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The analysis of surface and texture details with the help of changes in illumination
direction is a key task in 3D shape reconstruction either based on Photometric Stereo,
Shape from Shading or Structured Light. This paper presents a novel approach for
estimating the optimal illumination directions for the accurate calculation of the surface
normals, while minimising the presence of shadows and the reconstructed albedo error.
The method regards a sparse representation of the illumination arrangement and
estimates the light directions using l1 optimisation. The Lambertian model is considered
and the theoretical development is demonstrated with experimental results.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The variation of the intensities observed in images
depends on variation in both surface reflectance and
surface relief. While the reflectance properties are intrinsic
to a surface, the surface relief produces a pattern of
shadings that depends strongly on the direction of illumi-
nation. The appearance of a 3D surface changes drastically
with illumination. Different image details are enhanced for
different illumination directions. In addition, depending
on the imaging geometry, highlights may be created
damaging the captured image. So, illumination and view-
ing directions play a crucial role in the quality of the
produced image, and they should be carefully chosen for
applications in which this is possible. This is more so for
photometric stereo where estimates of local surface orien-
tation and local surface albedo are obtained by using
several images of the same surface taken from the same
All rights reserved.

k (V. Argyriou).
viewpoint but illuminated from different directions.
Sub-optimal geometric arrangements may crucially affect
the reliability of the subsequently inferred information.

Woodham [40] was the first to introduce photometric
stereo. He proposed a method which was simple and
efficient, but only dealt with Lambertian surfaces and
was sensitive to noise. In his method, the surface gradient
can be recovered by using two photometric images,
assuming that the surface albedo is already known for
each point on the surface. Coleman and Jain [12] extended
photometric stereo to four light sources, where specular
reflections were discarded and estimation of surface shape
could be performed by means of diffuse reflections and the
use of the Lambertian model. Nayar et al. [28] developed a
photometric approach which uses a linear combination of
the Lambertian model and an impulse specular compo-
nent to obtain the shape and reflectance information for a
surface. Barsky and Petrou [3–5] presented an algorithm
for estimating the local surface gradient and real albedo by
using four source colour photometric stereo in the presence
of highlights and shadows. It is also worth mentioning the
related work presented in Solomon and Ikeuchi [33],
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Chandraker et al. [10], Levine and Bhattacharyya [25],
Finlayson et al. [15], Smith and Hancock [32], Sun
et al. [36], Alldrin et al. [1], Hertzmann and Seitz [20],
Georghiades [17], Tagare and deFigueiredo [37], Ragheb and
Hancock [29], Argyriou et al. [38], Argyriou and Petrou [39],
Zhang et al. [44], Fyffe et al. [16], Sakaue and Sato [31], and
Miyazaki and Ikeuchi [26].

In this paper, we analyse the problem of estimating the
optimal imaging configuration using a sparse representa-
tion method. In Section 2 we briefly present some previous
work on the subject. Standard photometric stereo is
reviewed in Section 3. In Section 4 our methodology on
optimal illumination directions estimation is presented.
Experiments are presented in Section 5 and conclusions in
Section 6.

2. Previous work

The problem of estimating the proper lighting arrange-
ment in 3D surface reconstruction methodologies based
on photometric stereo has been considered in the past
[41,24,34,11]. Both the number of required light sources
and the optimal illumination configurations in terms of
azimuth φl and zenith θl angles of each light source l have
been evaluated and studied in order to provide more
accurate normals and 3D reconstructions. The use of dense
iso-intensity contours was recommended by Woodham
[41] to obtain maximum accuracy, since in this case a small
change in the surface gradient components pn and qn
results in a large intensity change. In order to achieve
dense iso-intensity contours the zenith angle θl is
increased, but this increases the number of shadows,
which limits the effectiveness of the algorithm. Regarding
the azimuth angles of the light sources, Woodham pointed
out that the illumination vectors must not be co-planar,
otherwise the illumination matrix L is not invertible. The
illumination matrix is made up from the directions of
the different illuminants written as rows. If nðx; yÞ is the
normal vector for surface patch (x,y), ρSðx; yÞ is the albedo
of the same patch and Aaðx; yÞ is the vector representing
the grey values in the corresponding images for this patch,
we have

