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PROPOSITIONS
belonging to the Ph.D. thesis

Facial Expression Analysis by
Computational Intelligence Techniques
by
Maja Pantic

1. Anyone can become angry - that is easy. But to be angry with the right person,
to the right degree, at the right time, for the right purpose, and in the right way -
that is not easy. This challenge recognised by Aristotle in the third century BC,
remained for humans difficult enough to make our stress assessing system
{quite) profitable.

[this thesis]

N

The things we have to deal with in practical life are usually too complicated to be
represented by neat, compact expressions. Especially when it comes to
understanding emotions, so little is known that we cannot be sure our ideas are
even aimed in the right directions. Therefore, one must not think that we
developed a universal emotion recogniser. We just simplified the problem by
mapping it onto an (infinite) number of (solvable) subjective opinions.

[this thesis]

3. AI has many definitions. As explained by Randall Davis, an unifying definition
is difficult to give:
“Is the Al science or engineering, analytic or synthetic, empirical or
theoretical? The answer is of course ‘yes’.”
(in AI Magazine 19(1): 94)
[this thesis]

N

. Ontologies specify the concepts and relations within a domain of discourse.
Scientists, philosophers, sociologists and linguistics have been striving for good
ontologies since Empedocles described the four elements — air, earth, fire and
water — in the fifth century BC. Only in the Al field we now use ontologies for
classification, system modelling, human computer interface, computer
reasoning, data mining, and so on, in the fields such as medicine, physics,
molecular biology, electronics, etc.

Did we forget the meaning and power of the term “abstraction” (as a
counterpart of the term “detailed”)?




5. In our post-agrarian society, where few of us farm or sew, the phrase “looking
for a needle in a haystack™ has lost it’s meaning. A more fitting expression for
today’s culture might be “finding the right information on the Internet”.

6. A quick test of intelligence: Read the following sentence and count only once the
number of the letter F in it.

FINISHED FILES ARE THE RESULT OF YEARS OF SCIENTIFIC STUDY
COMBINED WITH THE EXPERIENCE OF YEARS.

A person of average intelligence finds three of them. Nevertheless, there are in
total six F’s. There is no catch. Many people forget the OF’s and that’s because
the human brain tends to see them as V's and not F's,
Nevertheless, we still do consider the human visual system as the (most)
reliable inspection facility of our facial-expression-analyser.

[this thesis)

7. People are seldom interested in how results are achieved. Most of the times they
are just interested in the results themselves. This is because we assume that
everybody thinks / works in a similar way, that is, the same way as we do.

8. One must not mistake to flatter himself thinking that what he achieved is perfect.
It is a praise of ignorance. -

9. It is positive to remember the past and think about the future, but to live even
slightly in the past or the future, is dangerous. It is a robbery of the present life:
neither rescuing anything from the past nor doing something for the future.
Carpe diem !

10. Only active people with ambition and Machiavellian way of thinking move life
forward, but only passive persons due to their patience and goodness make life
bearable.

11.Once upon a time in a faraway forest there was a rabbit writing something on a
computer. A wolf saw him and asked what is he doing. “I am writing my Ph.D.
thesis”, replied the rabbit. “And what is the subject?”, asked the wolf. “Rabbit,
the strongest animal of the forest”, said the rabbit. “It can’t be”, argued the
wolf, “come in the bushes and I will show you”. After a couple of minutes the
wolf came out of the bushes, beaten almost to death. The rabbit followed him
with a bear explaining “It is not the subject what matters, but the mentor”.




STELLINGEN

behorend tot het proefschrift

Facial Expression Analysis by

Computational Intelligence Techniques
door
Maja Pantic

1. Eenieder kan boos worden — dat is gemakkelijk. Maar, boos worden op de juiste
persoon, in de juiste mate, op het juiste moment, met het juiste doel en op de
juiste wijze — dat is niet gemakkelijk. Deze uitdaging die Aristoteles in de derde
eeuw vC formuleerde, bleef voor mensen moeilijk genoeg om ons stress-
observerend systeem (redelijk) doelmatig te houden.

[dit proefschrift]

| 2. De zaken waarmee we rekening moeten houden in het dagelijkse leven zijn
gewoonlijk te gecompliceerd om weer te geven met behulp van nette beknopte
uitdrukkingen. Vooral als het erop aan komt om emoties te begrijpen is daar zo
weinig over bekend dat we er niet zeker van kunnen zijn dat onze vermoedens
daarover zelfs maar in de juiste richting gaan. Daarom moeten we niet denken
dat we een universele emotie-herkenner ontwikkelden. We hebben gewoon het
probleem vereenvoudigd door het op een (oneindig) aantal (onderscheidbare)

subjectieve meningen af te beelden,
[dit proefschrift]

3. Al heeft vele definities. Zoals uitgelegd door Randall Davis, is een eensluldende
definitie moeilijk te geven:
“Is the Al science or engineering, analytic or synthetic, empirical or
theoretical? The answer is of course ‘yes’.”
(in A Magazine 19(1): 94)
[dit proefschrift]

4. Ontologiegn specificeren concepten en relaties in een vakgebied.
Wetenschappers, filosofen, sociologen en linguisten hebben gestreefd naar
goede ontologieén sinds Empedocles, in de vijfde eeuw vC, de vier elementen —
aarde, lucht, water en vuur — beschreef. Tegenwoordig worden slechts in het
vakgebied Al ontologieén opgesteld voor classificatie, systeemmodellering,
mens-machine interactie, automatisch redeneren, data mining, en toegepast in
zulke disciplines als medicijnen, natuurkunde, moleculaire biologie, elektronica,




enz. Vergaten wij de betekenis en kracht van de term “abstractie” (als
tegenhanger van de term “gedetailleerd”)?

5. In onze postagrarische samenleving, waarin weinigen van ons nog zaaien of
oogsten, heeft de zinsnede “zoeken naar een naald in een hooiberg” zijn
betekenis verloren. Een meer passende uitdrukking in de hedendaagse cultuur
zou kunnen zijn “zoeken naar de juiste informatie op het Internet”.

6. Een snelle intelligentietest: Lees de volgende zin slechts eenmaal en tel daarbij
het aantal malen dat de letter F erin zit.
FINISHED FILES ARE THE RESULT OF YEARS OF SCIENTIFIC STUDY
COMBINED WITH THE EXPERIENCE OF YEARS.
Een persoon van gemiddelde intelligentie vindt er drie. Toch zijn er in totaal zes
letters F. Er schuilt niets achter. Mensen vergeten het woordje OF omdat het
menselijk brein ertoe neigt om dat te lezen met een V en niet met een F.
Desalniettemin beschouwen we het menselijke visuele systeem als het (meest)
betrouwbare waarnemingsinstrument van onze gezichtsuitdrukkinganalysator.
[dit proefschrift]

7. Mensen zijn zelden geinteresseerd in hoe resultaten bereikt worden. Meestal zijn
zij slechts geinteresseerd in resultaten. Dit komt omdat zij aannemen dat ieder
denkt en werkt op dezelfde wijze, dat is, de wijze waarop zij het zelf doen.

8. Men moet zich niet abusievelijk vleien door te denken dat hetgeen bereikt is
volmaakt is. Dit is de lof der onwetendheid.

9. Het is positief om zich het verleden te herinneren en te denken over de toekomst.
Om zelfs maar enigszins in het verleden, of in de toekomst, te leven is
gevaarlijk. Het is een zonde tegen leven in het heden: noch verandert het iets uit
het verleden, noch voorkomt het iets in de toekomst. Carpe diem!

10. Slechts actieve mensen met ambitie en een Machiavelliaanse wijze van denken
brengen leven in de brouwerij. Slechts passieve mensen maken het leven
draaglijk, dank zij hun geduld en goedaardigheid.

11. Er was eens in een heel donker bos een konijn dat typte tekst met behulp van een
computer. Een wolf zag hem bezig en vroeg wat hij deed. “Ik schrijf mijn
proefschrift”, antwoordde het konijn. “En wat is je onderwerp?”, vroeg de wolf.
“Konijnen, de sterkste dieren van het bos”, zei het konijn. “Dat kan niet”,
argumenteerde de wolf, “kom maar mee in de struiken en dan zal ik je dat laten
zien”. Na enkele minuten kwam de wolf uit de struiken ... halfdood: Het konijn
liep achter hem aan in gezelschap van een beer.en-legde uit “Het. onderwerp
doet er niet toe, wat er wel toe doet is welke mentor je hebt”.
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1 Introduction

Grand challenges like space exploration and weather prediction are
expanding human frontiers, but the grandest challenge is exploration of how
we as human beings react to the world and interact with each other. Faces
are accessible “windows” into the mechanisms which govern our emotional
and social lives. The technological means are now in hand to develop
automated systems for monitoring facial expressions and animating artificial
models. Face technology of the sort we describe, which is now feasible and
achievable within a relatively short time frame, could revolutionise fields as
diverse as medicine, law, communications and education.
(Ekman and Sejnowski 1993)

The human face is involved in an impressive variety of different activities. It houses
the apparatuses for speech production (mouth, tongue and teeth) as well as the
majority of our sensory apparatuses: eyes, ears, mouth and nose, allowing the bearer
to see, hear, taste and smell. Besides these biological functions, the human face
provides a number of social signals essential for interpersonal communication in our
public life. The face mediates person identification, attitudinal/emotional state and
lip-reading. Perceiving the focus of social attention and facial attractiveness also
affect interpersonal behaviour.

While communicating, we speak and at the same time, we usually use three of
the senses — we hear, see and touch/feel. Hence, human communication has two
main aspects: verbal and non-verbal. While words can be seen as the atomic
information units of verbal communication, phenomena like facial expressions,
vocal utterances, body movements and physiological reactions could be seen as the
atomic units of non-verbal communication. It is quite clear that non-verbal
communicative signals are not necessary for human-human interaction; a phone call
is an example. Still, considerable research in social psychology has shown that non-




verbal communicative cues can be used to synchronise the dialogue, to signal
comprehension or disagreement and to let the dialogue run smoother and with less
interruptions (Boyle et al. 1994, Stephenson et al. 1976). As indicated by Mehrabian
(1968), whether the listener feels liked or disliked depends only for 7% on the
spoken word, for 38% on vocal utterances, while facial expressions determine this
feeling for even 55%’. This and the commonly used terms “face-to-face” and
“interface” all indicate that facial expressions play an important role in human face-
to-face interpersonal communication.

Besides their crucial role in the non-verbal aspect of human communication,
facial expressions provide information about the observed person’s attitudinal/affect
state, age, attractiveness and gender, as well as about his’her personality, cognitive
activity and psychopathology. Recent advances in image analysis and pattern
recognition open up the possibility of automatic measurement of facial signals.
Automated facial expression analysis could facilitate machine perception of human
facial behaviour, bring facial expressions into man-machine interaction as a new
modality making interaction more natural and more efficient (see section 1.1) and
make classification and quantification of facial expressions widely accessible to
research in behavioural science and medicine.

This thesis addresses various problems concerning the modelling, recognition
and classification of the encountered facial expression kept in a digitised static facial
image. Section 1.1 discusses the scope of this research and its main goal, outlining
the key problems the resolution of which characterises this research. Section 1.2
provides the outline of this thesis.

1.1 The aim of this thesis: The ISFER project

Bruce (1992), Takeuchi and Nagao (1993) and Hara and Kobayashi (1997) pointed
out that human interpretation of interpersonal face-to-face communication provides
an ideal model for designing a multi-modal human-computer interface (HCI). As
implied by the discussion above, the main characteristics of human interpretation of
interpersonal face-to-face interaction are multiplicity and multi-modality of
communication channels. A channel is a communication medium, while a modality
is a sense used to perceive signals from the outside world. Examples of our
communication channels are: the auditory channel that carries speech, the auditory

! Note that the percentages estimated by Mehrabian (1968) concern the effect that verbal and
non-verbal communicative signals have on whether the listener feels liked or disliked. The
given percentages do not define the extent to which the overall meaning of a communicated
message is transmitted verbally, respectively, non-verbally. According to Birdwhistell (1970)
and van Poecke (1996), 35 to 40% of the overall meaning of a communicated message is
transmitted verbally and 60 to 65% is transmitted non-verbally.



channel that carries vocal intonation, the visual channel that carries facial

expressions, and the visual channel that carries body movements. The senses of

sight, hearing and touch are examples of modalities. In our usual face-to-face

communication, numerous channels are employed and different modalities are

activated. As a result, communication becomes highly flexible and robust. Failure of

one channel is recovered by another channel and a message in one channel can be

explained by another channel. This is how a multi-modal HCI should be developed

for facilitating robust, natural, efficient, and effective man-machine interaction.
Nevertheless, relatively few existing works combine different modalities into a

single fully-automated system for human communicative reaction analysis.

Examples are the works of De Silva et al. (1997, 2000) and Chen et al. (1998), who

studied the effects of a combined detection of facial and vocal expressions of

emotions. So far, the majority of the studies treat various human communicative

signals separately (Nakatsu 1998, Pantic and Rothkrantz 2001a). Examples of the

presented systems are:

¢ automatic speech recognition (for an extensive review of the work in this field,
the reader is referred to (Juang and Furui 2000)),

e automatic emotional interpretation of human voices (for a review of the work in
this field, the reader is referred to (Pantic and Rothkrantz 2001a)),

s automatic emotion recognition by physiological signals pattern recognition
(proposed in (Healey and Picard 1998)),

o detection and interpretation of hand gestures (for a review of the work in this
field, the reader is referred to (Pavlovic et al. 1997)),

e recognition of body movements (for extensive reviews of the work in this field,
the reader is referred to (Gavrila 1999, Cerezo et al. 1999, Pentland 2000)),

s detection and interpretation of facial expressions (for a review of the work in this
field, the reader is referred to (Pantic and Rothkrantz 2000d)).

Since 1992, Automated System for Non-verbal Communication is an ongoing
project at the Knowledge Based Systems group of the Delft University of
Technology (van Vark et al. 1995). The goal of this project is the development of an
intelligent automated system for the analysis of human non-verbal communicative
signals (Figure 1.1). The system has to provide qualitative and quantitative
information on different levels about various non-verbal signals sensed while
monitoring a human subject. On the lowest level the system should detect a non-
verbal signal given by the observed person. On the next level the system should
categorise the detected signal as a specific facial action (e.g. smile), a specific body
action (e.g. shrug), a specific vocal reaction (e.g. high speech velocity), or a specific
physiological reaction (e.g. sweating). On a higher level the system should give an
appropriate interpretation of the recognised communicative signals (e.g. an
emotional interpretation). On the highest level the system should reason about the



intentions of the user and (optionally) respond in a similar, anthropomorphic
manner.

Hence, the intended intelligent analyser of human non-verbal communicative
signals should be able to sense, process, interpret and animate non-verbal human
communicative signals. The multi-modal input to the system should consist of multi-
sensory data. Then, the detected vocal expression, facial expression, body
movement, and physiological reaction should be analysed automatically. The final
result of the system should represent a data fusion of the results of these analyses
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Figure 1.1: Automatic analysis of human non-verbal communicative signals



(performed, optionally, in parallel). This would form a hypothesis about the
intentions of the currently monitored subject, whereupon the system should react
properly in a user-friendly way (e.g. through the reactions of an animated virtual
actor).

As a first step in achieving automatic analysis of human non-verbal
communicative signals, automated analysis of facial expressions in digitised static
facial images has been investigated. This thesis discusses the results of the research,
which ensued in the development of the Integrated System for Facial Expression
Recognition (ISFER). The ISFER-project was aimed at the design and
implementation of a fully automated facial expression analyser that could be applied
as an automated tool for behavioural investigations of the face. Since in behavioural
research of the face full-face photographs of the observed subjects usually form the
research material, the system was envisioned as being capable of analysing facial
expressions from static facial images. In addition, the ISFER-project was aimed at
the development of a system that could be (easily) enhanced to form a (front) part of
an advanced multi-modal perceptive HCI.

The problem of automating facial expression analysis as defined in the ISFER-
project comprises four sub-problems:

1. Automating the detection of the facial features in a digitised static facial image.

2. Automating the recognition of the encountered facial actions and their
intensities.

3. Automating the affect-sensitive classification/interpretation of the observed
facial actions.

4. Delimiting useful guidelines for enhancement of the system such that it can form

a part of a multi-modal perceptive HCI.

