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Abstract— The automatic assessment of affect is mostly based
on feature-level approaches, such as distances between facial
points or prosodic and spectral information when it comes to
audiovisual analysis. However, it is known and intuitive that
behavioural events such as smiles, head shakes or laughter
and sighs also bear highly relevant information regarding a
subject’s affective display. Accordingly, we propose a novel
string-based prediction approach to fuse such events and
to predict human affect in a continuous dimensional space.
Extensive analysis and evaluation has been conducted using
the newly released SEMAINE database of human-to-agent
communication. For a thorough understanding of the obtained
results, we provide additional benchmarks by more conventional
feature-level modelling, and compare these and the string-
based approach to fusion of signal-based features and string-
based events. Our experimental results show that the proposed
string-based approach is the best performing approach for
automatic prediction of Valence and Expectation dimensions,
and improves prediction performance for the other dimensions
when combined with at least acoustic signal-based features.

I. INTRODUCTION

A significant part of past research in machine analysis of
human affect has focused on the recognition of prototypic
expressions (i.e., of seven basic emotions) based on data
that has been posed on demand and acquired in laboratory
settings [1], [2]. However, it has been shown that in everyday
interactions people exhibit non-basic, subtle and rather com-
plex affective states like thinking and embarrassment [3].
Therefore, a single label (or any small number of discrete
classes) may not reflect the complexity of the affective
state conveyed by such rich sources of information. Hence,
a number of researchers advocate the use of dimensional
description of human affect, where affective states are not
independent from one another; rather, they are related to one
another in a systematic manner [4].

In light of these, this paper focuses on combining multiple
audiovisual cues for automatic, dimensional and continuous
interpretation of affective displays recorded in naturalis-
tic settings. More specifically, we propose a novel string-
based approach for fusing verbal (i.e., spoken words) and
non-verbal behavioural events (e.g., smiles, head shakes
or laughter) for automatic prediction of human affect in
a continuous dimensional space. This approach stands in
contrast to most conventional approaches, which are based
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on audio/video based feature-level modelling and fusion. As
we also compute “features” for fusing the event strings, the
features derived from event strings are referred to as string-
based or event-based features while the (low-level) features
computed directly from the audio or video signal are referred
to as signal-based features or signal features.

The following subsections provide a brief introduction
to the background of dimensional affect recognition and
introduce related work.

A. Affect in Dimensional Space

The prosodic features which seem to be reliable indicators
of the basic emotions are the continuous acoustic measures,
particularly pitch-related measures (range, mean, median,
and variability), intensity and duration. For a comprehensive
summary of acoustic cues related to vocal expressions of
basic emotions, readers are referred to [5]. There have also
been a number of works that focus on how to map audio
expression to dimensional models. Cowie et al. used the
Valence-Activation space, which is similar to the Valence-
Arousal (V-A) space, to model and assess emotions from
speech [5]. Scherer and colleagues have also proposed how
to judge emotion effects on vocal expression, using appraisal-
based theory [6], [7].

Facial actions (e.g., pulling eyebrows up) and facial ex-
pressions (e.g., producing a smile), and to a lesser extent
bodily postures (e.g., backwards head bend and arms raised
forwards and upwards) and expressions (e.g., head nod),
form the widely known and used visual signals for automatic
affect measurement. Dimensional models are considered
important in this task, as a single discrete label may not
reflect the complexity of the affective state conveyed by the
combination of facial expression, body posture and body
gesture.

A number of researchers have investigated how to map
various visual signals onto emotion dimensions. For instance,
[4] mapped the facial expressions to various positions on V-
A space (e.g., joy is mapped on the high arousal - positive
valence quadrant), while [8] investigated the emotional and
communicative significance of head nods and shakes in
terms of Arousal and Valence dimensions, together with
dimensional representation of Solidarity, Antagonism and
Agreement.

B. Dimensional Affect Recognition from Audio and Video

Automatic dimensional affect recognition is still in its
pioneering stage [1], [9],[10],[11],[12]. The most commonly
employed strategy is to reduce the dimensional emotion



classification problem to a two-class problem (positive vs.
negative or active vs. passive classification; e.g., [13],[14])
or a four-class problem (classification into the quadrants of
2D V-A space; e.g., [15], [16], [17], [18], [19]).