Aaðx; yÞ ¼ ρSðx; yÞLnðx; yÞ ð1Þ
In the case of a two image photometric stereo, Lee and

Kuo [24] deduced that it is desirable to incorporate
reflectance maps that compensate each other's weak-
nesses, in order to determine the optimal illumination
configuration. Observing that the azimuth angle φl of the
illumination vector determines the orientation of the
reflectance map about the origin of the axes, whereas
the zenith angle θl determines the distance between the
origin of the axes and the point of maximum illumination,
i.e. the point that has normal vector parallel to the vector
towards the light source, determined by coordinates ðpl; qlÞ
in the gradient space, the angular difference between two
reflectance maps would be given by jφl1−φl2 j.

Gullon [18] confirmed that the two image photometric
stereo is more sensitive to the azimuth rather than the
zenith angle difference and that the optimal value for the
difference in the azimuth angles of the two lighting
directions is 901. Furthermore, Gullon suggested that
distributing the illumination azimuth angles uniformly
through 3601 is optimal when three-light photometric
stereo is considered. A theoretical analysis of Gullon's
arrangement was presented by Spence and Chantler
[34,35] based on the sensitivity analysis of photometric
stereo deriving expressions of each surface normal vector
with respect to image intensities.

Due to the dependance on the surface shape and its
statistics, it was found in Spence and Chantler [34] that the
optimal azimuth and zenith angles cannot be specified and
that the configuration that results in the minimum noise is
not unique. In the case of the common zenith angle being
constrained, the optimal values for azimuth angles were
estimated and it was suggested to use 1201 angle differ-
ence in a three-image Lambertian photometric stereo
configuration. This result is in agreement with the work
of Gullon [18], where a uniform distribution of illumina-
tion directions was recommended.

The optimal zenith angle in case of uniformly distrib-
uted light sources, according to the azimuth angle, has
been found to be around 551, but if shadows are present
the angle should be reduced [34,18]. On the contrary, if the
surface is smooth and shadows are not an issue, the zenith
angle can be increased. Furthermore, Drbohlav and Chantler
[14] extended the above for n light sources and deduced the
same optimal zenith angle when the sources were equally
spaced in azimuth angles of 360=n degrees.

Regarding the number of light sources required, Coleman
and Jain [12], Solomon and Ikeuchi [33], Barsky and Petrou
[4,5] and Chandraker et al. [10] proposed methodologies
requiring four light sources. Rushmeier et al. [30] proposed a
five light source photometric stereo system, while a six light
source photometric stereo technique was suggested by Sun
et al. [36] employing a slightly more sophisticated decision
criterion so as to discard pixels with doubtful values.

In this paper the optimal illumination configurations in
terms of azimuth φl and zenith θl angles have been worked
out using l1 optimisation of a criterion function defined in
Section 4. The proposed methodology is evaluated using
standard four light photometric stereo but it may be
generalised and combined with any other photometric
stereo algorithm.
3. Photometric stereo for Lambertian surfaces

For a Lambertian object illuminated by a light source of
parallel rays, the observed image intensity a at each pixel
is given by the product of the albedo ρ and the cosine of
the incidence angle θi (the angle between the direction of
the incident light and the surface normal) [21]. The above
incidence angle can be expressed as the dot product of two
unit vectors, the light direction l and the surface normal n,
a¼ ρ cosðθiÞ ¼ ρðl � nÞ.

Let us now consider a Lambertian surface patch with
albedo ρ and normal n, illuminated in turn by several
fixed and known illumination sources with directions
l1, l2;…; lQ , where Q is the total number of light sources.
In this case we can express the intensities of the obtained
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(grey scale) pixels as

ak ¼ ρðlk � nÞ; where k¼ 1;2;…;Q : ð2Þ
We stack the pixel intensities to obtain the pixel

intensity vector Aa ¼ ða1; a2;…;aQ ÞT . Also the illumination
vectors are stacked row-wise to form the illumination
matrix L¼ ðl1; l2;…; lQ ÞT . Eq. (2) could then be rewritten in
matrix form

Aa ¼ ρLn ð3Þ
If there are at least three illumination vectors which are
not coplanar, we can calculate ρ and n using the Least
Squares Error technique, which consists of using the
transpose of L, given that L is not a square matrix:

LTAa ¼ ρLTLn⇒ðLTLÞ−1LTAa ¼ ρn ð4Þ
Since n has unit length, we can estimate both the surface
normal (as the direction of the obtained vector) and the
albedo (as its length). Extra images allow one to recover
the surface parameters more robustly.