1.2 Thesis overview

This study involves two research fields: facial expressions (i.e. psychological as well
as computer-vision facets of the facial-expression-analysis problem domain) and
Artificial Intelligence (AI). The thesis begins, therefore, with two introductory
chapters. The other chapters explain the actual design and implementation of ISFER
and provide sets of key challenges and opportunities which the researchers of
machine perception of human behaviour face. Thus, the structure of this thesis is as
follows:

Chapter 2 introduces the facial-expression-analysis issues — it provides the
taxonomy of the problem domain, surveys the past work on solving these
problems in an automatic way, and specifies the scope of the research
pertaining to this thesis.



Chapter 3 gives an introduction to the field of Al, provides an assessment of the
problem of automating facial expression analysis according to the Al
paradigm and presents an overview of the Al techniques deployed in ISFER.

Chapter 4 discusses the first part of the system — the Facial Data Extractor. 1t is
a framework for hybrid facial feature detection employed by ISFER for the
extraction of facial expression information from input digitised static facial
images.

Chapter 5 discusses the second part of the system — the Facial Action Encoder.
This chapter pertains to the following issues: (i) modelling facial expressions,
(ii) resolving the problems caused by redundant, inaccurate and partial data
resulting from the Facial Data Extractor part of ISFER, and (iii)
accomplishing reasoning with uncertainty about the displayed facial actions
and their intensities that have produced the shown (input) facial expression.

Chapter 6 discusses the third part of the system — the Facial Expression
Classifier. It is a learning facility of the system that achieves affect-sensitive
interpretation of input facial expressions in terms of multiple quantified user-
defined interpretation labels. This chapter presents the motivations for
utilising a learning facility as well as the actual design and implementation of
the Facial Expression Classifier part of ISFER.

Chapter 7 gives an overview of the overall performance of ISFER. Extended
validation and evaluation studies suggest that the expressions’ identifications
and interpretations achieved by the system are satisfactory to the human
observers which were involved in validation studies on ISFER.

Chapter 8 concludes the work on automating the facial expression analysis and
points out some directions for future research in the field of machine
perception of human behaviour. Special attention is paid to delimiting useful
guidelines for development of an advanced multi-modal perceptive HCI and
to discussing the usefulness and accessibility of such a HCL



2 Facial expression analysis

Expressive people are easy to recognise but difficult to describe.
(Friedman et al. 1990)

There are marked individual differences in expressiveness. There are politicians who
invigorate via their concern and passion, as well as the politicians who fail to inspire
by their monotone speeches. Professors can be wearisome or eloquent, salesmen can
be dull or slick. Not all of these differences are due to verbal fluency, but rather to a
spirited communication which involves the use of facial expressions and body
gestures. A speaker accompanies his utterances with appropriate facial expressions,
which clarify what is being said; the non-verbal facial expression shows whether
what is said is supposed to be important or funny or serious (Argyle 1972). Non-
verbal facial cues help to establish the appropriate word meanings in any given
circumstance (Friedman et al. 1990).

The human face serves not only a variety of different communicative functions
in social interaction. Except information about a person’s affective state, the face
mediates information about personality, cognitive activity and psychopathology. In
Aristotle’s time, a theory has been proposed about mutual dependency between
physiognomy and personality: “soft hair reveal a coward, short arms a gambler, and
a smile a happy person”'. Today, few psychologists share the belief about the
meaning of soft hair or short arms, but many believe that facial expressions are
relative to emotions and psychopathology. For instance, there is a large body of
psychological research that argues that emotions (at least so-called basic emotions —
happiness, anger, sadness, disgust, surprise and fear) are universally recognised from
facial expressions (Darwin 1965/1872, Izard 1971, Ekman 1980, Frijda 1986, Brown

! Although this theory is often attributed to Aristotle (Aristotle nd/1913), this is almost
certainly not his work (Aristotle nd/1993, p. 83).



1991). Keltner and Buswell (1996) argue that even “social-moral emotions” like
embarrassment and shame, which play critical roles in psychopathology, can be
accurately distinguished by identifying related characteristic facial expressions. On
the other hand there is a growing body of psychological research that argues that it is
not emotions themselves but components of emotions which are universally linked
with some facial displays like “squared” mouth or raised eyebrows (Ortony and
Tumer 1990, Russell 1994). Anyhow, it is certain that facial expressions play an
important role in behavioural investigations, medicine and studies on social
interaction.

Automating the analysis of facial expressions would therefore be highly
beneficial for fields as diverse as behavioural science, medicine, monitoring,
communications and education. Besides, if the goal is the design of human-like
man-machine interaction, human face-to-face interpersonal communication (the
verbal as well as the non-verbal aspect of it) provides an ideal model (Bruce 1992,
Takeuchi et al. 1993, Schiano et al. 2000, etc.).

Although the interpretation of facial expressions is strongly situation and culture
dependent (Russell and Fernandez-Dols 1997), humans detect and interpret facial
expressions in a scene with little or no effort. Still, the development of an automated
system that can accomplish this task is rather difficult.

There are several related issues: the detection of an image segment as a face, the
extraction of the facial information, and the classification of the facial expression
(e.g. in emotion categories). These issues as well as the capability of the human
visual system to deal with them are discussed first (section 2.1). The capabilities of
the human visual system are meant to serve as an ultimate goal and a guide for
determining a set of recommendations for development of an automated facial
expression analyser (section 2.2). This chapter further surveys the past work on
solving these problems. Section 2.3 provides a short overview of the early works
(proposed till 1995) on facial expression analysis by computer. Section 2.4 surveys
recently developed systems (proposed in the period from 1996 to 2000). Finally,
section 2.5 discusses the existing solutions and lists the main contributions of the
work presented in this thesis to the research field of automatic facial expression
analysis.

2.1 Aspects of facial expression analysis

The main goal here is to explore the issues in the design and implementation of a
system that could analyse facial expressions automatically. In general, three main
steps can be distinguished in tackling the problem. First, before a facial expression
can be analysed, the face must be detected in a scene. The next step is devising
mechanisms for extracting the facial-expression information from the observed




facial image or image sequence. In the case of static images, the process of
extracting the facial-expression information is referred to as /ocalising the face and
its features in the scene. In the case of facial image sequences, this process is
referred to as tracking the face and its features in the scene. At this point, a clear
distinction should be made between two terms, namely facial features and face
model features. The facial features are the prominent features of the face: the
eyebrows, eyes, nose, mouth and chin. The face model features are the features used
to represent (model) the face. The face can be represented in various ways, €.g. as a
whole unit (holistic representation), as a set of features (analytic representation) or
as a combination of these (hybrid approach). The applied face representation and the
kind of input images determine the choice of mechanisms for automatic extraction
of facial-expression information. The final step is to define some set of categories,
which we want to use for facial-expression classification and/or facial-expression
interpretation, and to devise the categorisation mechanism.

Before an automated facial expression analyser can be built, one should decide
what functionality the system should have. A good reference point is the
functionality of the human visual system. After all, it is the best known facial
expression analyser. This section discusses the three basic problems related to the
process of facial expression analysis as well as the capability of the human visual
system with respect to these.

Face position detection

In most works on automatic facial
expression analysis, the conditions
under which a facial image or
image sequence is obtained are
controlled. Usually, the image has
the face in frontal view. Hence, the
presence of a face in the scene is
ensured and some global location
of the face in the scene is known a
priori.

However, determining the exact
location of the face in a digitised
image is a more complex
problem. First, the scale and the
orientation of the face may vary from image to image. If the mug shots are taken
with a fixed camera, faces in images may have different sizes and been taken at
different angles due to the movements of the observed person. Thus, it is difficult to
search for a fixed pattern (template) in the image. The presence of noise and
occlusion makes the problem even more difficult.

Figure 2.1: A human face at different gray
levels — 256 gray levels and 2 gray levels



Humans detect a facial pattern
by casual inspection of the scene.
We detect faces effortlessly in a
wide range of conditions, under
bad lighting conditions or from a
great distance. Figure 2.1 shows a
face at different grey-level
resolutions. In both cases, a human
observer immediately notices the
presence of a face. It suggests that
for face detection, a 2-grey-level
image is sufficient (Samal 1991).

Figure 2.2: A human face at different Figure 2.2 shows the same face at

spatial resolutions — 22x32 and 11x16 different spatial resolutions. The
images of the same face face can be detected rather easily

in the 22x32 image. In the 11x16
image, however, there is a little resemblance to a face (although the face remains
arguably detectable if one defocuses). It is generally believed that images of 100 to
200 pixels form a lower limit for the detection of a face by a human observer
(Campbell and Green 1965). Another characteristic of the human visual system is
that a face is perceived as a whole, not as a collection of facial features. When a face
is partially occluded (e.g. by a hand), we perceive a whole face, as if our perceptual
system fills in the missing parts. This is very difficult (if possible at all) to achieve
by computer. There is also a strong perceptual bias towards seeing facial patterns.
We often “see” faces in clouds, rocks and flames. An example is the result of
Johansson’s point-light display experiments (Bassili 1978, Bruce 1986) where the
human observers were quickly aware that the white points visible on a dark monitor
represent a face and its features. The presence of the features and their geometrical
relationship with each other appears to be more important than the details of the
features.

Facial-expression information extraction
After the presence of a face has been detected in the observed scene by an automated
facial expression analyser, its next step is to extract the information about the
encountered facial expression in an automatic way. If this information cannot be
extracted automatically, a fully automated system cannot be developed. Both the
applied face representation and the kind of input images (static images or image
sequences) affect the choice of the approach to facial-expression-information
extraction.

One of the fundamental issues of facial expression analysis is the representation
of the visual information that the examined faces reveal (Yamada 1993). In other
words, what kinds of visual properties can be used as information on facial
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expressions? Bassili (1978) and later Bruce (1986) conducted experiments that were
similar to Johansson’s point-light-display experiments and gave a clue to this
problem. Bassili had the stimulus person make various facial expressions by having
the face painted black with white marks put on it at random. His subjects observed
only the movements of white marks through the monitor. They were quickly aware
of seeing a face, and furthermore they could say what kind of facial expression the
movement of the white marks represented. Bruce and Valentine (cited in (Bruce
1986)) also conducted similar experiments and found that their subjects judged
facial expressions easily, but identified the person with great difficulty. These
experiments suggest that certain patterns of the movements of various points on the
face send expressional information independently of the information of the other
cognitive domains (e.g. the person’s identity, age, etc.). They also suggest that the
visual properties of the face, regarding information about facial expressions, could
be made clear by describing the movements of points belonging to the facial features
(eyebrows, eyes, and mouth) and then by analysing the relationships between those
movements. This inspired the researchers of vision-based facial-gesture analysis to
attempt to determine point-based visual properties of facial expressions. This yielded
various analytic face representations, in which the face is modelled as a set of facial
points (e.g. Figure 2.3) or as a set of templates fitted to the facial features, such as
the eyes and the mouth. In another approach to face representation (holistic
approach), the face is represented as a whole unit. A 3D wire frame with a mapped
texture (e.g. Figure 2.4) and a spatio-temporal model of facial-image motion are
typical examples of the holistic approaches to face representation. The face can also
be modelled using a so-called hybrid approach: a combination of analytic and
holistic approaches to face representation. An example of this approach is the face
model utilised by Thalmann et al. (1998). They use a geometric 3D wire frame with

Figure 2.4: 3D mesh with texture
mapped triangles proposed by
Terzopoulos and Waters (1993)

Figure 2.3: Facial “Landmarks”
(Kearney and McKenzie 1993)
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the mapped texture constructed from two 2D templates containing the facial points
from each orthogonal facial view (Figure 2.5).

Irrespectively of the kind of
the face model applied,
attempts must be made to keep
the representation compact
without losing any (or much)
information about the observed
facial expression. The nature of
the representation affects and is
affected by both the set of facial
expressions and by the set of
interpretation classes one deals
with. The face must be

Figure 2.5: 2D templates represented so that a particular

(Thalmann et al. 1998) deformation of the face model

uniquely reveals a particular facial

expression. Complexity and completeness of the face representation determine the

variety of expressions that can be recognised. On the other hand, the set of

interpretation categories determines the set of facial expressions that should be

recognised, which in its turn determines a minimal complexity required from the
used face representation.

If an analytic approach has been utilised to represent the face, automatic
detectors of facial features such as the eyes and mouth will be usually applied. If a
holistic face model has been used, methods that fit the face model to the input image
will be employed as facial-expression information extractors. Also, for each kind of
input (static image or image sequence) different methods can be applied.

Several factors make facial-expression-data extraction more complex. The first is
the presence of facial hair, glasses, etc., which obscure the facial features. Another
problem is the variation in size and orientation of the face in input images. This
disables a search for fixed patterns in the images. Finally, noise and occlusion are
always present to some extent.

As indicated by Ellis (1986), human encoding of the visual stimulus (the face
and its expression) may have the form of a primal sketch and may be hardwired.
However, little is known in terms of the nature of internal representation of a face in
the human brain.

Facial expression classification

After the face and its appearance have been perceived by an automated facial
expression analyser, its next step is to “identify” the facial expression conveyed by
the face. A fundamental issue in facial expression classification is defining a set of
categories we want to deal with. A related issue is devising mechanisms of
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categorisation. Facial expressions can be classified in various ways: in terms of
facial actions that cause an expression, in terms of some non-prototypic expressions
such as “raised eyebrows” or in terms of some prototypic expressions such as
emotional expressions.

The Facial Action Coding System (FACS) (Ekman and Friesen 1978) is probably
the most known study on facial activity. It is a system that has been developed to
facilitate objective measurement of facial activity for behavioural science
investigations of the face. FACS is designed for human observers to detect
independent subtle changes in facial appearance caused by contractions of the facial
muscles. In a form of rules, FACS provides a linguistic description of all possible,
visually detectable, facial changes in terms of 44 so-called Action Units (AUs).
Using these rules, a trained human FACS coder decomposes a shown expression
into the specific AUs that produced the expression. Automating FACS would make
it widely accessible as a research tool in the behavioural science, which is
furthermore the theoretical basis of multi-modal/media user interfaces. This inspired
researchers in the computer-vision field to take different approaches to tackling the
problem. Still, explicit attempts to automate the facial action coding so that it can be
applicable to automated FACS coding are few (see Donato et al. (1999) or Bartlett et
al. (1999) for a review as well as Table 2.7 of this chapter).

If facial expressions are to be classified in terms of facial actions, a method for
automatic facial action coding from the input facial image (or image sequence)
should be devised. The choice of method strongly depends on the utilised face
representation. If a holistic face representation is used, a template-based method is
usually applied. For each facial action an “ideal” deformation of the face model is
learnt, which characterises a template for that facial action. The current deformation
of the face model is then matched with the defined templates. In the case of an
analytic face representation, a feature-based method is usually applied. Development
of a successful feature-based method for automatic facial action coding is a quite
complex task. A relationship between the deformations of the model-defined facial
features and the set of facial actions to be recognised should be defined well. It
should be made according to the rules dictated by the anatomy of the face. Two facts
should be taken into consideration: some facial actions obscure some other facial
actions (e.g. wrinkling of the nose obscures upward pull of the upper lip) and some
facial actions can occur bilaterally as well as unilaterally (FACS, Ekman and Friesen
1978).

Most of the studies on automated expression analysis perform an emotional
classification. As indicated by Fridlund et al. (1987), the most well-known and
commonly used study on emotional classification of facial expressions is the cross-
cultural study on the existence of universal categories of emotional expressions.
Ekman defined six such categories, called six basic emotions: happiness, sadness,
surprise, fear, anger and disgust (Ekman and Friesen 1975). He described each basic
emotion in terms of a facial expression that uniquely characterises that emotion. In
the past years, many questions arose around this study. Are the six basic emotional
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expressions indeed universal (Izard 1971, Ekman 1982, Ekman 1994) or do they
merely emphasise verbal communication and have no relation with an actual
emotional state (Fridlund 1991, Russell 1994)? Also, it is not at all certain that each
facial expression that can be displayed by the face can be classified under the six
basic emotion categories. Nevertheless, most of the research on vision-based facial
expression analysis rely on the emotional categorisation of facial expressions
defined by Ekman.

