Primer on Probabilities

Probability and Statistics Primer
> Basic Concepts
> Maximum Likelihood Parameter Estimation

Reading:

- Many primers (check internet)
e.g., Chapters 1,2 of

Pattern Recognition \& Machine Learning by C. Bishop

A Probability Primer

- Assume an event where there is a degree of uncertainty in the outcome of the event
- Random Variable: A function which maps events or outcomes to a number set (i.e., integers, real etc)
- Refers to an event

$$
R(\omega)=\left\{\begin{array}{l}
1 \text { if } \omega=\text { heads } \\
0 \text { if } \omega=\text { tails }
\end{array}\right.
$$

Frequentistic Definition

- Frequency Probability:

Probability $p(x)$ is the limit of its relative frequency in a large number of trials

$$
p(x)=\lim _{n \rightarrow \infty} \frac{n_{x}}{n_{t}} \text { or approx. } p(x) \approx \frac{n_{x}}{n_{t}}
$$

- It is the relative frequency with which an outcome would be obtained if the process were repeated a large number of times under exactly the same conditions.

Bayesian view

- Bayesian view: Probability is a measure of belief regarding the predicted outcome of an event.
- Uses the Bayes theorem to develop a calculus for performing probability reasoning.

Bayes theorem $\quad p(x, y)=p(x \mid y) p(y)$

$$
=p(y \mid x) p(x)
$$

or: $\quad p(x \mid y)=\frac{p(x, y)}{p(y)} \quad p(y \mid x)=\frac{p(x, y)}{p(x)}$
or

$$
p(x \mid y)=p(y \mid x) \frac{p(x)}{p(y)}
$$

Joint Probability Distribution

- Joint probabilities can be between any number of variables eg. $p(a=1, b=1, c=1)$
- For every combination of variables we need to define how probable that combination is
- The probabilities of all combinations need to sum up to 1 .
- For 3 random variables taking two values the table contains 8 entries

a	b	c	$p(a, b, c)$
0	0	0	0.1
0	0	1	0.2
0	1	0	0.05
0	1	1	0.05
1	0	0	0.3
1	0	1	0.1
1	1	0	0.05
1	1	1	0.15

Sum up to 1

Joint Probability Distribution

- Given the joint probability distribution, you can calculate any probability involving a, b, and c
- Note: May need to use marginalization and Bayes rule, (both of which are not discussed in these slides)

Examples of things you can compute:

a	b	c	$p(a, b, c)$
0	0	0	0.1
0	0	1	0.2
0	1	0	0.05
0	1	1	0.05
1	0	0	0.3
1	0	1	0.1
1	1	0	0.05
1	1	1	0.15

- $p(a=1)=\sum_{b, c} p(a=1, b, c)$ sum rows $a=1$

$$
p(a=1, b=1 \mid c=1)=
$$

$$
p(a=1, b=1, c=1) \mid p(c=1)(\text { Bayes Theorem })
$$

Bayes Theorem: An example

- School with 60% boys and 40% girls as its students.
- The female students wear trousers or skirts in equal numbers;
- All boys wear trousers.

An observer sees a (random) student from a distance, and what the observer can see is that this student is wearing trousers.
\checkmark What is the probability this student is a girl? The correct answer can be computed using Bayes' theorem.

Bayes Theorem: An example

$$
\text { boy }=01, \quad{ }^{s} \quad \text { girl }=10 \quad \text { trousers }=01, \quad \begin{array}{r}
x \\
\text { skirt }=10
\end{array}
$$

Bayes Theorem: An example

An observer sees a (random) student from a distance, and what the observer can see is that this student is wearing trousers.

- What is the probability this student is a girl?
\checkmark The requested probability is translated as:

$$
p(s=10 \mid x=01)
$$

Bayes Theorem: An example

- Bayes theorem: $p(s \mid x)=p(x \mid s) \frac{p(s)}{p(x)}$

$$
p(s=10 \mid x=01)=p(x=01 \mid s=10) \frac{p(s=10)}{p(x=01)}
$$

- What do we

$$
\begin{array}{r}
p(x=01 \mid s=10)=0.5 \\
p(s=10)=0.4
\end{array}
$$

- What are we missing? $p(x=01)$

Bayes Theorem: An example

- What can we find it? By marginalization.

$$
p(x)=\sum_{s=01,10} p(x, s)=p(x, s=01)+p(x, s=10)
$$

- And Bayes again to find $p(x=01)$

$$
\begin{aligned}
p(x=01, s=01) & =p(x=01 \mid s=01) p(s=01) \\
& =1 \mathrm{x} 0.6=0.6 \\
p(x=01, s=10) & =p(x=01 \mid s=10) p(s=10) \\
& =0.5 \times 0.4=0.2
\end{aligned}
$$

- Hence $p(x=01)=0.8$ and $p(s=10 \mid x=01)=0.25$

Independence

How is independence useful?