4. Finding the optimal light positions using
l1 optimisation

In this section we describe a method for finding the
optimal light position for a given type of 3D surface, by
trying to eliminate the shadows while recovering the
albedo of each facet of the surface. From these lights we
shall select the Q lights with which we need to perform
Photometric Stereo (PS). Usually Qo8, which is also
adequate for simulation application using OpenGL or other
rendering tools increasing simultaneously the overall
performance.

In other words, in the optimisation stage, we try to find
the smallest number m of required lights for both the
exclusion of all shadows and for albedo reconstruction.
In case m48, we select the best 8 of them and consider all
their Q-light combinations, with the restriction of not
being collinear. Then the best combination is selected.
The term “best” in this context will be defined later, after
Eq. (10). In case Qomo8, again all combinations of m by
Q are tested and the best one is selected. In case moQ ,
extra lights are added, selected as the “best” from among
those that were not picked by the optimisation algorithm,
because they did not fulfill some of the criteria used by
that algorithm. This is so that we always have a predefined
fixed number of lights Q. In our scenarios Q¼4. It should
be mentioned at this stage that not only the performance
in terms of accuracy increases with the number of lights Q
but also the cost and the computational complexity. The
actual improvement in performance depends on the par-
ticular shape of the reconstructed scene and regarding the
proposed approach it will also improve the reconstruction
independent of the characteristics of the observed shapes.

The proposed method does not make any assumptions
about the underlying illumination model. However, we
assume that we know the generic shape of the surfaces
that are to be reconstructed by photometric stereo. So, the
idea is to work out the optimal illumination directions for
the particular type of surface and then use them for all
subsequent surfaces. For example, if we want to
reconstruct faces, we use a generic model face to work
out the optimal light arrangement, which may subse-
quently be used for all real faces we wish to image.
Regarding the number of samples it depends on the
particular object class since they are required to generate
an average or generic surface. Another approach would be
to utilise a prototype to obtain the generic surface and in
that case only one actual object is required. About the
complexity of the optimisation stage it is not an issue and
does not affect the performance of the system since it is
performed only once per object class and not during the
actual reconstruction. Also in the case a generic shape is
not possible to be extracted, a recursive approach could be
introduced using an initial setup (e.g. [14]) and then based
on the obtained initial reconstruction the optimal illumi-
nation directions could be estimated using the same
approach.

In order to develop the proposed method we make use
of recent advances in the sparse representation theory.
According to the sparse representation theory, sparse
signals can be exactly reconstructed from a small number
of measurements [13,9,8,23]. These principles have been
used for face recognition, image super-resolution and face
hallucination [42]. Wright et al. [42] motivated by the
principles of compressed sensing, tried to represent an
object using a sparse linear combination of an overcom-
plete dictionary. In particular, a facial image was repre-
sented as a sparse linear combination of the training facial
images. It was shown that, when a sufficient number of
training samples were available from each facial class, it
was possible to represent the test samples as linear
combinations of just the training samples from the same
facial class. The resulting optimisation problem penalised
the l1-norm of the coefficients in the linear combination.
The authors showed that the representation was indeed
sparse, involving only a small fraction of the overall
training database. They also argued that the calculation
of the sparsest representation is a way of performing
discriminant analysis between the facial classes. This
intuitively means that the test image is most likely to
belong to the facial class with the most nonzero
coefficients.

Let us consider all possible positions of lights uniformly
distributed on the surface of a hemisphere, with the
inspected object located at the center of the hemisphere
and the camera at the zenith of the object. Moreover, let us
assume that a light exists in each position, and let us use
these lights to acquire images from a 3D object, that is a
generic representative of the type of surface we wish to
inspect. For example, if we wish to inspect human faces,
this object could be a properly painted mask, or a typical
face. For every possible light corresponds an image and a
shadow map (i.e. a map marking the pixels that are turned
away from the illuminating source). An example of the
above is shown in Fig. 1. We assume that in order to
reconstruct the original albedo of the surface and to
eliminate the shadows (i.e. obtain a shadowless surface)
we only need a limited number of lights which should be
specific for the 3D object in hand. So, we have to identify
from among all possible positions of the lights on the
hemisphere of Fig. 1, the subset that is adequate for our



Fig. 1. The hemisphere structure and the sampled lights. For each light and each 3D surface correspond a grey scale image and a shadow map, respectively.
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problem. In other words, we formulate the problem of
finding the optimal directions of lights for a given object as
the search of the sparsest set of lights in order to
reconstruct the albedo and a ‘shadow map’ without any
shadowed parts (Fig. 2).

