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Course 495: Advanced Statistical Machine 
Learning/Pattern Recognition 

• Lecturer:  Stefanos Zafeiriou 

 

 

 

• Goal (Lectures): To present discrete and continuous valued probabilistic 
linear dynamical systems (HMMs & Kalman Filters). 

 

• Goal (Tutorials): To provide the students the necessary mathematical 
tools for deeply understanding the models.  
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• Chapter 13: Pattern Recognition & Machine Learning, Christopher M. 
Bishop. 

 

• Chapter 17: Machine Learning a Probabilistic Perspective, Kevin Murphy 

 

• Rabiner, Lawrence. "A tutorial on hidden Markov models and selected 
applications in speech recognition." Proceedings of the IEEE 77.2 (1989): 
257-286. 

 

  

Materials 
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Linear Dynamical Systems 

Applications of probabilistic linear dynamical systems 

 

• Language modelling 

 

• Object/Face tracking 

 

• Speech/Gesture recognition 

 

• Finance 

 

• Bioinformatics 
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Object-target tracking 

 

Applications 

4 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

Speech Recognition (voice Google search) 

 

Applications 

Waveform 

 

Hello world 
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Gesture recognition (Kinect games) 

 

Applications 

Gestures 

6 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

General Concept: 

 

𝒙1 𝒙2 𝒙3 

𝒚1 𝒚2 𝒚3 𝒚𝑁 

Share a common linear structure 

We want to find the parameters: 

 

p(𝒙1, . . , 𝒙𝑁,𝒚1, . . , 𝒚𝑁|𝜃) =  𝑝(𝒙𝑖|𝒚𝑖 ,𝑾, 𝝁, 𝜎) 𝒑(𝒚𝑖)
Ν
𝜄=1

𝑁
𝑖=1  

Joint likelihood maximization: 

 

Latent Variable Models (Static) 

𝒙𝑁 𝒙𝑁 
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Latent Variable Models (Dynamic, Continuous) 
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Latent Variable Models (Dynamic, Continuous) 

𝜃 = {𝑾,𝑨, 𝝁0, 𝚺, 𝚪, 𝑷0} 

𝒙1 𝒙2 𝒙3 𝒙𝑇 

𝒚1 𝒚2 𝒚3 𝒚𝑇 

𝒙𝑛 = 𝐖𝒚𝑛 + 𝒆𝑛 

𝒚𝑛 = 𝑨𝒚𝑛−1 + 𝒗𝑛 

𝒚1 = 𝝁0 + 𝒖 

Generative Model 

 

Noise distribution 

 𝐞~𝑁(𝒆|𝟎, 𝚺) 

𝒗~𝑁(𝒗|𝟎, 𝚪) 

𝒖~𝑁 𝒖 𝟎,𝑷0  

Parameters: 
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𝒙1 𝒙2 𝒙3 𝒙𝑇 

𝒚1 𝒚2 𝒚3 𝒚𝑇 

Latent Variable Models (Dynamic, Continuous) 

𝑝(𝒚𝑖 , 𝒚1, . . , 𝒚𝑖−1 = 𝑝(𝒚𝑖|𝒚𝑖−1) Markov Property: 
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n 

 

iy 

 

d Word: need 

 

Phonemes: 

 

𝒚1 

𝒙1 

𝒚2 

𝒙2 

𝒚3 

𝒙3 

𝒚𝑇 

𝒙𝑇 

Latent Variable Models (Dynamic, Discrete) 

Latent structure takes 
discrete values: 

𝒚𝑡 ∈{start,n,iy,d,end} 
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𝒚1 

𝒙1 

𝒚2 

𝒙2 

𝒚3 

𝒙3 

𝒚𝑇 

𝒙𝑇 

Sequential data (2 weeks): 

 

What we will learn?:  

• How to formulate probabilistically the problems and learn 
parameters. 

                              

 

What are the models?:  

• The Markov & Hidden Markov Models (1 week). 

• The Kalman Filter (1 week).                               

