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1 Computing Principal Component Analysis
Assume that we have a matrix of centered data observations

X = [x1 − µ, . . . ,xN − µ] (1)

where µ denotes the mean vector. X has size F × N , where F is the number of
dimensions and N is the number of observations. Their covariance matrix is given by

St =
1

N

N∑
i=1

(xi − µ)(xi − µ)T =
1

N
XXT (2)

In Principal Component Analysis (PCA), we aim to maximize the variance of each
dimension by maximizing

W0 =argmax
W

tr(WTStW)

subject to WTW = I
(3)

The solution of Eq. 3 can be derived by solving

StW = WΛ (4)

Thus, we need to perform eigenanalysis on St. If we want to keep d principal com-
ponents, the computational cost of the above operation is O(dF 2). If F is large, this
computation can be quite expensive.

Lemma 1
Let us assume that B = XXT and C = XTX. It can be proven that B and C have
the same positive eigenvalues Λ and, assuming that N < F , then the eigenvectors U

of B and the eigenvectors V of C are related as U = XVΛ−
1
2 .
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Figure 1: Example of data whitening using the PCA projection matrix W = UΛ−
1
2 .

Using Lemma 1 we can compute the eigenvectors U of St in O(N3). The eigen-
analysis of XTX is denoted by

XTX = VΛVT (5)

where V is a N×(N−1) matrix with the eigenvectors as columns and Λ is a (N−1)×
(N − 1) diagonal matrix with the eigenvalues. Given that VTV = I and VVT 6= I
we have

XTX = VΛVT

U = XVΛ−
1
2

}
⇒ UTXXTU = Λ−

1
2 VTXTXXTXVΛ−

1
2 =

= Λ−
1
2 VTV︸ ︷︷ ︸

I

Λ VTV︸ ︷︷ ︸
I

Λ VTV︸ ︷︷ ︸
I

Λ−
1
2 =

= Λ

(6)

The pseudocode for computing PCA is

Algorithm 1 Principal Component Analysis
1: procedure PCA
2: Compute dot product matrix: XTX =

∑N
i=1(xi − µ)T (xi − µ)

3: Eigenanalysis: XTX = VΛVT

4: Compute eigenvectors: U = XVΛ−
1
2

5: Keep specific number of first components: Ud = [u1, . . . ,ud]
6: Compute d features: Y = Ud

TX

Now, the covariance matrix of Y is

YYT = UTXXTU = Λ

The final solution of Eq. 3 is given as the projection matrix

W = UΛ−
1
2 (7)

which normalizes the data to have unit variance (Figure 1). This procedure is called
whitening (or sphereing).
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2 Computing Linear Discriminant Analysis
As explained before (Section 1), PCA finds the principal components that maximize
the data variance without taking into account the class labels. In contrast to this, Linear
Discriminant Analysis (LDA) computes the linear directions that maximize the sepa-
ration between multiple classes. This is mathematically expressed as maximizing

W0 =argmax
W

tr(WTSbW)

subject to WTSwW = I
(8)

Assume that we have C number of classes, denoted by ci = [x1, . . . ,xNci
], i =

1, . . . , C, where each xj has F dimensions and µ(ci) is the mean vector of the class ci.
Thus, the overall data matrix is X = [c1, . . . , cC ] with size F ×N (N =

∑C
i=1 Nci )

and µ is the overall mean (mean of means). Sw is the within-class scatter matrix

Sw =

C∑
j=1

Sj =

C∑
j=1

∑
xi∈cj

(xi − µ(cj))(xi − µ(cj))
T (9)

that has rank (Sw) = min (F,N − C). Moreover, Sb is the between-class scatter
matrix

Sb =

C∑
j=1

Ncj
(µ(cj)− µ)(µ(cj)− µ)T (10)

that has rank (Sb) = min (F,C − 1). The solution of Eq. 8 is given from the general-
ized eigenvalue problem

SbW = SwWΛ (11)

thus W0 corresponds to the eigenvectors of Sw
−1Sb that have the largest eigenvalues.

In order to deal with the singularity of Sw, we can do the following steps:

1. Perform PCA on our data matrix X to reduce the dimensions to N −C using the
eigenvectors U

2. Solve LDA on this reduced spaceand get Q that has C − 1 columns.

3. Compute the total transform as W = UQ.

Unfortunately, if you follow the above procedure is possible that important information
is solved. In the following, we show how the components of LDA can be computed by
applying a simultaneous diagonalization procedure.

