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Abstract: The topic of automatic interpretation of human communicative behaviour, that is, giving machines the 
ability to detect, identify, and understand human interactive cues, has become a central topic in machine 
vision research, natural language processing research and in AI research in general. The catalyst behind this 
recent ‘human-centred computing hoopla’ is the fact that automating monitoring and interpretation of 
human communicative behaviour is essential for the design of future smart environments, next generation 
perceptual user interfaces, and ubiquitous computing in general. The key technical goals concern 
determining of the context in which the user acts, that is, disclosing in an automatic way where is the user, 
what is he doing, and how is he feeling, so that the computer can act appropriately. This paper is pertained 
with the last of these issues, that is, with providing machines with the ability to detect and interpret user’s 
affective states. It surveys the past work done in tackling this problem, provides taxonomy of the problem 
domain, and discusses the research challenges and opportunities. 

 

1. INTRODUCTION 

One of the key challenges in making human-
computer interfaces (HCI) more satisfactory usable 
and universally accessible is to establish human-
computer interaction that captures attributes of 
human-human communication and approaches its 
naturalness. Interpersonal interaction is a complex 
interplay of thoughts, language, and non-verbal 
communicative signals. If that is the intended model 
for future smart virtual environments (Thalmann et 
all 1998), natural HCI (Sharma et all 1998, Marsic et 
all 2000), and ubiquitous computing in general 
(Pentland 2000), then this next generation of HCI 
systems requires translation and emulation of human 
behavioural cues. Hence, the problems related to 
facilitating context sensing and understanding (who 
is the user, where is he, what is he doing, how is he 
feeling), constructing theories of mind (what does 
user want, when to interact, and how to adapt the 
interaction), and facilitating automatic intelligent 
responding (in which way to interact: which words, 
intonation, and facial expression to synthesise), have 
become critical issues in the design and development 
of the next generation HCI systems. These problems 
of human-centred computing are still far from being 
settled but, at a minimum, they are among the most 

exciting and economically important research topics 
in information technology (Pentland 2000). 

Due to numerous areas where benefits could 
accrue from automating affect-sensitive monitoring 
of human communicative displays, this aspect of 
context sensing and understanding attracted interest 
of many AI researchers. In addition to facilitating 
more satisfactory usable and universally accessible 
HCI systems by giving them the ability to sense and 
respond appropriately to user affective feedback 
(Picard 1997), automatic affect-sensitive monitoring 
tools will facile the research in areas as diverse as 
behavioural science (e.g. in topics discussed in 
(Bassili 1979), (Ekman et all 1969)), medicine (e.g. 
in topics like those in (Steimer-Krause et all 1990)) 
and political sciences (e.g. in topics of (McHugo et 
all 1985)). Automatic assessment of attitudinal states 
like boredom, inattention, and stress, will be of high 
value in preventing critical situations in hazardous 
working environments like aircraft cockpits, nuclear 
power plan surveillance rooms, air traffic control 
towers, or simply in the ground traffic vehicles like 
trucks, trains, and personal cars. An advantage of 
affect-sensitive monitoring done by a computer is 
that human observers need not to be present to 
perform privacy-intruding monitoring; an automated 
tool could provide prompts for better performance 
based on the sensed user’s affective state. Besides, 



AFFECT-SENSITIVE MULTI-MODAL MONITORING IN UBIQUITOUS COMPUTING: ADVANCES AND 
CHALLENGES 

 467

automated monitoring will be more accurate since 
computers possess sensory modalities that humans 
lack (e.g. the EEG). 

This paper examines the past work done in the 
field of automating affect-sensitive monitoring of 
human communicative signals. It summarises the 
relevant issues debated in the psychological research 
literature (§2), explains the affect-recognition ability 
of human sensory system (§3), and based upon these 
findings provides a taxonomy of the problem 
domain (§4). Then, the paper examines the state-of-
the-art (§5), discusses some of the challenges and 
opportunities facing researchers in this area (§6), 
and provides the concluding remarks (§7). 

2. PSYCHOLOGICAL ISSUES 

Since an automated analyser of human affective 
states would be extremely beneficial, the question of 
how to best characterize the human perception of 
affective states has become an important concern for 
many researchers in affective computing (Picard 
1997). Ironically, the growing interest in affective 
computing is coming at a time when the established 
wisdom on human affect states is being strongly 
challenged in the basic research literature. 