 

Summarize what we will study? 
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𝒙1 𝒙2 𝒙3 𝒙𝑇 

Let’s assume we have discrete random variables (e.g., taking 3 discrete 

values 𝒙𝑡 = {
1
0
0
,
0
1
0
,
0
0
1
}) 

                              

 𝑝(𝒙𝑡 𝒙1, . . , 𝒙𝑡−1 = 𝑝(𝒙𝑡|𝒙𝑡−1) Markov Property:  

 

Stationary, Homogeneous or Time-Invariant if the distribution 𝑝 𝒙𝑡 𝒙𝑡−1  
does not depend on 𝑡 

  

 

e.g. 𝑝(𝒙𝑡 =
1
0
0
|𝒙𝑖−1 =

0
1
0
) 

Markov Chains with Discrete Random Variables 
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𝒙1 𝒙2 𝒙3 𝒙𝑇 

𝒙1 𝒙2 𝒙3 𝒙𝑇 

𝒙1 𝒙2 𝒙3 𝒙𝑇 𝒙4 

𝑝(𝒙𝑡|𝒙𝑡−1) 

𝑝(𝒙𝑡|𝒙𝑡−1, 𝒙𝑡−2) 

bigram model  

Tri-gram model  

4-gram model  

𝑝(𝒙𝑡|𝒙𝑡−1, 𝒙𝑡−2, 𝒙𝑡−3) 

Markov Chains with Discrete Random Variables 
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𝑝(𝒙1, . . , 𝒙𝑇) = 𝑝 𝒙𝟏 𝑝(𝒙2, . . , 𝒙𝑇 𝒙𝟏  

= 𝑝 𝒙𝟏 𝑝(𝒙2|𝒙𝟏)𝑝(𝒙3, . . , 𝒙𝑇 𝒙𝟏, 𝒙2  

= 𝑝 𝒙𝟏 𝑝(𝒙2|𝒙𝟏)𝑝(𝒙3, . . , 𝒙𝑇 𝒙2  

= 𝑝 𝒙𝟏 𝑝(𝒙2|𝒙𝟏)𝑝(𝒙3|𝒙𝟐)𝑝(𝒙4, . . , 𝒙𝑇 𝒙2, 𝒙3  

= 𝑝 𝒙𝟏 𝑝(𝒙2|𝒙𝟏)𝑝(𝒙3|𝒙𝟐)𝑝(𝒙4, . . , 𝒙𝑇 𝒙3  

= 𝑝(𝒙𝟏) 𝑝(𝒙𝑖|𝒙𝑖−1)

T

𝑖=2

 

Joint distribution in the first order case: 

Markov Chains with Discrete Random Variables 
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𝑝(𝒙𝑡|𝒙𝑡−1) can be represented as a 𝐾𝑥𝐾 transition matrix 𝑨 = 𝑎𝑖𝑗  

which is the probability of going from state 𝑖 to state 𝑗 

𝑎11 𝑎12 𝑎13
𝑎21
𝑎31

𝑎22
𝑎32

𝑎23
𝑎33

 

𝒙𝑡  

𝒙𝑡 −1 
1 
2 

3 1 𝑝 𝒙𝑡 𝒙𝑡−1  2 

3 

 𝑎𝑖𝑘 = 1

3

𝑘=1

 

𝑨 is a stochastic matrix, i.e.,  

First Order Markov Chains 
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𝑎𝑖𝑗 = 𝑝(𝑥𝑡𝑗 = 1 | 𝑥𝑡−1𝑖 = 1)  

𝒙𝑡 =

0
0
0
⋮
1
⋮
0

 

If we make use of our vector notation of discrete random variable 

then if 

has only its 𝑗-th element “activated”  

𝒙𝑡−1 =

0
0
⋮
1
⋮
0
0

 
has only its 𝑖-th element “activated”  

then 

First Order Markov Chains 
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A stationary finite-state Markov chain is equivalent to a  

stochastic automaton. 

1 − 𝛼 𝛼 

𝛽 

1 − 𝛽 

1 2 
𝜜 =
1 − 𝛼 𝛼
𝛽 1 − 𝛽

 

Transition Matrices 
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𝑎11 

1 2 3 

𝑎12 𝑎22 

𝑎23 
𝑎33 

𝐴 =
𝑎11 𝑎12 0
0 𝑎22 𝑎23
0 0 1

 
𝑎12 = 1 − 𝑎11 

𝑎23 = 1 − 𝑎22 

Transition Matrices 
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• Transition matrix 𝑨 specifies the probability of getting from 𝑖 
to 𝑗 in one step.  

• How can we compute the probability of 𝑖 to 𝑗 in exactly n-steps? 