Let ai and si be the grey scale image and the shadow
map that are derived from the i-th light, respectively.
Let also ao be the albedo of the reference surface used
for training and so the shadow map with the minimum
number of shadows.

We now create the dictionary Aa ¼ ½a1j…jaN�, which is
a matrix with columns of the images captured under all
N-sample lights and the dictionary As ¼ ½s1j…jsN�, which
contains the shadow maps for all the sample lights.
We shall first consider the two components, i.e. the images
and the shadow maps, separately and then we shall
propose a fusing scheme.

In the case of the images, we seek to find the sparsest
vector wa such that the albedo a can be written as a linear
combination of the columns of dictionary Aa. This optimi-
sation problem then is as follows:

~w0
a ¼ arg min∥wa∥0 subject to Aawa ¼ a ð5Þ

where ∥:∥0 denotes the l0-norm, which counts the number
of nonzero entries in a vector. Unfortunately, the problem
of finding the sparsest solution ~w0

a is NP-hard, and difficult
to solve even approximately. Recent developments in the
emerging theory of sparse representations and com-
pressed sensing [13,8] reveal that if the sought solution
w0

a is sparse enough, the solution of the l0-minimisation
problem (5) is equal to the solution of the following
l1-minimisation problem:

~w1
a ¼ arg min∥wa∥1 subject to Aawa ¼ a: ð6Þ

Alternatively, if we allow an error in the reconstruction,
the problem becomes

~w1
a ¼ arg min∥wa∥1 subject to ∥Aawa−a∥2oϵa: ð7Þ
Usually ϵa∼10−3. This problem can be solved in polynomial
time using the algorithm presented in Candes and
Romberg [7].

In a similar fashion, we can use the shadow maps si for
all the lights i¼1,…,N in order to build the dictionary and
try to find a sparse vector ws so that we have a shadow
map s with minimum number of shadows:

~w1
s ¼ arg min∥ws∥1 subject to ∥Asws−s∥2oϵs: ð8Þ

Now, let us try to find the sparse vector of lights w
using both albedo and shadow map information, that is,
for the same vector w having both Asws ¼ s and Aawa ¼ a.
The optimisation problem can be formally written as

~w1 ¼ arg min∥w∥1
subject to ∥Asw−s∥2oϵa

and ∥Aaw−a∥2oϵs: ð9Þ

We shall try to solve the above optimisation problem using
a different formulation. Let us create the composite con-
catenated vector fc containing both the image and the
shadow map of all sampled lights fc ¼ a

s

� �
and the con-

catenated dictionary Ac containing the albedos and the
shadow maps of all sampled lights Ac ¼ ½Aa

As
�. Then let us try

to identify vector wc, such that

~w1
c ¼ arg min∥wc∥1 subject to ∥Acwc−fc∥2oϵc: ð10Þ

After the calculation of a sparse vector w1 from one of
the optimisation problems (7), (8) or (10), we choose the
best subset I of lights (usually between 4 and 8), i.e. the
subset of m lights with the largest coefficients wi. So, if we
want to select Q-lights we take all possible Q-light combi-
nations ðmQ Þ if there arem nonzero entries inw1. Let us now
assume that we have in total Cn sets I i with each of them
containing Q-lights. Let w1ðI iÞ denote vector:

½w1ðI iÞ�j≜
½w1�j if j∈I i

0 if j≠I i:

(
ð11Þ



Fig. 2. An example of sparse decomposition of the shadowless image and albedo. Along the vertical axis we measure the weight by which the corresponding
image is multiplied and combined with the others to yield the albedo of the surface, and along the horizontal axis we list all the illumination directions.
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For all sets I i, calculate the corresponding residual. For
example, for the set coming from the solution of optimisa-
tion problem (7), we compute

rðI iÞ≜∥a−Aaw1ðI iÞ∥2 ð12Þ
Then, among all the different sets I i, we choose the one
with minimum residual:

Iopt ¼ arg min
I i

rðI iÞ ð13Þ

The above algorithm can be summarised as follows.