Automating the facial expression
classification in terms of emotions is
difficult to handle for a number of
reasons. First, Ekman’s description of
the six prototypic facial expressions of
emotion is linguistic (and thus
ambiguous). There is no uniquely
defined description either in terms of
facial actions or in terms of some other
universally defined facial codes.
Figure 2.6: Facial expressions of Hence, the validation and the

blended emotions verification of the classification
(“surprise” and “happiness”) scheme to be used are difficult albeit
crucial tasks. Second, facial expression
classification into multiple emotion categories should be feasible (e.g. raised
eyebrows and smiling mouth is a blend of surprise and happiness, Figure 2.6). Still,
there is no psychological scrutiny on this topic. The best way of dealing with these
problems is to develop a system which is independent of psychological studies and
capable of adapting the facial-expression-classification mechanism according to a
user-defined interpretation of facial expressions (Kearney and McKenzie 1993,
Pantic and Rothkrantz 2000b).

Three other issues are related to facial expression classification in general. First,
the system should be capable of analysing any subject, male or female of any age
and ethnicity. In other words, the classification mechanism may not depend on
physiognomic variability of the observed person. On the other hand, each person has
his/her own maximal intensity of displaying a particular facial expression.
Therefore, if the obtained classification is to be quantified (e.g. to achieve a
quantified encoding of facial actions or a quantified emotional labelling of blended
expressions), systems which can start with a generic expression classification and
then adapt to a particular individual have an advantage. Second, it is important to
realise that the interpretation of body language is situation dependent (Russell and
Fernandez-Dols 1997). Nevertheless, the information about the context in which a
facial expression is shown is very difficult to obtain in an automatic way. This issue
has not been handled by currently existing systems. Finally, there is now a growing
body of psychological research that argues that the timing of facial expressions is a
critical factor for the interpretation of these expressions (Bassili 1978, Bruce 1986,
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Izard 1990). For researchers of automated vision-based expression analysis, this
suggests that they should move towards a real-time whole-face analysis of facial-
expression dynamics.

While human mechanisms for face detection are very robust, the same is not the
case for human interpretation of facial expressions. It is often very difficult to
determine the exact nature of the expression on a person’s face. According to Bassili
(1978), a trained observer can correctly classify facial photographs showing six
basic emotions with an average of 87%. This ratio varies depending on several
factors: the familiarity with the face, the familiarity with the personality of the
observed person, the general experience with different types of expressions, the
attention given to the face and the non-visual cues (e.g. the context in which the
expression appears). It is interesting to note that the appearance of the upper face
features (i.e. eyebrows and eyes) play a more important role in facial-expression
interpretation than the appearance of the lower face features (Ekman 1982).

2.2 Automated facial expression analysis

Before developing an automated system for facial expression analysis, one should
decide what functionality it should have. A good reference point is the best-known
facial expression analyser: the human visual system. It may not be possible to
incorporate all features of the human visual system into an automated system, and
some features may even be undesirable, but it can certainly serve as a reference
point.

The first requirement that should be met in the development of an ideal
automated facial expression analyser is that all of the stages of the facial expression
analysis are performed automatically:

1. face position detection,
2. facial-expression-information extraction,
3. facial expression classification.

Yet, actual implementation and integration of these stages into a system are
constrained by the system’s application domain. For instance, if the system is to be
used as a tool for research in behavioural science, real-time performance is not an
essential property of the system. On the other hand this is crucial if the system
would form a part of a user-interface. Long delays make the interaction
desynchronised and less efficient. Also, an explanation facility that would elucidate
facial action encoding performed by the system might be useful if the system is
employed to train human experts in using FACS. However, such facility is
superfluous if the system is to be employed as a stress-monitoring tool or in
videoconferencing. In this thesis, we are mainly concerned with two application
domains of an automated facial expression analyser, namely behavioural science
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research and multi-modal/media user interface. In this section, an ideal automated

facial expression analyser is proposed (Table 2.1) which could be employed in those

application domains and has the properties of the human visual system.

As the potential applications of an automated facial expression analyser involve
continuous observation of a subject over time, facial images should be acquired
automatically. In order to be universal, the system should be capable of analysing
subjects of both sexes, of any age and any ethnicity. No constraints should be set on
the appearance of the observed subjects. The system should perform robustly despite
changes in lighting conditions and distractions like glasses, changes in hair style,
and facial hair like a moustache, beard or a unibrow. Like the human visual system,
an ideal system would “fill in” missing parts of the observed face and “perceive” a
whole face even when a part of it is occluded (e.g. by a hand). For the sake of the
convenience of the observed subject, no special markers or make-up should be
required for successful detection of the face and its features. In most real-life
situations, complete immobility of the observed subject cannot be assumed. Hence
the system should be able to deal with rigid head motions. Ideally the system should
be capable of dealing with a whole range of head movements, from frontal view to
profile view acquired by a fixed camera (see the discussion of Turk and Pentland
(1991) on a robust system performance independently of viewing conditions).
Constraints on rigid head motions can also be avoided by utilising a head-mounted
camera.

An ideal system should perform a robust automatic face detection and facial-
expression-information extraction from the acquired images or image sequences.
Considering the state of the art in image processing techniques, inaccurate, noisy
and missing data should be expected. An ideal system should be capable of dealing
with these inaccuracies. In addition, the certainty of the extracted facial-expression
data should be taken into account.

An ideal system should be able to analyse all visually distinguishable facial
expressions. A well-defined face representation is a prerequisite for achieving this.
The face representation should be such that a particular alteration of the face model
uniquely reveals a particular facial expression. In general, an ideal system should be
able to distinguish:

1. all possible facial expressions (a reference point is a total of 44 facial actions
defined in FACS (Ekman and Friesen 1978), whose combinations form the
complete set of facial expressions)

2. any bilateral or unilateral facial change,

3. facial expressions with a similar facial appearance (e.g. upward pull of the upper
lip and nose wrinkling which also causes the upward pull of the upper lip).

In practice, it may not be possible to define a face model that can satisfy both reflect
each and every change in facial appearance and whose features are detectable in a
facial image or facial image sequence. Still, the set of distinct facial expressions that
the system can distinguish should be as broad as possible.
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If the system is to be used for behavioural-science-research purposes it should
recognise facial expressions automatically in terms of FACS AU codes. As
explained by Bartlett at al. (1999), this means that it should accomplish multiple
quantified facial expression classification in terms of 44 AUs defined in FACS.

Table 2.1
Properties of an ideal facial expression analyser

General Characteristic

1 | Automatic facial-image acquisition Characteristic required by

2 | Any possible subject Behavioural science research

3 | Deals with variation in lighting 14 | # of different AUs (from 44 in total)

4 | Deals with partially occluded faces [ 15 [ Quantifies facial-action codes

5§ | No special markers/make-up
required

6 | Deals with rigid head motions Characteristic required by

7 | Automatic face detection Multi-modal/media HCI

8 | Automatic facial-expression-data 16 | Unlimited # of interpretation
extraction categories

9 | Deals with inaccurate facial- 17 | Features adaptive learning facility
expression data

10 | Automatic facial expression 18 | Assigns quantified interpretation
classification labels

11 | Distinguishes all possible 19 | Assigns multiple interpretation
expressions labels

12 | Deals with unilateral facial changes | 20 | Features real-time processing

13 | Obeys anatomical rules (see FACS)

If the system is to be used as a part of an advanced multi-modal/media human-
computer interface (HCI), the system should be able to interpret shown facial
expressions (e.g. in terms of emotions). Since psychological researchers disagree
about the existence of universal categories of facial displays of emotion, an ideal
system should be able to adapt the classification mechanism according to the user’s
subjective interpretation of expressions, e.g. like suggested by Kearney and
McKenzie (1993) and Pantic and Rothkrantz (2000b). Also it is not certain at all
whether each and every facial expression that can be displayed by the face can be
classified under one and only one emotion class. Think about blended emotional
displays such as raised eyebrow and smiling mouth (Figure 2.6). This expression
might be classified under two emotion categories defined by Ekman (1975): surprise
and happiness. Yet, according to the descriptions of these prototypic expressions
given by Ekman, the left-hand side facial expression shown in Figure 2.6 belongs
“more” to the surprise than to the happiness class. For instance, in the left-hand side
image the “percentage” of shown surprise is higher than the “percentage” of shown
happiness while those percentages are approximately the same in the case of the
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right-hand side image. In order to obtain an accurate categorisation, an ideal
expression analyser should perform quantified classification of facial expression into
multiple emotion categories. Real-time performance is requisite, as already
explained, for achieving fluent, tight and efficient man-machine interaction.

2.3 Early work in automatic facial expression analysis

Due to its importance for application domains of human behaviour interpretation and
the human-computer interface, automatic facial expression analysis attracted the
interest of many computer vision researchers. Since the mid 70s, different
approaches have been proposed for automatic facial expression analysis from either
static images or image sequences. In 1992, Samal and Iyengar gave an overview of
the early works. Therefore, the systems for facial expression analysis proposed in
the literature before 1991 are not discussed here. The reader can learn about those
from the survey of Samal and Iyengar (1992). In this section a short overview of the
systems for facial expression analysis proposed in the period of 1991 to 1995 is
given, while the next section provides a more detailed survey of the systems
developed recently, in the period of 1996 to 2000. Table 2.2 summarises the features
of the “early” works with respect to the requirements posed on the design of an ideal
facial expression analyser (see Table 2.1). All of the systems discussed in this
section classify facial expressions in an automatic way but, none can recognise all
facial expressions that can be displayed by the face, none can perform quantified
facial-action coding, none can perform in real time (except the system proposed by
Moses et al. (1995)), and none features an adaptive learning facility (except of the
system proposed by Kearney and McKenzie (1993)). For this reason, these
properties have been excluded from Table 2.2. ® stands for “yes”, X stands for
“no” and ~ represents a missing entry. A missing entry either means that the matter
at issue has not been reported or that the matter at issue is not applicable to the
system in question. An inapplicable issue, for instance, is the issue of dealing with
rigid head motions and inaccurate facial data in the cases where the input data were
hand measured (e.g. Kearney and McKenzie 1993).

Several systems can be classified as methods for facial expression analysis from
static images. The first category of those works utilises a holistic face representation.
Cottrell and Metcalfe (1991) use whole-face features, which they call Aolons, which
are in fact facial pictures manually normalised and reduced to 64x64 pixels. Holons
further form the input layer of a three-layer back-propagation neural network,
trained to classify the input features into eight emotion categories (angry, miserable,
bored, relaxed, sleepy, pleased, happy and astonished). Cottrel and Metcalfe
reported that the network was much better at detecting some categories at the
expense of others. Rahardja et al. (1991) also use a holistic data representation
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similar to the one used by Cottrell and Metcalfe, but the input images are hand-
drawn faces with six different types of facial expressions (happy, sad, surprised,
angry, afraid and neutral). They developed a pyramid-like feed-forward neural
network for classification of hand-drawn facial expressions, which models the
concept of hierarchical (multi-resolution) representation of image data. They
reported that the network successfully classifies the images of the training data set
but that the recognition of unknown drawings has not been evaluated and that the
network performs rather poorly in classifying blurred or distorted images. Another
neural-network approach to the classification of facial expressions into the six basic
plus “neutral” emotion categories is proposed by Vanger et al. (1995). By manual
procedures, they averaged all eye and mouth parts of 60 utilised static images of six
basic prototypic expressions and created a prototype index for each emotion
category. To classify a shown expression, they utilise a synergetic method to match
the eye and mouth parts of the image to the prototype indexes. They claim that the
recognition rate of their method is 70%. Matsuno et al. (1993) employ a holistic face
model named the Potential Net for the recognition of four kinds of facial expressions
(happy, angry, surprised and sad). A Potential Net consists of nodes, each of which
is connected to four neighbour nodes through springs (see Figure 2.21). This net is
set on a rectangular facial area, manually extracted from a static normalised full-face
image. The net deforms by forces based on the smoothed grey-level value of the
edge image, so that each node is moved to the position of facial features such as
eyebrows, mouth and wrinkles. Matsuno et al. measure the movement of each node
and use the displacement vectors to analyse the similarity between the vectors of the
input image and the vectors of four facial-expression model nets. They tested the
system on 44 unknown facial expression images of 11 people having no facial hair
or glasses. The achieved successful recognition rate was 100% in the case of
surprise, 90% in the case of anger and 70% in the case of sadness.
The second category of approaches
to facial expression analysis from

static images utilises an analytic face -
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1992a) and with classifying facial expression into multiple categories (Kobayashi
and Hara 1992b). They reported a correct classification ratio of 80% achieved by the
60x100x100x6 back-propagation network trained to classify facial expression in
multiple emotion categories. To classify facial expressions under one of the emotion
categories angry, happy and sad, Ushida et al. (1993) employ a multi-layered
structure of bi-directional associative neural networks and as input the hand-
measured FCPs used by Kobayashi and Hara (1992a). To reduce the quantity of
input data, they take advantage of the face symmetry and use the FCPs belonging to
the eyebrows, the right eye and the mouth. A shortcoming of this is that their
method is not sensitive to unilateral appearance changes of the left eye. Ushida et al.
reported a correct classification ratio of 79% achieved by their system. Kearney and
McKenzie (1993) developed an expert system for the classification of facial
expressions in one or more of the emotion categories defined by human observers.
The system converts manually measured Facial Landmarks (Figure 2.3) into an
intermediate facial-action-based representation, which a dynamic memory interprets
further in terms of the defined emotion categories. The memory is dynamic in the
sense that new emotion categories can be learned with experience. The production
rules used for facial action coding are based on the rules defined for FAST (i.e. an
early version of FACS, Ekman et al. 1971). Validation studies demonstrated that the
facial action encoding achieved by the system is in 90% of the cases consistent with
that of human experts. Those studies also suggest a correct classification ratio of
91.78% for the six basic emotion categories and 91.21% for learned categories.

Table 2.2

Properties of early approaches to automatic facial expression analysis
Reference Properties of an ideal automated facial expression analyser (Table 2.1)

1 2 3 4 5 6 7 8 9 12 13 14 16 18 19
Analysis from static facial images
Cottrell ‘91 X @ X X @€ - X - - e - 0 8 X X
Raha.l‘dja ‘91 X = X - - - x - - - - 0 6 x x
Vanger ‘95 X @ X X @ - X X - e e (o 7 X X
Matsuno93 |[X X ® X ® - X X - & ® (0 4 X X
Kobayashi‘92 | X @ X X @ - X X - @ @ 0 6 @ @
Ushida ‘93 X @ X X € - X X - X @ 0 3 X X
Kearney ‘93 X @ X X @€ - X X - @ @ 36 n X ©
Analysis from facial image sequences
Mase ‘91 X - X X @€ X X @ X & @@ (0 4 X X
Yacoob ‘94 - - - X © e X o o o o ( 7 e X
Rosenblum94 | X - - X @€ @ X e o & & ( 2 X X
Moses ‘95 ® - ® X ¢ o o o o & o 5 5 X X
Legend: ® =“yes”, X =“no”, ~ = missing entry

Since there is a considerable body of psychological research that argues that the
timing of facial expressions is a critical factor in the interpretation of facial
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expressions (Bassili 1978, Bruce 1986, Izard 1990) efforts have recently been made
to analyse facial expressions by processing facial image sequences. Mase (1991)
proposed a method based on optical flow data for the classification of facial
expressions in one of the emotion categories: happiness, disgust, surprise and anger.
He computes the optical flow of an image sequence with Horn-Schunck algorithm
(Horn and Schunck 1981). He uses the means and covariances of optical flow data at
evenly divided small blocks as the components of a feature vector. First, five feature
vectors for each of the four emotional classes are derived from twenty labelled
sample image sequences. Then the classification is performed based on the k-
nearest-neighbour rule for the feature vector derived from the optical flow of the
current image sequence. The method was tested on facial image sequences of one
person and it does not deal with rigid head motions and changes in illumination.
Mase reported a recognition ratio of 80% for this method.

