
single entity in the multitude comprising the system
that shows emergent behavior.

Heterogeneous Agents: Agents of a multi-agent
sSystem that differ in the resources available to them
in the problem-solving methods and expertise they
use, or in everything except in the interaction language
they use.

Homogeneous Agents: Agents of a multi-
agent system that are designed in an identical way
and have a priori of the same capabilities.

Multi-Agent System (MAS): A multi-agent
system is a collection of software agents that inter-
act. This interaction can come in any form, including
competition. The collection’s individual entities and
the interaction behavior together comprise the multi-
agent system.

Software Agent: A self-contained piece of soft-
ware that runs on an agent framework with an
intended function to accomplish a simple goal.