In dimensional affect recognition emotions are represented
along a continuum. Considering this, most systems that target
automatic dimensional affect recognition tend to simplify
the problem by quantising the continuous labels into a
finite number of discrete levels. For example, Kleinsmith
and Bianchi-Berthouze discriminate between high-low, high-
neutral and low-neutral affective dimensions [20], while
Wollmer et al. quantise the V-A dimensions of the SAL
database into either 4 or 7 levels, and then use Conditional
Random Fields (CRFs) to predict the quantised labels [10] .
Attempts for discriminating between more coarse categories,
such as positive vs. negative [13], and active vs. passive
[15] have also been attempted. Of these, Caridakis et al.
[15] uses the SAL database, combining auditive and visual
modalities. Nicolaou et al. focus on audio-visual classifica-
tion of spontaneous affect into negative or positive emotion
categories using facial expression, shoulder and audio cues,
and utilising 2- and 3-chain coupled Hidden Markov Models
and likelihood space classification to fuse multiple cues and
modalities [13]. Kanluan et al. combine audio and visual
cues for affect recognition in V-A space by fusing facial
expression and audio cues, using SVRs and late fusion
with a weighted linear combination [21] with discretised
labels (on a 5-point scale in the range of [-1,+1] for each
emotion dimension). The work presented in [19] utilises
a hierarchical dynamic Bayesian network combined with
BLSTM-NN performing regression and quantising the results
into four quadrants (after training).

As far as actual continuous dimensional affect prediction
(without quantisation) is concerned, four attempts have been
proposed so far, two of which deal exclusively with speech
(i.e., [10], [22]). The work by Wollmer et al. uses Long
Short-Term Memory neural networks and Support Vector
Machines for Regression (SVR) [10]. Grimm and Kroschel
use SVRs and compare their performance to that of the
distance-based fuzzy k-Nearest Neighbour and rule-based
fuzzy-logic estimators [22]. The work by Gunes and Pantic
focuses on dimensional prediction of emotions from spon-
taneous conversational head gestures by mapping the head
motion vectors and occurrences of head nods and shakes
into Arousal, Expectation, Intensity, Power and Valence
level of the observed subject using SVRs [23]. The work
by Nicolaou et al. focuses on dimensional and continuous
prediction of emotions from naturalistic facial expressions
within the context of an Output-Associative Relevance Vector
Machine regression framework that augments the traditional
Relevance Vector Machine regression by learning non-linear
input and output dependencies inherent in the affective data
[24].

For further details on the aforementioned systems, as well
as on systems that deal with dimensional affect recognition
from a single modality or cue, the reader is referred to [1],
(2], [12].

In summary, none of the related works have investigated
string-based prediction and multimodal fusion of verbal and
nonverbal behavioural events for automatic prediction of
human affect in a continuous dimensional space.

The remainder of this paper is structured as follows: In
Section II the corpus used for the experimental validation,
i.e., the SEMAINE database of human-agent communication,
is shortly introduced. We describe the methods used for
automatic behavioural event detection and classification by
video and audio analysis in Section III. The experimental
setup and the string-based multimodal fusion of the be-
havioural events can be found in Section IV and Section
V, respectively. For comparison, we then introduce a more
conventional fusion approach to audiovisual affect analysis
in Section VI, before discussing the results in Section VII
and drawing our conclusions in Section VIIIL.

II. THE SEMAINE DATABASE

The SEMAINE database [25] was recorded to study natu-
ral social signals that occur in conversations between humans
and the future generation of artificially intelligent agents,
and to collect data for the training of such intelligent agents.
The scenario used for this is called the Sensitive Artificial
Listener, SAL for short. It involves a user interacting with
emotionally stereotyped “characters” whose responses are
stock phrases keyed to the user’s emotional state rather than
the content of what he/she says. The model is a style of
interaction observed in chat shows and parties, which aroused
interest because it seems possible that a machine with some
basic emotional and conversational competence could sustain
such a conversation, without needing to be competent with
fluent speech and language understanding.

