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Abstract—Automatic Facial Expression Recognition has been
an active topic in computer science for over two decades, in
particular Facial Action Coding System (FACS) Action Unit
(AU) detection and classification of a number of discrete emotion
states from facial expressive imagery. Standardisation and com-
parability has received some attention; for instance, there exist
a number of commonly used facial expression databases. But
lack of a commonly accepted evaluation protocol and typically
lack of sufficient details needed to reproduce the reported
individual results make it difficult to compare systems. This in
turn hinders the progress of the field. A periodical challenge in
Facial Expression Recognition would allow such a comparison
on a level playing field. It would provide an insight on how
far the field has come, and would allow researchers to identify
new goals, challenges and targets. This paper presents a meta-
analysis of the first such challenge in automatic recognition of
facial expressions, held during the IEEE conference on Face and
Gesture Recognition 2011. It details the challenge data, evaluation
protocol, and the results attained in two sub-challenges: AU
detection and classification of facial expression imagery in terms
of a number of discrete emotion categories. We also summarise
the lessons learned and reflect on the future of the field of
facial expression recognition in general and on possible future
challenges in particular.

Index Terms—Facial expression analysis, challenges, FACS
analysis, discrete emotion recognition

I. INTRODUCTION

OMPUTERS and other powerful electronic devices sur-

round us in ever increasing numbers, with their ease of
use continuously being improved by user friendly interfaces.
Yet to completely remove all interaction barriers, the next-
generation computing (a.k.a. pervasive computing, ambient
intelligence, and human computing) will need to develop
human-centred user interfaces that respond readily to natu-
rally occurring, multimodal, human communication [40]. An
important functionality of these interfaces will be the capacity
to perceive and understand the user’s cognitive appraisals,
action tendencies, and social intentions that are usually as-
sociated with emotional experience. Because facial behaviour
is believed to be an important source of such emotional
and interpersonal information [2], automatic analysis of facial
expressions is crucial to human-computer interaction.
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Facial Expression Recognition, in particular FACS AU
detection [18] and classification of facial expression imagery
in a number of discrete emotion categories, has been an active
topic in computer science for some time now, with arguably
the first work on automatic facial expression recognition being
published in 1973 [25]. Many promising approaches have been
reported since then [41], [68]. The first survey of the field was
published in 1992 [45] and has been followed up by several
others [20], [41], [68]. However, the question remains as to
whether the approaches proposed to date actually deliver what
they promise. To help answer that question, we felt it was time
to take stock, in an objective manner, of how far the field has
progressed.

Researchers often do report on the accuracy of the proposed
approaches using a number of popular, publicly available facial
expression databases (e.g. The Cohn-Kanade database [26],
the MMI-Facial Expression Database [43], [60], or the JAFFE
database [33]). However, only too often publications fail to
clarify exactly what parts of the databases were used, what
the training and testing protocols were, and hardly any cross-
database evaluations are reported. All these issues make it
difficult to compare different systems to each other, which in
turn hinders the progress of the field. A periodical challenge in
Facial Expression Recognition would allow this comparison in
a fair manner. It would clarify how far the field has come, and
would allow us to identify new goals, challenges, and targets.

Two main streams in the current research on automatic
analysis of facial expressions consider facial affect (emotion)
inference from facial expressions and facial muscle action de-
tection [39], [42], [57], [68]. These streams stem directly from
the two major approaches to facial expression measurement
in psychological research [10]: message and sign judgment.
The aim of the former is to infer what underlies a displayed
facial expression, such as affect or personality, while the aim
of the latter is to describe the outward “surface” of the shown
behaviour, such as facial movement or facial component shape.
Thus, a frown can be judged as possibly caused by anger
in a message-judgment approach and as a facial movement
that lowers and pulls the eyebrows closer together in a sign-
judgment approach. While message judgment is all about
interpretation, with the ground truth being a hidden state that
is often impossible to measure, sign judgment is agnostic,
independent from any interpretation attempt, leaving the in-
ference about the conveyed message to higher order decision
making. Most facial expression analysis systems developed so
far adhere to the message judgment approach. They attempt to
recognise a small set of prototypic emotional facial expressions
said to relate directly to a small number of discrete affective
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states such as the six basic emotions proposed by Ekman
[15], [42], [57], [68]. Even though automatic classification
of face imagery in terms of the six basic emotion categories
is considered largely solved, reports on novel approaches are
published even to date (e.g., [28], [35], [50], [54]). While in
truth such systems recognise prototypical facial expressions
but not actually recognise emotions, for brevity we will refer
to this process as ‘emotion recognition’.

In sign judgment approaches [9], a widely used method for
manual labelling of facial actions is the Facial Action Cod-
ing System (FACS) [18]. FACS associates facial expression
changes with actions of the muscles that produce them. It
defines 9 different action units (AUs) in the upper face, 18
in the lower face, and 5 AUs that cannot be classified as
belonging to either the upper or the lower face. Additionally, it
defines so-called action descriptors, 11 for head position, 9 for
eye position, and 14 additional descriptors for miscellaneous
actions. AUs are considered to be the smallest visually dis-
cernible facial movements. AU intensity scoring is defined on
a 5-level ordinal scale by FACS. It also defines the make up of
AUs temporal segments (onset, apex and offset), but goes short
of defining rules how to code them in a face video, or what
rules govern the transitions between the temporal segments.
Using FACS, human coders can manually code nearly any
anatomically possible facial expression, decomposing it into
the specific AUs and their temporal segments that produced
the expression.

As AUs are independent of any interpretation, they can be
used as the basis for any higher order decision making process
including recognition of basic emotions [18], cognitive states
like (dis)agreement and puzzlement [11], psychological states
like pain [13], and socio-cultural signals like emblems (i.e.,
culture-specific interactive signals like wink, coded as left
or right AU46), regulators (i.e., conversational mediators like
exchange of a look, coded by AUs for eye position), and illus-
trators (i.e. cues accompanying speech like raised eyebrows,
coded as AU1+AU2) [17]. Hence, AUs are extremely suitable
to be used as mid-level parameters in an automatic facial
behaviour analysis system as they reduce the dimensionality
of the problem [62] (thousands of anatomically possible facial
expressions [17] can be represented as combinations of 32
AUs).

In terms of feature representation, the majority of the auto-
matic facial expression recognition literature can be divided in
three ways: those that use appearance-based features (e.g. [7],
[24], [35]), those that use geometric feature-based approaches
(e.g. [28], [59]), and those that use both (e.g. [3], [56]).
Both appearance- and geometric feature-based approaches
have their own advantages and disadvantages, and we expect
that systems that use both for this challenge will result in the
highest accuracy.

Another way existing systems can be classified is in the
way they make use of temporal information. Some systems
only use the temporal dynamics information encoded directly
in the utilised features (e.g. [24], [69]), others only employ
machine learning techniques to model time (e.g. [52], [58]),
while others employ both (e.g. [59]). Currently it is unknown
what approach could guarantee the best performance.