𝑎𝑖𝑗 𝑛 = 𝑝 𝑥𝑡+𝑛𝑗 = 1 𝑥𝑡𝑖 = 1  

=  𝑝 𝑥𝑡+1𝑘 = 1 𝑥𝑡𝑖 = 1 𝑝 𝑥𝑡+𝑛𝑗 = 1 𝑥𝑡+1𝑘 = 1

𝐾

𝑘=1

 

 Probability of getting from 𝑖 to 𝑘 in one step and then from 𝑘 to 

𝑗 in 𝑛 − 1 steps and summing for all 𝑘 

=  𝑎𝑖𝑘𝑎𝑘𝑗(𝑛 − 1)

𝐾

𝑘=1

 

 𝑨(𝑛) = 𝑨𝑨(𝑛 − 1) 

 𝑨(𝑛) = 𝑨𝑛 

Transition Matrices 
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Stationary Distribution of the Markov Chain 

• Markov model are used to define joint probability 

distributions over sequences.  

• But can be also interpreted as stochastic dynamical systems, 

where we “hop” from one state to another over time. 

• We are interested long term distribution over states, known as 

stationary distribution of the chain. 

• Important application: Google’s Page Rank 

21 
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Stationary Distribution of the Markov Chain 

𝑨 = [𝑎𝑖𝑗] = [𝑝(𝑥𝑡𝑗 = 1 | 𝑥𝑡−1𝑖 = 1) ] 

𝝅0 = [𝒑 𝑥0𝑖 = 1 ] 

 𝜋1j =  𝜋0𝑘

𝐾

𝑘=1

𝑎𝑘𝑗 𝝅1
𝑇 = 𝝅0

𝑇𝑨 

𝒑 𝑥1𝑖 = 1 =  𝑝 𝑥1𝑖 = 1, 𝑥0𝑘 = 1

𝑲

𝒌=𝟏

 

=  𝑝 𝑥0𝑘 = 1 𝑝 𝑥1𝑖 = 1|𝑥0𝑘 = 1

𝑲

𝒌=𝟏

 

Assume a Markov Chain.  

then  
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• We image iterating these equations. If we ever reach a stage 

where: 

𝝅𝑇 = 𝝅𝑇𝑨 
we have reached the stationary distribution (also called the 

invariant distribution or equilibrium distribution) 

(𝜋1𝜋2𝜋3) = 

(𝜋1𝜋2𝜋3)

1 − 𝑎12 − 𝑎13 𝑎12 𝑎13
𝑎21 1 − 𝑎21 − 𝑎23 𝑎23
𝑎31 𝑎32 1 − 𝑎31 − 𝑎32

 

•  In case of three states the above is written:  

Stationary Distribution of the Markov Chain 

23 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

so 𝜋1 = 𝜋1 1 − 𝑎12 − 𝑎13 + 𝜋2𝑎21 + 𝜋3𝑎31 

or 𝜋1 𝑎12 + 𝑎13 = 𝜋2𝑎21 + 𝜋3𝑎31 

In general, we have 𝜋𝑖 𝑎𝑖𝑗
𝑗≠𝑖

= 𝜋𝑗𝑎𝑗𝑖
𝑗≠𝑖

 

similarly 𝜋2 𝑎21 + 𝑎23 = 𝜋1𝑎12 + 𝜋3𝑎13 

and 𝜋3 𝑎31 + 𝑎32 = 𝜋1𝑎31 + 𝜋2𝑎32 

The probability of being in state 𝑖 times the net flow out of the state 𝑖 
must equal the probability of being in each other state 𝑗 times the net 

flow from that state into 𝑖.  

 

 𝜋𝑗 = 1

𝑗

 and 

Stationary Distribution of the Markov Chain 
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𝑨𝑇𝝅 = 𝝅 looks like an eigen-analysis problem  

Such an eigenvector always exists since 𝑨 is row-stochastic 𝑨𝟏 = 𝟏 

and 𝑨 and 𝑨𝑇 have the same eigenvalues 

 

But the eigenvectors of 𝑨 are real-valued only when 𝑎𝑖𝑗 > 0 

  

 

   

i.e., 𝝅 is an eigenvector with eigenvalue 1 

What happens in the case that 𝑎𝑖𝑗=0? 

