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Course 495: Advanced Statistical Machine 
Learning/Pattern Recognition 

Deterministic Component Analysis 

 

• Goal (Lecture): To present standard and modern Component 
Analysis (CA) techniques such as Principal Component 
Analysis (PCA), Linear Discriminant Analysis (LDA), 
Graph/Neighbourhood based Component Analysis 

• Goal (Tutorials): To provide the students the necessary 
mathematical tools for deeply understanding the CA 
techniques.  
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• Pattern Recognition & Machine Learning by C. Bishop Chapter 12  

• Turk, Matthew, and Alex Pentland. "Eigenfaces for 
recognition." Journal of cognitive neuroscience 3.1 (1991): 71-86.        

• Belhumeur, Peter N., João P. Hespanha, and David J. Kriegman. 
"Eigenfaces vs. fisherfaces: Recognition using class specific linear 
projection." Pattern Analysis and Machine Intelligence, IEEE 
Transactions on 19.7 (1997): 711-720. 

• He, Xiaofei, et al. "Face recognition using laplacianfaces." Pattern 
Analysis and Machine Intelligence, IEEE Transactions on 27.3 (2005): 
328-340. 

• Belkin, Mikhail, and Partha Niyogi. "Laplacian eigenmaps for 
dimensionality reduction and data representation." Neural 
computation 15.6 (2003): 1373-1396. 

  

Materials 
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Deterministic Component Analysis 

Problem: Given a population of data 𝒙1, ⋯ , 𝒙𝑁  ∊ 𝑅𝐹 (i.e. observations) find a 

latent space 𝒚1, … , 𝒚𝑁 ∊ 𝑅𝑑 (usually d ≪ 𝐹) which is relevant to a task.  

𝒚1 𝒚2 𝒚3 𝒚𝑁 
𝒙1 𝒙2 𝒙3 𝒙𝑁 𝒙𝑁 
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Linear: 

 

Parameters: 

 

Latent Variable Models 

𝑛 

𝑚 

𝐹 = 𝑚𝑛 

𝑑 ≪ 𝐹 

Non-linear: 
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What to have in mind? 

 What are the properties of my latent space? 

 How do I find it (linear, non-linear)? 

 Which is the cost function? 

 How do I solve the problem? 
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• Let’s assume that we want to find a descriptive latent 
space, i.e. best describes my population as a whole. 

• How do I define it mathematically? 

• Idea! This is a statistically machine learning course, 
isn’t?  

• Hence, I will try to preserve global statistical 
properties. 

 

A first example 
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• What are the data statistics that can used to describe 
the variability of my observations? 

 

• One such statistic is the variance of the population 
(how much the data deviate around a mean).  

 

• Attempt: I want to find a low-dimensional latent 
space where the “majority” of variance is preserved 
(or in other words maximized). 

 

 

 

A first example 
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PCA (one dimension) 

•We want to find  

𝜎𝑦
2 =

1

𝑁
 (𝑦𝑖 − 𝜇𝑦)

2

𝑁

𝑖=1

 

{𝑦1, 𝑦2, … , 𝑦𝑁} 

{𝑦1
𝑜, … 𝑦𝑛

𝑜} = argm𝑎𝑥
{𝑦1,…,𝑦𝑛}

𝜎𝑦
2 

•Via a linear projection 𝒘 

i.e., 𝑦𝑖 = 𝒘𝑇𝒙𝑖 

• Variance of the latent space 

𝜇𝑦 = 𝑦𝑖

𝑁

𝑖=1

 

•But we are missing something … The way to do it. 
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𝒙 
𝒘 

𝜃 

cos (𝜃) =  
𝒙𝑇𝒘

𝒙 |𝒘|
 

|𝒙|cos(θ) =
𝒙𝑇𝒘

|𝒘|
 

𝒙 = 𝒙𝑇𝒙 

𝒘 = 𝒘𝑇𝒘 

PCA (geometric interpretation of projection) 
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PCA (one dimension) 
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Assuming 𝑦𝑖 = 𝒘𝑇𝒙𝑖 latent space  

