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Orthonormal Basis 

   Let 𝐒 = 𝐯1, 𝐯2, . . , 𝐯𝑛  be a basis for an inner 

product space 𝐕. Then S is an orthonormal 

basis for 𝐕 if 

 a)(𝐯𝑖 , 𝐯𝑗)=0 for 𝑖 ≠ 𝑗  

 b)(𝐯𝑖 , 𝐯𝑖)=1 for all 𝑖 
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Let 𝐒 = 𝐯1, 𝐯2, … , 𝐯𝑛  be an orthonormal 

basis for an inner product space 𝐕 and let 𝐯  

be any vector in 𝐕.  

 

Then    𝒗 = 𝑐1𝐯1+𝑐2𝐯2 + ⋯ + 𝑐𝑛𝐯𝑛 

 

where 𝑐𝑖 = (𝐯, 𝐯𝑖)  for all 𝑖  
 

Theorem 
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(𝐯, 𝐯1)=(𝑐1𝐯1+𝑐2𝐯2+…+𝑐𝑖𝐯𝑖+…𝑐𝑛𝐯𝑛, 𝐯𝑖) 

= (𝑐1𝐯1, 𝐯𝑖)+(𝑐2𝐯2, 𝐯𝑖)+…+(𝑐𝑖𝐯𝑖, 𝐯𝑖) + ⋯ (c𝑛𝐯𝑛, 𝐯𝑖) 

= 𝑐1 𝐯1, 𝐯𝑖 + 𝑐2(𝐯2, 𝐯𝑖)+…+𝑐𝑖(𝐯𝑖, 𝐯𝑖) + ⋯ 𝑐𝑛(𝐯𝑛, 𝐯𝑖) 

 = 𝑐1 • 0 + 𝑐2 • 0 +…+𝑐𝑖 • 1 +…𝑐𝑛 • 0 

 

 
= 𝑐𝑖 

Proof 
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Gram-Schmidt Process 

If 𝐒 = {𝐮1, 𝐮2 ,…, 𝐮𝑛 } is a basis (not 

orthonormal) for an inner product space 𝐕, is 

there a way to convert it to an orthonormal 

basis? 
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• Replace the basis                    

with an orthonormal basis 

𝐒 = {𝐮1, 𝐮2, 𝐮3}=
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Gram-Schmidt Process 
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𝐯2 

𝐮2 

(𝐰1, 𝐮2) 

𝐰2 
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𝐯1 

𝐮1 

Gram-Schmidt Process 
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

𝐯3 = 𝐮3 − 𝐮3, 𝐰1 𝐰1 − 𝐮3, 𝐰2 𝐰2 

Gram-Schmidt Process 
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

Orthonormal set is 

𝐰3 =
𝐯3

| 𝐯3 |
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Gram-Schmidt Process 
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Gram-Schmidt Process 
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• Key idea in Gram-Schmidt is to subtract from 

every new vector, 𝐮𝑘, its components in the 

directions already determined, {𝐯1 , 𝐯2 ,…, 

𝐯𝑘−1} 

• When doing Gram-Schmidt by hand, it 

simplifies the calculation to multiply the 

newly computed 𝐯𝑘  by an appropriate scalar 

to clear fractions in its components. The 

resulting vectors are normalized at the end of 

the computation 

 

Comments 
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In the  Gram-Schmidt example, the basis  

      is transformed to   

 

This is called the QR-Factorization of A 
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QR Factorization 
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Interpreting these vectors as column 
vectors of matrices, the following result 
holds 

This is called the QR-Factorization of A 

𝐀 =
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QR Factorization 
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• Computer programs that compute the QR 

Factorization use an algorithm that is 

different from that of the proof, which is 

essentially Gram-Schmidt. 

Comments 
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• MATLAB’s implementation of QR-

Factorization of an mxn matrix 𝐀 returns 

an mxm matrix 𝐐  with orthonormal 

columns and an  mxn matrix 𝐑 of the 

form           

    

𝐑 =
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Comments 

  The first n columns of 𝐐  

  form a basis for the  

  column space of 𝐀  

  and 𝐀 = 𝐐𝐑  
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• A square matrix 𝐐  that has orthonormal 

columns is called an orthogonal matrix 

• Because of the orthonormal columns, 

    𝐐𝐓𝐐 = 𝐈 . Therefore 𝐐−1 = 𝐐𝑇 

Definitions 