Yacoob and Davis (1994a, 1994b) proposed a method for the recognition of 7
facial expressions (six basic expressions plus eye blinking) from image sequences
which is also based on optical flow computation. For optical flow computation the
correlation-based method proposed by Abdel-Mottaleb et al. (1993) has been used.
The flow magnitudes are first thresholded to reduce the effect of small apparent
motions due to noise. Then the inter-frame motion of edges (i.e. at points of high
gradient values), extracted in the rectangles bounding the face regions of mouth,
nose, eyes and eyebrows, is used to determine the facial action that may have
occurred at the feature. A rule-based system based on the descriptions of the six
basic emotional expressions (Ekman and Friesen 1975) is used to identify the
“beginning”, “epic” and “ending” of each facial expression. The rules are applied to
the mid-level representation, given in terms of facial actions, to create a temporal
map describing the evolving facial expression. On a sample of 46 image sequences
of 32 subjects displaying a total of 105 various facial expressions, the system
achieved an average correct recognition rate of 88% for the six basic emotion
categories and 65% for eye blinking. Rosenblum et al. (1994) proposed a radial basis
function network architecture that learns the correlation of facial-feature motion
patterns and facial-expression emotion categories. This approach extends the work
of Yacoob and Davis (1994b) and differs from the method presented in (1994a) by
using a connectionist architecture instead of a rule-based system for motion patterns
analysis. The three-layered network architecture proposed by Rosenblum et al.
classifies facial expressions at emotion, facial-component and motion-direction
level. At the emotion level, a separate network is trained for each of the six basic
emotion categories. At the facial-component level, each emotion network is
“broken” into sub-networks, where each sub-network specialises in a particular
facial component: eyebrows, eyes or mouth. At the lowest level, the sub-networks
are further decomposed so that the sub-sub-networks are sensitive to only one
direction of motion (up, down, right or left) for a specific facial component for a
specific emotion. Rosenblum et al. trained two emotion networks: one for the
“smile” emotion category and one for the “surprise” emotion category. They tested
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the trained networks for retention (i.e. successful recognition of known image
sequences), extrapolation (i.e. successful recognition of unknown image sequences)
and rejection of image sequences that do not display the facial expression of emotion
that the network was tuned for. They reported success rates of 88% for retention,
73% for extrapolation and 79% for rejection. A limitation of this method is the
manual initialisation of the rectangles bounding the facial features (Rosenblum et al.
1994).

Moses et al. (1995) proposed a method for facial expression recognition based on
real-time detection, tracking and classification of mouth deformation in image
sequences. In their system, a valley in pixel intensity that lies between the lips
describes the mouth. The valley contour is tracked using a Kalman filter designed to
model the dynamics of a moving contour that is represented as a quadratic B-spline.
The tracked valley contour is then used for classifying the shape of the mouth into
five categories — neutral, sad, open, smile and pursed lips. A simple classification
algorithm, using the linear approximation to the Bayesian classifiers, was applied for
the discrimination between 5 different mouth shapes with an average correct
recognition rate of 89%. Moses et al. showed that their algorithm is robust to
changes in illumination, viewpoint and subject identity.

The approaches that have been explored lately also include systems for
automatic analysis and synthesis of facial expressions that explicitly employ a
physical model of the face. Such methods have been proposed by Terzopoulos and
Waters (1993), Morishima et al. (1995), Kawakami et al. (1995), Li et al. (1993),
Thalmann et al. (1995, 1998), (for a broader list of references on computer
animation see also (Thalmann and Thalmann 1992)) and recently by Matsumura et
al. (1997), DeCarlo et al. (1998), Eisert and Girod (1998), etc. Although the image
analysis techniques in these systems are relevant to the present goals, the systems
themselves are of limited use for behavioural science investigations of the face or for
multi-modal/media HCI. These systems primarily concern facial expression
animation and do not attempt to classify the observed facial expression either in
terms of facial actions or in terms of emotion categories. For this reason these and
similar methods lie outside of the scope of this thesis, the goal of which is the design
of an image- and knowledge-based system for robust automatic facial-expression
detection and classification.

2.4 The state of the art in automatic expression analysis

In this section, approaches to automatic facial expression analysis developed from
1996 till 2000 are surveyed in detail. The survey is divided into three parts, based on
the problems discussed in section 2.1: face position detection, facial-expression-
information extraction and facial expression classification. This section does not
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provide an exhaustive review of the past work on each of the problems related to
automatic facial expression analysis. Here, recently developed systems which deal
with both facial expression detection and classification are selectively discussed.

Table 2.3
Properties of the recently proposed approaches to automatic facial expression
analysis

Reference Properties of an ideal automated expression analyser (Table 2.1)

1 2 3 6 7 8 9 12 13 14 16 18 19 20

Analysis from static facial images
Edwardss‘98 (@ - e e X e - e & (o 7 X X X
Hara ‘97 o | - X o o - e - 0 6 X X e
Hong ‘98 [ ] - X ®© o o o o o ( 7 X X e
Huang ‘97 ® 1| X X e e - o o | 6 X X X
Lyons ‘99 X e X - X X - e @ 7 X X X
Padget ‘96 X @€ X - X X - e @09 7 X X X
Pantic2000b |®@ 3 X © e e o @ o 31 6 & @& X
Yoneyama%97 |® 1 - X o oo - e o (0 4 X X -
Zhang ‘98 X ®€X - X X - e @0 7 o e X
Zhao ‘96 X @ X - X X - e -0 6 X X X
Analysis from facial image sequences
Black ‘97 ® - ® & X e X e e - 4 ® X X
Cohn ‘98 ® 3 X X X ®© X o e |5 - X X -
Essa ‘97 e & o - ® O o o o ) 4 X X [ )
Kimura ‘97 ® X 6 X o o o ¢ ¢ | 3 o X -
Otsuka ‘98 o - - ® - @ X X @ ( 6 X X X
Wang ‘98 ® 1 X X X e - e e (o 3 ® X X
Legend: @ =“yes”, X =“pg”, ~ = missing entry

Table 2.3 summarises the characteristics of the surveyed facial expression
analysers with respect to the requirements posed on the design of an ideal facial
expression analyser (Table 2.1). All of the systems discussed in this section classify
facial expressions in an automatic way but, none can deal with images of partially
occluded faces, none can recognise all facial expressions that can be displayed by
the face, none can perform quantified facial-action coding, and none features an
adaptive learning facility. For this reason, these properties have been excluded from
Table 2.3. ® stands for “yes”, X stands for “no” and ~ represents a missing entry.
A missing entry either means that the matter at issue has not been reported or that
the matter at issue is not applicable to the system in question. In the case of the
systems where facial-expression information was manually extracted, the value of
column 2 of Table 2.3 indicates that such systems can deal with the subjects of any
ethnicity. In the case of an automatic facial-expression-data extraction, the value of
column 2 of Table 2.3 represents the range in ethnicity of the test subjects. The
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number of test images, the number of subjects used to make the test images and the
overall performance of the surveyed systems are summarised in Tables 2.7 to 2.9.

Face position detection

For most of the works in automatic facial expression analysis, the conditions under
which an image is obtained are controlled. The camera is either mounted on a
helmet-like device worn by the subject (e.g. Pantic et al. 2000b, Otsuka et al. 1998)
or placed in such a way that the image has the face in frontal view. Hence, the
presence of the face in the scene is ensured and some global location of the face in
the scene is known a priori.

Table 2.4
Summary of the methods for automatic face position detection
| Reference | View | Method | Comments ]
Facial images
Holistic | Huang ‘97 |Frontal view | Canny edge detector No rigid movements
approach PDM model fitting
Pantic Dual view Image histograms Attached camera to
2000b analysis the subject’s head
Thresholding
Analytic | Hara ‘97 |Frontal view [ Brightness distribution | No rigid movements
approach Real-time process
Yoneyama {Frontal view |- -
‘97
Kimura Frontal view | Integral projection No rigid movements
‘97 (see Wu et al. 1996)
Potential Net fitting

Arbitrary images

Holistic | Hong ‘98
approach

Frontal view

Steffens et al. (1998):
Spatiotemporal filtering
Stereo algorithm
Colour detector

Convex region detector
Linear predictive filter

Complex background
Slight head motions

Essa ‘97

Frontal to
profile view

Pentland et al. (1994):
Spatiotemporal filtering
Eigenfaces
Eigenfeatures

Complex background
Rigid head motions
Faces with facial hair
Faces with glasses
Real-time process

In most of the real-life situations where an automated facial expression analyser
is to be employed (e.g. in a multi-modal/media HCI), the location of a face in the
image is not known a priori. Recently, the problem of automatic face detection in an
arbitrary scene has drawn great attention. Examples are: the neural-network-based
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approach proposed by Rowley et al. (1998), the example-based learning approach of
Sung and Poggio (1998), the colour- and invariant-moments-based method of
Terrillon et al. (1998). Two of the works surveyed here deal with automatic face
detection in an arbitrary scene: the method of Hong et al. (1998) and the method of
Essa and Pentland (1997) (Figure 2.8).
Independently of the kind of
input images (facial or arbitrary
images) detection of the exact
position of the face in an observed
image or image sequence is
approached in two ways. In the
holistic approach, the face is detected
as a whole unit. In the analytic
approach, first some important facial
features are detected (e.g. the irises
and the nostrils). Then, the location
of these features in correspondence
with each other determines the
overall location of the face. Table 2.4
provides a classification of facial
expression analysers according to

the kind of input images and the  gver several frames (Pentland et al. 1994)
applied method.

Facial-expression-information extraction

After the presence of a face is detected in the observed scene, information about the
shown facial expression should be extracted. Both the applied face representation
and the kind of input images affect the choice of the approach to the facial-
expression-information extraction.

Three face-representation types are mainly used in facial expression analysis:
holistic, analytic and hybrid. In the holistic (template-based) approach, the template
can be a 2D array of intensity values, a labelled graph or some other template that
describes the properties of the face as a whole. The isodensity maps used by Kato et
al. (1991) for analysis and synthesis of facial expressions form an example of
holistic face representation. In the analytic (feature-based) approach, some facial
points or contours of the prominent facial features (eyes, eyebrows and mouth)
model the face. The relative sizes and shapes of the model features and the relative
distances in between are then used for facial expression recognition. Examples of
typical feature-based face models are: the Facial Landmarks proposed by Kearney et
al. (1993) (Figure 2.3), the FCPs proposed by Kobayashi et al. (1992) (Figure 2.7)
and deformable templates of the prominent facial features introduced by Yuille et al.
(1989). A hybrid approach to face representation combines the feature-based
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approach and the template-based approach. In this approach, usually a set of facial
feature points is used to determine an initial position of a template that models the
face. A template can be a 3D wire frame, a labelled graph or a Potential Net. For
example, to identify a face, Lam and Yan (1998) use an analytic-to-holistic approach
which first locates 15 facial points, then sets boxes around the corresponding facial
features and finally compares these with those in a database using a similarity
transform. The face representations used by the surveyed automated expression
analysers are described in this section and summarised in Table 2.5.

Depending on the used face representation, a template-based or a feature-based
method is applied to extract expression information from an input static image or an
input image sequence. Template-based methods fit a holistic face model to the input
(static) image or track it in the input image sequence. Feature-based methods are
used to localise the features of an analytic face model in the input image or to track
them in the input image sequence. The methods utilised by the surveyed automated
expression analysers are summarised in Table 2.6.

Figure 2.13: A) An example of the
Figure 2.11-12: Aligned training  used images B) The feature regions

set for generation of a PDM model from which the eigenvectors are
and an example of the fitted calculated C) The 32x32 pixel blocks
model (Huang and Huang 1997) {Padaett and Cottrell 1996)
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Table 2.5

Summary of the face models utilised by the recently proposed facial

expression analysers
[Ref. {Model [Figure | Comment ]
Holistic approach
Edwards |Active Appearance Mode} 2.9 Manual localisation of 122 facial
‘98 (AAM) (Cootes et al. ‘98) points
Hong Labelled graph (GFK); each| 2.10 | The “big” labelled graph (GFK) with
‘98 node is an array of the filter 50 nodes containing 40-component
responses of a certain Gabor arrays seems very suitable for
wavelet extracted at an image detection of the facial actions; this
point (Lyons et al. 1998) issue is not discussed by Hong (1998)
Huang |Point Distribution Model 2.11- | Manual localisation of 90 facial points
‘97 (PDM) (Kass et al. 1987, 2.12 | Mouth model does not support
Cootes et al. 1995) detection of some mouth actions
Padgett |Random block eigenvectors 2.13 | Image format strictly constrained
‘96 defined from 97 images All used images are not real-life shots
taken from Ekman’s => applicability in real-life situations
database (Ekman 1975) is not proven
Black Optical flow (in fac. regions) | 2.18 | Initial regions for the head and facial
‘97 features are manually selected
Otsuka ‘98| Optical flow (in fac. regions) [ 2.19 | No modelling of the left eye
Analytic approach
Hara ‘97 |30 facial points & 13 2.15 | Horizontal facial-appearance changes
vertical lines across them (e.g. frown) aren’t modelled
Pantic ‘00b| Dual-view point-based model | 2.16
Zhao Frontal-view point-based 2.17 | Manual localisation of 10 facial
‘96 model of 10 facial distances distances
Cohn Optical flow (facial points) 2.23 | Manual localisation of 45 facial points
‘98 Image sequence should start with an
expressionless face
Hybrid approach
Lyons Labelled garaph of 34 nodes | 2.14 | Image format strictly constrained
‘99 (see also Zhang ’98) Manual localisation of 34 facial points
Yon. ’97 |8x10 quadratic grid
Zhang Labelled graph with 34 2.14 | Image format strictly constrained
‘98 nodes Manual localisation of 34 facial points
Essa ‘97 |Optical flow (whole face) 2.20 | 2D spatio-temporal representation of
the facial frontal view
Kimura |Potential Net: 2D mesh 2.21 | Potential Net seems suitable for
‘97 which deforms governed by facial-action detection independently
the elastic force of the of the face rotation; this issue is not
potential field (Table 2.6) discussed by Kimura (1997)
Wang ‘98 |Labelled graph with 19 nodes | 2.22 | Manual location of 19 facial points
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Table 2.6

Summary of the methods for automatic facial-expression-data extraction

| Ref.

| Method

| Comment

Analysis from static facial images

Template-based methods

al. 1981) for estimating an averaged
optical flow in 80 20x20 pixels regions of
the grid placed in a normalised image.

Edwards | Multivariate multiple regression is applied | Direct frontal view

‘98 to model the relationship between AAM | No facial hair / glasses
displacement and the image difference. Hand labelling of the images

Hong Fitting a labelled graph (Figure 2.10) to an | No facial hair / glasses

‘98 input image by utilising the method of | Slightly rotated faces allowed
elastic graph matching (Wiskott 1995). Real-time process

Huang Fit the PDM (Figure 2.12) by a gradient- | Direct frontal view

‘97 descent shape parameters estimation; fit | No facial hair / glasses
three parabolas onto the mouth by | No variation of the background
gradient-based edge detector.

Yon. ‘97 | Gradient-based optical flow alg. (Horn et | Direct frontal view

No facial hair / glasses
Averaging the flow (drawback)
Horizontal movem. not modelled

Feature-based methods

then extracted from the localised contours.

Hara ‘97 | Extracting the brightness distribution data | Direct frontal view
along the 13 vertical facial lines (Figure | No facial hair / glasses
2.15) by utilising a CCD camera in | Horizontal movem. not modelled
monochrome mode. Real-time process

Pantic Multiple detectors are applied per facial | Dual view images

2000b feature. Model features (Figure 2.16) are | No facial hair / glasses

2 mounted cameras

Analysis from facial image sequences

Template-based methods

differential and a Gaussian filter.

Black Robust regression based on a brightness | Rigid head motions allowed

‘97 constancy assumption for image motion | Variations in lighting allowed
local models’ parameters recovering. | The initial regions of the head
Coarse-to-fine gradient-based optical flow | and features are selected by hand
algorithm for estimating large motions.

Otsuka Adapted gradient-based optical flow | No facial hair / glasses

‘98 algorithm (Black et al 1995) for | Head-mounted camera is used
estimating image motion in local areas of | Left eye motion is not tracked
right eye and mouth (Figure 2.19).

Essa ‘97 | Optical flow method (Simoncelli 1993): | Direct frontal view
multi-scale coarse-to-fine Kalman filter | Faces with facial hair / glasses
for obtaining “noise-free” 2D motion field | Variations in lighting allowed
for a normalised image (Figure 2.20).

Kimura | Fitting a Potential Net (Figure 2.21) to a | Direct frontal view

‘97 normalised facial image by applying a | No facial hair / glasses

First frame - expressionless face
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Wang Fitting a labelled graph of 19 facial points | Direct frontal view

‘98 (Figure 2. 22) by applying the method | No hair / glasses

proposed by Buhmannet al. (1989): | Hand labelling of the first frame
minimisation of the cost function based on
simulated anncaling procedure.