𝑦1, … , 𝑦𝑁 = {𝒘𝑇𝒙1, … ,𝒘𝑇𝒙𝑁} 

𝒘0 = argmax
𝒘

𝜎2 = argmax
𝑤

1

𝑁
 (𝒘𝑇𝒙𝑖 −𝒘𝑇𝝁)2 

= argmax
𝒘

1

𝑁
 (𝒘𝑇(𝒙𝑖 − 𝝁))2 

= argmax
𝒘

1

𝑁
 𝒘𝑇(𝒙𝑖 − 𝝁) (𝒙𝑖 − 𝝁)𝑇𝒘 

= argmax
𝒘

𝒘𝑇 𝐒𝑡𝒘 

PCA (one dimension) 

𝝁 =
1

𝑁
 𝒙𝑖

𝑁

𝑖=1

 

= argmax
𝒘

1

𝑁
𝒘𝑇   (𝒙𝑖 − 𝝁) (𝒙𝑖 − 𝝁)𝑇 𝒘 
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𝒘𝑜 = argmax
𝒘

𝜎2 =argmax
𝒘

1

𝑁
𝒘𝑇 𝐒𝑡𝒘 ≥ 0 

 
𝑺𝑡 =

1

𝑁
  (𝒙𝑖 − 𝝁) (𝒙𝑖 − 𝝁)𝑇 

• There is a trivial solution of 𝒘 = ∞ 

 
• We can avoid it by adding extra constraints (a fixed 

magnitude on 𝒘 (| 𝒘 |2 = 𝒘𝑇𝐰=1)  

𝒘0 = argmax
𝒘

𝒘𝑇𝑺𝑡𝒘 

subject to s. t.      𝒘𝑇𝒘 = 1 

PCA (one dimension) 
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Formulate the Lagrangian 

 
𝐿 𝒘, λ = 𝒘𝑇𝑺𝑡𝒘− λ(𝒘𝑇𝒘− 1) 

𝜕𝐿

𝜕𝒘
= 𝟎 𝑺𝑡𝒘 = λ𝒘  

𝜕𝒘𝑇𝑺𝑡𝒘

𝜕𝒘
= 2𝑺𝑡𝒘 

𝜕𝒘𝑇𝒘

𝜕𝒘
= 2𝒘 

𝒘 is the largest eigenvector of 𝑺𝑡 

  

PCA (one dimension) 
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𝑿 = [𝒙1 − 𝝁,… , 𝒙𝑁 −𝝁] 

𝑺𝑡 is a symmetric matrix   all eigenvalues are real 

    𝑺𝑡 is a positive semi-definite matrix, i.e.  

∀𝒘 ≠ 𝟎        𝒘𝑇𝑺𝑡w≥ 0   (all eigenvalues are non negative) 

rank 𝑺𝑡 = min(𝑁 − 1, 𝐹) 

𝑺𝑡 = 𝑼𝜦𝑼𝑇      𝑼𝑇𝑼 = 𝑰 , 𝑼𝑼𝑻 = 𝑰 

 

𝑺𝑡 =
1

𝑁
  𝒙𝑖 − 𝝁  𝒙𝑖 − 𝝁 𝑇=

1

𝑁
𝑿𝑿𝑻 

PCA Properties of 𝑺𝑡 
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•  How can we find a latent space with more than one       

    dimensions? 
{𝒘1, … ,𝒘𝑑} •  We need to find a set of projections 

𝒚𝑖 =

𝑦𝑖1
…
𝑦𝑖𝑑

=
𝒘1

𝑇𝒙𝑖
…

𝒘𝑑
𝑇𝒙𝑖

=𝑾𝑇𝒙𝑖 

𝑾 = [𝒘1, … ,𝒘𝑑] 
𝒚𝑖 

𝒙𝑖 

PCA (more dimensions) 
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PCA (more dimensions) 
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Maximize the variance in each dimension 

𝑾𝑜 = argmax
𝑾

1

𝑁
  (𝑦𝑖𝑘 − 𝜇𝑖𝑘)

2

𝑁

𝑖=1

𝑑

𝑘=1

 

= arg max
𝑾

1

𝑁
  𝒘𝑘

𝑇(𝒙𝑖 − 𝝁𝑖)(𝒙𝑖 − 𝝁𝑖)
𝑇𝒘𝑘

𝑁

𝑖=1

𝑑

𝑘=1

 

= arg max
𝑾

 𝒘𝑘
𝑇𝑺𝑡𝒘𝑘 = arg max

𝑾
 tr[𝑾𝑇𝑺𝑡𝑾

𝑑

𝑘=1

] 

PCA (more dimensions) 
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𝑾𝑜 = arg max
𝑾

 tr[𝑾𝑇𝑺𝑡𝑾] 

𝑾𝑇𝑾 = 𝑰 s.t.  