Fig. 1.
displaying an expression associated with the emotion ‘anger’.

An example of the GEMEP-FERA dataset: one of the actors

This paper describes the first facial expression recognition
challenge, organised under the name of FERA 2011, which
was held in conjunction with the 9th IEEE International
Conference on Automatic Face and Gesture Recognition. The
challenge provided a fair comparison between systems vying
for the title of ’state of the art’. To do so, it used a partition
of the GEMEP corpus [6], developed by the Geneva Emotion
Research Group (GERG).

This data is described in in section III of this paper. An
overview of recent literature in the field is provided in section
IL. In section IV we describe the challenge protocol for both
the AU detection and emotion recognition sub-challenges. The
baseline method against which FERA 2011 participants could
compare their results is described in section V. We provide a
summary description of the participants’ systems in section VI.
A detailed analysis of the results attained in this challenge is
given in section VII. We conclude the paper with a discussion
of the challenge and its results in section VIII.

II. OVERVIEW OF EXISTING WORKS

Below we present a short overview of the main streams
of automatic recognition of prototypical facial expressions
associated with discrete emotional states, and of automatic
detection of FACS Action Units. For detailed surveys, we refer
the reader to [42], [68].

A. Emotion recognition

Emotion recognition approaches can be divided in two groups
based on the type of features used, either appearance based
features or geometry based features. Appearance features
describe the texture of the face caused by expression, such as
wrinkles and furrows. Geometric features describe the shape of
the face and its components such as the mouth or the eyebrows.

Within the appearance based techniques, the theory of
non-negative matrix factorisation (NMF) has recently led to
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a number of promising works. A technique called graph-
preserving sparse nonnegative matrix factorisation (GNSMF)
was introduced by Zhi et al. [71], and applied to the prob-
lem of six basic emotions recognition. The GSNMF is an
occlusion-robust dimensionality reduction technique that can
be employed either in a supervised or unsupervised manner.
It transforms high-dimensional facial expression images into a
locality-preserving subspace with sparse representation. On the
Cohn-Kanade database, it attains a 94.3% recognition rate. On
occluded images it scored between 91.4% and 94%, depending
on the area of the face that was occluded.

Another recent NMF technique is non-linear non-negative
component analysis, a novel method for data representation
and classification proposed by Zafeiriou and Petrou [67].
Based on NMF and kernel theory, the method allows any pos-
itive definite kernel to be used, and assures stable convergence
of the optimisation problem. On the Cohn-Kanade database,
they attained an average 83.5% recognition rate over the six
basic emotions.

Other appearance features that have been successfully em-
ployed for emotion recognition are the Local Binary Pattern
(LBP) operator [50], [70], Local Gabor Binary Patterns [35],
Local Phase Quantisation (LPQ) and Histogram of oriented
Gradients [14], and Haar filters [31].

Most geometric feature based approaches use Active Ap-
pearance Models (AAMs) or derivatives of this technique
to track a dense set of facial points (typically 50-60). The
locations of these points are then used to infer the shape
of facial features such as the mouth or the eyebrows and
thus to classify the facial expression. A recent example of
an AAM based technique is that of Asthana et al., who
compare different AAM fitting algorithms and evaluate their
performance on the Cohn-Kanade database, reporting a 93%
classification accuracy [4].

Another example of a system that uses geometric features
to detect emotions is that by Sebe et al. [48]. Piece-wise
Bézier volume deformation tracking was used after manually
locating a number of facial points. They experimented with
a large number of machine learning techniques. Surprisingly,
the best result was attained with a simple k-Nearest Neighbour
technique that attained a 93% classification rate on the Cohn-
Kanade database.

Sung and Kim used AAMs to track facial points in 3D
videos [54]. They introduce Stereo Active Appearance Models
(STAAM), which improves the fitting and tracking of standard
AAMs by using multiple cameras to model the 3D shape and
rigid motion parameters. A layered generalised discriminant
analysis classifier, which is based on linear discriminant anal-
ysis, is then used to combine the 3D shape and registered 2D
appearance. Unfortunately, although the approach appears to
be promising, it was evaluated for only three expressions, and
no results on a benchmark database (such as the Cohn-Kanade
or MMI Facial Expression databases) were presented.

Current challenges in automatic discrete emotion recog-
nition that remain to be addressed are dealing with out-of-
plane head rotation, spontaneous expressions, and recognising
mixtures of emotions. Out of plane rotation and mixtures of
emotions are two problems that are likely to coincide when

moving to spontaneous, real-world data. While some progress
has been made in dealing with occlusions and tracking facial
points in imagery of unseen subjects (e.g. [46], [71]) , these
two elements remain a challenge as well.

B. Action Unit Detection

Action Unit detection approaches can be divided in a
number of ways. Just as for emotion recognition it is possible
to divide them into systems that employ appearance based
features, geometric features, or both. Another way of dividing
them is how they deal with the temporal dynamics of facial
expressions: frames in a video can either be treated as being
independent of each other (this includes methods that target
static images), or a sequence of frames can be treated by a
model that explicitly encompasses the expression’s temporal
dynamics.

A recently proposed class of appearance based features that
have been used extensively for face analysis are dense local
appearance descriptors. First a particular appearance descrip-
tor is computed for every pixel in the face. To reduce the
dimensionality of the problem and the sensitivity to alignment
of the face the descriptor responses are then summarised by
histograms in pre-defined sub-regions of the face. For AUs,
this approach was followed by Jiang et al., using LBP and
LPQ [24].

Another successful appearance descriptor is the Gabor
Wavelet filter. Littlewort et al. [31] select the best set of
Gabor filters using GentleBoost, and train SVMs to classify
AU activation. Some measure of AU intensity is provided by
evaluating for a test instance the distance to the separating
hyperplane provided by the trained SVM. Haar-like features
were used in an AdaBoost classifier by Whitehill and Omlin
[64].

An example of an appearance-based approach that explicitly
models a facial expression’s temporal dynamics is that of
Koelstra et al. [27]. In their work, they propose a method that
detects AUs and their temporal phases onset, apex and offset
using Free-Form Deformations and Motion History Images
as appearance descriptors and Hidden Markov Models as
machine learning technique.

In the geometric feature category, Valstar and Pantic [61]
automatically detect 20 facial points and use a facial point
tracker based on particle filtering with factorised likelihoods
to track this sparse set of facial points. From the tracked points
both static and dynamic features are computed, such as the
distances between pairs of points or the velocity of a facial
point. With this approach they are able to detect both AU
activation and the temporal phases onset, apex, and offset.

Simon et al. use both geometric and appearance based fea-
tures, and include modelling of some of the temporal dynamics
of AUs in a proposed method using segment-based SVMs
[51]. Facial features are first tracked using a person-specific
AAM so that the face can be registered before extracting
SIFT features. PCA is applied to reduce the dimensionality
of this descriptor. The proposed segment-based SVMs method
combines the output of static SVMs for multiple frames and
uses structured-output learning to learn the beginning and end
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time of each AU. The system was evaluated for 8 AUs on
the M3 database (previously called RU-FACS), attaining an
average of 83.75% area under the ROC curve.