Algorithm 1.

Data Arrange N illuminants to lie on the surface of a hemisphere.
initialisation
foreach light do
calculate a shadow map si∈½0;1�M1�M2 ;

calculate the intensity image ai∈½0;255�M1�M2 of the 3D
reference object used for training;
end

Result:
 Downsample, or project using orthogonal random bases, the

shadowmap to si∈RP and the image to ai∈RP and create the
dictionaries As and Aa .
Result:
 Solve one of the optimisation problems (7), (8) or (10) in
order to derive a sparse set of weights w1 for the
illuminants.
Result:
 From the set w1 choose a set of m⪡N lights (in our case
m¼8) with the largest coefficients such that every four of
them are linearly independent.
forall n-combinations I1;…In (in our case n¼ ðmQÞ) do

Calculate the residual using (12) or the corresponding
equation, according to which optimisation problem you
have solved, and choose the one with the minimum Iopt

(Eq. (13)).

end

5. Experiments and results

In our experiments three sets of simulated surfaces
were used for evaluation, namely isotropic surfaces, aniso-
tropic surfaces and simulated human faces. Additionally,
for each surface, three different textures were used to
simulate albedo. In the case of human faces a uniform grey
colour was used, as well as real skin albedo. For surface
reconstruction, the standard four light photometric stereo
was used, without applying any sophisticated algorithms
to discard shadows or highlights. Also it should be men-
tioned that other methods could be used for the evalua-
tion, such as the work of Wu et al. [43], Hernndez et al.
[19], and Hyeongwoo et al. [22]. For each set of surfaces



Fig. 3. An example of a simulated isotropic surface of size 128�128 pixels; and two example surfaces from each of the four sets of anisotropic surfaces
used in our experiments.
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four light sources were obtained using the proposed
methodology. A subset of each surface class was used to
obtain the optimal illumination directions for the corre-
sponding set. From each surface in the training subset the
optimal illumination directions were identified and the
corresponding vectors were averaged to yield a single set
of optimal illumination directions for the particular class of
surface. Finally, we performed experiments with real
objects, where the ground truth was obtained using the
3dMD 3D surface imaging system [27].

The three different proposed methodologies to obtain
the optimal illumination configuration, i.e. considering only
the shadow maps, only the albedo, or their combination,
were compared with the configuration proposed by Drboh-
lav and Chantler [14]. According to Drbohlav and Chantler
[14] the zenith angle should be the same for all light sources
and equal to 551, while the azimuth directions should be
equally spaced pointing at the four corners of a square.

Since simulated data were used and the real surface
normals were available, the Lambertian model was applied
to generate four images of each surface, corresponding to
the estimated optimal light sources. Standard photometric
stereo was then applied on these images to obtain the
surface normals. In addition, experiments were performed
with uniform and non-uniform albedos.

In order to compare the performance of the proposed
approaches, the angular error (AE) measure suggested by
Barron et al. [2] was used:

ΨAE ¼ cos−1
xexc þ yeyc þ zezc þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2e þ y2e þ z2e
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2r þ y2r þ z2r
p

" #
ð14Þ

where ðxe; ye; zeÞT and ðxr ; yr ; zrÞT are the estimated and the
real surface normals, respectively.

Furthermore, since the real albedo was available, the
mean absolute difference was used to compare the per-
formance of the proposed methodologies

ϵAD ¼ 1
MN

∑
M

i ¼ 1
∑
N

j ¼ 1
Aeði; jÞ−Arði; jÞj
�� ð15Þ

where Ae and Ar are the estimated and the real albedos,
respectively.