𝐿 𝐖,𝜦 = tr[𝐖𝑇𝑺𝑡𝐖]-tr[𝜦(𝐖𝑇𝐖− 𝐈)] Lagrangian 

𝑺𝒕𝑾 =𝑾𝜦    Does it ring a bell? 

𝜕tr[𝐖𝑇𝑺𝑡𝐖]

𝜕𝑾
= 2𝑺𝑡𝑾 

𝜕tr[𝜦(𝐖𝑇𝐖− 𝐈)]

𝜕𝑾
= 2𝑾𝚲 

𝜕L(𝑾,𝜦)

𝜕𝑾
= 𝟎 

PCA (more dimensions) 

18 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

• Hence, 𝑾 has as columns the d eigenvectors of  𝑺𝑡  
that correspond to its d largest nonzero eigenvalues 

tr[𝑾𝑇𝑺𝑡𝑾] = tr[𝑾𝑇𝑼𝚲𝑼𝑻𝑾] = tr[𝚲𝑑]  

𝑾 = 𝑼𝒅 

𝑾𝑇𝑼 =

𝑢1. 𝑢1 𝑢1. 𝑢2 𝑢1. 𝑢3
𝑢2. 𝑢1 𝑢2. 𝑢2 𝑢2. 𝑢3
𝑢3. 𝑢1 𝑢3. 𝑢2 𝑢3. 𝑢3

  𝑢1. 𝑢4 𝑢1. 𝑢5
  𝑢2. 𝑢4 𝑢2. 𝑢5
  𝑢3. 𝑢4 𝑢3. 𝑢5

=
1 0 0 
0 1 0
0 0 1

0 0
 0 0
 0 0

 

Example: U be 5x5 and W be a 5x3  

PCA (more dimensions) 
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𝑾𝑇𝑼𝚲 =

𝜆1
0
0
0
0

 

0
𝜆2
0
0
0

 

0
0
𝜆3
0
0

 

0
0
0
0
0

 

0
0
0
0
0

 

 

𝑾𝑇𝑼𝚲𝑼𝑻𝑾 =

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

 

tr 𝚲𝑑 = 𝜆𝑑

𝑑

𝑖=1

  

and 

Hence the maximum is  

PCA (more dimensions) 

20 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

• We want to find a set of bases 𝑾 that best reconstructs the 

data after projection 

𝒚𝑖 = 𝑾𝑇𝒙𝑖 

𝒙𝑖 𝒙𝑖 = 𝑾𝑾𝑇𝒙𝑖 

PCA (another perspective) 
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Let us assume for simplicity centred data (zero mean) 

𝑿 = 𝑾𝒀 = 𝑾𝑻𝑾𝑿 

𝑾𝟎 = arg min
𝑾

1

𝑁
  (𝑥𝑖𝑗 − 𝑥𝑖𝑗 )2

𝐹

𝑗=1

𝑁

𝑖=1

 

• Reconstructed data 

= argmin
𝑾

| 𝑿 −𝑾𝑾𝑻𝑿 |2
𝐹
 (1) 

s. t.𝑾𝑻𝑾 = 𝑰 

PCA (another perspective) 
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= tr 𝐗 −𝐖𝐖𝐓𝐗
𝑇
𝐗 −𝐖𝐖𝐓𝐗  

= tr[𝐗𝐓𝐗 − 𝐗𝐓𝐖𝐖𝑻𝐗 − 𝐗𝐓𝐖𝐖𝑻𝐗 + 𝐗𝐓𝐖𝐖𝑻𝐖𝐖𝑻𝐗] 

= tr 𝐗𝐓𝐗 − tr[𝐗𝐓𝐖𝐖𝑻𝐗] 

max
𝑊

tr[𝐖𝑻𝐗𝐗𝐓𝐖] 

𝐈 

𝑿 −𝑾𝑾𝑻𝑿 
𝟐

𝑭
 

constant 

min(1)   

PCA (another perspective) 
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•Mean 

•1st PC •2nd PC •3rd PC •4th PC 

•TEXTURE 

PCA (applications) 
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•Mean 

•1st PC •2nd PC •3rd PC •4th PC 

•SHAPE 

PCA (applications) 
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Identity Expression 

•Textu

re 

•Shap

e 

•Textu

re 

•Shap

e 

PCA (applications) 
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• PCA: Unsupervised approach good for compression 

of data and data reconstruction. Good statistical prior. 