In the recording scenario, the participants are asked to talk
to four emotionally stereotyped characters. These characters
are Prudence, who is even-tempered and sensible; Poppy,
who is happy and outgoing; Spike, who is angry and con-
frontational; and Obadiah, who is depressive.

The study presented in this work is based on the first part
of the SEMAINE database. In this part, human operators
pretended to be the artificial agents. This type of interaction
is called Solid-SAL. Because we assume that the SAL agent
has no language understanding, a few rules govern this
type of interaction. The most important of these is that
the agent is not allowed to answer questions. However, the
operators are instructed that the most important aspect of
their task is to create a natural style of conversation; strict
adherence to the rules of a SAL engagement was secondary
to a conversational style that would produce a rich set of
conversation-related behaviours and therefore transgressions
occasionally occur.

Video was recorded at 49.979 frames per second at a
spatial resolution of 780 x 580 pixels and 8 bits per sample,
while audio was recorded at 48 kHz with 24 bits per sample.
Both the user and the operator are recorded frontally by both
a greyscale camera and a colour camera. In addition, the user
is recorded by a greyscale camera positioned on one side of
the user to capture a profile view of their face and body. To



accommodate research in audio-visual fusion, the audio and
video signals were synchronised with an accuracy of 25 us
using the system developed by Lichtenauer et al. [26].

The Solid-SAL part of the database holds recordings of 20
trials of the SAL experiment, split into over 100 character
conversations of approximately 5 minutes each. All recorded
conversations have been fully transcribed and annotated for
five affective dimensions and partially annotated for 27
other dimensions, using trace style continuous ratings. The
five core dimensions are those that psychological evidence
suggests are best suited to capture affective colouring in
general [27]. They are Valence, Activation, Power, Antici-
pation/Expectation and (overall emotional) Intensity.

Further details on the SEMAINE database can be found in
[25]. The database is freely available for scientific research
purposes from http://semaine-db.eu.

III. BEHAVIOURAL EVENTS

This section describes the procedures employed to detect
the behavioural events that are used for the proposed string-
based affect prediction and fusion approach.

A. Nonverbal Visual Events

The nonverbal events detected from the visual modality are
head gestures and facial action units (AU). Once detected,
these events are supplied as features to the string-based
prediction and fusion algorithm. Due to lack of annotated
SEMAINE data (in terms of head gestures and AUs), how
each visual event detection component affects the string-
based prediction algorithm and its accuracy could not be
evaluated.

Head gestures. We aim to recognise four different head
gestures: head nods, head shakes, head tilts to the left, and
head tilts to the right. The automatic detection of head
nods and shakes is based on the 2-dimensional (2D) global
head motion estimation. The face region is detected using
the well known Viola and Jones face detector [28]. In
order to determine the magnitude and the direction of the
2D head motion, optical flow is computed between two
consecutive frames. It is applied to a refined region (i.e.,
resized and smoothed) within the detected facial area to
exclude irrelevant background information.

After preliminary analysis, the angle component of the 2D
head motion vector has been considered as the distinguishing
feature in order to represent nods and shakes. The angle
measure has then been discretised by representing it with di-
rectional codewords. The directional codeword is obtained by
quantising the direction into four codes for head movements
(for rightward, upward, leftward and downward motion,
respectively) and one for ‘no movement’. The directional
codewords generated by the visual feature extraction module
are then fed into a Hidden Markov Model (HMM) for
training a nodHMM and a shakeHMM. However, to be able
to distinguish other head movements from the actual head
nods/shakes, we (i) threshold the magnitude of the head
motion, (ii) build an otherHMM to be able to recognise any
head movement that are not nods/shakes, and (iii) statistically

TABLE I
Comparative results obtained with respect to (i) thresholding the
normalised head motion magnitude, (ii) deciding on the number of states
to be used within the HMM models, and (iii) whether to use likelihood

space classification or maximum likelihood classification.

threshold number of | likelihood maximum
for states used | space clas- | likelihood
normalised in the HMM | sification classifica-
head motion | model (%) tion(%)
magnitude

15 4 92.8 86.5

25 2 92.2 84.1

0 3 91.2 86.9

15 3 89.4 83.3

0 2 88.7 85.0

analyse the likelihoods outputted by the nod/shake/other
HMM (maximum likelihood vs. training classifiers on the
outputted likelihoods).