Feature-based methods

Cohn Hierarchical optical flow algorithm of | Direct frontal view

‘98 Lucas et al. (1981) for estimating the | No facial hair / glasses

optical flow in 13x13 pixels facial regions | First frame - expressionless face
Manual normalisation

Hand labelling of the first frame

olX, o 0ix 43X

Figure 2.14: Fiducial grid Figure 2.15: Thirteen dlfigure 2-1;;‘Fa°i3|d
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A 2R \Pl
El ¥ T p[oi] _F1_|E

ps P4
P6
P7 P8
P9 \
/P10
/ :
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Facial expression classification

The last step of facial expression analysis is to classify (identify, interpret) the facial
expression displayed by the face. A fundamental issue about the facial expression
classification is to define a set of categories we want to deal with. A related issue is
to devise a categorisation mechanism. As already explained in section 2.2, the actual
design and implementation of an automated expression classifier is constrained by
its application domain. If the system is to be used for behavioural science
investigations of the face, the system should realise automatic encoding and
quantification of facial actions from facial images or image sequences. If the system
is to be used as an integral part of intelligent multi-modal/media HCI, the system
should realise automatic quantified facial expression classification into the multiple
interpretation categories defined by the user.

The surveyed facial expression analysers classify the encountered expression
(i.e. the extracted facial-expression information) either as a particular facial action or
a particular basic emotion. Some of the analysers perform both: encode the involved
facial actions and classify these under the basic emotion categories. Independently
of the used classification categories, the mechanism of classification applied by
particular surveyed expression analyser is either a template-based, a neural-network-
based, or a rule-based classification method. The applied methods for expression
classification in terms of facial actions are summarised in Table 2.7. Table 2.8 and
Table 2.9 summarise the utilised methods for facial-expression emotional
classification.

If a template-based classification method is applied, the encountered facial
expression is compared to the templates defined for each expression category. The
best match decides the category of the shown expression. In general, it is a difficult
to achieve a template-based quantified recognition of a non-prototypic facial
expression (i.e. a certain combination of facial actions and their intensities). There
are infinitely a lot of combinations of different facial actions and their intensities that
should be modelied with a finite set of templates. The problem becomes even more
difficult by the fact that everybody has his/her own maximal intensity in displaying
a certain facial action.

Although the neural networks represent a “black-box” approach and could be,
arguably, classified as template-based methods, the neural-network-based methods
have been classified separately. The reason for doing so is that a typical neural
network can perform a quantified facial-expression categorisation into multiple
classes while, in general, the template-based methods cannot. In a neural-network-
based classification approach, a facial expression is classified according to the
categorisation process that the network “learned” during a training phase. Most of
such methods utilised by the surveyed expression analysers classify facial
expressions into a single category. Récognition of non-prototypic facial expressions
is feasible, however, if each neural-network output unit is associated with a weight
from the interval [0,1], instead of being associated with either 0 or 1 (e.g. Kobayashi
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and Hara 1997, Zhao and Kearney 1996). Zhang et al. (1998), Kobayashi and Hara
(1992), Ralescu and Hartani (1995), and Morishima et al. (1995) proposed different
neural networks for the recognition of blended emotional expressions). As can be
seen from Table 2.8, some of the expression classifiers have been classified as
template-based methods although they utilise a neural network (e.g. Yonoyama et al.
1997). This has been done because the overall characteristics of these methods fit
better the overall properties of the template-based expression classification
approaches.

The rule-based classification methods, utilised by the surveyed expression
analysers, classify the examined facial expression into the basic emotion categories
based on the previously encoded facial actions (Table 2.7, Table 2.8 and Table 2.9).
The expressions, which characterise the emotion categories, are first described in
terms of the facial-action codes. Then the shown expression, described in terms of
facial-action codes, is classified in the optimal fitting emotion category.

Table 2.7
Summary of the methods for expression classification in terms of facial actions

[ Ref. [Method | No. of AUs [ Test cases | Comment |
Analysis from static facial images

Rule-based methods

Pantic |Expert System | 30 facial 496 dual views | Does not deal with minor
2000b | rules actions 8 subjects inaccuracies
Correct: 89% | No quantified AU encoding

Analysis from facial image sequences
Template-based methods '

Cohn |Discriminant 8 AUs+7 504 sequences | One AU allowed per
‘98 functions AUs 100 subjects sequence;
combinations| Correct: 88% | No quantified AU encoding

Essa [Spatio-temporal | 2 facial 22 sequences | Faces with facial hair
'95 & |motion-energy | actions 8 subjects allowed;
97 templates Correct: 100% | No quantified AU encoding
Rule-based methods
Black |Thresholded - 70 sequences | Number of facial actions that
‘97 motion 40 subjects can be encoded is not known

parameters Correct: 88% | No quantified AU encoding
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Table 2.8

Summary of the methods for facial-expression emotional classification from
static facial images into some of the basic emotion categories as defined by

Ekman (1975)
[Ref. [ Method [# | Testcases | Comment ]
Template-based classifiers
Edwards | Mahalonobis- 7 | 200 images Hand labelling of the images
‘98 distance-based PCA 25 subjects Not tested for unknown subjects
(Hand 1981) and Correct: 74% | Singular classification
Linear Discriminant No quantified classification
Analysis (LDA)
Hong ‘98| Personalised 7 | >175 images | Processing time per image: 8 s
galleries and Elastic 25 subjects Singular classification
graph matching Correct: 81% | No quantified classification
(Wiskott 1995)
Huang | 2D emotion space 6 | 90 images Not tested for unknown subjects
‘97 (PCA) & minimum 15 subjects Singular classification
distance classifier Correct: 85% | No quantificd classification
Lyons PCA and LDA of 7 | 193 images Low diversity of tested subjects
‘99 the labelled-graph 9 Jap females | Singular classification
vectors Correct: 92% | No quantified classification
Yon. ‘97| Two 14x14 Hopfield (4 | 40 images Not tested for unknown subjects
NNs with Personnaz 10 subjects Singular classification
learning (Kanter et Correct: 92% | No quantified classification
al. 1987)
Neural-network based classifiers
Hara ‘97| 234x50x6 back- 6 | 90 sequences | Processing time per frame: 66.7 ms
propagation NN 15 subjects Singular classification
Correct: 85% | No quantified classification
Padgett | 15x10x7 back- 7 | 8 Ekman’s | Real-life mug-shots not tested
‘96 propagation NN photos Singular classification
Correct: 86% | No quantified classification
Zhang | 646x7x7 resilient 7 | 213 images Hand labelling of the images
‘98 RPROP propagation 9 Jap females | Low diversity of tested subjects
(Riedmiller et al. ‘93) Correct: 90% | Multiple quantified classification
Zhao ‘96| 10x10x3 back- 6 | 94 Ekman’s | Real-life mug shots not tested
propagation NN photos Singular classification
Correct: 100%| No quantified classification
Rule-based classifiers
Pantic Expert system rules |6 | 256 images Multiple quantified classification
2000b 8 subjects
Correct: 91%
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Table 2.9

Summary of the methods for facial-expression emotional classification from
facial image sequences into some of the basic emotion categories as defined
by Ekman (1975)

Ref. | Method | # | Testcases | Comment
Template-based classifiers
Essa Spatio-temporal 4 | 30 sequences | Faces with facial hair allowed
95 & | motion-energy 8 subjects Singular classification
‘97 templates Correct: 98% | No quantified classification
(see Figure 2.24)
Kimura | 3D emotion space 3 | 6sequences | The method tested unsuccessfully
‘97 (PCA) 1 subject Singular quantified classification
Otsuka | HMM with the 6| 120 No description of the test results
‘98 Baum-Welch sequences Singular classification
training method 2 subjects No quantified classification
Wang | Averaged B-splines | 3 | 29 sequences | Processing time per frame: 2.5 s
‘98 of feature trajectories 8 subjects Hand labelling of the first frame
(Press et al. 1992) Correct: 95% | Singular quantified classification
for distance
minimisation
Rule-based classifiers
Black Rule-based approach | 6 | 70 sequences | One expression per sequence
‘97 for detection of the 40 subjects Rules not well defined = blend
beginning and the Correct: 88% | anger-fear recognised as disgust
end of an expression Singular quantified classification

" i
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Figure 2.24: Motion energy templates for anger, disgust, smile and
surprise (Essa and Pentland 1997)
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2.5 Discussion

Analysis of facial expressions is an intriguing problem which humans solve with
quite apparent ease. Three different but related aspects of the problem have been
defined: face position detection, facial-expression-information extraction and facial
expression classification. The capability of the human visual system in solving these
problems has been discussed in section 2.1. It should serve as a reference point for
any automatic vision-based system attempting to achieve the same functionality.

Since the mid 70s, different approaches have been proposed for the analysis of
facial expressions from facial images and image sequences. In 1992, Samal and
Iyengar (1992) issued an overview of the early works on solving the problems
related to automatic analysis of facial expressions. Section 2.3 provided an overview
of the literature on solving these problems published in the period from 1991 to
1995. The work done in the past five years on solving these problems as a whole is
surveyed in section 2.4 in detail and then summarised.

A number of different facial-image-analysis approaches to facial-expression
detection and classification have been explored and compared. These approaches
include facial expression analysis from facial image sequences and from static facial
images (Table 2.3). The investigation compared the automatic expression-
information extraction using facial-motion analysis (Black and Yacoob 1997, Cohn
et al. 1998, Lien et al. 1998, Essa and Pentland 1997, Otsuka and Ohya 1998),
holistic spatial-pattern analysis (Edwards et al. 1998, Hong et al. 1998, Huang and
Huang 1997, Yoneyama et al. 1997, Kimura and Yachida 1997, Wang et al. 1998),
and analysis of facial features and their spatial arrangement (Kobayashi and Hara
1997, Pantic and Rothkrantz 2000b, Cohn et al. 1998). This investigation also
compared the facial expression classification using holistic spatial analysis (Edwards
et al. 1998, Hong et al. 1998, Huang and Huang 1997, Lyons et al. 1999, Yoneyama
et al. 1997, Padgett and Cottrell 1996), holistic spatio-temporal analysis (Black and
Yacoob 1997, Essa and Pentland 1995, Essa and Pentland 1997, Kimura and
Yachida 1997, Otsuka and Ohya 1998, Wang et al. 1998), grey-level pattern analysis
using local spatial filters (Lyons et al. 1999, Zhang et al. 1998), and analytic
(feature-based) spatial analysis (Huang and Huang 1997, Kobayashi and Hara 1997,
Zhao and Kearney 1996, Pantic and Rothkrantz 2000b). The number of surveyed
systems is rather large and the reader might be interested in the results of the
comparison in terms of the best performances. Nevertheless, ranking surveyed
systems based on their quality has not deliberately been made. I believe that a well-
defined and commonly used single database of test images (image sequences) is a
necessary prerequisite for ranking the performances of the proposed systems in an
objective manner. Since such a single test dataset has not been established yet, the
reader is left to rank the discussed systems according to his/her own priorities and
based on the overall properties of surveyed systems that have been summarised in
Tables 2.3 to 2.9.
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In this section, some possible directions for future research are proposed. Those
originate from a comparison of the properties of surveyed facial expression
analysers with the properties of an ideal analyser proposed in section 2.2.

Detection of the face and its features

Most of the currently existing systems for facial expression analysis assume that the
presence of a face in the scene is ensured. However, in many instances the systems
do not perform face detection in an arbitrary scene and do not utilise a head-
mounted camera which ascertains the correctness of the assumption at issue. Only
two surveyed systems process images acquired by a head-mounted camera (Otsuka
and Ohya 1996, Pantic and Rothkrantz 2000b) and only two systems deal with
automatic face detection in an arbitrary scene (Hong et al. 1998, Essa and Pentland
1997).

In addition, many approaches use strong assumptions to make the problem of
facial expression analysis more tractable (see Table 2.6). Some common
assumptions are: B
the images contain frontal facial view;
the face is upright with no tilt;
the illumination is constant;
the light source is fixed;
the face has no facial hair or glasses;
the subjects are young (i.e. no permanent wrinkles) and of the same ethnicity.

In most of the real-life situations it cannot be assumed that the observed subject
will remain immovable. Therefore, if a fixed camera acquires the images, the system
should be capable of dealing with rigid head motions. Only three of the surveyed
systems deal to some extent with rigid head motions (Black and Yacoob 1997,
Edwards et al. 1998, Hong et al. 1998).

For the sake of universality, the system should be able to analyse facial
expressions of any person, independently of age, ethnicity and outlook. Yet only the
method proposed by Essa and Pentland (1997) deals with images of faces with facial
hair and/or glasses.

For researchers of automated vision-based facial expression analysis this
suggests investigation towards developing a robust method for the detection of the
face and its features that will not be prone to changes in viewing and lighting
conditions and distractions like glasses, facial hair or changes in hair style. Another
interesting but yet not investigated ability of human visual system is “filling in”
missing parts of the observed face and “perceiving” a whole face even when a part
of it is occluded (e.g. by a hand).
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Facial expression classification

Generally, the existing expression analysers classify the examined facial expression
in merely one of the basic emotion categories proposed by Ekman and Friesen
(1975). This approach to expression classification has two main limitations.

First, “pure” emotional expressions are seldom elicited. Most of the time people
show blends of emotional expressions. Therefore, classification of an expression
into a single emotion category is not realistic. An-automated facial expression
analyser shculd realise quantified classification into muitiple emotion categories.
Only two of the surveyed systems, namely those of Pantic and Rothkrantz (2000b)
and Zhang et al. (1998), perform quantified facial-expression classification into
multiple basic-emotion categories.

Secondly, it is not at all certain that all facial expressions that can be displayed
by the face can be classified under the six basic emotion categories. So even if an
expression analyser performs a quantified expression classification into multiple
basic emotion categories, it would probably not be capable of interpreting each and
every encountered expression. A psychological discussion on the topic can be found
in Izard (1971), Fridlund (1991), Russell (1994) and Ekman (1994). Some
experimental proofs can be found in the studies of Asian researchers (e.g. Huang and
Huang 1997, Zhang et al. 1998), which reported that their Asian subjects have
difficulties in expressing some of the basic expressions (e.g. disgust and fear).

Defining interpretation categories into which any facial expression can be
classified is one of the key challenges in the design of a realistic facial expression
analyser. The lack of psychological scrutiny on the topic makes the problem even
harder. A way of dealing with this problem is to build a system that acquires its own
expertise by learning from the user his/her interpretations of facial expressions.
Kearney and McKenzie (1993) proposed a way of achieving this. This thesis
proposes and elaborates another method for achieving a generally applicable facial-
expression classification into the expression-interpretation categories defined by the
user (see chapter 6).

If the system is to be used for behavioural science investigations of the face, it
should perform automated FACS coding of input facial expressions. In other words,
it should accomplish both: discern various AUs in input images and quantify those
codes (Donato et al. 1999, Bartlett et al. 1999). Four surveyed systems perform
facial action coding in an input image or an image sequence (Table 2.7). Yet none of
these systems quantifies the facial action codes. This task is particularly difficult to
accomplish for a number of reasons. First, FACS only provides five different AUs
which can be assigned an intensity on a 3-level intensity scale (i.e. low, medium,
and high). Further, some facial actions such as blinking, winking, and sucking the
lip(s) into the mouth are either encountered or not. It is unreasonable to describe a
blink as “having a higher intensity” than another blink. In addition, each person
displays a particular facial action with a different maximal intensity. Therefore a
system should be designed that can start with a generic facial action classification
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and then adapt to a particular individual to quantify the encoded facial actions for
which measuring of the activation intensity is “reasonable”. Also, none of the
surveyed systems is capable of distinguishing all 44 facial actions defined in FACS
(Ekman and Friesen 1978). This remains a key challenge for the researchers of
automated FACS coding,.

Another appealing but still not investigated property of the human visual system
concerns assigning a higher “priority” to the upper-face features than to the lower-
face features, since they play a more important role in facial expression
interpretation (Ekman, 1982).

2.6 A new approach: ISFER

Facial expressions provide information about the affective state, personality,
cognitive activity and psychopathology. Besides, they play a main role in non-verbal
human communication (Mehrabian 1968). An automated system for facial
expression analysis would therefore be highly beneficial for applications such as the
behavioural science investigations of the face, stress monitoring at hazardous work
places (e.g. aeroplane cockpit, nuclear power plant control room), education (e.g.
medical), enhancement of communication skills, and development of advanced
multi-modal human-computer interfaces (HCI).