 

• PCA: Not explicitly defined for classification problems 

(i.e., in case that data come with labels) 

 

• How do we define a latent space it this case? (i.e., 

that helps in data classification) 

Linear Discriminant Analysis 
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• We need to properly define statistical properties 

which may help us in classification. 

 

• Intuition: We want to find a space in which   

 (a) the data consisting each class look more like 

each other, while  

 (b) the data of separate classes look more 

dissimilar. 

Linear Discriminant Analysis 
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• How do I make my data in each class  look more 

similar? Minimize the variability in each class 

(minimize the variance) 

𝜎𝑦
2 𝑐1   

𝜎𝑦
2 𝑐2   

Space of  𝒙  

Space of  𝒚  

Linear Discriminant Analysis 
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• How do I make the data between classes look 

dissimilar? I move the data from different classes further 

away from each other (increase the distance between 

their means).  

Space of  𝒙  

Space of  𝒚  (𝜇𝑦(𝑐1) −  𝜇𝑦(𝑐2))
2 

Linear Discriminant Analysis 

30 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

𝜎𝑦
2 𝑐1 + 𝜎𝑦

2 𝑐2  is minimum 

A bit more formally. I want a latent space 𝑦 such that: 

(𝜇𝑦(𝑐1) −  𝜇𝑦(𝑐2))
2is maximum 

 

𝜎𝑦
2 𝑐1 +  𝜎𝑦

2 𝑐2

(𝜇𝑦(𝑐1) −  𝜇𝑦(𝑐2))
2

 

How do I combine them together?  

minimize 

Or maximize (𝜇𝑦(𝑐1) −  𝜇𝑦(𝑐2))
2

𝜎𝑦
2 𝑐1 +  𝜎𝑦

2 𝑐2
 

Linear Discriminant Analysis 
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How can I find my latent space?  

𝑦𝑖 = 𝒘𝑇𝒙𝑖 

Linear Discriminant Analysis 
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𝜎𝑦
2 𝑐1 =

1

𝑁𝑐1
 (𝑦𝑖 − 𝜇𝑦 𝑐1 )2

𝑥𝑖∈𝑐1

 

                =
1

𝑁𝑐1
 (𝒘𝑇(𝒙𝑖 − 𝝁 𝑐1 ))2𝑥𝑖∈𝑐1  

                   =
1

𝑁𝑐1
 𝒘𝑇(𝒙𝑖−𝝁 𝑐1 )(𝒙𝑖−𝝁 𝑐1 )𝑇𝒘

𝑥𝑖∈𝑐1

 

                   = 𝒘𝑇
1

𝑁𝑐1
 (𝒙𝑖−𝝁 𝑐1 )(𝒙𝑖−𝝁 𝑐1 )𝑇𝒘

𝑥𝑖∈𝑐1

 

                 = 𝒘𝑇𝑺1𝒘 

𝜎𝑦
2 𝑐2 = 𝒘𝑇𝑺2𝒘 

𝝁 𝑐1 = 
1

𝑁𝑐1
 𝒙𝑖𝒙𝑖∈𝑐1  

Linear Discriminant Analysis 
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𝜎𝑦
2 𝑐1 + 𝜎𝑦

2 𝑐2 = 𝒘𝑇(𝑺1 + 𝑺2)𝒘 

  
𝑺𝑤 

(𝜇𝑦(𝑐1) −  𝜇𝑦(𝑐2))
2

= 𝒘𝑇(𝝁 𝑐1 − 𝝁(𝑐2))(𝝁 𝑐1 − 𝝁 (𝑐2))
𝑇𝒘 

𝑺𝑏 

(𝜇𝑦(𝑐1) −  𝜇𝑦(𝑐2))
2

𝜎𝑦
2 𝑐1 +  𝜎𝑦

2 𝑐2
=
𝒘𝑇𝑺𝑏𝒘

𝒘𝑇𝑺𝑤𝒘
 

within class scatter matrix 

between class scatter matrix 

Linear Discriminant Analysis 
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max 𝒘𝑇𝑺𝑏𝒘  s.t. 𝒘𝑇𝑺𝑤𝒘=1   