152 head nod, 103 head shake, and 140 other clips (of
variable length) were manually extracted from the SEMAINE
database to train the HMM models. In order to determine
how to make the final decision, evaluation has been carried
out (using the aforementioned data and adopting 10-fold
cross-validation) with the following criteria: (i) thresholding
the normalised magnitude (normalised by the height of the
detected face) of the head motion (0-30), (ii) deciding on the
number of states to be used within the HMM models (2-5),
and (iii) whether to use maximum likelihood classification
(i.e., decision is based on the model that provides the
maximum likelihood) or likelihood space classification (i.e.,
decision is made by a classifier trained using the likelihoods
outputted by all HMM models, similarly to [13]). Table I
presents the best results. The best results were obtained by
thresholding head motion magnitude (threshold=15 or thresh-
0ld=25), and by using either 4 or 2 states within the HMM
models. To keep the model and computational complexity
simpler, we opted for likelihood space classification, setting
the threshold=25, and number of states=2.

In order to analyse the visual data continuously, we em-
pirically chose a window size of 0.4 seconds (about 20 video
frames) that allows the detection of both brief and longer in-
stances of head nods/shakes (similarly to other related work).
From the global head motion features extracted and the head
movements (nod or shake) detected, we created a window-
based feature set presented in Table II. The ground-truth for
the window at hand consists of the dimensional annotations
averaged over that window, for each coder separately. Please
see [23] for details.

The spotting capability of the automatic head nod and
shake detector was evaluated using a subset of the SEMAINE
database. There exists no publicly available (audio-)visual
data set annotated for head nods and shakes, at either frame-
level (frame-by-frame) or event-level (where a nod starts
and ends). Therefore, one of the authors manually annotated
a subset of the SEMAINE database that consisted of data
from 4 subjects (2 male and 2 female), over 7 sessions, and
44,060 video frames in total. As the focus of this paper is



TABLE II
Head features extracted within a fixed window of 0.4 s.

Features (16) & their description ]

duration of no movement

duration of the upward head movement

duration of the downward head movement

duration of the rightward head movement

duration of the leftward head movement

average of the magnitude values

variance of the magnitude values

average of the angle values

variance of the angle values

loglikelihood outputted by nodHMM

loglikelihood outputted by shakeHMM

loglikelihood outputted by otherHMM

result of the maximum likelihood classification

result of the likelihood space classification (nod vs. shake)
result of the likelihood space classification (nod vs. other)
result of the likelihood space classification (shake vs. other)

M Subject 14

M Subjectl?

Subject21

W Subject22

&
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Fig. 1. Nod, shake and other event detection results (per subject) on a

subset of the SEMAINE database.

on events, an event-level evaluation was conducted based
on a window of 20 frames (used for decision making by
the detector) by taking the majority vote as the label of the
window at hand. The results are presented in Fig. 1. The
figure shows that nod event detection seems to be best for
subject 14, followed by subject 22; other event detection
seems to be best for subject 21 followed by subject 14. Shake
event detection appears to be best for subject 21, followed
by subject 17. This in turn implies that naturalistic emotional
displays are rather subject-specific in nature. However, it is
difficult to draw hard conclusions given the limited amount
of data. Within the SEMAINE database, the amount of nod,
shake and other events varies between recording sessions and
between subjects. For instance, the aforementioned test set
contains 33,328 frames of other event, 6,873 frames of nod
event, and 3,859 frames of shake event.

To detect head tilts, we employ a haar-cascade eye detec-
tor. The detector usually returns multiple detections per eye.
To select which one is the real location of the eye, we modify
the probability of each candidate location in two ways.
Firstly, the probability of a candidate location is decreased
according to a Gaussian function of the distance to the prior
probability of the location of an eye given the detected

face location. Secondly, we modify the probability of each
candidate by the distance to other candidates. Candidates that
are close together will increase each other’s probability. This
results in the predicted locations of the left-eye {z;,y} and
right-eye {z,,y,}.