When facing real-world data, researchers have to face
problems such as very large data sizes or low AU frequencies
of occurrence. In their work, Zhu et al. focus on the automatic
selection of an optimal training set using bi-directional boot-
strapping from a dataset with exactly such properties [72]. The
features used are identical to those described used by Simon
et al. [51]. The proposed dynamic cascades with bi-directional
bootstrapping applies gentleBoost to perform feature selection
and training instance selection in a unified framework. On the
M3 database the system attained an average 79.5% area under
the ROC curve for 13 AUs. For an overview of more recent
work by researchers at CMU see [29].

Current challenges in AU detection include handling of out-
of-plane head rotations and occlusion, two conditions that oc-
cur frequently in real-world data of spontaneous expressions.
Because AUs are more localised in the face than expressions of
discrete emotions, the problem of occlusion is much bigger for
AUs than for emotions. Likewise, out-of-plane head rotations
can cause self-occlusions of parts of the face that display some
AUs, making the problems caused by out-of-plane head-poses
harder than it is for emotions. Another issue of moving to
data of spontaneous expressions is that the co-occurrences
between AUs becomes much harder to model, compared to
the limited number of co-occurrence patterns in databases of
posed expressions such as the Cohn-Kanade database.

Besides AU detection, the detection of an AU’s tempo-
ral phase transitions (onset, apex, and offset), as well as
its intensity are partially unsolved problems. Being able to
predict these variables would allow researchers to detect more
complex, higher level behaviour such as deception, cognitive
states like (dis)agreement and puzzlement, or psychological
states like pain [11], [13]

III. THE GEMEP-FERA DATASET

To be suitable to base a challenge on, a dataset needs to
satisfy two criteria. Firstly, it must have the correct labelling,
which in our case means frame-by-frame AU labels and event-
coding of discrete emotions. Secondly, the database cannot be
publicly available at the time of the challenge. The GEMEP
database [6] is one of the few databases that meets both
conditions, and was therefore chosen for this challenge.

The GEMEP corpus consists of over 7000 audiovisual
emotion portrayals, representing 18 emotions portrayed by
10 actors who were trained by a professional director. The
actors were instructed to utter 2 pseudo-linguistic phoneme
sequences or a sustained vowel ’aaa’. Figure 1 shows an
example of one of the male actors displaying an expression
associated with the emotion anger. A study based on 1260
portrayals showed that portrayed expressions of the GEMEP
are recognised by lay judges with an accuracy level that, for
all emotions, largely exceeds chance level, and that inter-rater
reliability for category judgements and perceived believability
and intensity of the portrayal is very satisfactory [6]. At the
time of organising the challenge, the data had not been made

TABLE I
ACTION UNITS INCLUDED IN THE AU DETECTION SUB-CHALLENGE.
TEST SET S DENOTES SEEN SUBJECTS, WHILE TEST SET U DENOTES
UNSEEN SUBJECTS. NUMBER OF VIDEOS: Nyotq1 = 158; Niraining = 87;

Niest =71
AU | Description Train | Test S | Test U | Total
1 Inner brow raiser 48 9 28 85
2 Outer brow raiser 48 12 21 81
4 Brow lowerer 34 10 26 70
6 Cheek raiser 37 8 27 72
7 Lid tightener 43 14 30 87
10 | Upper lip raiser 48 13 21 82
12 | Lip corner puller 56 16 33 105
15 | Lip corner depressor 30 6 11 47
17 | Chin raiser 49 14 31 94
18 | Lip pucker 28 12 20 60
25 | Lips part 67 22 37 126
26 | Jaw drop 46 12 23 81

publicly available yet, making it a suitable dataset to base a
fair challenge on. A detailed description of the GEMEP corpus
can be found in [6].

The GEMEP-FERA dataset is a fraction of the GEMEP
corpus that has been put together to meet the criteria for a
challenge on facial Action Units and emotion recognition. By
no means does the GEMEP-FERA dataset constitute the entire
GEMERP corpus. In selecting videos from the GEMEP corpus
to include in the GEMEP-FERA dataset, the main criterium
was the availability of a sufficient number of examples per
unit of detection for training and testing. It was important that
the examples selected for the training set were different than
the examples selected for the test set.

A. Partitioning

For the AU detection sub-challenge, we used a subset of
the GEMEP corpus annotated with the Facial Action Coding
System [18]. The twelve most commonly observed AUs in
the GEMEP corpus were selected (see Table I). To be able to
objectively measure the performance of the competing facial
expression recognition systems, we split the dataset into a
training set and a test set. A total of 158 portrayals (87 for
training and 71 for testing) were selected for the AU sub-
challenge. All portrayals are recordings of actors speaking one
of the 2 pseudo-linguistic phoneme sequences. Consequently,
AU detection is to be performed during speech. The training
set included 7 actors (3 men) and the test set included 6 actors
(3 men), half of which were not present in the training set.
Even though some actors were present in both training and test
set, the actual portrayals made by these actors were different
in both sets.

For the emotion sub-challenge, portrayals of five emotional
states were retained: anger, fear, joy, sadness, and relief. Four
of these five categories are part of what Ekman called basic
emotions [16] as they are believed to be expressed universally
by specific patterns of facial expression. The fifth emotion,
relief, was added to provide a balance between positive and
negative emotions but also to add an emotion that is not
typically included in previous studies on automatic emotion
recognition. Emotion recognition systems are usually modelled
on the basic emotions, hence adding “relief” made the task
more challenging.
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A total of 289 portrayals were selected for the emotion sub-
challenge (155 for training and 134 for testing). Approximately
17% of these were recordings of actors uttering the sustained
vowel ’aaa’ while the remaining portrayals were recordings
of actors speaking one of the 2 pseudo-linguistic phoneme
sequences. The training set included 7 actors (3 men) with
3 to 5 instances of each emotion per actor. The test set for
the emotion sub-challenge included 6 actors (3 men), half
of which were not present in the training set. Each actor
contributed 3 to 10 instances per emotion in the test set.

The actors who were not present in the training sets were the
same for both sub-challenges. Details about the training and
test sets can be found in table I (AU sub-challenge) and table
I (Emotion sub-challenge). The tables distinguish between
videos depicting seen and unseen subjects of the test set.
Videos of subjects that are also present in the training set
belong to the seen test set, the others to the unseen test set.

B. Availability

The training set was made available through a website!
employing user-level access control. Upon registering for the
challenge, participants were requested to sign an End User
License Agreement (EULA), which states, among other things,
that the data can only be used for the challenge, and that it
cannot be used by commercial parties. When a signed EULA
was received by the FERA 2011 organisers, the account of
that particular participant was activated. The participant could
then download two zip files: one containing the training data
for the AU detection sub-challenge and the other containing
the training data for the emotion detection sub-challenge.