Properties
The scatter matrices have some interesting properties. Let us denote

M =


E1 0 · · · 0
0 E2 · · · 0
...

...
. . .

...
0 0 · · · EC

 = diag {E1,E2, . . . ,EC} (12)
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where

Ei =


1

Nci
· · · 1

Nci

...
. . .

...
1

Nci
· · · 1

Nci


Nci
×Nci

(13)

Note that M is idempotent, thus MM = M. Given that the data covariance matrix is
St = XXT , the between-class scatter matrix can be written as

Sb = XMMXT = XMXT (14)

and the within-class scatter matrix as

Sw = XXT︸ ︷︷ ︸
St

−XMXT︸ ︷︷ ︸
Sb

= X(I−M)XT (15)

Thus, we have that St = Sw + Sb. Note that since M is idempotent, I −M is also
idempotent.

Given the above properties, the objective function of Eq. 8 can be expressed as

W0 =argmax
W

tr(WTXMMXTW)

subject to WTX(I−M)(I−M)XTW = I
(16)

The optimization of this problem involves a procedure called Simultaneous Diago-
nalization. Let’s assume that the final transform matrix has the form

W = UQ (17)

We aim to find the matrix U that diagonalizes Sw = X(I −M)(I −M)XT . This
practically means that, given the constraint of Eq. 16, we want

WTX(I−M)(I−M)XTW = I⇒
⇒QT UTX(I−M)(I−M)XTU︸ ︷︷ ︸

I

Q = I (18)

Consequently, using Eqs. 17 and 18, the objective function of Eq. 16 can be further
expressed as

Q0 =argmax
Q

tr(QTUTXMMXTUQ)

subject to QTQ = I
(19)

where the constraint WTX(I−M)(I−M)XTW = I now has the form QTQ = I.

Lemma 2
Assume the matrix X(I −M)(I −M)XT = XwXw

T , where Xw is the F × N
matrix Xw = X(I −M). By performing eigenanalysis on Xw

TXw as Xw
TXw =
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VwΛVw
T , we get N − C positive eigenvalues, thus Vw is a N × (N − C) matrix.

The optimization problem of Eq. 19 can be solved in two steps

1. Find U such that UTX(I−M)(I−M)XTU = I. By applying Lemma 2, we
get U = XwVwΛw

−1. Note that U has size F × (N − C).

2. Find Q0. By denoting
X̃b = UTXM

the (N − C)×N matrix of projected class means, Eq. 19 becomes

Q0 =argmax
Q

tr(QT X̃bX̃T
bQ)

subject to QTQ = I
(20)

which is equivalent to applying PCA on the matrix of projected class means. The
final Q0 is a matrix with columns the d eigenvectors of X̃bX̃T

b that correspond
to the d largest eigenvalues (d ≤ C − 1).

The final projection matrix is given by

W0 = Q0U (21)

Based on the above, the pseudocode for computing LDA is

Algorithm 2 Linear Discriminant Analysis
1: procedure LDA
2: Find eigenvectors of Sw that correspond to non-zero eigenvalues (usually

N − C), i.e. U = [u1, . . . ,uN−C ] by performing eigen-analysis to (I −
M)XTX(I −M) = VwΛwVw

T and computing U = X(I −M)VwΛw
−1

(performing whitening on Sw).
3: Project the data as X̃b = UTXM.
4: Perform PCA on X̃b to find Q (i.e., compute the eigenanalysis of X̃bX̃T

b =
QΛbQ

T ).
5: The total transform is W = UQ

Locality preserving projections can be computed in a similar fashion. The first step
is to perform whitening of XDXT . We do so by applying Lemma 1 and performing
eigenanalysis of D1/2XTXD1/2 = VpΛpVp

T . Then, the whitening transform is
given by UT = XD1/2Λp

−1/2. The next step is to project the data as X̃p = UTX

and find the eigenvectors Q of X̃p(D − S)X̃T
p

1 that correspond to the lowest (but
non-zero eigenvalues). Then the total transform would be W = UQ.

1Where S is the connectivity matrix defined in the slides
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