Using the locations of the centres of the eyes,
we can now compute the roll of the face as
a = arctan (y, — y;)/(x, — x;), which, in turn, indicates
whether a head tilt has occurred. Similarly to the nod/shake
detection, we average « over a time window of 0.4 seconds.
If the average value is greater than 0.1 radians, we say
that a right-head-tilt occurred, and if it is smaller than -0.1
radians, a left-head-tilt is detected.

Facial Action Units. To detect facial Action Units (AUs),
we employed the method proposed by Jiang et al. [29].
In their work the authors investigate the possibility to de-
tect AUs using two static and two dynamic appearance
descriptors. From those four we chose to use the Local
Binary Patterns (LBP) descriptor. Although according to
their reports the LBP descriptor did not attain the highest
recognition performance, it was by far the fastest. Since the
data we process in this study consist of over a million frames,
speed was of great importance.

The LBP descriptor is computed by systematically com-
paring the central pixel with a number of surrounding pixels
in a local neighbourhood. If the surrounding pixel has a
higher intensity than the central pixel, the result is a binary
1, otherwise it is a 0. The results of all neighbours together
forms a binary word, which is translated to a decimal number.
In our case, we use the 8 immediately surrounding pixels,
and thus we have an 8-bit word, and the decimal number
lie in the range [0, 255]. The LBP operator is applied to all
pixels in an image, and a histogram of the LBP output per
pixel is created which describes the texture of that image.

To encode local texture instead of a single texture for
the entire face, we divide the face region into 10 x 10
blocks. An LBP histogram is calculated for each of those
blocks separately, after which the histograms of all blocks
are concatenated to form a single feature vector. GentleBoost
feature selection is applied to this, and the reduced feature
set is fed to a bank of Support Vector Machine classifiers,
one for every AU detected. Currently, the system can reliably
detect 12 AUs (AU1, AU2, AU4, AUS, AU6, AU7, AU12,
AU14, AU15, AU20, AU25, and AU45). To be able to deal
with appearance variation due to head roll and different sizes
of faces, we use the locations of the eyes found during head
tilt detection. The input images are first rotated by « radians,
and then scaled to make the distance between the centres of
the eyes equal to 80 pixels.

Because it is notoriously time-consuming to create ground-
truth labelling of AUs from video, there is currently very
little AU annotation available for the SEMAINE database. To
wit, at the time of writing 181 frames have been annotated,
taken from eight character conversations of two subjects,
i.e., for both subjects the conversations with all four SAL
characters were used. Besides testing on the SEMAINE
database, we therefore also test our AU detector on 1504
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images of posed facial expressions taken from the MMI
Facial Expression Database [30]. Tests were done in a
subject-independent manner. Fig. 2 shows the average F1-
measure for all AUs per subject. Subjects two and three in
the figure are the two subjects taken from the SEMAINE
database. It is hard to draw conclusions for the SEMAINE
data given the limited data, and indeed the figure shows
that although performance is competitive for Subject three,
it is rather poor for Subject two. Unfortunately, there exist
no freely available databases of spontaneous data with AU
labelling, therefore, we cannot compare our results with those
of others. The results for the subjects from the MMI Facial
Expression database are all competitive with the current state
of the art.

B. Verbal and nonverbal acoustic events

As acoustic events we used laughter and sighs, as they
occur frequently in spontaneous emotional speech and carry
substantial emotional meaning. We additionally used emo-
tionally relevant keywords which are derived per dimension
by feature selection from automatic ASR transcriptions of the
whole SEMAINE database. We decided not to use the ground
truth transcriptions, but the recogniser’s output — also for
extracting string-based features on the training set — to avoid
a mismatch between ideal training conditions and imperfect
recognition conditions in a real-world system.

