Course 495: Advanced Statistical Machine Learning/Pattern Recognition

- Lecturer: Stefanos Zafeiriou
- Goal (Lectures): To present discrete and continuous valued probabilistic linear dynamical systems (HMMs \& Kalman Filters).
- Goal (Tutorials): To provide the students the necessary mathematical tools for deeply understanding the models.

Materials

- Chapter 13: Pattern Recognition \& Machine Learning, Christopher M. Bishop.
- Chapter 17: Machine Learning a Probabilistic Perspective, Kevin Murphy
- Rabiner, Lawrence. "A tutorial on hidden Markov models and selected applications in speech recognition." Proceedings of the IEEE 77.2 (1989): 257-286.

Linear Dynamical Systems

Applications of probabilistic linear dynamical systems

- Language modelling
- Object/Face tracking
- Speech/Gesture recognition
- Finance
- Bioinformatics

Applications

Object-target tracking

Applications

Speech Recognition (voice Google search)

Hello world

Applications

Gesture recognition (Kinect games)

Gestures

Latent Variable Models (Static)

General Concept:

Joint likelihood maximization:

$$
\theta=\left\{\boldsymbol{W}, \boldsymbol{\mu}, \sigma^{2}\right\}
$$

$$
\mathrm{p}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N} \mid \theta\right)=\prod_{i=1}^{N} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{y}_{i}, \boldsymbol{W}, \boldsymbol{\mu}, \sigma\right) \prod_{l=1}^{\mathrm{N}} \boldsymbol{p}\left(\boldsymbol{y}_{i}\right)
$$

Latent Variable Models (Dynamic, Continuous)

Latent Variable Models (Dynamic, Continuous)

Generative Model

$$
\begin{gathered}
\boldsymbol{x}_{n}=\mathbf{W} \boldsymbol{y}_{n}+\boldsymbol{e}_{n} \\
\boldsymbol{y}_{1}=\boldsymbol{\mu}_{0}+\boldsymbol{u} \\
\boldsymbol{y}_{n}=\boldsymbol{A} \boldsymbol{y}_{n-1}+\boldsymbol{v}_{n}
\end{gathered}
$$

Noise distribution

$$
\begin{gathered}
\mathbf{e} \sim N(\boldsymbol{e} \mid \mathbf{0}, \boldsymbol{\Sigma}) \\
\boldsymbol{u} \sim N\left(\boldsymbol{u} \mid \mathbf{0}, \boldsymbol{P}_{0}\right) \\
\boldsymbol{v} \sim N(\boldsymbol{v} \mid \mathbf{0}, \boldsymbol{\Gamma})
\end{gathered}
$$

Parameters: $\theta=\left\{\boldsymbol{W}, \boldsymbol{A}, \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}, \boldsymbol{\Gamma}, \boldsymbol{P}_{0}\right\}$

Latent Variable Models (Dynamic, Continuous)

Markov Property: $p\left(\boldsymbol{y}_{i}, \mid \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{i-1}\right)=p\left(\boldsymbol{y}_{i} \mid \boldsymbol{y}_{i-1}\right)$

Latent Variable Models (Dynamic, Discrete)

Word: need

Phonemes: n iy d

Latent structure takes discrete values: $\boldsymbol{y}_{t} \in\{$ start, n, iy, d,end $\}$

Summarize what we will study?

Sequential data (2 weeks):

What are the models?:

- The Markov \& Hidden Markov Models (1 week).
- The Kalman Filter (1 week).

What we will learn?:

- How to formulate probabilistically the problems and learn parameters.