The test data was distributed through the same website.
However, it was only made available 7 working days before the
submission deadline. This was done to ensure that the results
submitted are fair, by not allowing the participants enough
time to manually reconstruct the labels of the test data.

To continue to provide a facial expression recognition
benchmark, the GEMEP-FERA 2011 dataset will remain avail-
able online. The procedure for obtaining benchmark scores
will be identical to that for the challenge, as described in
section IV. The only difference will be that the test partition
is made available as well (but still without labels, of course).

IV. CHALLENGE PROTOCOL

The challenge is divided into two sub-challenges. The goal
of the AU detection sub-challenge is to identify in every
frame of a video whether an AU was present or not (i.e.
it is a multiple-label binary classification problem at frame
level). The goal of the emotion recognition sub-challenge is
to recognise which emotion was depicted in that video, out
of five possible choices (i.e. it is a single label multi-class
problem at event level).

The challenge protocol is divided into five stages. First,
interested parties registered for the challenge and signed the
EULA to gain access to the training data. Then they trained
their systems. In the third stage, the participants downloaded

Uhttp://gemep-db.sspnet.eu

the test partition and generated the predictions for the sub-
challenges they were interested in. They then sent their results
to the FERA 2011 organisers who calculate their scores. In
the case of the FERA 2011 challenge, the participants then
submitted a paper describing their approach and reporting their
scores to the FERA 2011 workshop. Researchers who intend to
follow this benchmark protocol after the FERA 2011 challenge
are assumed to submit a paper to another relevant outlet.

Because of concerns regarding the ease with which the
emotion labels can be guessed from the video data, the
organisers introduced a secondary test for the emotion sub-
challenge held the day before the FERA 2011 workshop. The
secondary test set contained 50 previously unreleased GEMEP
videos displaying one of the five discrete emotions used in the
challenge. Participants had the choice to either send their end-
to-end programs to the organisers, who then run the secondary
test for them, or they could choose to perform the test on their
own hardware on-site the day before the workshop. The scores
for this secondary test set were not to influence the participant
ranking in the emotion detection sub-challenge, but they were
announced during the FERA 2011 workshop, on the FERA
2011 web-site, and in this manuscript. All participants but one
performed this secondary test.

The training data is organised as two zip files, one for
each sub-challenge. When unpacked, the zip-files contain a
directory structure in which every folder contains a single
video and a single text-file with the corresponding labels.
For AUs, the label file is ny rows by 50 columns, where n ¢
indicates the number of frames in that video. Each column
corresponds to the label for the AU with the same number,
e.g. the second column contains the labels for AU2. Zeros
indicate the absence of an AU, and a one indicates the presence
(activation), of an AU for the corresponding frame. Columns
corresponding to non-existing AUs (e.g. AU3) are all zero.
During speech (coded as AD50), there is NO coding for AU25
or AU26. Because the annotation of ADS50 is made available
together with the other AU labels, participants are able to
exclude sections of the videos containing speech from their
training sets for these two AUs. Likewise, for the computation
of the scores, any detections of AU25 and AU26 during speech
is discarded. For emotions, the label files contain a single word
indicating what emotion was displayed in the corresponding
video.

Participants were encouraged to use other facial expression
databases annotated in terms of FACS AUs to train their
proposed AU detection systems. Examples of such databases,
which are publicly available, are the MMI Facial Expression
database [60] and the Cohn-Kanade database [26]. Because of
the nature of the emotion categories used in this challenge
(i.e. the categories are not limited to standard six-basic-
emotions categories and the displays are not short-lived posed
prototypical facial expressions of emotions but professionally
acted audiovisual displays of emotions), the participants were
not encouraged to use other training data for the emotion
recognition sub-challenge. To assess how well systems per-
form before the test partition was made available, participants
were encouraged to perform a cross-validation evaluation on
the training data.
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TABLE 1T
EMOTIONS INCLUDED IN THE EMOTION DETECTION SUB-CHALLENGE. TEST SET S DENOTES SEEN SUBJECTS, WHILE TEST SET U DENOTES UNSEEN
SUBJECTS. NUMBER OF VIDEOS: Niotaqr = 289; Niraining = 155; Ntest = 134

Emotion | Definition Train | Test S | Test U | Total
Anger Extreme displeasure caused by someone’s stupid or hostile action 32 14 13 59
Fear Being faced with an imminent danger that threatens our survival or physical well-being 31 10 15 56
Joy Feeling transported by a fabulous thing that occurred unexpectedly 30 20 11 61
Relief Feeling reassured at the end or resolution of an uncomfortable, unpleasant, or even 31 18 8 57
dangerous situation
Sadness Feeling discouraged by the irrevocable loss of a person, place, or thing 31 18 7 56
The test partition was made available one week before the
FERA 2011 paper submission deadline. In the test data, there =[S
were no labels associated with the test videos. Participants
predicted the labels by means of their trained systems and Y
. . L=
send them to the FERA 2011 organisers by email, who then Amn
computed the correctness of the predictions (the scores). To H

allow the participants to identify and correct major faults
in the programmes, they were allowed two submissions of
predictions.

The scores are computed in terms of Fl-measure for AU
detection and in terms of classification rate for emotion
detection. For the AU-detection sub-challenge, we first obtain
the Fl-score for each AU independently, and then compute
the average over all 12 AUs. Similarly, for the emotion-
recognition sub-challenge the classification rate is first ob-
tained per emotion, and then the average over all 5 emotions
is computed. The F1-measure for AUs is computed based on
a per-frame detection (i.e. an AU activation prediction has to
be specified for every frame, for every AU). The classification
rate for emotion categories is computed based on a per-video
prediction (event-based detection).

V. BASELINE SYSTEM

The FERA 2011 challenge was the first event where the
GEMEP data was used for automatic facial expression recog-
nition, which means that there was no existing work that
participants could compare their methods to, and thus there
was no means available to participants to check whether their
obtained results were reasonable. To overcome this problem,
the FERA 2011 organisers provided results of a baseline
system for both sub-challenges. The baseline approach used
static local-appearance-based features and statistical machine
learning techniques. The baseline system was designed as to
make it easy to reproduce the baseline results.

The publicly available OpenCV? implementation of the
Viola & Jones face detector [63] was used to determine
the rough location of the face. The height and width of
the face-box output by the Viola & Jones face detector is
rather unstable, varying by approx. 5% std. even for videos
in which the face hardly moves. Also, the face detector does
not provide any information about the head pose. To facilitate
the appearance descriptor to correlate better with the shown
expression instead of with variability in head pose and face
detector output, we first perform face registration based on the
location of the eyes. To detect the eyes, we use the OpenCV
implementation of a Haar-cascade object detector, trained for

2http://opencv.willowgarage.com/wiki/, DOA 02-06-2011
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Fig. 2. Overview of the FERA 2011 baseline system for detection of 12

Action Units and 5 emotions.

either a left- or a right eye. After the left eye location p;
and right eye location p, are determined, the image is rotated
so that the angle «, defined as the angle between the line
connecting the eyes and the horizontal axis of the image, is
0 degrees. The image is then scaled to make the distance
between p, and p; 100 pixels, and the face box is cropped to be
200 by 200 pixels, with p, at position {p®,p¥} = {80,60}.
The local appearance descriptors are subsequently extracted
from such registered images.