On one hand, the classic psychological research 
claims the existence of universally displayed and 
recognized six basic expressions of emotions: anger, 
happiness, sadness, surprise, disgust, fear (Bezooijen 
1984, Ekman 1994). This implies that, except of the 
verbal communicative signals (spoken words) which 
are person-dependant (Furnas et all 1987), the non-
verbal communicative signals (e.g. facial expression, 
vocal intonations, body gestures, clamminess, etc.) 
involved in these basic emotions are displayed and 
recognized cross-culturally. On the other hand, there 
is now a growing psychological research that 
strongly challenges the classical theory on emotion. 
The psychologist James Russell argues that emotion 
in general can be best characterized in terms of a 
multi-dimensional affect space, rather than discrete 
emotion categories (Russell 1994). Furthermore, it 
has been shown that the comprehension of a given 
emotion label and the ways of expressing the related 
affective state are culture dependent (Matsumoto 
1990, Cacioppo et all 2000). In turn, it is not certain 
that each of us will express a particular affective 
state by modulating the same communicative signals 
in the same way, nor it is certain that a particular 
modulation of communicative signals will be 
interpreted always in the same way independently of 
who the observer is. 

Consequently, there is no psychological scrutiny 
on universal expressions of affective states that can 

be safely assumed and employed in studies on 
affective computing. One source of help for this 
problem is machine learning: rather than having a 
priori generic rules for affective state recognition, 
we can potentially learn the rules by interacting with 
the user about his/her interpretations of the observed 
affective displays. Thus, a promising strategy is to 
build a personalised, affect-sensitive analyser of 
human communicative signals capable of adapting 
the employed communicative-signals classification-
mechanism according to the user’s wishes. 

3. HUMAN PERFORMANCE 

Affective arousal modulates all, the verbal- and 
the non-verbal communicative signals. As shown by 
Furnas et all (1987), anticipating a person’s word 
choice and the associated intent is very difficult: 
even in highly constrained situations different 
people choose different words to mean exactly the 
same thing. On the other hand, in usual face-to-face 
interaction, people detect and interpret non-verbal 
communicative signals in terms of affective states 
expressed by their communicator with little or no 
effort (Ekman et all 1969). Although a correct 
recognition of someone’s affective state depends on 
many factors (the attention given to the speaker and 
the familiarity with the speaker’s personality, face, 
usual vocal intonation, etc.), humans perform affect 
recognition with an apparent ease. 

A main characteristic of human sensory system 
for affect recognition is the multi-modal analysis of 
multiple communication channels. A channel is a 
communication medium (e.g. the visual channel that 
carries facial expressions) while a modality is a 
sense used to perceive signals from the outside 
world (e.g. the senses of sight and hearing). In usual 
interpersonal face-to-face interaction, many channels 
are employed simultaneously and various modalities 
are activated in combination. As a result, the process 
of analysing the interaction that takes place becomes 
highly flexible and robust. Failure of one channel is 
recovered by another channel and a message in one 
channel can be explained by another channel (e.g. in 
noisy environments we can “hear” what has been 
said by the means of lip reading). 

The abilities of the human sensory system 
define, in some way, the expectations for an 
automated affect-sensitive monitoring tool. Though 
it may not be possible to incorporate all features of 
the human sensory system into an automated alike 
system, the capabilities of the human sensory system 
can certainly serve as the ultimate goal and a guide 
for determining recommendations for the design of 
an automatic affect-sensitive monitoring tool. 
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4. PROBLEM TAXONOMY 

We can build a taxonomy of the affect-sensitive-
monitoring problem domain by considering the 
observation channels and their time scale. The 
domain can be analysed by analysing different 
channels of information that correspond to different 
human communication channels carrying non-verbal 
communicative signals displayed by the observed 
subject. People employ the communication channels 
in a complementary and redundant manner. Affect-
sensitive monitoring tools should perform similarly: 
different observation channels must be considered 
together. Furthermore, each observation channel, in 
general, carries information at a wide range of time 
scales. At the longest scale are static and semi-
permanent signals like bony structure, fat deposits, 
metabolism, and phonetic peculiarities like accent. 
At shorter time scales are rapid behavioural signals 
which represent temporal changes in neuromuscular 
and physiological activity that can last from a few 
milliseconds (e.g. blink) to minutes (e.g. respiration 
rate) or hours (e.g. sitting). In consequence, an ideal, 
automated, user-profiled, affect-sensitive monitoring 
tool will perform (Fig. 1): 

generic, time-instance/time-scale analyses of all 
non-verbal communicative signals, and 

user-defined affect-discriminative interpretation 
of these data previously combined by applying a 
multi-sensory information fusion. 