Stationary Distribution of the Markov Chain 
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𝝅𝛵(𝑰 − 𝑨) = 𝟎   𝐾  constraints   

𝝅𝜯𝟏 = 𝟏   1 extra constraint   

 Problem is over constrained 

and replace one column with 1s  

(𝜋1  𝜋2  𝜋3)
1 − 𝑎11 −𝑎12 1
−𝑎21 1 − 𝑎22 1
−𝑎31 −𝑎32 1

= (0 0 1) 

Stationary Distribution of the Markov Chain 

Define matrix 𝜧 = 𝑰 − 𝑨 
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1 2 3 

1.0 

1.0 0.5 

0.5 

(𝜋1 𝜋2 𝜋3)
1 −1 1
−0.5 1 1
−1 0 1

= (0 0 1) 

(𝜋1 𝜋2 𝜋3) = (0.4 0.4 0.2) 

Stationary Distribution of the Markov Chain 
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• When does a stationary distribution exists 

1 2 3 4 

1.0 

0.5 0.5 

0.1 0.1 
0.9 

0.9 

State 4 is an absorbing state hence 𝝅 =  (0,0,0,1) is a possible 

stationary distribution 

so is 𝝅 =  (0.5,0.5,0,0) 

Stationary Distribution of the Markov Chain 

28 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

• First necessary condition to have a unique stationary distribution is 

that the state transition diagram be a singly connected component.  

• Such chains are called irreducible (i.e., you can go from any state to 

any other state). 

1 − 𝛼 𝛼 

𝛽 

1 − 𝛽 

1 2 

𝛼 = 𝛽 = 1 

𝑡 = 2𝑏 + 1 𝑠𝑡𝑎𝑡𝑒 1 

𝑡 = 2𝑏 𝑠𝑡𝑎𝑡𝑒 2 

 oscillates  

Stationary Distribution of the Markov Chain 

Let’s start from state 2 
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𝑑 𝑖 = gcd {𝑡: 𝑎𝑖𝑖 𝑡 > 0}  

1 2 3 

1.0 

1.0 0.5 

0.5 

𝑑 1 = gcd 2,3,4,6, . . = 1  

𝑑 2 = gcd 2,3,4,6, . . = 1  

𝑑 3 = gcd 3,5,6, . . = 1  

State 𝑖 is aperiodic if 𝑑(𝑖) =  1  

Stationary Distribution of the Markov Chain 

Markov Chain is aperiodic if 𝑑(𝑖) =  1 for all 𝑖 
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• Every irreducible (singly connected), aperiodic finite state Markov 

chain has a limiting distribution, which is equal to 𝝅, its unique 

stationary distribution. 

• Special cases and sufficient conditions: Every regular finite state 

chain has a unique stationary distribution (i.e., 𝑎𝑖𝑗(𝑡) > 0).  

Stationary Distribution of the Markov Chain 
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x1 x4 

x2 

x3 

x6 x5 

Small web (uniform distribution over all states it is connected to)  

First step make it regular. 

(𝜋1 𝜋2 𝜋3 𝜋4 𝜋5 𝜋6) = (0.32 0.17 0.1 0.137 0.064 0.2) 

Stationary Distribution of the Markov Chain 
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• One important application of Markov Models is to make 

statistical language models (i.e., probability distributions over 

sequences of words). 

Markov Chain for Language Modelling.   

• Sentence Completion. Predict next word based on the 

previous one. 

• Data compression. Any density model can be used to define 

an encoding scheme, by assigning short code-words to more 

probably strings. 

• Text classification. Any density model can be used as a class-

conditional density. 

• Automatic essay writing. Sample from 𝑝(𝒙1, . . , 𝒙𝑇)  
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𝑝(𝑥1
1, . . , 𝑥𝑇

1) abbbcbbabcbbbabc  

bbcabbabbcbbbaba  

abccabbabbcbbbab  

𝑝(𝑥1
2, . . , 𝑥𝑇

2) 

𝑝(𝑥1
𝑁, . . , 𝑥𝑇

𝑁) 

⋮ ⋮ 
𝒙 = {

1
0
0
,
0
1
0
,
0
0
1
} 

a      b       c 

𝑝 𝒙1|𝝅 = 𝜋𝜅
𝑥1𝑘

3

𝑘=1

 𝑝 𝒙𝑡|𝒙𝑡−1 =  𝑎𝑗𝑘
𝑥𝑡−1𝑗𝑥𝑡𝑘

𝐾

𝑘=1

𝐾

𝑗=1

 

Simple Parameter Estimation 
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•What are the parameters in this case? 