For keyword detection we used a multi-stream large
vocabulary continuous speech recognition (LVCSR) engine
tuned for robust recognition of spontaneous and emotional
speech (for details see [31]). In addition to the standard set of
39 cepstral mean normalised MFCC features, the system uses
discrete phoneme prediction features generated by a Long
Short-Term Memory (LSTM) network. The LSTM principle
enables long-range context modelling on the feature level and
was shown to be well-suited for modelling conversational
speech [32]. Instead of conventional hidden units which
can be found in the hidden layer of standard recurrent
neural networks, an LSTM network consists of recurrently
connected memory blocks that can store information over
long time periods and are able to model co-articulation

30 35

AU detection result per subject on the MMI-Facial Expression and SEMAINE databases.

effects in human speech.

Combined with context-sensitive triphone Hidden Markov
Models, the system achieved a true positive rate of 76.58 % at
a false positive rate of 0.94 % when trained on the SEMAINE
database, the SAL corpus, and on the COSINE -corpus
[33] consisting of conversational, disfluent, and partly noisy
speech. The multi-stream LVCSR engine uses the on-line
LSTM decoder integrated in the open-source speech feature
extractor openSMILE [34] as well as a trigram language
model trained on the aforementioned speech corpora. All
phoneme HMM consist of three emitting states with each
state having 16 Gaussian mixtures. The nonverbal events
laughing and sighing are detected within the same recogniser
framework. We trained HMM comprising nine hidden states
for these vocalisations. The LSTM network for phoneme
prediction is composed of 128 memory blocks and the size
of the used vocabulary is 7.0k.

From the 7.0k words in the vocabulary, we selected a
subset of words relevant for each of the five affect dimensions
using the Correlation based Feature Subset Selection (CFS)
algorithm.

IV. EXPERIMENTAL SETUP

For the experiments reported in this paper we train Support
Vector Regressors (epsilon SVR with a polynomial (linear)
kernel), since SVR is known to handle large feature spaces
reliably. The trained models are evaluated using the SE-
MAINE database, using sessions that have been coded by
the same three raters. Recordings 4, 6, 9, 10, 11, 13, 15, 16,
17, 18, and 19 were used for training, and recording 3, 5,
12, and 14 for testing.

As metrics for evaluation, the Mean Linear Error (MLE)
and correlation coefficient (CC) are used. MLE measures
the average of the absolute error between an estimator and
the true value of the quantity being estimated. CC (usually
referred to as Pearson’s correlation) indicates the strength
of a linear relationship between two variables. MLE and
CC have been calculated both for individual raters and the
(automatic) predictor. Both MLE and correlation have been
calculated for each rater with respect to other raters and by



averaging the obtained results.

For the audiovisual analysis conducted within this paper,
we only consider regions where the subjects are talking,
i.e., user speech turns. Since these turns themselves are
unsuitable as units of analysis due to their high variability
in length (from few seconds up to minutes), we decided
for an incremental segmentation scheme. This scheme has
been developed for the real-time SEMAINE demonstrator
system, where low-latency incremental estimation of the
user’s affective state is required. The turns are split into
overlapping segments, which are not longer than five seconds
and are sampled every second. Thus, the first segment within
a turn spans the range from Os to 1 s, the second from Os to
2s, the fifth from Os to 5s, and the sixth segment from
1s to 6s, and so on. A continuous affect label for each
dimension is assigned to each segment by simple averaging
of the dimensional affect labels within the segment. Applying
the aforementioned segmentation procedure leads to 7,699
segments in the training set, and 1,324 segments in the
evaluation set.

V. STRING-BASED FUSION

The event fusion is performed at the string-level per
segment (see section II for a definition) by joining all
events where more than half of the event overlaps with the
segment in a single string. The events can thus be seen as
“words”. The resulting strings are converted to a feature
vector representation through a binary bag-of-words (BOW)
approach. By doing so we do not consider term frequencies,
i.e., we only consider whether a certain event is present or
not within a segment and do not count how often events
occur. We decided to use this simple approach because, in
contrast to the keywords and vocal outbursts, the video-based
events are not identified as unique instant events in time,
but only locally as predictions for short time frames. Some
post-processing would have to be applied in order to group
these predictions into discrete events, which we will carefully
attempt to do as the next step in future work.