As dense local appearance descriptors we chose to use
uniform LBPs [37]. They have been used extensively for
face analysis in recent years, e.g. for face recognition [1],
emotion detection [50], or detection of facial muscle actions
(FACS Action Units) [24]. As classifier we employ standard
Support Vector Machines (SVMs) with a radial basis function
kernel. We reduced the dimensionality of our facial expression
representation using Principal Component Analysis (PCA). Fig
2 gives an overview of the baseline system.

A. Feature extraction

LBPs were first introduced by Ojala et al. in [36], and
proved to be a powerful means of texture description. For
every pixel the LBP operator creates a label by thresholding a
3 x 3 neighbourhood of that pixel with the value of the pixel
itself. Considering the 8-bit result as a binary number, a 256-
bin histogram is generated over the LBP response in a region
of interest. This histogram is used as the texture descriptor.

Ojala et al. [38] later extended the basic LBP to allow a
variable number of neighbours to be chosen at any radius from
the central pixel. They also greatly reduced the dimensionality
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of the LBP operator, by introducing the notion of a uniform
LBP. A local binary pattern is called uniform if it contains
at most two bitwise transitions from 0 to 1 or vice versa
when the binary string is considered circular [38]. The LBP
operator for the general case based on a circularly symmetric
neighbour set of P members on a circle of radius R, is denoted
by LBPg . Superscript u reflects the use of uniform patterns.
Parameter P controls the quantisation of the angular space and
R determines the spatial resolution of the operator. Bilinear
interpolation is used to allow any radius and number of pixels
in the neighbourhoods.

Using only rotation invariant uniform LBPs greatly reduces
the length of the feature vector. The number of possible
patterns for a neighbourhood of P pixels is 2¥ for the basic
LBP while being only P + 2 for LBP". An early stage
experiment was conducted to find the optimal parameters for
this application, resulting in P = 8, and R = 1. Hence, we
adopted LBPg'; descriptor in our baseline system.

The occurrence of the rotation invariant uniform patterns
over a region is recorded by a histogram. After applying the
LBP operator to an image, a histogram of the LBP-labelled
region of interest in the image can be defined as:

H; =Y I(f(x,y) =1i),i=0,...,n— L (1)
T,y

where n is the number of possible labels produced by the

LBP operator and

1 if A is true
1(4) = { 0 otherwise

An LBP histogram computed over the whole face image
represents only the frequency of the patterns without any
indication about their locations. To take the spatial information
into account as well, we divide the registered face region
into smaller sub-regions and extract separate LBP histograms
from each of them (as shown in figure 2). The LBP features
extracted from each sub-region are subsequently concatenated
into a single, spatially-enhanced feature histogram. This was
used as a feature vector representing the shown facial expres-
sion. A grid size of 10x 10 was used in the experiments, as this
was empirically found to be the best division of the face region
into sub-regions for AU detection. Figure 3 shows the results
of this test for three upper face AUs. The data used for this
study was taken from the MMI Facial Expression Database
[60].

€3]

B. Training AU detectors

Binary Support Vector Machine (SVM) classifiers were
trained for each AU independently. Because of the indepen-
dence assumption, we only need to look at the appearance
changes caused by a single AU at a time. This meant we could
divide the set A of AUs into two groups: upper-face AUs G, =
{AU1, AU2, AU4, AUG6, AUT}, which only cause appearance
changes in the upper half of the face, and lower-face AUs G; =
{AU10,AU12, AU15, AU17, AU18, AU25, AU26} that only
affect the lower face. The training set for an AU consisted
of frames where that particular AU was present (positive

80
60
40
20
0
AUL AU2 AU4
E8x8 ®W]10x10 =20x20

Fig. 3. Results for AU detection using different grid sizes used to extract
LBP features.

examples), frames in which any of the other AUs from the
same group was active (either negative or positive examples,
depending on whether the target AU was present as well), plus
frames displaying an expressionless face (negative examples).

To select the frames to be used to train a classifier, we
adopted the method proposed in [24], which selects from every
video in the training set only frames displaying distinct AU
combinations. Because this method relies on the availability
of labelled AU temporal phases (onset, apex, and offset of
AUs), which are not available for the GEMEP-FERA 2011
dataset, we modified this method slightly. First we segmented
each video into periods with distinct AU combinations. These
segments usually have a duration of multiple frames. We then
pick the middle frame of each block. If a video has multiple
blocks with the same AU combination, we took the training
frame from the first occurrence of this combination. Note that
when we select frames for A; € G; with j € {u,l}, we only
look at AU combinations of G .

A different set of features was used for the upper-face AUs
and the lower-face AUs. To wit, for each AU a € G, we
concatenate the histograms of the top-five rows of the 10 x 10
LBP grid, while for each AU a € (G; we concatenate the his-
tograms of the bottom five rows. To reduce the dimensionality
of the feature set we apply PCA, selecting m, eigenvectors for
the subsequent analysis such that their cumulative energy is
95%. Features are then normalised to lie in the range [—1,1].

For the 1-vs-all frame-based AU classification, we employ
SVMs with a RBF kernel. Two parameters: the RBF scale
parameter o, and the SVM slack variable ¢ are determined by
means of a 5-fold cross-validation on the training set. During
parameter optimisation, we optimised for the F1-score, not the
classification rate, as it is the F1 score that was used as the
evaluation measure in the challenge. We also make sure that
we split the folds along subject divides, i.e. we make sure that
data from the same subject never appears in both the training
and evaluation sets. As reported in [24], for AU detection this
can lead to a performance increase of up to 9% F1-measure,
compared to randomly splitting the data.
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TABLE III
F1-MEASURE FOR ACTION UNIT DETECTION RESULTS ON THE TEST SET
FOR THE BASELINE METHOD. PERFORMANCE IS SHOWN FOR THE PERSON
INDEPENDENT (PI), PERSON SPECIFIC (PS), AND OVERALL PARTITIONS.
THE LAST COLUMN SHOWS RESULTS OF A NAIVE CLASSIFIER ON THE
OVERALL TEST SET.

AU PI PS Overall | Naive
1 0.634 | 0.362 0.567 0.506
2 0.675 | 0.400 0.589 0.477
4 0.133 | 0.298 0.192 0.567
6 0.536 | 0.255 0.463 0.626
7 0.493 | 0.481 0.489 0.619
10 0.445 | 0.526 0.479 0.495
12 0.769 | 0.688 0.742 0.739
15 0.082 | 0.199 0.133 0.182
17 0.378 | 0.349 0.369 0.388
18 0.126 | 0.240 0.176 0.223
25 0.796 | 0.809 0.802 0.825
26 0.371 | 0.474 0.415 0.495

Avg. || 0.453 | 0.423 0.451 0.512

C. AU Detection Results

Table III shows the results of the AU detection baseline
system measured in terms of Fl-measure. The table shows
results for three different partitions of the test data. The first
is the partition of the test data for which the test subjects are
not present in the training data (Person Independent partition).
This partition shows the ability of AU detection systems to
generalise to unseen subjects. The second partition of the test
data consists of recordings of subjects that appear both in the
training and in the test set. Participants would thus be able
to train subject specific detectors for this partition. The third
column shows the results for the entire, unpartitioned test set,
which we call the overall performance. It is this performance
on the whole test set that is used to rank participants in the
AU-detection sub-challenge.