- Suppose you have n coin flips and you want to calculate the joint distribution $\mathrm{p}\left(c_{1}, \ldots, c_{n}\right)$
- If the coin flips are not independent, you need 2^{n} values in the table
- If the coin flips are independent, then

$$
p\left(c_{1}, \ldots, c_{n}\right)=\prod_{i=1}^{n} p\left(c_{i}\right) \quad \begin{aligned}
& \text { Each } \mathrm{p}\left(c_{i}\right) \text { table has } 2 \text { entries and } \\
& \text { there are } n \text { of them for a total of } \\
& 2 n \text { values }
\end{aligned}
$$

Independence

Variables a and b are conditionally

 independent given c if any of the following hold:- $p(a, b \mid c)=p(a \mid c) p(b \mid c)$
- $p(a \mid b, c)=p(a \mid c)$
- $p(b \mid a, c)=p(b \mid c)$

Knowing c tells me everything about b (ie. I don't gain anything by knowing a). Either because a doesn't influence b or because knowing c provides all the information knowing a would give.

Continuous Variables

- Probability density function (PDF)

- Probability of $a<x<b \quad P(a<x<b)=\int_{x=a}^{b} p(x) d x$
- Cumulative distribution function (CDF)

$$
F(x<b)=\int_{x=-\infty}^{b} p(x) d x \quad p(x)=\frac{d F(x)}{d x}
$$

Continuous Variables

- Mean operator (first order moment)

$$
E(x)=\int_{x} x p(x) d x
$$

- Variance operator (second order moment)

$$
E\left((x-\mu)^{2}\right)=\int_{x}(x-\mu)^{2} p(x) d x
$$

Popular PDFs

- Gaussian or Normal distribution

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Parameters the mean and standard deviations μ, σ^{2}

$$
\begin{gathered}
x \sim N\left(x \mid \mu, \sigma^{2}\right) \\
E(x)=\mu \quad E\left((x-\mu)^{2}\right)=\sigma^{2}
\end{gathered}
$$

- PDF

- CDF

Parameter estimation with Gaussians

- What is estimation? Given a set of observations and a model - estimate the model's parameter.
- First example: Given a population $\left\{x_{1}, x_{2}, x_{3}, \ldots x_{N}\right\}$ assuming that are independent samples from a normal distribution $\quad x \sim N\left(x \mid \mu, \sigma^{2}\right)$ find an estimate for μ, σ^{2}
- How we approach the problem?
(1) We write the joint probability distribution (likelihood).

$$
p\left(x_{1}, x_{2}, x_{3}, \ldots x_{N} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{N} p\left(x_{i} \mid \mu, \sigma^{2}\right)
$$

Parameter estimation with Gaussians

(2) We substitute our distributional assumptions.

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, \ldots x_{N} \mid \mu, \sigma^{2}\right) & =\prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(x_{i}-\mu\right)^{2} / \sigma^{2}} \\
& =\frac{(2 \pi)^{-N / 2}}{\sigma^{N}} e^{-\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

(3) A common practice is to take the \log of the joint function

$$
\log p\left(\mu, \sigma^{2}\right)=-\frac{1}{2} N \log 2 \pi-N \log \sigma-\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
$$

Parameter estimation with Gaussians

(3) We take the maximum of the log likelihood (ML)

$$
\mu_{0}, \sigma_{0}=\operatorname{argmax}_{\mu, \sigma} \log p\left(\mu, \sigma^{2}\right)
$$

(4) We take the derivatives of p with regards to μ, σ^{2}

$$
\begin{array}{cl}
\frac{d \log p}{d \mu}=0 & \frac{d \log p}{d \sigma}=0 \\
\mu_{0}=\frac{\sum_{i=1}^{N} x_{i}}{N} & \sigma_{0}=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{0}\right)^{2}}{N}}
\end{array}
$$

ML estimation: Linear Regression

The linear regression problem

ML estimation Linear Regression

Observations: $\quad D=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$

Model: $\quad f(x)=a x+b$ and $\begin{aligned} & \\ & \\ & \\ & \\ & \\ & e_{i} \sim N\left(e_{i} \mid 0, \sigma^{2}\right)\end{aligned}$
Parameters: a, b, σ