Markov Chains with Discrete Random Variables

Let's assume we have discrete random variables (e.g., taking 3 discrete

$$
\text { values } \left.\boldsymbol{x}_{t}=\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}\right)
$$

Markov Property: $p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{t-1}\right)=p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}\right)$

$$
\text { e.g. } p\left(x_{t}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \left\lvert\, x_{i-1}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right.\right)
$$

Stationary, Homogeneous or Time-Invariant if the distribution $p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}\right)$ does not depend on t

Markov Chains with Discrete Random Variables

bigram model

4-gram model

Markov Chains with Discrete Random Variables

Joint distribution in the first order case:

$$
\begin{aligned}
p\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}\right) & =p\left(\boldsymbol{x}_{1}\right) p\left(\boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{T} \mid \boldsymbol{x}_{1}\right) \\
& =p\left(\boldsymbol{x}_{\mathbf{1}}\right) p\left(\boldsymbol{x}_{2} \mid \boldsymbol{x}_{\mathbf{1}}\right) p\left(\boldsymbol{x}_{3}, \ldots, \boldsymbol{x}_{T} \mid \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \\
& =p\left(\boldsymbol{x}_{1}\right) p\left(\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1}\right) p\left(\boldsymbol{x}_{3}, \ldots, \boldsymbol{x}_{T} \mid \boldsymbol{x}_{2}\right) \\
& =p\left(\boldsymbol{x}_{\mathbf{1}}\right) p\left(\boldsymbol{x}_{2} \mid \boldsymbol{x}_{\mathbf{1}}\right) p\left(\boldsymbol{x}_{3} \mid \boldsymbol{x}_{2}\right) p\left(\boldsymbol{x}_{4}, \ldots, \boldsymbol{x}_{T} \mid \boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right) \\
& =p\left(\boldsymbol{x}_{1}\right) p\left(\boldsymbol{x}_{2} \mid \boldsymbol{x}_{1}\right) p\left(\boldsymbol{x}_{3} \mid \boldsymbol{x}_{\mathbf{2}}\right) p\left(\boldsymbol{x}_{4}, \ldots, \boldsymbol{x}_{T} \mid \boldsymbol{x}_{3}\right) \\
& =p\left(\boldsymbol{x}_{\mathbf{1}}\right) \prod_{i=2}^{\mathrm{T}} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{x}_{i-1}\right)
\end{aligned}
$$

First Order Markov Chains

$p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}\right)$ can be represented as a $K x K$ transition matrix $\boldsymbol{A}=\left[a_{i j}\right]$
which is the probability of going from state i to state j

First Order Markov Chains

If we make use of our vector notation of discrete random variable then if $\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0\end{array}\right]$
$\boldsymbol{x}_{t-1}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \\ 0\end{array}\right]$ has only its i-th element "activated" \quad then $a_{i j}=p\left(x_{t j}=1 \mid x_{t-1 i}=1\right)$

Transition Matrices

A stationary finite-state Markov chain is equivalent to a stochastic automaton.

Transition Matrices

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
0 & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right] \quad \begin{aligned}
& a_{12}=1-a_{11} \\
& a_{23}=1-a_{22}
\end{aligned}
$$

Transition Matrices

- Transition matrix \boldsymbol{A} specifies the probability of getting from i to j in one step.
- How can we compute the probability of i to j in exactly n-steps?

$$
a_{i j}(n)=p\left(x_{t+n j}=1 \mid x_{t i}=1\right)
$$

Probability of getting from i to k in one step and then from k to j in $n-1$ steps and summing for all k

$$
\begin{array}{ll}
=\sum_{k=1}^{K} p\left(x_{t+1 k}=1 \mid x_{t i}=1\right) p\left(x_{t+n j}=1 \mid x_{t+1 k}=1\right) \\
=\sum_{k=1}^{K} a_{i k} a_{k j}(n-1) & \Rightarrow \boldsymbol{A}(n)=\boldsymbol{A} \boldsymbol{A}(n-1) \\
\Rightarrow \boldsymbol{A}(n)=\boldsymbol{A}^{n}
\end{array}
$$

Stationary Distribution of the Markov Chain

- Markov model are used to define joint probability distributions over sequences.
- But can be also interpreted as stochastic dynamical systems, where we "hop" from one state to another over time.
- We are interested long term distribution over states, known as stationary distribution of the chain.
- Important application: Google's Page Rank

Stationary Distribution of the Markov Chain

Assume a Markov Chain.