Since the potential applications of an automated 
affect-sensitive monitoring tool involve continuous 
observation of a subject in a time interval, sensing of 
non-verbal communicative signals should proceed in 
a fully automatic way. An efficient and effective tool 
should start with generic analyses of the sensed 
signals (independently of the subject’s sex, age, 
ethnicity and personal characteristics). Then, in 
order to perform a user-defined interpretation of the 
affective state displayed by the monitored subject, it 
should adapt to the current user (which might be but 
does not have to be the motored subject at the same 

time). Finally, it should perform robustly despite 
(inevitable) auditory noise, changes in viewing and 
lightning conditions, and occlusions such as glasses 
and facial hair. 

It is interesting to note that facial- and vocal 
expressions of attitudinal states are widely thought 
to be the most important in human communication 
and human recognition of affect. As indicated by 
Mehrabian (1968), spoken words contribute for only 
7%, vocal utterances for 38%, and facial expressions 
contribute for even 55% to whether a listener feels 
liked or disliked. This implies that an automated 
affect-sensitive monitoring tool should combine, at 
least, automated modalities for perceiving facial and 
vocal expressions of attitudinal states. 

5. THE STATE OF THE ART 

This section will survey current state-of-the-art 
in the affect-sensitive-monitoring problem domain. 
Rather than an exhaustive survey, the focus will be 
on the efforts recently proposed in the literature that 
had the greatest impact on the community (as 
measured by, e.g., coverage of the problem domain, 
citations and received testing). 

Relatively few of the existing works combine 
different modalities into a single system for human 
affective state analysis. Examples are the works of 
Chen et all (1998) and de Silva & Ng (2000) who 
studied the effects of a combined detection of facial- 
and vocal expressions of affective states. Other 
existing studies treat various human communicative 
signals separately. 

In the last decade, tremendous progress has been 
made in the field of automating sensing, detection, 
tracking and interpretation of human hand and body 
gestures (from simple pointing through manipulative 
gestures to more complex symbolic gestures such as 
those in sign languages). Several exhaustive surveys 
on this topic have been published recently: hand 
gestures visual recognition/interpretation (Pavlovic 
et all 1997), human body modelling techniques 
(Cerezo et all 1999), and human body tracking 
(Pentland 2000). However, after a careful literature 
research, we did not find any report on a system that 
performs human affective state recognition based on 
an automatic analysis of the sensed body gestures. 

Also, we found merely a single work aimed at 
automatic analysis of affective physiological signals, 
namely, the work presented in (Healey & Picard 
1998) and in (Vyzas & Picard 1999). In this work 
automatic recognition of 8 user-defined affective 
states has been reported. Five physiological signals 
have been recorded: EMG from jaw (coding the 
muscular tension of the jaw), blood volume pressure 

Visual 
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Processing 

Tactile 
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Multi-sensory 
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Fig. 1: Architecture of an ideal automated affect-
sensitive tool 
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(BVP), hart rate calculated from the BVP, skin 
conductivity, and respiration. For emotional 
classification, an algorithm has been used that 
combines the Sequential Floating Forward Search 
and the Fisher Projection achieving an average 
correct recognition rate of 81.25%. 

For these reasons, this survey is divided into 
merely two parts. The first is dedicated to the work 
done in automating facial affect analysis in digitised 
images or image sequences. The second explores 
and compares automatic systems for affective state 
recognition from audio input. 

5.1 Automatic Facial Affect Analysis 

Facial expressions are our primary means of 
communicating emotion. In addition, human face-to-
face interaction is inherently natural and substantial 
evidence suggests this may also be true for human-
computer interactions (Marsic et all 2000, Schiano et 
all 2000). These findings, together with advances in 
image analysis and pattern recognition, produced a 
surge of interest in automatic recognition of facial 
affect. For exhaustive surveys, readers are referred 
to: (Samal et all 1992) for a review of early works, 
(Donato et all 1999) for an overview of techniques 
for detecting micro facial actions (AUs), (Pantic & 
Rothkrantz 2000a) for a survey of current efforts. 