In this chapter, various issues in tackling the problem of automating facial
expression analysis have been discussed. All of them are intriguing and none has
been solved in a general case. A number of conclusions have been reached:

e Most of the existing facial expression analysers assume that the input is a scale-
and orientation-invariant, non-occluded portrait of the face.
A number of surveyed analysers require manual labelling of the input images.
Most of the existing analysers do not deal with missing or inaccurate facial data,
which should be expected considering the state of the art in image processing.
¢ Most of the discussed methods do not detect displayed facial actions and none
performs quantified facial action encoding applicable to automated FACS
coding. As a result, none of the proposed facial expression analysers is an ideal
automated tool for behavioural investigation of the face.

e Most of the proposed methods classify facial expressions under one of the basic
emotion categories defined by Ekman and Friesen (1971). As a result, most of
the discussed systems cannot classify/interpret arbitrary facial expressions.

The main goal in the development of the Integrated System for Facial Expression
Recognition (ISFER) presented in this thesis was the enhancement of the state of the
art in automated facial expression analysis. To wit, the aim was to develop a fully
automated system for facial expression analysis that can be used for behavioural-
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science-research purposes and can (easily) be upgraded to form an integral part of an

advanced multi-modal perceptive HCI. As a result, the research focused on a

threefold:

1. Subject-independent, robust, fully automatic facial-expression-information
extraction from a static (dual-view) facial image.

2. Robust, fully automatic facial expression recognition applicable to automated
FACS coding; the reasoning should start by classifying facial-expression data
into generic multiple facial-action categories and then adapt to a particular
individual to quantify the encoded facial-action codes.

3. Automatic facial expression analysis in terms of multiple quantified
interpretation labels learned from the current user.

These design requirements for the development and implementation of ISFER,
emerged from the system’s application domain. ISFER performs an automatic facial
expression analysis from static facial images suitable for automatic measurement
and for assessment of facial reactions in behavioural science. The system can be
employed for facial expression analysis from either dual-view facial images
acquired on-line or full-face images retrieved from an existing database of
behavioural-science research material. When used on-line, the system deals with
static dual-view facial images. The images are acquired using two digitised cameras
mounted on the head of the observed subject. Two holders attached to a headphone-
like device carry the cameras. The camera placed in front of the face at
approximately 15 centimetres from the tip of the nose acquires the frontal view
facial image. The camera placed on the right side of the face at approximately 15
centimetres from the centre of the right cheek obtains the profile view facial image.
This camera setting ensures the presence of the face in the scene and the absence of
rigid head movements. Hence, the images acquired during a single session by the
utilised head-mounted camera device are scale and orientation invariant.

The actual implementation of the design requirements resulted in the system
structure illustrated in Figure 2.25. ISFER consists of three major parts: a facial data
extractor, facial action encoder and facial expression classifier. The theoretical
background of the Artificial Intelligence techniques applied in the system is
provided in chapter 3, while each part of the system is explained in a separate
chapter (chapters 4 to 6). A detailed algorithmic representation of the processing of
ISFER is provided in Appendix A. Validation studies on the prototype of the system
suggest that the facial action encoding and the facial expression classification
achieved by the system are consistent with those of human observers judging the
same sample images. The validation studies are discussed in chapter 7. A set of
guidelines for enhancing the system to form a part of an advanced multi-modal
perceptive HCI is given in chapter 8.

The Facial Data Extractor is a framework for hybrid facial-feature detection,
which for each prominent facial feature (eyebrows, eyes, nose, mouth, chin) applies
multiple feature detectors to an input static facial image. The result of each detector,
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representing a spatial sampling of the contour of the relevant facial feature, is stored
in a separate file.
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Expression Recognition (ISFER)
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The Facial Action Encoder accepts the set of files resulting from the Facial Data
Extractor and makes the best possible selection from redundantly detected facial
features based on the evaluation of the certainty of the input data. The Facial Action
Encoder performs quantified facial action encoding applicable to automated FACS
coding and outputs a set of 32 quantified AU codes. The Facial Action Encoder has
been implemented as a rule-based expert system that reasons with uncertainty while
comparing the input facial-expression data with the data representing the
expressionless face of the observed subject. In the first evaluation of the input data,
the Facial Action Encoder deals with partial data by substituting the missing
information with the pertinent data extracted from the expressionless face of the
observed subject. As a result, the exact information about the examined facial
expression is lost. In order to diminish this loss, a post-processor of the Facial
Action Encoder is employed which (optionally) adjusts the AU-coded description of
the examined expression based on a statistical prediction of the facial actions
displayed.

The Facial Expression Classifier represents a memory-based expert system,
founded upon the Schank’s theory of human autobiographical memory organisation
(Schank 1984) and instance-based learning. This part of the system expounds the
encoded facial actions in terms of the interpretation labels supplied by the current
user. The utilised memory of experiences (i.e. case base) is dynamic in the sense that
new interpretation labels can be learned with experience. '

ISFER cannot encode the full range of facial behaviour yet. From a total of 44
AUs defined in FACS, ISFER can encode 29 different AUs (i.e. 32 AU codes) from
a static dual-view facial image. As a result, the system might assign an identical AU-
coded description to expressions that are unlike in terms of underlying facial actions.
Another system limitation is the device used for acquiring dual-view facial images;
it is rather large and heavy. This is pretty inconvenient for the monitored subject. It
is even more important (and hindering) that the subject should turn his/her head
quite slowly for the device to remain in the same position relatively to the subject’s
face. Otherwise, the performed reasoning will be erroneous as the evaluation of the
input data certainty done by the Facial Action Encoder is based on a comparison of
the immovable facial points (e.g. the inner corners of the eyes, medial point of the
mouth; see chapter 5) and the pertinent points extracted from an expressionless face
of the observed subject. This comparison is feasible only if the images acquired
during a single session are scale and orientation invariant. Those and other
drawbacks of ISFER are discussed in detail in sections 4.4, 5.7, and 6.6, and then
summarised in Table 8.3.

As the subsequent chapters of this thesis will point out, no system exists that
performs an ideal automatic facial expression analysis from photographs or from
video sequences, including ISFER presented in this thesis. Yet ISFER exhibits
properties (Table 2.10) that are somewhat closer to those of an ideal facial
expression analyser (summarised in Table 2.1) than those of the currently existing
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automated facial expression analysers, presented in the previous sections of this
chapter (see Table 2.2 and Table 2.3).

Table 2.10
ISFER properties
Characteristic Characteristic
1 | Automatic image acquisition yes |10 Automatic expression classification| yes
2a| Subjects of any age and outlook |no® [11 Distinguishes all pos. expressions |no
2b| Ethnicity (tested on) 8 12 Deals with unilateral facial changes| yes
3 | Deals with variation in lighting n03J3 Obeys anatomical rules yes
4 | Deals with partially occluded no (14 ¥ of different AUs (from 44 in total) |29
faces
5 | No special make-up required yes |15 Quantifies facial-action codes yes
6 | Deals with rigid head motions yes4ll6 Unlimited # of interpretation categ. { yes
7 | Automatic face detection yes |17 Features adaptive learning facility |yes
8 | Automatic facial-data extraction |yes [18-19] Quantified multiple classification |yes
9 | Deals with inaccurate facial yes R0 Features real-time processing no
data

2 The subject may not have facial hair or wear glasses.

3 The images are acquired under constant illumination.

4 ISFER utilises a head-mounted camera device. Because of the constraint that the subject
should move slowly, no rigid head movements are encountered.
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3 Artificial Intelligence

Is the Al science or engineering, analytic or synthetic, empirical or
theoretical? The answer is of course yes’.
(Davis 1998)

There is no strict definition of Artificial Intelligence (AI). Some definitions often

referred to are the following:

e Al is a collection of techniques to handle knowledge in such way that new not
explicitly programmed results can be obtained (Boullart 1992).

o Al is the science of making machines do things that require intelligence if done
by men (Minsky 1986).

e Al research is the part of computer science that investigates symbolic, non
algorithmic reasoning processes and representation of symbolic knowledge for
use in machine intelligence (Feigenbaum 1977).

The issue here is not to select one of these definitions over another (although we
all may have our individual reasons for doing so), but become aware of different
conceptions that they represent and of fundamentally different assumptions they
make. We may come to comprehend this diversity, one for which a complete and
concise uniform description may not be possible, by learning why it arose. The
answer lies in the vaguely defined concept of intelligence.

If Al is centrally concerned with intelligence, we ought to start by considering
what kinds of behaviour characterise it. Four kinds of behaviour are commonly used
to distinguish intelligent behaviour from instinct and stimulus-response behaviour,
namely, prediction, adaptability, intentional action and reasoning. Yet even if we
focus on just one of them — reasoning — it soon becomes clear Al provides a

43



multitude of answers as to what we mean by reasoning. There are at least four

typical notions of what constitutes intelligent reasoning:

1. Intelligent reasoning is some variety of deduction (mathematical logic view; the
present-day examples of this view in Al are provided by logicists).

2. Intelligent reasoning is characteristic human behaviour (psychological view; this
view has given rise to the Al area of knowledge-based systems).

3. The key to intelligent reasoning is the architecture of the human brain (biological
view; this view set the basis of the Al area of artificial neural networks). ‘

4. Intelligent reasoning obeys the axioms of probability theory (statistical view; this
view initiated the Al area of reasoning with uncertainty and fuzzy logic).

Given that the notion of intelligence differs from perspective to perspective
(from logical to psychological, individual to collaborative, etc.), we find that
intelligence represents many things and that it is composed of many elements that
have been thrown together over time. If Al is centrally concerned with intelligence
(having all these facets), then we should probably define AI by a collection of
definitions rather than by a single definition since a uniform definition of
intelligence is not at hand.

Of course, it remains tempting to try to unify the existing definitions of Al
Perhaps Aaron Sloman (1994), who suggested that Al should be considered as the
exploration of the design space of intelligences, has in fact done this. First, the plural
— intelligences — emphasises the multiple possibilities of what might be meant by the
notion of intelligent reasoning. Second, the term ‘design space’ suggests exploring
. broadly and deeply, scientifically and practically, analytically and synthetically. This
is.the view which allows (in a sense contradictorily) the characterisation of Al as
science as well as engineering, as empirical as well as theoretical. Finally, this is the
approach that encourages a currently growing body of research on applications, such
as ISFER, which simultaneously make use of many different Al techniques.

A crucial decision to be taken in the development of an application based on the
Al paradigm is the choice of Al technique(s) to be utilised, as the technique(s)
determines all — from research methodology to be used to its chance of success.
Section 3.1 is concerned with the issue of determining the appropriate paradigm for
solving the problem of automating facial expression analysis in static facial images
as defined by the design requirements for the development of ISFER (see section
2.6). The actual implementation of these design requirements resulted in a system
consisting of three main parts (Figure 2.25): the Facial Data Extractor, the Facial
Action Encoder, and the Facial Expression Classifier. The Facial Data Extractor is a
hybrid approach to detecting the prominent facial features in static facial images and
employs several detection schemes based on neural networking. The Facial Action
Encoder is an expert system that reasons with uncertainty about the displayed facial
actions and their intensity. The Facial Expression Classifier is a self-adaptive
memory-based expert system that performs quantified classification of the encoded
facial actions into multiple facial-expression-interpretation categories defined by the
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user. Finally, the interaction between different parts of the system can be viewed as
a co-operation between supervisors (which may be fashionably called agents) of the
lower-level processes. This makes ISFER a functionally distributed application as
opposed to a spatially distributed application. Thus, ISFER simultaneously employs
many different Al techniques and paradigms. This chapter presents these Al
techniques. Section 3.2 is dedicated to expert systems (logical/psychological view).
Section 3.3 gives an introduction to artificial neural networks (biological view).
Reasoning with uncertainty (statistical/biological view) is explained in section 3.4.
In this section, special attention is paid to which of the existing formalisms for
handling uncertainty is most appropriate for ISFER. Section 3.5 discusses machine
learning in general. Case-based reasoning (CBR), as a specific example of instance-
based learning employed by the Facial Expression Classifier part of ISFER is
explained in detail in section 3.6. An introduction to the distributed Al and agent-
based systems (biological view) is given in section 3.7. Finally, section 3.8 discusses
some general peculiarities of the Al application development process.

3.1 Assessment and scoping

Various factors must be considered before the actual development of an Al
application can proceed. First of all, it is crucial to determine if the Al paradigm is
an appropriate paradigm for solving the given problem. Al systems do not differ
from other software and they will be successful only if there is a real demand for
them. This means both that the intended Al application is the only possible solution
(or at least a more efficient one) for the given problem and that future users are
convinced of the need for such an application. The latter is especially important
because Al applications are commonly developed through collaboration with future
users, who are usually the experts providing the expertise to be built into the
intended Al system. If the users/ experts are not convinced of the need for the
system, they will not co-operate.

Deciding whether there is a real demand for an AI application is in fact
estimating the potential for success of an Al system to be built. This assessment is
the first step of an Al application’s development process, known in the Al literature
as the study of feasibility (Boullart 1992, Saborido 1992).

Study of feasibility

A number of issues determine whether the employment of the Al paradigm will

result in an appropriate and successful solution to the imposed problem. The most

important ones are:

1. Can the problem be solved effectively by conventional programming? If the
answer is yes, then an Al application is most probably not the best choice. Al
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2.

3.

systems are best suited for situations for which there is no efficient algorithmic
solution.

Is the domain well bounded? 1t is very important to have well-defined limits with
regard to what the intended Al system is expected to “know” and what its
capabilities should be. If those limits are not explicitly defined then either some
kind of general knowledge has to be acquired (general knowledge is difficult to,
acquire and this kind of knowledge has little or no realistic applications) or there
is no well-defined point at which the development of the Al application ends.

Is there a need and a desire for an Al application? For instance, suppose that
there are already many human experts in the field where the future Al system has
to be employed. If the system merely emulates the expertise of the existing
human experts and does not perform more effectively or more efficiently than
they do, justifying the need for the intended system in such a domain is rather
difficult. Also, if the experts/ users do not want the system, it will not be
accepted even if there is a need for it.

Is there at least one human expert who is willing to co-operate? Not all experts
are willing to have their knowledge examined and then “put” into a computer.
Can the expert explain the knowledge so that it is understandable to the
developers of the Al application? Even if the expert is willing to co-operate,
he/she might have difficulties in expressing the knowledge in explicit terms.
Such difficulties are often bounded by so-called procedural knowledge.
Procedural knowledge is a type of knowledge that involves an automatic
response to a stimulus; for example try to explain in words the term “to ride a
bicycle”. Explicitly defining the portion of knowledge that is “obvious” to the
expert (while the knowledge engineer knows nothing about it) forms another
burden in the knowledge acquisition process. Acquisition techniques like
structured interviews (for eliciting the “obvious” knowledge) and protocol
analyses (for eliciting the procedural type of knowledge) could be utilised in
tackling the problem. Also, recording the sessions with the expert might help in
discovering gaps in the acquired knowledge.

Is the problem-solving knowledge uncertain? If the knowledge to be elicited is
experience knowledge, then an Al system probably forms an appropriate
paradigm since the expert’s knowledge may be based on a trial-and-error
approach rather than on the logic and algorithms. If logic and algorithms can
solve the imposed problem, conventional techniques probably form the best
paradigm to be applied.

The most extended technique for estimating the potential for success of an intended
Al application is called a checklist. A checklist is organised in categories and
criteria, where each category has several criteria. Each criterion represents a yes/no
question and has a weight assigned to it according to its importance. For each
category the weights of the yes answers are summed, representing the score of the
category. This means that the maximal score of a category is the sum of weights of
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all criteria belonging to that category, which can be achieved if and only if the

answer to each of the questions is affirmative. An observed future Al system has a

fair potential for success if the sum of scores achieved per category is at least 50%

of the maximum possible score. A commonly used checklist is the one proposed by

T. Beckman (1991). This checklist is composed of six categories, each of which has

its own distinct influence on the project’s potential for success expressed by the

maximal score that the given category can have. These categories are:

1. Characteristics of the task to be performed. The questions (criteria) in this
category concern the complexity of the task, existence of an algorithmic solution,
limitation of the knowledge domain, etc. The maximum score is 25 points. The
future Al system must score at least 13 points in this category.

2. Future system payoff. The questions in this category concern the benefit/cost
ratio. The maximum score is 20 points. For this category, the intended Al system
must score at least 10 points.