To assess the quality of the baseline method, we have
also computed the results for a naive AU detector. The best
strategy for a naive classifier in the situation of sparse positive
examples (i.e. sparse AU activation), is to score all frames as
active. The results are computed over the full (overall) test set,
and are shown in the last column of Table III. As can be seen,
the baseline method does not outperform a naive approach
in all cases. One reason for this may be the fact that while
we choose parameters for optimal F1 measure, the training
algorithm of SVMs inherently uses the classification rate as
the value for which it optimises.

D. Training Emotion detectors

The emotion detection sub-challenge calls for the de-
tection of five discrete emotion classes. Each video
has a single emotion label e € FE, where E =
{Anger, Fear, Joy, Relief, Sadness}. Since the videos do
not display any apparent neutral frames at the beginning or
the end of the video, we defined that every frame of a video
shares the same label. The appearance of the facial expression
however does change over the course of a video. We therefore
use every frame of a video to train and test our algorithm on.

For the emotion classifiers all 10 x 10 sub-regions of the
LBP grid described in section V-A is used. To reduce the

TABLE IV
2AFC SCORE FOR ACTION UNIT DETECTION ON THE TEST SET FOR THE
BASELINE METHOD. PERFORMANCE IS SHOWN FOR THE PERSON
INDEPENDENT (PI), PERSON SPECIFIC (PS), AND OVERALL PARTITIONS.

AU PI PS Overall
1 0.845 | 0.613 0.790
2 0.818 | 0.640 0.767
4 0.481 | 0.607 0.526
6 0.690 | 0.568 0.657
7 0.572 | 0.530 0.556
10 0.577 | 0.627 0.597
12 0.738 | 0.700 0.724
15 0.555 | 0.567 0.563
17 0.679 | 0.661 0.646
18 0.620 | 0.599 0.610

25 0.544 | 0.669 0.593

26 0.457 | 0.555 0.500

Avg. 0.631 | 0.611 0.628

TABLE V

CLASSIFICATION RATES FOR EMOTION RECOGNITION ON THE TEST SET
FOR THE BASELINE METHOD. PERFORMANCE IS SHOWN FOR THE PERSON
INDEPENDENT (PI), PERSON SPECIFIC (PS), AND OVERALL PARTITIONS.
LAST COLUMN SHOWS OVERALL RANDOM RESULTS.

Action Unit PI PS Overall | Naive
Anger 0.857 | 0.923 0.889 0.222
Fear 0.067 | 0.400 0.200 0.160

Joy 0.700 | 0.727 0.710 0.161
Relief 0.313 | 0.700 0.462 0.115
Sadness 0.267 | 0.900 0.520 0.200
Average 0.441 | 0.730 0.556 0.172

dimensionality of the feature set we apply PCA, selecting
m,. eigenvectors for the subsequent analysis such that their
cumulative energy is 90%.

The emotion recognition problem is a 5-class forced choice
problem. We trained a single one-versus-all SVM classifier
with an RBF kernel for each emotion. Two parameters: the
RBF scale parameter o, and the SVM slack variable ¢ are
determined by means of a 5-fold cross-validation on the
training set. Each of the five resulting classifiers gives a
prediction y§ € {—1,1} for the presence of emotion e for
frame j in a test video. The label Y of a video of n frames is
the emotion class e into which the largest number of frames
have been classified:

Y = argmax Z Y5 3)
e ]:1

E. Emotion Detection Results

Classification rates attained by the baseline method for
the emotion recognition sub-challenge are shown in Table
V. Again, to assess the quality of the baseline method, we
have compared the baseline method results to a naive emotion
detector, which in this case assigns a uniform random label to
each video in the test set. As can be seen from Table V, the
baseline approach well exceeds the naive emotion detector.

VI. PARTICIPANT SYSTEMS

In total 12 participants contributed to the challenge. We will
now describe the systems of participants that were entered
in the emotion recognition and/or the AU detection sub-
challenge.
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A. Action Unit Detection Systems

Senechal et al. [49] propose a system that combines shape
and appearance information using multi-kernel SVMs. The
shape information is obtained using AAMs and the appearance
using Local Gabor Binary Pattern (LGBP) histograms. For the
AAM coefficients a Radial Basis Frequency kernel is used, and
for the LGBP features a histogram intersection kernel. The
SVM output is temporally filtered by taking for every frame
the average over a short time window.

Wau et al. [65] evaluated the performance of their Computer
Expression Recognition Toolbox (CERT, [31]) for the AU
detection problem. CERT uses a Viola&Jones style face and
facial feature detection system, which is used to register the
face. A bank of Gabor filters is applied to the registered face
and AUs are detected using SVMs.

B. Action Unit Detection and Emotion Detection Systems

Baltrusaitis et al. [5] presented a system based on the mind-
reading work of El Kaliouby & Robinson [19]. Their real-time
system operates on three increasingly longer temporal levels:
first AUs, head actions and shoulder actions are detected on
a timescale of 5 frames. To detect face, head, and shoulder
gestures the action information is fed into Hidden Markov
Models that operate on a 15-frame level. Finally, Dynamic
Bayesian Networks are used to infer the five discrete emotions,
again at the 15-frame temporal level.

Chew et al. [8] argue that, given sufficiently accurate
registration, the pixel intensity information of the face is all
that is needed to recognise facial actions and applying linear
filters such as LBPs to the face image is not necessary. They
attain highly accurate registration using Saragih et al.’s version
of Constrained Local Models [46]. SVMs are trained on the
pixel information after canonical normalising the face area,
which removes all non-rigid shape variation with respect to a
reference shape.

Gehrig & Ekenel’s proposed system uses Discrete Cosine
Transform histograms in a manner similar to the baseline
system’s LBP approach. The histograms derived from 10 x
10 non-overlapping blocks in a registered face are normalised
on a per-block basis and used as input to Kernel Partial Least
Squares regression.

C. Emotion Recognition Systems

Dhall et al. [14] use Pyramid Histogram of Oriented Gradi-
ents and LPQ appearance features to detect emotions. To avoid
using frames with similar appearance, facial feature points
are first tracked using a Constrained Local Model tracker.
The resulting face shapes are clustered and used to select
key frames from which appearance features are extracted.
However, face registration is achieved using a face detector
rather than using the tracked facial point locations. Finally,
emotions are detected using SVMs and Largest Margin Nearest
Neighbour classifiers.