The problem of affect-sensitive monitoring of 
facial expressions includes three sub-problem areas: 

finding faces, 
detecting facial features, and 
classifying these data into some affect classes. 
The problem of finding faces can be viewed as a 

segmentation problem (in machine vision) or as a 
detection problem (in pattern recognition). Possible 
strategies for face detection vary a lot, depending on 
the type of input images. The existing systems for 
facial expression analysis process either facial image 
sequences or static facial images. In other words, 
current studies assume, in general, that the presence 
of a face in the scene is ensured. Posed portraits of 
faces (uniform background and good illumination) 
constitute input data processed by the majority of the 
current systems. Yet, in many instances, the systems 
do not utilize a camera mounted on the subject’s 
head as proposed in (Otsuka & Ohya 1998, Pantic & 
Rothkrantz 2000b/c) what will ascertain correctness 
of that assumption. Except of (Essa & Pentland 
1997), (Hong et all 1998), and (Colmenarez et all 
1999), presently existing systems do not perform 
automatic face detection in an arbitrary scene. 

Facial feature extraction from input images may 
be divided into at least four dimensions: 

are the features extracted in an automatic way, 
is temporal information (image sequence) used, 

are the features holistic (spanning the whole 
face) or analytic (spanning subparts of the face), 

are the features view-based (2D) or volume-
based (3D). 

Given this glossary, most of the recently 
proposed approaches to facial affect analysis in 
facial images are directed towards automatic, static, 
analytic, 2D facial feature extraction. Still, many of 
the proposed systems do not perform facial 
information extraction in an automatic way (e.g. 
Chen et all 1998). Though the techniques for facial 
affect classification employed by these systems are 
relevant to the present goals, the systems themselves 
are of limited use for affect-sensitive monitoring 
where analyses of human communicative signals 
should be fully automatic and preferably achieved in 
real time. The approaches to automatic facial data 
extraction, utilised by the existing systems, include 
analyses of:  

facial motion (e.g. Essa & Pentland 1997, 
Otsuka & Ohya 1998, de Silva & Ng 2000), 

holistic spatial pattern (e.g. Hong et all 1998), 
analytic spatial pattern (e.g. Colmenarez et all 

1999, Pantic & Rothkrantz 2000b/c). 
In many instances strong assumptions are made 

to make the problem of facial feature detection more 
tractable (e.g. images contain portraits of faces with 
no facial hair or glasses, the illumination is constant, 
the subjects are young and of the same ethnicity). 
Few of the existing systems deal with rigid head 
motions (e.g. Hong et all 1998, Colmenarez et all 
1999) and only the method proposed by Essa & 
Pentland (1997) deals with the images of faces with 
facial hair and glasses. 

Eventually, an automated facial affect analyser 
should classify the extracted facial features and 
provide a description of the displayed facial affect. 
However, exactly which affective/attitudinal states 
the system should recognise will depend on its 
application domain. If the intended application is, 
e.g., monitoring of a nuclear-power-plant operator, 
then the facial affect analyser to be deployed will be 
probably aimed at discerning stress and inattention. 
Except for the system of Pantic & Rothkrantz 
(2000c) that performs facial expression classification 
into user-defined interpretation classes, the existing 
facial affect analysers perform classification into a 
number of the six basic emotion categories as 
defined by Ekman (1994). Overall, the classification 
techniques used by the existing systems include:  

template-based classification in static images 
(e.g. Hong et all 1998), 

template-based classification in image sequences 
(e.g. Essa & Pentland 1997, Otsuka & Ohya 1998, 
Colmenarez et all 1999), 

ANN-based classification in static images (e.g. 
Zhang et all 1998), 
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rule-based classification in static images (e.g. 
Chen et all 1998, Pantic & Rothkrantz 2000b/c), 

rule-based classification in image sequences (e.g. 
de Silva & Ng 2000). 

Given that humans detect six basic emotional 
expressions with an accuracy ranging from 70% to 
98% (Bassili 1979), it is rather significant that the 
automated systems achieve accuracy of 74% to 98% 
when detecting 3-7 emotions deliberately expressed 
by 8-40 subjects (Pantic & Rothkrantz 2000a). 