3. Customer management commitment. This category can be crucial because even if

the technical feasibility of a certain system is demonstrated and payoff is

ensured, the project can still fail due to management problems or simply lack of
interest. The maximum score is 20 points.

Knowledge engineer(s) skills and experience. The maximum score is 15 points.

. Domain expert(s) characteristics. Expert(s) should be co-operative,
communicative and available for an extended period of time. The design team
must not only develop the system, but also make the experts feel partly in control
of the project. If the experts feel that they have no say over the project, it is likely
that they won’t co-operate. The maximum score in this category is 10 points.

6. User characteristics. If the users feel threatened by the future Al system, or

simply do not need it, or the interface is inadequate, they won’t use it and the
project will fail. The maximum score is 10 points.

>

The first two categories are essential for success and therefore the future system
must score at least 50% for each one. The other four categories contribute to a lesser
degree. Scores below 50% for any of them do not imply that the system should be
discarded but indicate potential difficulties. In any case, the future system should
have an overall score of at least 50% (i.e. 50 points).

Assessment and scoping in ISFER

ISFER is strongly application dependent (see also section 2.6). The main goal in its
development is to achieve a fully automatic facial expression analysis which is
applicable to automated facial action (FACS) coding and automated facial
expression classification in observer-defined interpretation categories, so that it can
be employed for behavioural science investigations of the face. Although FACS
(Ekman and Friesen 1978; for a detailed explanation, the reader is referred to
sections 2.1 and 5.1) represents the most prominent method for measuring facial
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expressions in behavioural science, a major impediment to its widespread
employment is that its manual application is time consuming and that much time is
required to train human experts to use it. Each minute of videotape takes
approximately one hour to score and it takes 100 hours of training to achieve
minimal competency on FACS. Automating FACS would not only make it widely
accessible as a research tool, it would also accelerate the whole process of facial
action coding and improve the precision and reliability of facial measurement. This,
and the fact that automated expression classification into observer-defined
interpretation categories would make it possible for behavioural scientists to define
their own notions of various affective states such as stress, embarrassment, and pain,
explains and justifies the need for an automated facial expression analyser like

ISFER.

The behavioural-science application domain defines all the characteristics of the
task that the system should carry out, the knowledge that has to be emulated by the
system, and the environment (the deployment platform and human resources) in
which the system is to be primarily used. To estimate the potential for success of
ISFER, the checklist of T. Beckman (1991) was used and the following results were
obtained:

1. Characteristics of the task to be performed: 22 from a maximum of 25 points
scored (Table 3.1).

2. Future system payoff: 13 from a maximum of 20 points scored (Table 3.2).

3. Customer commitment: 11 from a maximum of 20 points scored. The ISFER
project was not founded by any other organisation (potential customer) except by
the Delft University of Technology where the system is also designed and
developed. However, due to some preliminary discussions with the researchers
of the behavioural science group of the Free University of Amsterdam, the
Netherlands, this research group might be viewed as a potential customer. Yet
further arrangements and agreements should be made before we can realistically
expect that this research group will fully participate in a further development,
testing and applying ISFER as a behavioural-science-research tool.

4. System designer skills: 15 points from a maximum of 15 points scored.

5. Domain expert characteristics: 7 points from a maximum of 10 points scored.
The expertise on facial action encoding from facial images that has been built
into ISFER has been acquired from the FACS manual in a straightforward
manner (see chapter 5). Therefore no human expertise was necessary while
developing the system. However, for validating and evaluating the performance
of the system, human experts in FACS coding were necessary. The research staff
of the Knowledge Based Systems Group at the Delft University of Technology,
being involved in the ISFER and similar projects (and therefore motivated to
achieve a rather high level of competency in FACS coding), facilitated
completion of these tasks.

6. User characteristics: 8 points from a maximum of 10 points scored. Primary
users of the system will be behavioural science researchers of the face. Since
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there is a strong need for an automated facial expression analyser like ISFER in
the field of behavioural science, it is likely that future user will be willing to use
the system.

Table 3.1
Properties of the facial expression analysis task (see section 2.6) mapped on
the criteria of T. Beckman checklist’s first category

Criterion Answer Score
Task is primarily cognitive, requiring analysis, synthesis, decision yes 2
making
Task involves primarily symbolic knowledge and reasoning rather yes 2
than numerical computation
Task is complex yes 2
Task involves chains of reasoning or multiple levels of knowledge yes 1
Task requires judgement or reasoning about subjective factors yes 2
Task cannot be solved using conventional computing methods yes 1
Task involves incomplete or inaccurate data yes 2
Task often requires explanation, justification of results, or reasoning yes 2
Task requires classification rather than search yes 1
Task knowledge is confined to a narrow domain yes 1
Task knowledge is stable yes 1
Incremental progress is possible; task can be subdivided yes 1
Task does not require reasoning about time or space yes/no 0
Task is not natural-language intensive yes 1
Task requires little or no common sense or general-world knowledge yes 1
Task does not require the system to learn from experience no 0
The intended Al system is similar to an existing Al system no 0
Data to be used as well as some case studies are available yes 1
System performance can be accurately and easily measured yes 1
> 22

In summary, assessing the potential for success of ISFER according to T.
Beckman’s (1991) checklist resulted in an estimate of 76% from a maximum of
100% (the total score over all categories was 76 points from a maximum of 100
points). Altogether, this led to the following conclusions:

o ISFER is justified by real needs of the researchers of facial behaviour,

ISFER has a clear scope restricted to automated facial expression analysis,

the source of the knowledge emulated by ISFER is available,

ISFER can be objectively validated and evaluated by domain human experts,
ISFER has a high potential for success.

The next step in the development of an Al application is to select the Al
techniques to be employed. It is usually wrong to make a definitive choice of
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techniques to be used at the beginning of the development process and before the
problem has been analysed in detail. As obvious as this might seem, this rule is often
not followed and often some Al technique is chosen prematurely only because it is a
hot topic in Al or because the developer is familiar with it (Moulton 1998). The
appropriate techniques to be used should be selected according to the properties of
the task that the future system should carry out, while keeping in mind that the
simpler the system, the easier to deploy it, to understand it, and to accept it.

Table 3.2
Properties of the ISFER in terms of system’s payoff mapped on the criteria of T.
Beckman checklist's second category

Criterion Answer [Score
System would significantly increase revenues (less time spent on yes 2
analysing a single photograph or on documenting categorisation of
affective states)
System would reduce costs no 0
System would improve quality yes *2
System would capture undocumented expertise that is in short supply yes 2
System would distribute accessible expertise to novice users no 0
System would require no or minimal more data entry than current yes 1
stem
System would be developed using commercially available tools yes 2
System maintenance would be low yes 1
System would be executable on an affordable work station yes 2
Partial completion of the system would still be useful yes 1
System would result in benefit/cost ratio of at least 10:1 no 0
>i13
3.2 Expert systems

Traditionally, tools and machines have been used by humans as passive mechanical
artefacts that extended, enhanced and multiplied their physical and mental abilities —
a hammer is stronger than a hand and by car one can travel faster than on foot. Over
the last decades, computers have been used as sophisticated tools for enhancing
human abilities such as memory and calculation. Research in artificial intelligence
has been aimed at developing software to emulate the so-called intelligent
capabilities of human beings such as reasoning, natural language communication
and learning. With such programs, the computer’s role departs from that of a mere
tool, as it becomes a kind of assistant to humans. Knowledge-based systems,
synonymously expert systems, form a sub-field of artificial intelligence which, for
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some three decades now, has investigated knowledge models and reasoning
techniques that might assist a human decision maker.

Definition
Expert systems have been defined in various ways, but all the definitions share a
general vein suggesting that expert systems are artificial means used to emulate the
decision-making ability of a human expert (e.g. Barr and Feigenbaum 1981, Boullart
1992). Preferably the definition suggested by Jackson (1999) is used instead:
An expert system is a computer program that represents and reasons with
knowledge of some specialist subject with a view to solving problems or
giving advice.

Yet, since the concepts like expert, program, specialist and problem are vaguely
defined notions, it might be advantageous to characterise an expert system rather
than to attempt to define it. There are five most important characteristics of an expert
system that can be distinguished:

1. An expert system emulates human reasoning. This does not mean that the system
is a faithful model of a human expert, but that it simulates the performance of the
relevant expert’s problem-solving process. It reasons using appropriate
representations of human knowledge.

2. An expert system should be capable to learn from its past experience. Similarly
to human experts, the system should be able to derive a proper solution faster
when the same problem is presented more than once.

3. An expert system applies heuristic or approximate reasoning. It performs a task
by applying rules of thumb to a symbolic representation of well-defined domain
knowledge (heuristic), rather than by employing just algorithmic or statistical
methods. In addition, the data and knowledge about the problem domain might
be ambiguous. Similarly to human experts, an expert system should perform in
uncertain environments by utilising a kind of intelligent guessing referred to as
uncertainty management (Zadeh 1983, Kandel 1991).

4. An expert system should be able to explain and justify obtained solutions. As
with human experts, the system’s ability to explain and/or justify obtained
solutions or recommendations concerns its ability to clarify its reasoning process
and answers questions about the inference procedure. The user can relate to the
inference process and verify that the expert system does what it is supposed to
do. In addition, usually a wide range of (non-expert) users works with an expert
system and its processing should therefore be rather transparent if it is to be
understood by the users.

5. An expert system must exhibit high performance in terms of speed and reliability.
In order to be a useful tool, an expert system must propose correct solutions in a
reasonable time, at least as fast and correct as a human expert.
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An expert system is always designed to be an “artificial” expert in a single
problem domain. Similarly to a human expert, it reasons about the knowledge which
is specific to that problem domain as opposed to common-sense knowledge. The
point here is to have a well-defined knowledge domain, that is, to have well-defined
limits to the problem the expert system is expected to solve. For instance, an expert
system designed to diagnose infectious diseases should not be expected to give a
recommendation for paediatrics cases or a weather forecast.

When the knowledge in the system originates from sources other than human
experts, the more general term knowledge-based system should be used instead of
the term expert system. However, nowadays the term expert system is often applied
to any system which uses expert system technology.

Architecture

Expert systems have two
main parts, namely, a
knowledge base and an
E inference engine (Figure
! 3.1). The knowledge base
h contains knowledge about
i the problem domain,
i usually in the form of
! heuristic ~ rules.  The
h inference engine uses the
] rules to infer appropriate
' conclusions based on

Knowledge
base

Black
board

Rules

Explanation

relevant portions of the
knowledge base and a set
of facts that form the
current input to the
system (stored on a so-
called blackboard). While
the knowledge base is
always specific to the
problem to be solved, the
inference  engine s
usually generic — i.e. it could be reused in another expert system.

Yet, in order to implement the characteristics defined above, an expert system
should also contain other components, shown in Figure 3.1. A learning facility, an
explanation facility and an uncertainty management program should be implemented
if the system is to exhibit the ability to learn, explain and reason in uncertain
environments. Since the user is not necessarily familiar with the inner operations of

Inference
Engine

-------------------------------------

Figure 3.1: General structure of an expert system
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the expert system, the expert system should be easy to use. Therefore, a user-
friendly interface is a rather crucial integral part of a well-developed expert system.

Knowledge representation

In the realm of expert systems, additional data other than the raw data (facts) are

usually employed as well. These data are referred to as knowledge and considered as

a refinement of information. Knowledge can be incomplete or fuzzy and consists of

collections of related facts, procedures, models, and heuristics that represent the

problem-solving tactic of the human expert. Knowledge may be regarded as
contextual information, organised in such a way that it can readily be applied to
problem solving, perception and learning.

A knowledge base is a file which contains knowledge and facts about the domain
of the problem. The first step in development of a knowledge base is referred to as
knowledge acquisition. This is the process of acquiring knowledge from an expert
(or experts), which is usually performed by the developers of the expert system.
Knowledge varies widely in both content and form and it may be specific, general,
exact, fuzzy, procedural or declarative. In addition, people usually have problems
with articulating the ways they think and reason. Hence, interviews with an expert
should be well structured so that all available knowledge about the relevant problem
domain can be gathered.

Next, the acquired knowledge should be represented in the knowledge base in a
form that will be not only efficient to retrieve and manipulate by the expert system
but also amenable to the user. The user should be able to maintain and edit the
knowledge base in a relatively straightforward manner. Over the years, numerous
knowledge representation schemes have been proposed and implemented. Various
classifications of knowledge representation schemes have been proposed as well.
The categorisation presented here is proposed by Hughes (1991). It was chosen
because it is more general than for instance the one proposed by Barr and
Feigenbaum (1981) or the one of Giarratano and Riley (1990). Hughes’
classification of the knowledge representation schemes is the following:

1. Logical knowledge representation schemes represent the knowledge base by
expressions in formal logic. First-order predicate calculus (Kowalski 1979) and
the programming language PROLOG are most commonly used.

2. Network knowledge representation schemes represent the acquired knowledge by
a graph in which the nodes represent facts or concepts from the problem domain
and the arcs represent relations between these facts. Semantics nets exemplify
this prepositional declarative knowledge representation formalism.

3. Structured knowledge representation schemes form an enhancement of the
network schemes (Findler 1979); the net nodes can be complex data structures
consisting of named slots with attached values that may be either simple data
values or pointers to other complex data structures or procedures for executing
some particular task. Frames form a typical structured knowledge representation
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scheme in which the knowledge is divided into a hierarchy of clusters. Due to the
organisation in which lower hierarchical levels inherit the properties of higher
hierarchical levels, frames resemble object-oriented structures which have a high
expressive power.

4. Procedural knowledge representation schemes represent knowledge in the form
of procedures or sets of instructions for solving a given problem. Production- or
rule-based expert systems (Davis and King 1977) exemplify the procedural
representation approach.

Since the Facial Action Encoder part of ISFER (Figure 2.25), has been designed
and implemented as a rule-based expert system, the rule-based knowledge
representation is discussed in detail. Production rules can be represented in a variety
of ways which can be classified into three basic categories (Schneider et al. 1996):
trees, bit matrices and relational lists. In the free representation of a knowledge
base, a directed graph is specified in which the nodes represent the rules and the
links depict the relations between the conclusions and premises of the rules. It is
impractical to utilise a tree representation if multiple conclusions are searched
because the entire tree has to be searched in that case. A bit matrix is a NxN matrix
where Nis the number of rules in the knowledge base and each matrix element (i, j)
is set either to 1, if the conclusion of rule i forms a part of the premise of rule j, or
otherwise to 0. A bit-matrix representation of the knowledge base requires quite
some memory space for storage and the search of a bit matrix is quite slow. A
relational list (R-list) is a list of 4-tuple elements, where the first two columns of
each element indicate a conclusion clause which forms a premise clause of another
rule, depicted by the next two columns. The R-list is a simple data structure that can
easily be modified, facilitates a fast search algorithm and enables the inference
process (explained below) to generate multiple conclusions.

Inference procedure
In a rule-based expert system, three different reasoning methods can be employed:
forward chaining, backward chaining and direct chaining.

Forward chaining is used when the goal is not specified. The underlying concept
entails the verification of the premise of a rule in order to verify that the conclusion
of that rule is true. The cycle of forward-chaining inference procedure is
schematically illustrated in Figure 3.2. The procedure begins with instantiation and
matching of the rule premises to the facts. Each rule for which the premise part is
true is placed on the agenda. The inference engine chooses the first rule on the
agenda to fire (i.e. to execute the consequent part of that rule). Due to execution of
the rule, new facts can be added, altered or removed from the blackboard. The
process is repeated either until the solution is reached or until no new facts are
present on the blackboard.
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There are two types of forward
chaining,  namely, autonomous ——
forward chaining and interactive m
forward chaining. In an autonomous
forward reasoning expert system the
initial data and the knowledge base
are provided. The task of the
inference procedure is to generate the

proper decision tree, to match the
data with the rules of the knowledge

match
premises

base, to fire the rules, and to reach
. . . Black Agenda
the conclusion. In an interactive board

available. The inference engine uses
the depth-first search, which
guarantees that if there is a solution, execute

that solution will be found by visiting consequen

each node along the path and asking

the user to provide the data necessary Figure 3.2: The cycle of forward

to continue the search of the tree. chaining inference procedure

Backward chaining suggests a
process of recursive deductions in which a goal (hypothesis) is defined first. Then
the steps necessary to validate the goal are defined (by creating a path to the top of
the decision tree) and each step along the path is validated until the goal (equal to
the premise of a certain rule) is reached. Backward chaining is usually used in expert
systems where the goal is known and the expert system’s role is to find evidence to
support the goal.