$$
\begin{aligned}
& \boldsymbol{A}=\left[a_{i j}\right]=\left[p\left(x_{t j}=1 \mid x_{t-1 i}=1\right)\right] \\
& \boldsymbol{\pi}_{0}=\left[\boldsymbol{p}\left(x_{0 i}=1\right)\right]
\end{aligned}
$$

then

$$
\begin{aligned}
\boldsymbol{p}\left(x_{1 i}=1\right) & =\sum_{k=1}^{\boldsymbol{K}} p\left(x_{1 i}=1, x_{0 k}=1\right) \\
& =\sum_{k=1}^{\boldsymbol{K}} p\left(x_{0 k}=1\right) p\left(x_{1 i}=1 \mid x_{0 k}=1\right) \\
\Rightarrow \pi_{1 \mathrm{j}} & =\sum_{k=1}^{K} \pi_{0 k} a_{k j} \Rightarrow \boldsymbol{\pi}_{1}{ }^{T}=\boldsymbol{\pi}_{0}{ }^{T} \boldsymbol{A}
\end{aligned}
$$

Stationary Distribution of the Markov Chain

- We image iterating these equations. If we ever reach a stage where:

$$
\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} \boldsymbol{A}
$$

we have reached the stationary distribution (also called the invariant distribution or equilibrium distribution)

- In case of three states the above is written:

$$
\begin{aligned}
& \left(\pi_{1} \pi_{2} \pi_{3}\right)= \\
& \quad\left(\pi_{1} \pi_{2} \pi_{3}\right)\left(\begin{array}{ccc}
1-a_{12}-a_{13} & a_{12} & a_{13} \\
a_{21} & 1-a_{21}-a_{23} & a_{23} \\
a_{31} & a_{32} & 1-a_{31}-a_{32}
\end{array}\right)
\end{aligned}
$$

Stationary Distribution of the Markov Chain

$$
\begin{gathered}
\text { so } \pi_{1}=\pi_{1}\left(1-a_{12}-a_{13}\right)+\pi_{2} a_{21}+\pi_{3} a_{31} \\
\text { or } \pi_{1}\left(a_{12}+a_{13}\right)=\pi_{2} a_{21}+\pi_{3} a_{31}
\end{gathered}
$$

similarly $\pi_{2}\left(a_{21}+a_{23}\right)=\pi_{1} a_{12}+\pi_{3} a_{13}$

$$
\text { and } \pi_{3}\left(a_{31}+a_{32}\right)=\pi_{1} a_{31}+\pi_{2} a_{32}
$$

In general, we have $\pi_{i} \sum_{j \neq i} a_{i j}=\sum_{j \neq i} \pi_{j} a_{j i}$ and $\sum_{j} \pi_{j}=1$
The probability of being in state i times the net flow out of the state i must equal the probability of being in each other state j times the net flow from that state into i.

Stationary Distribution of the Markov Chain

$$
\begin{array}{r}
\boldsymbol{A}^{T} \boldsymbol{\pi}=\boldsymbol{\pi} \quad \text { looks like an eigen-analysis problem } \\
\text { i.e., } \boldsymbol{\pi} \text { is an eigenvector with eigenvalue } 1
\end{array}
$$

Such an eigenvector always exists since \boldsymbol{A} is row-stochastic $\boldsymbol{A 1}=\mathbf{1}$ and \boldsymbol{A} and \boldsymbol{A}^{T} have the same eigenvalues

But the eigenvectors of \boldsymbol{A} are real-valued only when $a_{i j}>0$

What happens in the case that $a_{i j}=0$?

Stationary Distribution of the Markov Chain

$$
\begin{aligned}
\boldsymbol{\pi}^{T}(\boldsymbol{I}-\boldsymbol{A})=\mathbf{0} & \Rightarrow K \text { constraints } \quad \Rightarrow \text { Problem is over constrained } \\
\boldsymbol{\pi}^{\boldsymbol{T}} \mathbf{1}=\mathbf{1} & \Rightarrow 1 \text { extra constraint }
\end{aligned}
$$

Define matrix $\boldsymbol{M}=\boldsymbol{I}-\boldsymbol{A}$
and replace one column with 1 s

$$
\left(\begin{array}{lll}
\pi_{1} & \pi_{2} & \pi_{3}
\end{array}\right)\left(\begin{array}{ccc}
1-a_{11} & -a_{12} & 1 \\
-a_{21} & 1-a_{22} & 1 \\
-a_{31} & -a_{32} & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

