Orthonormal Basis

Let $\mathbf{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis for an inner product space \mathbf{V}. Then \mathbf{S} is an orthonormal basis for \mathbf{V} if
a) $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=0$ for $i \neq j$
b) $\left(\mathbf{v}_{i}, \mathbf{v}_{i}\right)=1$ for all i

Theorem

Let $\mathbf{S}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be an orthonormal basis for an inner product space \mathbf{V} and let \mathbf{v} be any vector in \mathbf{V}.

Then $\quad \boldsymbol{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}$
where $c_{i}=\left(\mathbf{v}, \mathbf{v}_{i}\right)$ for all i

Proof

$$
\begin{aligned}
& \left(\mathbf{v}, \mathbf{v}_{1}\right)=\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{i} \mathbf{v}_{i}+\ldots c_{n} \mathbf{v}_{n}, \mathbf{v}_{i}\right) \\
= & \left(c_{1} \mathbf{v}_{1}, \mathbf{v}_{i}\right)+\left(c_{2} \mathbf{v}_{2}, \mathbf{v}_{i}\right)+\ldots+\left(c_{i} \mathbf{v}_{i}, \mathbf{v}_{i}\right)+\cdots\left(\mathrm{c}_{n} \mathbf{v}_{n}, \mathbf{v}_{i}\right) \\
= & c_{1}\left(\mathbf{v}_{1}, \mathbf{v}_{i}\right)+c_{2}\left(\mathbf{v}_{2}, \mathbf{v}_{i}\right)+\ldots+c_{i}\left(\mathbf{v}_{i}, \mathbf{v}_{i}\right)+\cdots c_{n}\left(\mathbf{v}_{n}, \mathbf{v}_{i}\right) \\
= & c_{1} \cdot 0+c_{2} \cdot 0+\ldots+c_{i} \cdot 1+\ldots c_{n} \bullet 0 \\
= & c_{i}
\end{aligned}
$$

Gram-Schmidt Process

If $\mathbf{S}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$ is a basis (not orthonormal) for an inner product space \mathbf{V}, is there a way to convert it to an orthonormal basis?

Gram-Schmidt Process

- Replace the basis $\mathbf{S}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$
with an orthonormal basis $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{u}_{1} \Rightarrow \mathbf{w}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right] \\
& \mathbf{v}_{2}=\mathbf{u}_{2}-\left(\mathbf{w}_{1}, \mathbf{u}_{2}\right) \mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-\frac{1}{\sqrt{2}}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
-\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Gram-Schmidt Process

Stefanos Zafeiriou
Adv. Machine Learning (495)

Gram-Schmidt Process

$$
\begin{aligned}
\mathbf{w}_{2} & =\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right] \\
\mathbf{v}_{3} & =\mathbf{u}_{3}-\left(\mathbf{u}_{3}, \mathbf{w}_{1}\right) \mathbf{w}_{1}-\left(\mathbf{u}_{3}, \mathbf{w}_{2}\right) \mathbf{w}_{2} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\sqrt{2}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right]-\sqrt{2}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Gram-Schmidt Process

$$
\mathbf{w}_{3}=\frac{\mathbf{v}_{3}}{\left\|\mathbf{v}_{3}\right\|}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Orthonormal set is $\quad\left\{\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right],\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$

Gram-Schmidt Process

Comments

- Key idea in Gram-Schmidt is to subtract from every new vector, \mathbf{u}_{k}, its components in the directions already determined, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots\right.$, $\left.\mathbf{v}_{k-1}\right\}$
- When doing Gram-Schmidt by hand, it simplifies the calculation to multiply the newly computed \mathbf{v}_{k} by an appropriate scalar to clear fractions in its components. The resulting vectors are normalized at the end of the computation

QR Factorization

In the Gram-Schmidt example, the basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ is transformed to

$$
\left\{\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

This is called the QR-Factorization of \mathbf{A}

QR Factorization

Interpreting these vectors as column vectors of matrices, the following result holds

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & \frac{1}{\sqrt{2}} & \sqrt{2} \\
0 & \frac{1}{\sqrt{2}} & \sqrt{2} \\
0 & 0 & 1
\end{array}\right]=\mathbf{Q R}
$$

This is called the QR-Factorization of \mathbf{A}

Comments

- Computer programs that compute the QR Factorization use an algorithm that is different from that of the proof, which is essentially Gram-Schmidt.

Comments

- MATLAB's implementation of QRFactorization of an mxn matrix \mathbf{A} returns an mxm matrix \mathbf{Q} with orthonormal columns and an mxn matrix \mathbf{R} of the form \Rightarrow

The first n columns of \mathbf{Q} form a basis for the column space of \mathbf{A} and $\mathbf{A}=\mathbf{Q R}$

Stefanos Zafeiriou

Definitions

- A square matrix \mathbf{Q} that has orthonormal columns is called an orthogonal matrix
- Because of the orthonormal columns, $\mathbf{Q}^{\mathbf{T}} \mathbf{Q}=\mathbf{I}$. Therefore $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$