Finally, at the last part of the evaluation, where experi-
ments were performed under real environmental condi-
tions, the sum of the absolute height map difference,
between the estimated reconstructed surface, using Photo-
metric Stereo, and the ground truth, obtained using the
3dMD imaging system, was used to compare the accuracy
of the proposed methodologies:

hEG ¼ 1
MN

∑
M

i ¼ 1
∑
N

j ¼ 1
Heði; jÞ−Hrði; jÞj
�� ð16Þ

Here He and Hr are the estimated and the real height maps,
respectively.
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5.1. Experiments using isotropic surfaces

Experiments were performed with the first set of
simulated data, where fifteen isotropic surfaces were
selected for training and fifteen for evaluation (see
Fig. 3). The surfaces were containing random peaks with
low altitude. In Fig. 4 the performances of the three
proposed methodologies using shadow maps, the albedo
and their combination are evaluated, against the ‘default’
illumination configuration [14], in terms of angular and
mean absolute difference. The performances of the pro-
posed algorithms are identical in that scenario and obser-
ving the results we may see that the proposed methods
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Fig. 4. Performance comparison of the proposed methodologies using
shadow maps, albedo and their combination, evaluated in terms of mean
angular error for the recovered orientation, for all isotropic surfaces.

Table 1
The mean angular error (MAE) computed over all simulated surfaces and
for all methodologies (i.e. S for shadow maps, A for albedo and S+A for
both of them). The best result for each case is in bold.

Surfaces Default S A S+A

Isotropic 0.3012 0.0000 0.1724 0.0000
Anisotropic 01 2.5334 0.1842 0.6300 1.1778
Anisotropic 451 3.0619 0.5611 0.9842 2.2823
Anisotropic 1351 3.0612 0.2546 1.3338 2.6132
Anisotropic 901 2.5692 0.2133 0.2299 0.0135
Faces 3.4566 0.1949 3.1321 2.8468

Table 2
The mean absolute difference (MAD) computed over all 15 isotropic
simulated surfaces for different textures and for all methodologies (i.e. S
for shadow maps, A for albedo and S+A for both of them). The best result
for each case is in bold.

Method Texture 1 Texture 2 Texture 3

Default 0.00023 0.00026 0.00017
S 0.00000 0.00000 0.00000
A 0.00009 0.00023 0.00022
S+A 0.00000 0.00000 0.00010
improve significantly the accuracy of the estimated surface
normals and the albedo obtained by using the default
illumination arrangement (i.e. the one that is optimal for
any type of surface whenwe have not any prior knowledge
about it). In Tables 1 and 2 the mean angular error (MAE)
and the mean albedo errors (MAD) are shown for all
textures, respectively.

5.2. Experiments using anisotropic surfaces

Next, four sets of seven anisotropic surfaces (Fig. 3) were
used. For each set, a subset of three surfaces was selected for
training and the remaining four for evaluation. The same
experiments were performed and the results for the three
proposed methodologies are shown in Fig. 5. In terms of the
angular error, the performance of the proposed methods
based on shadows only and on shadows plus the albedo is
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Fig. 5. Performance comparison of the three proposed methodologies,
using shadow maps, the albedo and their combination, evaluated in
terms of mean absolute error of the albedo of the recovered surface, for
anisotropic surfaces.

Table 3
The mean absolute difference (MAD), between the true and the recovered
normal field, computed over all anisotropic simulated surfaces for
different textures, for all methodologies (i.e. S for shadow maps, A for
albedo and S+A for both of them) and for all illumination configurations.
The best result for each case is in bold.

MAD 01 451

T 1 T 2 T 3 T 1 T 2 T 3

Default 0.0047 0.0052 0.0034 0.0096 0.0107 0.0070
S 0.0019 0.0034 0.0027 0.0071 0.0031 0.0037
A 0.0045 0.0013 0.0019 0.0090 0.0105 0.0058
S+A 0.0066 0.0079 0.0017 0.0119 0.0148 0.0080

1351 901

T 1 T 2 T 3 T 1 T 2 T 3

Default 0.0096 0.0107 0.0070 0.0048 0.0053 0.0035
S 0.0039 0.0074 0.0051 0.0025 0.0021 0.0010
A 0.0092 0.0105 0.0073 0.0024 0.0035 0.0028
S+A 0.0174 0.0189 0.0127 0.0005 0.0076 0.0019
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Fig. 7. Performance comparison of the three proposed methodologies, using
shadowmaps, albedo and their combination, evaluated in terms of the mean
angular error of the recovered field of normals for the simulated face images.