5.2 Automatic Vocal Affect Analysis 

In contrast to spoken language processing, which 
witnessed significant advances in the last decade 
(Juang & Furnai 2000), processing of “emotional” 
speech has not been widely explored by the auditory 
research community. However, recent data show 
that automated speech recognition, which works at 
about 80-90% accuracy on neutrally spoken speech, 
tends to drop to 50-66% accuracy on emotional 
speech (Steeneken & Hansen 1999). Although such 
findings triggered some efforts at automating vocal 
affect analysis, the focus of most researchers in this 
field has emphasized synthesis of emotional speech 
(Murray & Arnott 1996). 

The problem of vocal affect analysis includes 
two sub-problem areas:  

specifying auditory features to be estimated from 
the input audio signal, and 

classifying those data into some affect classes. 
The research in psychology/psycholinguistics 

provides an immense body of results on acoustic and 
prosodic features which encode the affective state of 
a speaker (e.g. Frick 1985, Schrer & Banse 1996). 
These studies point to the pitch as the main vocal 
cue for affective state recognition in speech. Most of 
the works on automating affect-sensitive analysis of 
vocal expressions, presented in the literature up to 
date, use this finding and estimate the pitch of the 
input audio signal. Other acoustic and prosodic 
features used in the existing works are:  

intensity (i.e. vocal energy, power) (e.g. Tosa et 
all 1996, Chen et all 1998, Petrushin 1999), 

slope (e.g. Li & Zhao 1998, Polzin 2000), 
temporal features like speaking rate (e.g. Tosa et 

all 1996, Amir & Ron 1998, Petrushin 1999), 
derivate features such as the smoothed pitch 

contour and its derivatives (Dellaert et all 1996), 
phonetic features like the signal’s LPC-linear 

predictive coding parameters (Tosa et all 1996), 
supra-segmental features such as the intensity 

and pitch over the duration of a syllable, word or 
sentence (Li & Zhao 1998, Polzin 2000). 

Virtually all of the existing work on automating 
vocal affect analysis performs singular classification 

of input audio signals into few of the basic emotion 
categories. Utilised classification techniques include:  

K-nearest neighbours (e.g. Dellaert et all 1996) 
HMM (de Silva & Ng 2000, Polzin 2000) 
Gaussian mix density models (Li & Zhao 1998) 
Rule-based approach (Chen et all 1998) 
Fuzzy membership indexing (Amir &Ron 1998) 
ANN (e.g. Tosa et all 1996, Petrushin 1999) 
In general, people can recognize emotion in a 

neutral-content speech with an accuracy of 60-70% 
when choosing from among six basic affective states 
(Bezooijen 1984). Automated vocal affect analysers 
match this accuracy when recognizing 4-8 emotions 
deliberately expressed by 2-100 subjects recorded 
while pronouncing sentences of 1-12 words length. 

In many instances strong assumptions are made 
to make the problem of automating vocal expression 
analysis more tractable (e.g. the recordings are noise 
free; the recorded sentences are short, delimited by 
pauses, and carefully pronounced to express the 
required affective state; subjects are non-smoking 
professional or non-professional actors). Only one of 
the existing automated vocal affect analysers, i.e. 
(Petrushin 1999), has been tested on ‘almost’ real 
world data composed of short telephone massages 
spoken by 18 non-professional actors expressing 
mainly neutral and angry vocal affects (recognition 
rates reported are 73-77%). Overall, the testing data 
sets are small (5-50 sentences spoken by few 
subjects) containing exaggerated vocal expressions 
of affective states. Hence, the state of the art in 
automatic affective state recognition from speech is 
similar to that of speech recognition several decades 
ago when computers could classify the carefully 
articulated digits spoken with pauses in between, but 
could not accurately detect these digits if they were 
spoken in a way not previously encountered and 
forming a part of a longer continuous conversation. 

6. KEY CHALLENGES 

The limitations of the existing affect-sensitive 
monitoring tools are probably the best place to start 
a discussion of the challenges and opportunities that 
face researches of affective computing. The issue 
that strikes and surprises us most is that, though the 
recent advances in video and audio processing make 
automatic multi-modal affect-sensitive monitoring a 
remarkably tractable problem and though all agreed 
that solving this problem would be extremely 
beneficial, merely two efforts (i.e. Chen et all 1998 
de Silva & Ng 2000) aimed at actual implementation 
of such a multi-modal tool have been presented in 
the literature up to date. Also, there is no record of a 
research endeavour towards inclusion of all non-
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verbal modalities into a single system for affect-
sensitive monitoring of human behaviour. Next to 
the problem of achieving a deeper integration of the 
presently detached visual and auditory research 
communities, there are a number of related issues. 