Methodology: Maximum Likelihood

ML estimation Linear Regression

(1) We write the joint probability distribution (likelihood). $p\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right) \mid f, \sigma^{2}\right)$

$$
\begin{aligned}
& =\prod_{i=1}^{N} p\left(\left(x_{i}, y_{i}\right) \mid f, \sigma^{2}\right) \\
& =\prod_{i=1}^{N} p\left(y_{i} \mid f, \sigma^{2}, x_{i}\right) \prod_{i=1}^{N} p\left(x_{i}\right)
\end{aligned}
$$

we need to compute the following probability $p\left(y_{i} \mid f, \sigma^{2}, x_{i}\right)$

$$
y_{i}=f\left(x_{i}\right)+e_{i}
$$

we know that

$$
e_{i} \sim N\left(e_{i} \mid 0, \sigma^{2}\right)
$$

ML estimation Linear Regression

- Change of random variables

Assume a random variable a with pdf p_{a}
Assume a second random variable b and that a, b are related by $b=g(a)$

What is the pdf of $b \quad p_{b}$?

$$
\begin{aligned}
\left|p_{b}(b) d b\right| & =\left|p_{a}(a) d a\right| \\
p_{b}(b) & =\left|\frac{d a}{d b}\right| p_{a}(a) \\
p_{b}(b) & =\left|\frac{d g^{-1}(b)}{d b}\right| p_{a}\left(g^{-1}(b)\right)
\end{aligned}
$$

ML estimation Linear Regression

- Lets go back to our case

$$
\begin{aligned}
p\left(e_{i}\right)=N\left(e_{i} \mid 0, \sigma^{2}\right) \quad y_{i} & =g\left(e_{i}\right)=f\left(x_{i}\right)+e_{i} \\
e_{i} & =y_{i}-f\left(x_{i}\right)
\end{aligned}
$$

we compute $p\left(y_{i}\right)$ using the previous

$$
p\left(y_{i}\right)=N\left(y_{i}-f\left(x_{i}\right) \mid 0, \sigma^{2}\right)
$$

or putting back what is constant we write more correctly

$$
p\left(y_{i} \mid x_{i}, f, \sigma^{2}\right)=N\left(y_{i} \mid f\left(x_{i}\right), \sigma^{2}\right)
$$

ML estimation: Linear Regression

$$
\begin{aligned}
p\left(D \mid f, \sigma^{2}\right) & =\prod_{i=1}^{N} p\left(y_{i} \mid f, \sigma^{2}, x_{i}\right) \prod_{i=1}^{N} p\left(x_{i}\right) \\
& =c \prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(y_{i}-f\left(x_{i}\right)\right)^{2}} \\
& =c \frac{(2 \pi)^{-N / 2}}{\sigma^{N}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}}
\end{aligned} \text { where c is constant } \mathrm{c}=\prod_{i=1}^{N} p\left(x_{i}\right) .
$$

ML estimation: Linear Regression

- Choosing to maximize its logarithm we get

$$
f^{*}=\operatorname{argmax}_{f}-\mathrm{Nlog} \mathrm{c} 2 \pi-\mathrm{N} \log \sigma-\sum_{i=1}^{N} \frac{1}{2 \pi \sigma^{2}}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

removing the constant terms we get

$$
\left.f^{*}=\operatorname{argmin}_{f} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-y_{i}\right)\right)^{2}
$$

ML estimation: Linear Regression

$$
f^{*}=\operatorname{argmin}_{f} \sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right)^{2} \quad g(a, b)=\sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right)^{2}
$$

by taking the partial derivative with respect to a and b and setting them equal to zero we get

$$
\begin{aligned}
\frac{\partial g}{\partial b} & =0 \rightarrow 2 \sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right)=0 \rightarrow N b=-\sum_{i=1}^{N} a x_{i}+\sum_{i=1}^{N} y_{i} \rightarrow \\
b & =\bar{y}-a \bar{x}(1) \quad \bar{y}=\frac{1}{N} \sum_{i=1}^{N} y_{i} \quad \text { and } \quad \bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
\end{aligned}
$$

ML estimation: Linear Regression

$$
\frac{\partial g}{\partial a}=0 \rightarrow x_{i} \sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right)=0 \rightarrow \sum_{i=1}^{N} x_{i} y_{i}=a \sum_{i=1}^{N} x_{i}^{2}+b \sum_{i=1}^{N} x_{i}
$$

putting (1) into (2) we get

$$
\sum_{i=1}^{N} x_{i} y_{i}-N \bar{x} \bar{y}=a \sum_{i=1}^{N} x_{i}^{2}-a N \bar{x}^{2} \rightarrow a=\frac{\sum_{i=1}^{N} x_{i} y_{i}-N \bar{x} \bar{y}}{\sum_{i=1}^{N} x_{i}{ }^{2}-N \bar{x}^{2}}
$$