Table 4
The mean absolute difference (MAD), between the true and the normal
field of the recovered surface, computed over all 4 simulated faces for a
uniform grey colour and for the mean albedo, and for all methodologies
(i.e. S for shadow maps, A for albedo and S+A for both of them). The best
result for each case is in bold.

Method Grey Skin

Default 0.0092 0.0081
S 0.0025 0.0001
A 0.0075 0.0012
S+A 0.0102 0.0116
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identical. The average estimates over all anisotropic surfaces
are displayed in Tables 1 and 3, indicating further that the
proposed methodology provides better results due to the
more accurate illumination configuration, designed taking
into consideration the prior knowledge concerning the type
of surface that is to be reconstructed.

5.3. Experiments using faces

Further experiments were performed using faces
(Fig. 6). The illumination configuration using the default
setup is compared with the configurations obtained by
using the training set of faces. Fig. 7 shows the perfor-
mance of the proposed methodologies both using the
angular difference, to assess the accuracy of the recovered
normal field and albedo field, for the test faces. All the
mean errors are shown in Tables 1 and 4.

5.4. Experiments under real conditions

Having learnt the optimal illumination directions from
the simulated faces and anisotropic surfaces, now we are
going to test these arrangements with real surfaces of
similar type, for which the ground truth is available with
the help of the 3dMD imaging system. In particular, two
mannequin faces will be reconstructed using the optimal
illumination directions reported in Tables 5, 6 and 7 and
the reconstruction will be compared with the real height
maps worked out by the 3dMD scanner. In addition, a
bottle, which may be thought of as an anisotropic surface
with vertical ribs, will also be tested using the optimal
illumination directions for such surfaces also reported in
Tables 5, 6 and 7. Some of them are demonstrated in Fig. 8.

Each object was illuminated both from the default and
the estimated optimal directions. Using the images cap-
tured with the default and the estimated optimal light
sources, Photometric Stereo and integration were applied
in succession, in order to obtain the 3D surfaces for both
illumination configurations. Using the Iterative Closest
Point algorithm [6] the obtained surfaces are aligned with
the corresponding surfaces obtained from the 3dMD
imaging system. In order to evaluate the accuracy of the
Fig. 6. Examples of simulated faces used in our experiments. The faces at th
obtained surfaces, the absolute height map difference
defined by Eq. (16) was used. The reconstructed 3D
surfaces for both configurations are shown in Fig. 9. The
average absolute height map difference is reported in
Table 8 with the proposed illumination configuration
resulting in the least error.

The proposed algorithm was further applied to the
reconstruction of three real human faces (see Fig. 10) using
photometric data captured both with the default and the
e top row were used for training and the faces at the bottom for testing.



Table 7
The default and the proposed illumination directions using the optimisation step both shadow maps and albedo, for faces, isotropic and anisotropic surfaces.

Light φl1 ; θl1 φl2 ; θl2 φl3 ; θl3 φl4 ; θl4

Default (451, 551) (1351, 551) (3151, 551) (2251, 551)
Isot (361, 281) (1511, 491) (3201, 471) (2091, 291)
Anisot 01 (271, 221) (1321, 391) (2951, 321) (1861, 351)
Anisot 451 (751, 321) (1351, 351) (3061, 291) (2221, 461)
Anisot 1351 (641, 421) (1451, 541) (3241, 561) (2001, 311)
Anisot 901 (481, 331) (1531, 401) (3171, 311) (2391, 371)
Faces (551, 471) (1571, 501) (3081, 511) (2111, 611)

Table 6
The default and the proposed illumination directions using the optimisation step only the albedo, for faces, isotropic and anisotropic surfaces.

Light φl1 ; θl1 φl2 ; θl2 φl3 ; θl3 φl4 ; θl4

Default (451, 551) (1351, 551) (3151, 551) (2251, 551)
Isot (421, 361) (1451, 471) (3181, 511) (2221, 381)
Anisot 01 (191, 491) (1171, 521) (2961, 431) (1941, 591)
Anisot 451 (431, 331) (1401, 261) (3181, 241) (2121, 481)
Anisot 1351 (731, 451) (1511, 451) (3191, 421) (2331, 211)
Anisot 901 (471, 321) (1441, 421) (3351, 351) (2301, 331)
Faces (651, 351) (1511, 591) (3061, 171) (2021, 631)

Table 5
The default and the proposed illumination directions using the optimisation step only shadow maps, for faces, isotropic and anisotropic surfaces.