6.1 Visual Input 

As already remarked in section 4, acquisition of 
video input for an affect-sensitive monitoring system 
concerns, at least, detection of monitored subject’s 
face in the observed scene (if not of the upper part of 
body as well). The problematic issue here, typical of 
all visual processing, is that of occlusion, scale, and 
pose. Namely, in most real-life situations it cannot 
be assumed that the subject will remain immovable; 
rigid head motions can be expected causing changes 
in the viewing angle and in the visibility and 
illumination of the tracked facial features. Although 
highly time-consuming, the scale problem can be 
solved by forming a multi-resolution representation 
of the input image/frame and performing the same 
detection procedure at different resolutions. Pose 
and occlusion are more difficult problems, initially 
thought to be intractable or at least the hardest to 
solve. However, interesting progress is being made 
in machine vision research. The focus of active 
vision on foveal purposeful vision is the design and 
development of special sensors, which serve a 
specified purpose and are based on the principal of 
human-eye fovea in the sense that they can pan and 
zoom on relatively small regions of the scene that 
contain critical information. Further, statistical 
methods have been developed that essentially try to 
predict/guess the pose of monitored objects from 
whatever image information is available. Finally, 
methods for the monitored object’s representations 
at several orientations, employing data acquired by 
multiple cameras, are currently thought to provide 
the most promising solution to the problems of pose 
and occlusion. For an extensive review of the 
methods for video-surveillance, the reader is referred 
to (Collins et all 2000). 

Next to these standard problems of all visual 
processing, another issue typical for facial image 
processing concerns ‘universality’ of the employed 
technique for detection of the face and its features. 
Namely, the employed detection method must not be 
prone to the physiognomic variability and the 
current outlook of monitored subjects. As explained 
in section 4, an ideal automated affect-sensitive 
monitoring tool should perform generic analyses of 
the sensed facial information independently of 
possibly present static facial signals such as wrinkles 
and artificial facial signals like glasses and make-up. 
Essa & Pentland (1997) proposed such a method. 

6.2 Audio Input 

As already remarked in section 5.2, virtually all 
of the work done on automating vocal affect analysis 
assumes a fixed listening position, a closely placed 
microphone, non-smoking subjects, and noise-free 
recordings of short sentences that are delimited by 
pauses and carefully pronounced to express the 
required affective state. Hoping for such a clean 
audio input is not realistic, especially in the case of 
unconstrained environments characteristic for most 
applications in ubiquitous computing. One possible 
way of enhancing the state-of-the-art in vocal affect 
analysis is to explore existing methods for human 
language and speech processing and employ the 
most prominent pattern-recognition methods that 
minimize classification error rate. Excellent reviews 
of the existing methods for spoken language 
processing could be found in (Juang & Furnai 2000). 

Another intriguing issue is the kind of features 
that should be adopted in order to achieve robust 
vocal affect recognition from speech. One standpoint 
is that the features should be solely prosodic and 
different from the phonetic features used for speech 
recognition. The other standpoint is that prosodic 
and phonetic features are tightly combined when 
uttering speech; it is impossible for us to express and 
recognize vocal affects by concerning prosodic 
features only. The later is experimentally proved – 
the observers who didn’t speak Sinhala language 
performed correct recognition of six different 
emotions in Sinhala spoken speech merely with an 
average of 32.3% (de Silva et all 1998). Another 
interesting observation is that the information 
encoded in the speech signal becomes far more 
meaningful if peach and intensity could be observed 
over the duration of a syllable, word, or phrase 
(Polzin 2000). For researchers of automatic vocal 
affect analysis this suggests investigating towards 
robust, speaker-independent, temporal analysis of 
phonetic and prosodic characteristics of speech. 

6.3 Multi-modal Input 

As far as an automatic multi-modal monitoring 
of human affective states is concerned, the goal is to 
achieve generic, time-instance/time-scale analyses of 
audio, visual, and tactile human communicative 
signals. An ideal human affect analyser (Fig. 1, §4) 
should generate a reliable result based on multiple 
input signals acquired by different sensors. Let us 
explain this issue in more detail. 