Lagrangian: 𝐿 𝒘, λ = 𝒘𝑇𝑺𝑏𝐰− λ(𝒘𝑻𝑺𝒘𝒘-1) 

𝐰 ∝ 𝑺𝑤
−1(𝝁 𝑐1 − 𝝁 𝑐2 ) 

𝜕𝒘𝑇𝑺𝑤𝒘

𝜕𝒘
= 2𝑺𝑤𝒘 

𝜕𝒘𝑇𝑺𝑏𝒘

𝜕𝒘
= 2𝑺𝑏𝒘 

𝜕𝐿

𝜕𝒘
= 𝟎 λ𝑺𝑤𝒘 = 𝑺𝑏𝒘  

𝒘 is the largest eigenvector of 𝑺𝑤
−1𝑺𝑏 

  

Linear Discriminant Analysis 
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Compute the LDA projection for the following 2D dataset 

 

 𝑐1 = 4,1 , 2,4 , 2,3 , 3,6 , (4,4)  

𝑐2 = 9,10 , 6,8 , 9,5 , 8,7 , (10,8)  

Linear Discriminant Analysis 
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Solution (by hand) 

•The class statistics are 

 

•The within and between class scatter are 

 

𝑺1 = [
0.8 −0.4
−0.4 2.64

] 𝑺2 = [
1.84 −0.04
−0.04 2.64

] 

𝝁1 = [3.0 3.6]𝑇 𝝁2 = [8.4 7.6]𝑇 

𝑺𝑏 = [
29.16 21.6
21.6 16.0

] 𝑺𝑤 = [
2.64 −0.44
−0.44 5.28

] 

Linear Discriminant Analysis 
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The LDA projection is then obtained as the solution of the 

generalized eigenvalue problem 

 

 
λ=15.65 

11.89 8.81
5.08 3.76

𝑤1

𝑤2
= 15.65

𝑤1

𝑤2
→

𝑤1

𝑤2
=

0.91
0.39

 

Or directly by 

 

 𝒘∗ = 𝑺𝑊
−1 𝝁1 − 𝝁2 = [−0.91  − 0.39]𝑇 

𝑺𝑤
−1𝑺𝑏𝒘 = λ𝒘 → 𝑺𝑤

−1𝑺𝑏 − λ𝑰 = 0 → 
11.89 − λ 8.81
5.08 3.76 − λ

= 0 → 

Linear Discriminant Analysis 
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𝑾 = [𝒘1, … ,𝒘𝑑] 

LDA (Multiclass & Multidimensional case) 
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𝑺𝑤 = 𝑺𝑗

𝐶

𝑗=1

= 
1

𝑁𝑐𝑗
 (𝒙𝑖−𝝁 𝑐𝑗 )(𝒙𝑖−𝝁 𝑐𝑗 )𝑇

𝑥𝑖∈𝑐𝑗

𝐶

𝑗=1

 

𝑺𝑏 = (𝝁 𝑐𝑗 − 𝝁) (𝝁 𝑐𝑗 − 𝝁)Τ
𝑐

𝑗=1

 

Within-class scatter matrix 

Between-class scatter matrix 

LDA (Multiclass & Multidimensional case) 
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max tr[𝑾T𝑺𝑏𝑾]  s.t. 𝑾𝑇𝑺𝑤𝑾=I   

Lagranging: 𝐿 𝑾,𝚲 = 𝑡𝑟[𝒘𝑇𝑺𝑏𝐰] − 𝑡𝑟[𝚲(𝑾𝑻𝑺𝑤𝑾− 𝑰)] 

𝜕tr[𝐖𝑇𝑺𝑏𝐖]

𝜕𝑾
= 2𝑺𝑏𝑾 

𝜕tr[𝜦(𝐖𝑇𝑺𝑤𝐖− 𝐈)]

𝜕𝑾
= 2𝑺𝑤𝑾𝚲 

𝜕L(𝑾,𝜦)

𝜕𝑾
= 𝟎   𝑺𝑏𝑾 = 𝑺𝑤𝑾𝚲 

 

 the eigenvectors of 𝑺𝑤
−1𝑺𝑏that correspond to  

the largest eigenvalues 
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