Stationary Distribution of the Markov Chain

$$
\left.\begin{array}{lll}
\left(\pi_{1} \pi_{2} \pi_{3}\right.
\end{array}\right)\left(\begin{array}{ccc}
1 & -1 & 1 \\
-0.5 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

Stationary Distribution of the Markov Chain

- When does a stationary distribution exists

State 4 is an absorbing state hence $\boldsymbol{\pi}=(0,0,0,1)$ is a possible stationary distribution
so is $\boldsymbol{\pi}=(0.5,0.5,0,0)$

Stationary Distribution of the Markov Chain

- First necessary condition to have a unique stationary distribution is that the state transition diagram be a singly connected component.
- Such chains are called irreducible (i.e., you can go from any state to any other state).

$$
\alpha=\beta=1
$$

Let's start from state 2
$t=2 b+1 \quad$ state 1
$t=2 b \quad$ state 2
\Rightarrow oscillates

Stationary Distribution of the Markov Chain

$$
d(i)=\operatorname{gcd}\left\{t: a_{i i}(t)>0\right\}
$$

State i is aperiodic if $d(i)=1$
Markov Chain is aperiodic if $d(i)=1$ for all i

Stationary Distribution of the Markov Chain

- Every irreducible (singly connected), aperiodic finite state Markov chain has a limiting distribution, which is equal to π, its unique stationary distribution.
- Special cases and sufficient conditions: Every regular finite state chain has a unique stationary distribution (i.e., $a_{i j}(t)>0$).

Stationary Distribution of the Markov Chain

Small web (uniform distribution over all states it is connected to)

First step make it regular.
$\left(\pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{6}\right)=\left(\begin{array}{ll}0.320 .17 & 0.1 \\ 0.137 & 0.0640 .2\end{array}\right)$

Markov Chain for Language Modelling.

- One important application of Markov Models is to make statistical language models (i.e., probability distributions over sequences of words).
- Sentence Completion. Predict next word based on the previous one.
- Data compression. Any density model can be used to define an encoding scheme, by assigning short code-words to more probably strings.
- Text classification. Any density model can be used as a classconditional density.
- Automatic essay writing. Sample from $p\left(\boldsymbol{x}_{1}, . ., \boldsymbol{x}_{T}\right)$

Simple Parameter Estimation

abbbcbbabcbbbabc $\quad p\left(x_{1}{ }^{1}, . ., x_{T}{ }^{1}\right)$
bbcabbabbcbbbaba $p\left(x_{1}{ }^{2}, . ., x_{T}{ }^{2}\right)$

$$
\begin{gathered}
\mathrm{a} \\
\left.\left.\boldsymbol{x}=\left\{\begin{array}{c}
\mathrm{b} \\
1 \\
0 \\
0
\end{array}\right], \begin{array}{c}
\mathrm{c} \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

abccabbabbcbbbab $p\left(x_{1}{ }^{N}, . ., x_{T}{ }^{N}\right)$

$$
p\left(\boldsymbol{x}_{1} \mid \boldsymbol{\pi}\right)=\prod_{k=1}^{3} \pi_{\kappa}^{x_{1 k}} \quad p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}\right)=\prod_{j=1}^{K} \prod_{k=1}^{K} a_{j k}{ }^{x_{t-1 j} x_{t k}}
$$

Maximum Likelihood for Markov Chains

-What are the parameters in this case?

$$
\boldsymbol{\theta}=\{\boldsymbol{\pi}, \boldsymbol{A}\}
$$

-The problem is now formulated as:
Given a set of observations $D_{l}=\left\{x_{1}{ }^{l}, \ldots, x_{T}{ }^{l}\right\}, l=1, \ldots, N$ find the parameters θ that maximize $p\left(D_{1}, \ldots, D_{N} \mid \theta\right)$

$$
p\left(D_{1}, \ldots, D_{N} \mid \theta\right)=\prod_{l=1}^{N} p\left(D_{l} \mid \theta\right)
$$