Considering the state-of-the-art in audio, visual, 
and tactile processing, inaccurate, noisy and missing 
data should be expected. An (ideal) affect-sensitive 
monitoring tool should be able to deal with these 
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imperfect data and to generate its conclusion so that 
the certainty, associated with it, varies in accordance 
to the certainty of the input data. A way of achieving 
this is to consider time-instance vs. time-scale 
dimension of human paralanguage. Namely, there is 
a certain grammar of neuromuscular actions and 
physiological reactions: only a certain subclass of 
these actions/reactions with respect to the currently 
encountered action/reaction (time-instance) and the 
previously observed actions/reactions (time-scale) is 
plausible. If the current input data affirm these 
statistically predicted actions/reactions, the certainty 
associated with that data should be ‘high’ and the 
certainty of the drawn conclusion is to be computed 
accordingly. Nevertheless, such a temporal analysis 
involves untangling the grammar of human 
behaviour, which is a rather unexplored topic even 
in the psychological and sociological research areas. 
The issues, which make this problem even more 
difficult to solve in a general case, concern the 
dependency of human behaviour upon the monitored 
person’s personality, cultural and social vicinity, 
current mood, and the context (situation) in which 
the observed behavioural cues occur. One source of 
help for these problems is machine learning – rather 
than having a priori rules of human behaviour, we 
can potentially learn application-, user-, and context-
dependent rules by watching the user’s behaviour in 
the sensed context. Though context-sensing and the 
time needed to learn appropriate rules are significant 
problems (Pentland 2000), usefulness and universal 
accessibility of such an adaptive affect-sensitive 
HCI tool could dwarf previous generations of HCI 
systems. 

Another issue that is typical of all multi-modal 
processing is that of processing multi-sensory data 
separately, combining them only at the end (Sharma 
et al 1998). The system proposed by de Silva & Ng 
(2000) is an example. Yet, this is almost certainly 
incorrect; people display audio, visual, and tactile 
communicative signals in a complementary and 
redundant manner. Chen et al. (1998) have proved 
this experimentally for the case of audio and visual 
input. In order to accomplish a multi-modal analysis 
of multiple signals acquired by different sensors, 
which will resemble human recognition of affective 
states, the input signals cannot be considered 
mutually independent and cannot be combined at the 
end of the intended analysis. In turn, the input data 
should be processed in the joint feature space. In 
practice, yet, there are two major difficulties:  

a huge joint feature space resulting in a heavy 
computational burden, and 

different feature formats and timing. 
A way of dealing with these problems and 

achieving tightly-coupled multi-sensory data fusion 
is to apply a Bayesian inference method as presented 

in (Pan et all 1999). However, due to the complexity 
of the phenomena and a general luck of researchers 
having expertise in all domains (audio, visual, and 
tactile processing), untangling the problem of joint 
audio-visual-tactile human affect analysis is still a 
significant challenge facing the researchers of multi-
modal human affect analysis. 

6.4 Interpreting Multi-modal Input 

Currently existing methods aimed at automating 
human affect analysis are not context-sensitive. Yet, 
interpreting human communicative signals is 
strongly situation-dependent (Russell 1994). Initially 
thought to be the research topic that would be 
hardest to solve, context-sensing in terms of who is 
the user, where is he, and what is he doing, has been 
proven remarkable tractable. For a discussion on 
advances and challenges in this research topic, 
readers are referred to (Pentland 2000). Yet, due to 
the complexity of this wide-ranging problem and a 
general luck of researchers having the full extent of 
necessary expertise, the problem of context-sensitive 
human affect analysis poses, perhaps, the most 
significant research challenge. 