Dahmane & Meunier [12] recognise emotions in a system
similar to the baseline approach described above. Instead
of LBPs, their system uses Histogram of Oriented Gradient
features.

Littlewort et al. [30] present a system that is based on CERT.
From the CERT outputs of AU and head orientation pre-
dictions, dynamic features called Extremes of Displacement,
Velocity and Accelaration (EDVA) are computed. The EDVA
features are then used as input to a Multinomial Logistic
Regression classifier to detect the emotions. The authors also
experiment with detecting the emotions anger, fear, joy, and
sadness directly using existing CERT models.

Meng et al. [34] start from the dynamic appearance de-
scriptor Motion History Histogram and the static appearance
descriptor LBP. The former is extended to also encode local
texture, whilst the latter is extended to also encode dynamic
appearance. The two new spatio-temporal appearance descrip-
tors are combined using multi-kernel SVMs to distinguish
between the five emotions.

Srivastava et al. [53] use Accumulated Motion Images
(AMlIs, essentially Motion Energy Images) and geometric
features extracted from tracked facial points. Two separate
one-vs-all multi-class SVMs are trained for the AMI and the
geometric features. During testing, a confidence is calculated
for both multi-class SVMs by subtracting for each the highest
output of a component of a multi-class SVM from the second
highest output. The multi-class SVM with the highest confi-
dence is used to decide what emotion was displayed.

Tariq et al. [55] use an ensemble of features consisting of
Hierarchic Gaussianisation, SIFT, and Optical Flow to recog-
nise emotions. For the subject-dependent data partition, they
learned a specific model for each subject and a face recognition
system. This approach proved to be highly successful.

Yang & Bhanu [66] present an approach that uses so-called
Emotion Avatar Images. All frames of the input video (face
images) are first registered using the SIFT flow algorithm [32],
which performs global alignment of the face, yet retains the
facial motion caused by facial expression. Such registered
frames within one video are then mapped onto a person-
independent face model, which is built based on the entire
training set. The final result is the Emotion Avatar Image, a
single image that represents all the expression-related facial
motion present in the input video. From this image LBPs and
LPQ features are derived, and used as input to Support Vector
Machines which are trained to distinguish between the 5 target
emotion classes.

VII. COMPETITION RESULTS

The number of parties who showed interest in participating
in the FERA 2011 challenge indicates that the facial expres-
sion analysis field is of a moderate size. The challenge data
was downloaded by 20 teams, of which 15 participated in the
challenge and submitted a paper to the FERA 2011 workshop.
Of the 15 papers, 11 papers were accepted for publication,
based on a double-blind peer review process. In total, 10 teams
participated in the emotion recognition sub-challenge, and five
teams took part in the AU detection sub-challenge (three teams
participated in both sub-challenges).

Demographic statistics are as follows: Teams were from
many countries and often spanned multiple institutes. The
participating institutes were dispersed over 9 countries (USA,
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TABLE

VI

AUS FOR THE AU DETECTION SUB-CHALLENGE. HIGH SCORES ARE PRINTED IN BOLD.

Australia, Canada, Germany, Singapore, Sweden, UK, Bel-
gium, and France). In total 53 researchers participated in the
challenge, with a median of 6 researchers per paper. Five
entries were multi-institute endeavours. This indicates that
the research community is not entrenched in local enclaves,
instead there appears to be a large amount of cooperation
and communication between researchers of automatic facial
behaviour understanding. With four authors being psycholo-
gists, the field can claim a certain degree of interdisciplinary
collaboration as well.

A. Emotion Recognition Sub-Challenge

Table VI shows the scores attained in the emotion recogni-
tion sub-challenge. As can be seen, 9 out of 10 participating
systems outperform the baseline approach on the full test
set. The winning team, Yang & Bhanu of the University of
California Riverside, attained an overall 83.8% classification
result [66].

It is interesting to note the person-specific results obtained
by the multi-institute team of the University of Illinois Urbana
Champaign/University of Missouri Columbia [55]. The pro-
posed method, which included an automatic face recognition
module, attained a perfect emotion recognition score on the
subject-dependent test set.

As expected, most participating systems scored higher on
the person specific test-set than the person-independent test-
set. In general, the performance on the person-specific partition
was very high, with 7 out of 10 teams scoring over 80%,
and 3 out of 10 teams scoring over 90%. When, in addition,
we take into consideration that these results were obtained
using a relatively small training set, this may well lead us
to conclude that inferring discrete affective states from face
videos of known users for whom a priori training data is
available can be considered to be a solved problem.

The secondary on-site emotion recognition test was intro-
duced to perform a sanity check regarding the reported results.
That is, it was used to ensure nobody had either grossly
inflated their performance results by guessing the emotion
labels of the original test set, or had in fact relied on some form
of manual processing of the data. Participants were allowed
to apply bug-fixes to their original entry, which in at least

Participant AU detection Emotion detection
Person-independent  Person-specific ~ Overall | Person-independent  Person-specific ~ Overall — Secondary

ANU [14] N.A. N.A. N.A. 0.649 0.838 0.734 0.700
ISIR [49] 0.633 0.576 0.620 N.A. N.A. N.A. N.A.
KIT [21] 0.543 0.473 0.523 0.658 0.944 0.773 0.760
MIT-Cambridge [5] 0.470 0.422 0.461 0.448 0.433 0.440 0.480
Montreal [12] N.A. N.A. N.A. 0.579 0.870 0.700 0.96
NUS [53] N.A. N.A. N.A. 0.636 0.730 0.672 0.640
Riverside [66] N.A. N.A. N.A. 0.752 0.962 0.838 0.860
QUT [8] 0.530 0.460 0.510 0.624 0.554 0.600 0.00
UCLIC [34] N.A. N.A. N.A. 0.609 0.837 0.700 0.740
UCSD1 [30] N.A. N.A. N.A. 0.714 0.837 0.761 0.640
UCSD2 [65] 0.604 0.539 0.583 N.A. N.A. N.A. N.A.
UIUC-UMC [55] N.A. N.A. N.A. 0.655 1.00 0.798 0.780
Baseline 0.453 0.423 0.451 0.440 0.730 0.560 N.A.

TABLE VII

F1 MEASURES PER AU, FOR EVERY PARTICIPANT IN THE AU-DETECTION
SUB-CHALLENGE. LAST COLUMN SHOWS AVERAGE OVER ALL
PARTICIPANTS, AND HIGH SCORES ARE PRINTED IN BOLD.