𝜽 = {𝝅, 𝑨} 

•The problem is now formulated as: 

Given a set of observations 𝐷𝑙 = 𝑥1
𝑙 , . . , 𝑥𝑇

𝑙 , 𝑙 = 1, . . , 𝑁 

find the parameters θ that maximize 𝑝 𝐷1, . . , 𝐷𝛮|𝜃   

𝑝 𝐷1, . . , 𝐷𝛮|𝜃 = 𝑝 𝐷𝑙|𝜃

𝑁

𝑙=1

 

Maximum Likelihood for Markov Chains 
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𝑝 𝐷𝑙|𝜃 = 𝑝(𝑥1
𝑙 , . . , 𝑥𝑇

𝑙|𝜃) = 𝑝(𝒙𝟏
𝒍) 𝑝(𝒙𝒕

𝒍|𝒙𝒕−𝟏
𝒍)

T

𝑡=2

 

= 𝜋𝜅
𝑥1𝑘
𝑙

3

𝑘=1

   𝑎𝑗𝑘
𝑥𝑡−1𝑗

𝑙𝑥𝑡𝑘
𝑙

3

𝑘=1

3

𝑗=1

T

𝑡=2

 

 𝑝 𝐷1, . . , 𝐷𝛮|𝜃 =  𝜋𝜅
𝑥1𝑘
𝑙

3

𝑘=1

   𝑎𝑗𝑘
𝑥𝑡−1𝑗

𝑙𝑥𝑡𝑘
𝑙

𝐾

𝑘=1

𝐾

𝑗=1

T

𝑡=2

 

𝑁

𝑙=1

 

𝑙𝑛
 ln𝑝(𝜃) =  𝑥1𝑘

𝑙 ln 𝜋𝜅

3

𝑘=1

𝑁

𝑙=1

+    𝑥𝑡−1𝑗
𝑙𝑥𝑡𝑘
𝑙

𝐾

𝑘=1

ln 𝑎𝑗𝑘

𝐾

𝑗=1

𝑇

𝑡=2

𝑁

𝑙=1

 

Maximum Likelihood for Markov Chains 
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=  𝑥1𝑘
𝑙 ln 𝜋𝜅

3

𝑘=1

𝑁

𝑙=1

+    𝑥𝑡−1𝑗
𝑙𝑥𝑡𝑘
𝑙

3

𝑘=1

ln 𝑎𝑗𝑘

3

𝑗=1

𝑇

𝑡=2

𝑁

𝑙=1

 

=   𝑥1𝑘
𝑙

𝑁

𝑙=1

ln 𝜋𝜅

3

𝑘=1

+    𝑥𝑡−1𝑗
𝑙𝑥𝑡𝑘
𝑙

𝑇

𝑡=2

𝑁

𝑙=1

ln 𝑎𝑗𝑘

3

𝑘=1

3

𝑗=1

 

𝑁𝑘
1 ≜ 𝑥1𝑘

𝑙

𝑁

𝑙=1

 

Let us define the counts  

𝑁𝑗𝑘 =  𝑥𝑡−1𝑗
𝑙𝑥𝑡𝑘
𝑙

𝑇

𝑡=2

𝑁

𝑙=1

 

Maximum Likelihood for Markov Chains 
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=  𝑁𝑘
1 ln 𝜋𝜅

3

𝑘=1

+  𝑁𝑗𝑘 ln 𝑎𝑗𝑘

3

𝑘=1

3

𝑗=1

 

Maximum Likelihood for Markov Chains 

Solve the above subject to:  𝜋𝜅

3

𝑘=1

= 1  𝑎𝑗𝑘

3

𝑘=1

= 1 

𝐿 𝝅, 𝜜 =  𝑁𝑘
1 ln 𝜋𝜅

3

𝑘=1

+  𝑁𝑗𝑘 ln 𝑎𝑗𝑘

3

𝑘=1

3

𝑗=1

0 

                               −𝜆  𝜋𝜅

3

𝑘=1

− 1 − 𝛾  𝑎𝑗𝑘

3

𝑘=1

− 1  

The Lagrangian is: 
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which gives us: 

𝜋𝑘 =
𝑁𝑘
1

 𝑁𝑘
13

𝑘=1

 𝑎𝑗𝑘 =
𝑁𝑗𝑘

 𝑁𝑗𝑘
3
𝑘=1
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