Another issue concerns the actual interpretation 
of human communicative signals in terms of affect/ 
attitudinal states. Almost all of the existing work 
employs singular classification of input data into one 
of the six basic emotion categories (section 5). This 
approach has many limitations. As explained in 
section 2, the theory on existence of six universal 
emotion categories is nowadays strongly challenged 
in the psychological research area. Further, as noted 
by the inventor of this theory himself, pure 
expressions of basic emotions are seldom elicited. 
Most of the time people show blends of emotional 
displays. Hence, classifying human communicative 
signals into a single basic-emotion category isn’t 
realistic. An affect-sensitive analyser of sensed 
human communicative signals must at least realise a 
quantified classification into multiple emotion 
categories, e.g., as proposed in (Pantic & Rothkrantz 
2000b) and (Zhang et all 1998) for the case of 
automatic facial affect analysis. Yet, not all human 
communicative displays can be classified as a 
combination of the six basic emotion categories. 
Think for instance about contempt, stress, boredom, 
or ‘I don’t know’ attitudinal states. Besides, it has 
been shown that the comprehension of a given 
emotion label and the ways of expressing the related 
affective state differ from culture to culture 
(section2). Hence, defining interpretation categories 
into which any set of human communicative signals 
can be classified is one of the key challenges in 
design of a realistic affect-sensitive monitoring tool. 
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The lack of psychological scrutiny on the topic 
makes this problem even harder. One source of help 
for this problem is machine learning: instead of 
building rigid generic rules into the intended tool, 
the system can potentially learn its own expertise by 
allowing the user to define his own interpretation 
categories, e.g., as proposed in Pantic & Rothkrantz 
(2000c) for an automated facial affect analyser. As 
already remarked in section 6.3, an adaptive (user-, 
application-, and context-profiled) affect-sensitive 
monitoring tool would represent an ideal automated 
tool for understanding of human behaviour that 
could greatly enhance the state-of the-art in HCI. 

7. CONCLUSION 

Automating user-profiled, multi-modal, context-
and affect-sensitive monitoring and interpretation of 
human behavioural cues is likely to be the single 
most widespread research topic of the AI research 
community in general (Pentland 2000). The catalyst 
behind is that untangling the problems related to this 
research topic is prerequisite for the design of next 
generation perceptual interfaces and ubiquitous 
computing in general. 

However, currently existing methods aimed at 
automating human affect analysis are:  

uni-modal, except of the systems proposed by 
Chen et all (1998) and de Silva & Ng (2000) that 
perform a joint audio-visual affect analysis, 

context-insensitive, and 
user-inadaptable, except of the automated facial 

analyser of Pantic & Rothkrantz (2000c), which 
performs facial data interpretation in terms of affect-
descriptive labels learned from the user. 

In summary, though the fields of machine vision, 
audio processing, and affective computing generally, 
witnessed rather significant advances in the past few 
years, realisation of robust, fully automated, multi-
modal, adaptive, affect-sensitive analyser of human 
communicative cues is still in a rather distant future. 

Another problematic issue, which jeopardises a 
future wide deployment of adaptive affect-sensitive 
monitoring tools proposed in this paper, concerns 
the efficiency of such HCI tools. Namely, since 
embedded computing devices are generally thought 
to be everywhere in the future, having the user train 
each of those devices will be inefficient. The 
computers of our future must know enough about 
the people and the environment in which they act to 
be capable of acting appropriately with a minimum 
of explicit instruction (Pentland 2000). A long-term 
way of achieving this is:  

to develop multi-modal affect-sensitive tools, as 
proposed in this paper, which will be capable of 

monitoring human behaviour and adapting to the 
current user (who is he, what is the grammar of his 
behavioural actions/reactions), his context (where is 
he, what is he doing at the point), and the application 
domain (e.g. observing stress by a nuclear power 
plant operator while he reads his e-mail is not the 
reason for an alarm), then 

to make those self-adaptive tools commercially 
available to the users that will profile them in the 
context in which the tools are to be used, and finally 

to withdraw the trained systems after some time 
and combine the stored knowledge in order to derive 
generic statistical rules/models of human behaviour 
in the given context/environment. 

Though willingness of people to participate in 
such a privacy-intruding large-scale project is a 
significant problem in its own right, this approach 
could resolve many intriguing questions. The most 
important is that this could resolve the social impact 
of interaction in electronic media, i.e., the effects of 
information technology on: interpersonal interaction, 
overall related human behaviour, and our cultural 
and social vicinity. 

While all agreed that giving the machines the 
ability to interpret human behaviour without explicit 
instruction would be enormously beneficial, would 
represent the coming of universally usable and 
accessible HCI systems, and would probably define 
the impact information technology has on our social 
behaviour, we also should recognise the likelihood 
that such a goal is still in the relatively distant future.  
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