Due to the large vocabulary size in the corpus, we have to
select emotionally relevant words from the approximately
7.0k dimensional word vector. We do this separately for
each of the five dimensions using CFS as a feature selection
algorithm. Approximately 200-300 words remain after this
feature selection. We add laughter and sigh BOW features
to the reduced word vector to obtain the audio event vector
(Event A). The video event vector (Event V) contains two
BOW dimensions for nod/shake, 12 dimensions for AUs, and
two dimensions for tilt left/right. We do not apply feature
selection here, thus this vector is always 16 dimensional.

The results of the string-based emotion recognition are
given in table III (rows labelled with Event A/V). Results
for conventional acoustic and video signal-based feature
approaches are also provided for comparison, as well as
results for fusion of events with signal-based features. The
signal-based features are described in the next section.

At this point we would like to point out that all the event-
based features used in this paper have been computed on the

actual output of the event detectors and not on the ground
truth labels, i.e. we are presenting fully realistic processing
conditions.

TABLE III
All results for affect prediction for five continuous dimensions A(ctivation),
W(alence), E(xpectation), I(ntensity), P(ower). Target label is the mean of
Rater 3, 5, and 6 annotations. SVR regression with polynomial kernel of
degree 1. Correlation coefficient (CC) and Mean Linear Error (MLE).
Audio (A): audio features (functionals of acoustic LLD); Video (V):
functionals of 2D head motion-based features (nod/shake); Event A/V:
String-based features from audio (A) events (words and laughs/sighs)
and/or video events (action units and head nod/shake/tilt). Best result(s)

printed in bold face.

[cC [ A v E I P_|
Audio (A) 0653 0085 0.90 0503 0367
Video (V) 0204 0037  0.037 0397 -0.019
Event A+V 0447 0165 0220 0397 0.264
Event A 0215 0123 0282 0.148 0275
Event V 0524 0014 0254 0421 -0.013
A+V+Event A+V | 0699 0037 0213 0548 0405
A+V 0661 -0.103 0.191 0573 0338
A + Event A+V 0.699 0092 0218 0525 0431

[ MLE [ A v E I P
Audio (A) 0157 0265 0181 0195 0173
Video (V) 0208 0258 0185  0.194  0.183
Event A+V 0.188 0255 0.80 0.99 0.181
Event A 0206 0245 0173 0211  0.177
Event V 0.187 0271 0.194 0204  0.188
A+ V+Event A+V | 0153 0271 0.180 0183 0.171
A+vV 0.156 0282 0180 0185 0175
A + Event A+V 0.154 0259 0181 0.189  0.170

VI. FEATURE-LEVEL FUSION AND
COMPARATIVE ANALYSIS

This section aims to provide a baseline for comparing the
newly introduced string-based prediction and fusion, and the
traditional signal-based approaches and feature-level fusion.
In addition to these, fusion of string-based features with
signal-level features is also employed for further analysis.

The signal-level audio feature set is based on the one
used for the baseline results of the INTERSPPECH 2010
Paralinguistic Challenge [35]. This has been extended by
7 RASTA-PLP descriptors and 14 Mel-Frequency Bands
instead of only 8 as in the challenge set (covering the same
frequency range from 20-6,500 Hz). In order to improve
the computational efficiency for real-time on-line processing
in the SEMAINE demonstrator system, we decided to omit
the line spectral pairs as low-level features and remove the
percentile functionals (quartiles, and inter-quartile ranges),
which require the low-level feature contours to be sorted with
quick-sort. In total this leads to a 1,880 dimensional feature
set: 47 low-level descriptors, first order delta coefficients, and
20 functionals yields 1,880 features. Including the number of
pitch onsets and the total segment duration in seconds gives
the final number of 1,882. A description of the feature set is
given in table IV.

The extracted video features related to head gestures are
presented in Table II). After the feature extraction, the 20



TABLE IV

Acoustic features.