Light φl1 ; θl1 φl2 ; θl2 φl3 ; θl3 φl4 ; θl4

Default (451, 551) (1351, 551) (3151, 551) (2251, 551)
Isot (431, 371) (1361, 361) (3041, 321) (2251, 331)
Anisot 01 (501, 381) (1291, 371) (3161, 421) (2281, 341)
Anisot 451 (171, 331) (1191, 421) (3161, 261) (2151, 461)
Anisot 1351 (421, 241) (1531, 281) (3341, 331) (2151, 291)
Anisot 901 (631, 371) (1471, 281) (3341, 331) (2261, 411)
Faces (481, 231) (1221, 291) (3091, 321) (2111, 291)
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proposed illumination directions. The person is assumed
to be still during the acquisition stage, since a high speed
camera was used for the acquisition (i.e. 200 frames
per second), eliminating the registration problem.

In Fig. 11 results of the reconstructed faces obtained from
the two compared illumination setups are shown. Observing
the results it can be inferred that the proposed illumination
directions result in more accurate estimates especially at the
regions where moles or hair are present indicating that the
proposed illumination directions provide more accurate and
detailed reconstructions for faces. Furthermore, the side view
was used to evaluate the reconstructed faces. The background
was extracted manually and the Hausdorff distance was used
to compare the reconstructions with the original profiles.
Table 9 shows the results for all the faces.

6. Discussion and conclusions

In this paper, a method for estimating the optimal
illumination configuration based on L1 optimisation was
presented, for use with photometric stereo. Observing the
results we may say that the proposed methodologies
provide better illumination configurations that adapt to
the class shape characteristics. Furthermore, depending on
the characteristics of the surface and the albedo, it may be
the solution of the optimisation problem using either the
shadow maps or the albedo that produce the best perfor-
mance. A training set of surfaces from each class is
required for all methodologies. This may be obtained by
either using laser scanners or any other 3D reconstruction
technique. Regarding the case of the albedo approach, it
may operate without requiring a training set, if we assume
without significant error that the albedo corresponds to
the brightness of the average image. Prior knowledge
concerning the statistical distribution of the facets of the
surface to be reconstructed was utilised. Such information
may be available if we know the class of objects that is to
be inspected. Experiments with simulated and real sur-
faces were performed in order to evaluate the perfor-
mance of the proposed scheme. The mean angular error



Fig. 9. 3D surfaces obtained using the default (left) and the proposed (right) illumination configuration for ‘Adam’, ‘Eve’ and ‘bottle’.

Fig. 8. The illumination directions in 3D representation (columns (a) and (c)) and in 2D top view (columns (b) and (d)) for isotropic surfaces (top left), faces (top
right), an anisotropic surface 01 (mid left), an anisotropic surface 1351 (mid right), an anisotropic 451 (bottom left) and an anisotropic 901 (bottom right).
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of the surface normals and the mean albedo difference
were used to evaluate the performance of the proposed
methodology in comparison with the illumination config-
uration proposed by Drbohlav and Chantler [14]. A
standard 4-lights photometric stereo, without applying
any steps to eliminate errors due to shadows, was used
to obtain the surface normals and the albedo. From the
results it could be inferred that the proposed approach



Table 8
The mean absolute hight map difference (MAD) for the recovered normal
field, computed over all three faces captured under real environmental
conditions using the default and the proposed optimal illumination
configuration. The best result for each case is in bold.

Method Adam Eve bottle

Default 69.4904 26.7044 17.0176
Proposed 59.3856 23.2544 13.7375

Fig. 10. Real faces used for experiments.

Fig. 11. The profile view of the obtained 3D surfaces using (left) the default illumination directions and (right) the proposed ones. The difference in the
obtained details is obvious.

Table 9
The Hausdorff distance of the side views of the faces from the recon-
structed side views for the tested illumination directions. The best result
for each face is in bold.

Method Face A Face B Face C

Default 54.3386 54.7264 48.4010
Proposed 45.8947 40.6348 38.7568
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provides more accurate estimates of the optimal illumina-
tion direction in terms of optimal normals and albedo
estimation keeping the number of lights constant but
selecting the proposed illumination directions.
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