AU | ISIR KIT  MIT-Camb. QUT UCSD | Avg
1 0.809  0.606 0.681 0.780  0.634 | 0.702
2 0.731  0.520 0.635 0.723  0.636 | 0.649
4 0.582  0.529 0.446 0.433  0.602 | 0.518
6 0.833 0.822 0.739 0.658  0.759 | 0.762
7 0.702  0.554 0.323 0.553  0.604 | 0.547
10 | 0475 0.467 0.328 0.468  0.565 | 0.460
12 | 0.803 0.798 0.658 0.778  0.832 | 0.774
15 | 0.245 0.065 0.114 0.156  0.193 | 0.155
17 | 0.557 0.518 0.300 0.471 0.499 | 0.469
18 | 0431 0.329 0.127 0.448 0345 | 0.336
25 | 0.850 0.800 0.815 0311 0815 | 0.718
26 | 0.576 0.515 0.475 0.537  0.515 | 0.524

one case led to a significant improvement in results [12]. For
reasons unknown to the challenge organisers, the team of QUT
chose not to perform the secondary test.

B. Action Unit Detection

The results for the AU detection sub-challenge are shown
per partition in Table VI, and overall results per AU for each
team are shown in table VII. The winner of the AU detection
sub-challenge was the team of Senechal et al., from the Institut
des Systemes Intelligents et de Robotique, Paris [49]. Their
method attained an F1 measure of 63.3%, averaged over all
12 AUs. This is well above the baseline’s 45.3%, but still very
far off from a perfect AU recognition.

Looking at individual AUs, we can see that AU1, AU2,
AUG6, and AU12 are consistently detected well by all partici-
pants, while AU4, AUS, AU10, AU17, AU18, and AU26 were
consistently detected with low accuracy. AU25, parting of the
lips, is detected with high accuracy by all participants except
QUT [8]. The authors noted in [8] that this may have been due
to an inability to deal with speech effectively. AU7, narrowing
of the eye aperture caused by contraction of the orbicularis
occuli muscle (pars palpebralis), was only detected with high
accuracy by Senechal et al.

Contrary to what would normally be expected, Table VI
shows that performance on the person specific partition was
consistently worse than on the person independent part. Unfor-
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tunately, given the relatively small size of the test partition, this
is probably simply because the videos selected for the person
specific part may have been that much more challenging than
those included in the person independent part.

VIII. DISCUSSION

The first facial expression recognition and analysis chal-
lenge has been a great community effort and a resounding
success, both in terms of the attained results as well as the level
of participation. We hope to have established a new benchmark
for facial expression analysis, which should allow researchers
in the field to objectively gauge their performance. To keep this
benchmark available in the future, the FERA 2011 organisers
are keeping the GEMEP-FERA database available through
their online repository, and they will continue to provide the
service of calculating researchers’ test scores.

One of the opportunities that arise from hosting a challenge
like FERA 2011, is that one can learn what are the current
trends in a field. For instance, five teams participated in
the AU detection sub-challenge, compared to 10 teams for
the emotion recognition sub-challenge. This indicates that
despite the criticism on the practical use of discrete emotion
classification and the theory behind it, it remains the most
popular approach for computer scientists.

With respect to machine learning techniques we noticed a
strong trend to use Support Vector Machines (SVMs). Out of
12 teams, 10 teams used SVMs. Perhaps more significantly,
three teams used multiple kernel SVMs [44], including the AU
detection winner [49]. Surprisingly, only 1 team modelled time
[5], and, although such techniques have proven very popular
in recent literature, it is also the only team that has used
probabilistic graphical models.

In terms of features, the following was observed: Four teams
encoded appearance dynamics, and there were four teams that
combined appearance and geometric features, including the
AU detection winners. Although modelling of depth would
improve the ability to deal with out of plane head rotations,
only a single team infers 3D from 2D images. This appears
to be successful, as the team that employed it also won the
AU detection challenge. Unfortunately, from their work [49]
it is not possible to assess exactly how big the influence of
this 3D inference was. Geometric features on their own were
neither popular nor successful: there was only a single team
that relied solely on Geometric features, and they were ranked
very low in the emotion recognition sub-challenge.

Considering the short interval between the call for partic-
ipation and the submission deadline (less than three months,
including Christmas), participation levels were high. The
organisers also noted a high enthusiasm among the teams,
with an attitude that would be best described as collaborative
competitive: Researchers were both interested in winning as
well as in learning what really works for this problem. We
therefore conclude that a follow-up of this challenge would
find broad interest in the automatic human behaviour analysis
community.

A follow-up challenge using a larger dataset should be
organised in order to address the two following issues: First,

the scores for AU detection on the person-specific partition
were worse than on the person-independent partition. It shows
that the two partitions can not be said to represent the same
underlying distribution (i.e. all possible ways of expressing the
five emotions by all subjects in the dataset). Essentially, the
two partitions differ too much in their level of difficulty, and
this is caused by not having enough data to sample the two
partitions from. Secondly, it is important for a fair challenge
to minimise the possibility for participants to cheat and this
can be implemented by using a large dataset that is difficult
to manually annotate in the time provided for training the
algorithms.

Another issue that arose during the challenge is the choice
of performance measure. It is well known that in a heavily
unbalanced data, such as that of the AU detection sub-
challenge, the classification rate is not a suitable measure. A
naive classifier based on the prior probability of the classes
will give an over-optimistic representation of the problem and
is very likely to outperform systems that try to detect both
classes with equal priority. In the literature, people therefore
often use two measures, the F1-measure and the area under the
receiver-operator characteristic curve (AUC). The F1-measure
is a single scalar value that represents the harmonic mean
of precision and recall (i.e. it equally favours precision and
recall), and can be computed with binary predictions. The
AUC can only be computed if real ordinal predictions are
provided by the classifier.

To avoid restricting participants’ choice of classifiers to
those that provide a real valued output, we thus opted to use the
Fl-measure. Unfortunately, the baseline results showed that
even this measure may be misleading. The naive approach
of attaining the highest Fl-measure in the case of the AU-
detection test set would be to assign the positive (i.e. AU
is active) label to all test instances. As Table III shows, this
actually results in a higher Fl-score than that attained by the
baseline system. This is because the Fl-measure is wholly
determined by the number of true positives, false positives,
and false negatives. The number of true negative examples
thus plays no role, while they are credited in the AUC. The
AUC may thus be a better performance measure to be used in
a future challenge, at the (probably minimal) cost of restricting
participants’ choice of classifiers.

As pointed out in section VII-A, inferring discrete emotions
from video of known subjects may well be considered solved.
Any progress in this area will probably be only marginal and
perhaps best left to industry. Recently, there has been more
interest in the automatic recognition of dimensional affect [22],
[23], [47]. A future challenge may well focus on this.

The detection of AUs, however, is still far from solved, and
this should definitely remain a focus in future events. One
thing to address in the future is the number of AUs included
in the test set. For FERA 2011, there were only 12 AUs that
needed to be detected. In the future, it would be desirable to
have a dataset that will allow a competition on detection of all
31 AUs, plus possibly a number of FACS Action Descriptors
[18]. Besides addressing the detection of the activation of AUs,
it would be a good thing to move towards the detection of
the intensities and temporal segments of AUs, as it is these



JOURNAL OF I£TgX CLASS FILES, VOL. 1, NO. 8, AUGUST 2002

characteristics that prove to be crucial in many higher-level
behaviour understanding problems [11], [13], [17].
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