Maximum Likelihood for Markov Chains

$$
\begin{aligned}
& \begin{aligned}
p\left(D_{l} \mid \theta\right) & =p\left(x_{1}^{l}, \ldots, x_{T}^{l} \mid \theta\right)=p\left(\boldsymbol{x}_{\mathbf{1}}{ }^{\boldsymbol{l}}\right) \prod_{t=2}^{\mathrm{T}} p\left(\boldsymbol{x}_{\boldsymbol{t}}^{\boldsymbol{l}} \mid \boldsymbol{x}_{\boldsymbol{t}-\mathbf{1}}{ }^{\boldsymbol{l}}\right) \\
& =\prod_{k=1}^{3} \pi_{\kappa} x_{1 k}^{l} \prod_{t=2}^{\mathrm{T}} \prod_{j=1}^{3} \prod_{k=1}^{3} a_{j k}^{x_{t-1 j}^{l} x_{t k}^{l}}
\end{aligned} \\
& \Rightarrow p\left(D_{1}, \ldots, D_{N} \mid \theta\right)=\prod_{l=1}^{N} \prod_{k=1}^{3} \pi_{\kappa}^{x_{1 k}^{l} \prod_{t=2}^{\mathrm{T}} \prod_{j=1}^{K} \prod_{k=1}^{K} a_{j k}^{x_{t-1 j}^{l} x_{t k}^{l}}} \\
& \Rightarrow \ln p(\theta)=\sum_{l=1}^{N} \sum_{k=1}^{3} x_{1 k}^{l} \ln \pi_{\kappa}+\sum_{l=1}^{N} \sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} x_{t-1 j}^{l} x_{t k}^{l} \ln a_{j k}
\end{aligned}
$$

Maximum Likelihood for Markov Chains

$$
\begin{aligned}
& =\sum_{l=1}^{N} \sum_{k=1}^{3} x_{1 k}^{l} \ln \pi_{\kappa}+\sum_{l=1}^{N} \sum_{t=2}^{T} \sum_{j=1}^{3} \sum_{k=1}^{3} x_{t-1 j}^{l} x_{t k}^{l} \ln a_{j k} \\
& =\sum_{k=1}^{3}\left(\sum_{l=1}^{N} x_{1 k}^{l}\right) \ln \pi_{\kappa}+\sum_{j=1}^{3} \sum_{k=1}^{3}\left(\sum_{l=1}^{N} \sum_{t=2}^{T} x_{t-1 j^{l}}^{l} x_{t k}^{l}\right) \ln a_{j k}
\end{aligned}
$$

Let us define the counts

$$
N_{k}^{1} \triangleq \sum_{l=1}^{N} x_{1 k}^{l} \quad N_{j k}=\sum_{l=1}^{N} \sum_{t=2}^{T} x_{t-1 j}^{l} x_{t k}^{l}
$$

Maximum Likelihood for Markov Chains

$$
=\sum_{k=1}^{3} N_{k}^{1} \ln \pi_{\kappa}+\sum_{j=1}^{3} \sum_{k=1}^{3} N_{j k} \ln a_{j k}
$$

Solve the above subject to:

$$
\sum_{k=1}^{3} \pi_{\kappa}=1 \quad \sum_{k=1}^{3} a_{j k}=1
$$

The Lagrangian is:

$$
\begin{aligned}
L(\boldsymbol{\pi}, \boldsymbol{A})= & \sum_{k=1}^{3} N_{k}{ }^{1} \ln \pi_{\kappa}+\sum_{j=1}^{3} \sum_{k=1}^{3} N_{j k} \ln a_{j k} 0 \\
& -\lambda\left(\sum_{k=1}^{3} \pi_{\kappa}-1\right)-\gamma\left(\sum_{k=1}^{3} a_{j k}-1\right)
\end{aligned}
$$

Maximum Likelihood for Markov Chains

which gives us:

$$
\pi_{k}=\frac{N_{k}^{1}}{\sum_{k=1}^{3} N_{k}^{1}} \quad a_{j k}=\frac{N_{j k}}{\sum_{k=1}^{3} N_{j k}}
$$