Descriptors (47) “

Functionals (20)

Loudness, Intensity, RMS & LOG energy
Voicing Probability

FO (pitch) only in voiced regions

MFCC 0-12

RASTA style PLP-CC 0-7

MFB 1-14

Spectral Flux, Centroid, Entropy, Variance
95% spectral roll-off point

Mean crossing rate (time-domain)

min., max. value and range

rel. position of max / min value
arithmetic mean

slope, offset, lin. and quad. error
standard deviation, skewness, kurtosis

time signal is above 25 %, 50 %, 75 %, and 90 %

time signal is below 50 %

functionals listed in table IV are applied to these features.
Thus, a single vector of video features is created for each
segment, which can easily be concatenated with the acoustic
feature vector and the string-based bag-of-words vector.

VII. DISCUSSION OF RESULTS

The results — as shown in table III — clearly show that
the proposed string-based approach for multimodal affect
prediction is feasible and gives the best result for the dimen-
sions Valence and Expectation. This is in line with findings
that these dimensions are poorly correlated with acoustic
features alone, for example. The approach also improves
the predictors’ performance if combined with signal-based
features. The overall best result is achieved for Activation,
where the average result is as good as human performance.

TABLE V
Correalation coefficient (CC) and Mean Linear Error (MLE) for five affect
dimensions A(ctivation), V(alence), E(xpectation), I(ntensity), and P(ower)
of the three human coders computed for each coder as the MLE or CC
between the coder’s annotation and the mean of the other two coders’

annotations on the test set.

CC A \4 E 1 P

R3 0.748 0.835 0.462 0.788  0.487
R5 0.757 0.776  0.418 0.763  0.483
R6 0.607 0.844 0.261 0.688 0.143
mean | 0.704 0.818 0.380 0.746 0.371
MLE A \Y E 1 P

R3 0429 0.159 0262 0322 0.309
RS 0367 0.174 0434 0252 0.241
R6 0.199 0.152 0340 0.191 0.346
mean | 0.332 0.162 0.345 0.255  0.299

Table V gives the performance of each human annotator
compared to the average of the other two annotators. We
can see that the performance of our automatic predictors
is not yet at the level of human performance for all five
dimensions, but we are getting quite close for some dimen-
sions, Activation and Power dimensions, in particular. A huge
difference still remains for the Valence dimension, where
human performance/agreement is highest among all five
dimensions, but the correlation of the automatic prediction is
lowest. Considering the fact that the Event A+V and Event
A features gave best and second best results for automatic
prediction of Valence, this could be seen as an indication
that annotators strongly take the content and meaning of

utterances into account when creating their judgements.
Another notable issue that is evident when comparing human
and automatic performance is that the MLE is much lower for
automatic prediction than for human coder agreement (except
for Valence). This can be attributed to the fact that human
annotators use their individual scalings and offsets when per-
forming the annotations, which results in a higher error but
does not affect the overall correlation. Automatic predictors
generally try to optimise the output error during training.
Thus, for future continuous dimensional affect prediction
systems we should focus on the correlation coefficient as a
main evaluation metric, as followed in the INTERSPEECH
2010 Paralinguistic Challenge [35].

VIII. CONCLUSION AND OUTLOOK

We have investigated a novel approach to audiovisual
fusion on the SEMAINE database. The approach is based
on the bag-of-words technique which is already well known
and used for linguistic emotion recognition. We extended
this approach to multimodal string-based fusion by adding
video-based events (facial expression Action Units, head
nods, shakes, and tilts) as ‘words’ to the string of acoustic
events. We have also compared the proposed approach to
traditional signal-feature-based approaches and have inves-
tigated the potential of fusing features from the proposed
string-based approach and signal-based features (audio and
video), which gave the best performance for three out of five
affect dimensions.

Future work will investigate novel feature types as well
as further combinations of feature groups and modalities to
improve the prediction performance, especially for the Va-
lence dimension. We will also investigate scaling and offset
correction as well as smoothing for the individual annotator
tracks of the SEMAINE database as a pre-processing step in
order to obtain a more universal and noise free ground truth.

In the light of our results we can conclude that the
proposed string-based approach is the best performing ap-
proach for automatic prediction of Valence and Expectation
dimensions, and improves prediction performance for the
other three dimensions, when combined with signal-based
features. For Activation a correlation coefficient of 0.70 and
for Power of 0.43 is obtained in this case. This is as good
or even slightly better than human performance.
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