Two types of the direct chaining inference procedure can be distinguished:
simple direct chaining and fast direct chaining. Simple direct chaining is a process of
firing the rules of the knowledge base repeatedly for as long as there are rules that
can be fired. A recursive process always starts with the first rule of the knowledge
base and ends with trying to fire the last rule of the knowledge base, where only
already fired rules are skipped. Thus, the process is directed by the order of the rules
in the knowledge base.

Fast direct-chaining inference procedure is a breadth-first search algorithm that
takes advantage of the R-list representation of the knowledge. A recursive process
starts with the first rule of the knowledge base and then searches the R-list for a
linkage between the fired rule and the rule that the process will try to fire in the next
loop. If there is a rule whose premise is equal to the conclusion of the rule just fired,
the process will first try to fire that particular rule in the next loop. Consequently,
fast direct-chaining inference is more efficient than any inference process described

forward reasoning expert system the
decision tree is assumed to be \
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above because it revisits only the rules that may potentially contribute to the
reasoning process.

ISFER and other applications

Expert systems are constructed to mimic the reasoning process of human experts, to

capture and preserve their knowledge and to make this knowledge more accessible.

This technology has been successfully applied to a diverse range of domains such as:

¢ Interpretation of data, e.g. DENDRAL was designed to interpret data from mass
spectrometers and to determine the structure of molecules (Feigenbaum et al.
1971); HEARSAY is a speech-understanding expert system (Erman et al. 1988),
and the HERCULES expert system (Pantic et al. 1998b) was designed to
interpret facial-expression data in terms of six basic emotions (Ekman and
Friesen 1975).

s Diagnosis of malfunctions, e.g. MYCIN was developed to help physicians
diagnose meningitis and blood infections (Shortliffe 1976) and JET X was
designed to diagnose faults in military aircraft engines (Shah 1988).

¢ Prediction, e.g. the PROSPECTOR expert system predicts molybdenum mineral
deposits after analysis of geological data (Duda et al. 1979).

e Consulting, e.g. MYCIN was used for diagnosis and therapy recommendations
for infectious diseases (Shortliffe 1976), EXPLAIN was developed to assist non-
experts in using a package of image processing algorithms (Tanaka and Sueda

-.1988) and LIA was designed to consult students about their study plans (Pantic
et al 1998a).

¢ Configuration of complex objects, e.g. ASDEP-is an expert system for power-
plant design (Matin and Oxman 1988).

Generally, expert systems are useful if the built-in knowledge is well formalised,
circumscribed, established, and stable, the problem domain is well-bounded and no
common-sense knowledge is required, and there are acknowledged experts willing
to co-operate or there is a body of well-structured detailed literature on the topic. In
addition, the knowledge base of an expert system must be well structured and
represented such that it facilitates easy testing and maintenance as well as high
efficiency and reliability.

Generally, due to the properties of the facial-action-encoding task (section 3.1),
an automated facial expression analyser can be developed as an Al application. In
particular, due to the rule-based character of FACS and the overall characteristics of
the task (i.e. it is a cognitive task that involves reasoning rather than numerical
computation on a stable and narrow knowledge domain defined by FACS, see Table
3.1), a rule-based expert system seems to be an appropriate technique to be exploited
for the development of the Facial Action Encoder part of ISFER. These matters are
discussed in detail in chapter 5.
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Expert systems are usually built using languages such as Prolog, Lisp and Clips
(Giarratano and Riley 1990), expert system tools such as FEST (Schneider et al.
1996) or expert system shells such as S.1 and M.4 (Jackson 1999). Of course, other
programming languages and development tools can be used instead, as long the
intended functionality of the expert system can be achieved.

3.3 Artificial neural networks

The area of Al that deals with parallel, distributed, adaptive information processing
systems that develop information processing capabilities in response to exposure to
an information environment is called neurocomputing (Hecht-Nielsen 1990). The
primary information processing structures of interest in neurocomputing are artificial
neural networks (ANNSs), although other classes of adaptive information processing
structures are sometimes also considered (e.g. learning automata, associative
memories, data-adaptive content addressable memories, simulated annealing
system).

ANNs realise the connectionist paradigm of representing and processing
information. The driving force behind this paradigm is the idea that information-
processing systems can be built similar to the ones found in biological organisms. In
rough analogy, ANNs are built out of a densely interconnected set of simple units
(called neurons), where the connections between those units are bound with
coefficients (called weights). The connection weights are the “memory” of the
system, which can be adjusted such that the network “learns” some desired
behaviour. ANNs are also often referred to as sub-symbolic information
representation models since no interpretation can be usually given to individual
nodes or connections (Kasabov 1996). In addition, processing of an ANN is
considered as a “black-box” procedure since the “rules” for solving a given problem
are not directly extractable from a trained ANN (for a survey of techniques for
extracting rules from a trained ANN the reader can consult Andrews et al. (1995)).

ANNSs provide a general practical problem-solving method based on learning of
the desired input-output function from examples. ANN learning is robust to errors in
the training data and has been successfully applied to a wide range of problems. This
section presents the basic principles of artificial neural networks, but it is far from a
detailed and exact presentation of all existing neural network architectures.

Definition
An artificial neural network is a parallel distributed information processing structure

that can be viewed as a directed graph having the following properties (Hecht-
Nielsen 1990):

¢ The nodes of the graph are called processing elements (or artificial neurons).
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The links of the graph are called connections.
Each processing element can receive any number of incoming (input)
connections.

e Each processing element has a single output connection that can branch (fan out)
into identical copies to form multiple output connections.
Processing elements can have local memory.
Each processing element possesses a transfer function which can use local
memory and/or input signals to produce the processing element’s output signal.
Transfer functions usually have a sub-function, called a learning law, which is
responsible for adapting the input-output behaviour of the transfer function (over
a period of time) in response to the input signals that impinge on the processing
element. This adaptation is usually accomplished by modification of the values
of variables stored in the local memory of the processing element.

X1 X2 Xn

< Input signals

Transfer
function

y <& Output signal

Figure 3.3: Architecture of a Figure 3.4: Architecture of a
generic processing element generic artificial neural network

Figure 3.3 shows the architecture of a neural network processing element. The
transfer function receives as input the signals arriving via the incoming connections
(those connections may originate from other neurons of the network or from the
outside world) as well as values from local memory. Given these inputs, the transfer
function outputs both the values to be stored in specified locations in local memory
and the output signal of the processing element which may fan out and either form
the input signals to other neurons of the network or form the output from the
network to the outside world. This is schematically presented in Figure 3.4. The
figure also illustrates a typical division of the network’s processing elements into
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disjoint subsets, called /ayers. Any neural network can be configured as a collection
of layers, in which all processing elements possess the same transfer function and
are updated together. The input to the network can be viewed as a data array x, the
output of the network is a data array y and the network can be thought of as a
function y(x). This observation is the basis of the mechanism used to embed neural
networks into programmed computing systems.

An ANN as a computational model can be further characterised by four
parameters (Kasabov 1996): type of neurons, connectionist architecture (the
organisation of the connections between neurons), learning algorithm, and recall
algorithm.

Artificial neurons

McCulloch and Pitts (1943) proposed the first mathematical model of a neural
network processing element, i.e. an artificial neuron. It was a binary device using
binary inputs and a binary output. In general, a functional model of an artificial
neuron is based on the following parameters, which describe a neuron (see Figure
3.5): input values, input function, activation function, and output function.
According to the type of values each of these parameters can take, different types of
neurons can be identified.

B<P2 g

Figure 3.5: A general functional form of an artificial neuron

The input values x;, X2, ..., X, and the output value y of a neuron can be: binary
{0,1}, bivalent {-1,1}, continuous [0,1], or discrete numbers in a defined interval.
One of the inputs to a neuron, called bias, causes the transfer function (i.e. the input,
activation, and output function) of the neuron to operate on the current input values
and local memory values, to produce_the output signal, and to (eventually) modify
local memory values. Bias has a constant value of 1 and is usually represented as a
separate input, say X, but for simplicity it is treated here just as another input
clamped to a constant value.

The input function f of a neuron calculates the aggregated net input signal to the
neuron u = f{x, w), where x is the input vector and w is so-called weight vector; each
component w; of the weight vector w is a local memory variable associated with the
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corresponding input x;. A typical example of input function is the summation
function =37, x;w;.
The activation function s of a neuron calculates the activation level of the neuron
a = s(u). Four types of activation functions are most commonly used:
1. The hard-limited threshold function: if the net input signal to the neuron u is
above a certain threshold 7, the neuron becomes active, say @ = 1.
l, u>T
a=s(u)=
0, u<T
2. The linear threshold function: the activation value & increases linearly with the
increase of the net input signal to the neuron u, starting from a certain threshold
T;, but after a certain threshold T, is reached, the output becomes saturated (say
to a value 1). There are different variants of this function, depending on the range
of the neuronal output values.

1, u>T2
a=s(u)={1- u-Tp , IT1<u<sT,
I,-T,

o, us<T,

3. The Sigmoid function (S-function): any S-shaped non-linear transformation
function which is bounded (e.g. to the interval [0,1] or [-1,1]), monotonically
increasing, continuous, and smooth. Different types of sigmoid functions have
been employed in practice, but the most commonly used is the logistic function

a=s(u)=1/1+e " ), where c is a constant.

. Lo _ —ut/2
4. Gaussian function: a=s(u)=e .

The output value of a neuron can be represented by a single static potential or by a
pulse.

In addition to the types of neurons described here, many other types have been
developed. Examples are the RAM-based neuron (Aleksander 1989), fuzzy neuron
(Yamakawa 1990), oscillatory neuron, chaotic neuron, wavelet neuron, etc.
Descriptions can be found in Kasabov (1996) and Hecht-Nielsen (1990).

Connectionist architecture

Not only the type of artificial neuron used in an ANN should be described; the type
of connections between the neurons in the ANN should be defined as well (i.e. the
topology of the ANN should be determined too). Neurons in an ANN can be either
Sfully connected, that is, each neuron is connected to each other neuron, or partially
connected (this may mean that only connections between neurons in different layers
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are allowed, but in general it means that not all possible connections between all
neurons of the ANN are present). In fact, we should be able to tell where a certain
connection originates and terminates; a wiring diagram should be defined.

One way to construct a wiring diagram, which will represent topology of an
ANN, is to number the neurons of the network from 1 to N and to delimit an
interconnection matrix M = [my). Here, m; = 1 if there is a connection going to the
neuron i from the neuron j, and m; = 0 if there is no such connection. This is a
universally applicable approach to defining connections. Since it is difficult to
construct an interconnection matrix for large networks, a geometric approach to
defining connections is often used instead. This approach is based on the observation
that the connections are made up of disjoint bundles of fibres, so-called fascicles,
going from one geometrical region of neurons to another (Hecht-Nielsen 1990).

Two major connectionist architectures can be distinguished, according to the
number of input and output sets of neurons and the layers of neurons used:

1. Autoassociative architecture, in which input neurons also function as output
neurons.

2. Heteroassociative architecture, which has separate sets of input and output
neurons.

According to the absence or presence of feedback connections in an ANN, two
other types of connectionist architectures can be distinguished:

1. Feedforward architecture, which has no connections from output to input
neurons and the ANN does not keep a record of its previous output values and
the activation states of its neurons.

2. Feedback architecture, which contains connections from the output to the input
neurons. The ANN keeps a memory of its previous states, and the next state
depends not only on the input signals but on the previous states of the network as
well.

Learning

The most attractive characteristic of ANNS is their ability to learn. Learning enables
modification of behaviour in response to the environment. An ANN is trained, so
that the application of a training set X of input vectors produces the desired set of
output vectors ¥, or the ANN learns about internal characteristics and structures of
data from the set X. The training process is reflected in the change of the weights
bounded to the connections between the neurons of the network. During training, the
weights should gradually converge to values such that each input vector x from the
training data set causes a desired output vector y produced by the network. Leaming
occurs if after a training example has been supplied, a change takes place in at least
one synaptic weight.
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The learning ability of an ANN is achieved through applying a learning
(training) algorithm. Based on the way a network is trained, the ANNs can be
classified into two major groups:

1. supervised trained networks and
2. unsupervised trained networks.

In supervised training, input-
output pairs are presented to the
xg=1 ANN, which has to learn to
associate each input vector x to its
corresponding and desired output
vector p. In fact the network learns
Y ——m=-- to approximate a function y = f{x)
represented by a set of training
examples (x, ). Typical
n supervised trained networks are
1, Yw;x; 20  Perceptron, Multiple-Layer

=0 Perceptron (MLP) and the
0, f: w;x; <0 Hopfield network.

i=0 The perceptron is a simplest

of ANN introduced by

; Rosenblatt (1958). It consists of

Figure 3.6: Perceptron one or more processing elements

shown in Figure 3.6 (each of

which is also referred to as perceptron). The perceptron has an input consisting of an

(n+1)-dimensional vector x, where X, is a bias input permanently set to 1. It utilises

a summation input function and a hard-limited threshold activation function, where

the threshold T'= 0. The correct values of the connection weights are found using the
delta learning rule (Widrow and Hoff 1960):

wh =+ (y-y)x,

where w is the weight vector, y is the desired output vector, ' is the actual output

vector of the perceptron and x is the input vector. The perceptron can be used to

recognise patterns on the input matrix (e.g. a digitised image), but it cannot solve

non-linearly separable problems.

To overcome this limitation of the perceptrons, Multiple-Layer Perceptrons were
introduced. An MLP consists of an input layer, at least one intermediate (hidden)
layer and one output layer. The neurons from each layer are fully connected to the
neurons from the next layer (in some particular applications this does not have to be
the case; the neurons might be partially connected). The neurons in an MLP usually
have continuous value inputs and outputs, a summation input function and a non-
linear activation function. The simple delta rule cannot be used to train an MLP
because the errors of the hidden layers are not known. The correct values of the

Xy X

Correct output
supplied during
training
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connection weights are usually found using a so-called generalised delta learning
rule, also called gradient descent learning rule or error back-propagation learning
algorithm (Rumelhart et al. 1986):
wm.'w = wold —anE(W),

where w is the weight vector, &> 0 is a small constant called the learning rate and E
is the difference (i.e. error) between the desired output vector y and the actual output
vector y’ represented as a surface in the weight vector space. In principle, the back-
propagation learning algorithm requires the use of a differentiable activation
function so that the error can be back-propagated using the chain rule for
differentiation. This algorithm is simple in implementation, but requires many
training loops. Various other back-propagation-network learning laws have been
developed. The general goal is to provide a faster descent to the bottom of the error
surface. Silva and Almeda (1990) gave an overview of the investigations on the
topic. The MLPs are often used for classification problems because they can learn
complex decision surfaces.
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Figure 3.7: Hopfield neural network

A Hopfield network (Hopfield 1982) is a recurrent, fully connected,
autoassociative network shown in Figure 3.7. Recurrent associative networks have
something that other types of networks possess only to a limited extent or not at all:
accrete behaviour. Typically, recurrent associative ANNs start at some initial state
and then converge to one of a finite number of stable states. The neurons in a
Hopfield network are characterised by a binary or bivalent input signal, binary or
bivalent output signals that are wrapped around to become inputs to the network, a
simple summation function and a hard-limited threshold activation function. Given
an input vector x, the activation function of a neuron of a Hopfield network is:
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where W = (wy) is a symmetrlcal nxn weight matrix (w; = wy; and w; = 0) and T; is
the threshold defined for the #** neuron. The response of a Hopfield network is
dynamic: after a new input pattern has been supplied, the network calculates the
outputs and feeds them back to the neurons recursively until equilibrium is reached.
Equilibrium is considered to be the state of the system where the output signals do
not change for two consecutive cycles, or change within a small constant.

A Hopfield network does not have a learning law associated with its transfer
function; an energy function H is associated with it instead.

H(x)——Z Zwyx X; +22T,x, and AH = 2*( —x,}'”)*[iwij;,’” —Tk]
i=1j=1 Jj=l

where x is the input vector and AH is the change in the energy if just the state of

the neuron ke {l,n}, j+#k has changed. Whenever a neuron changes state, the

energy function decreases, i.e. AH is negative. Starting at some initial position, the
state vector of the system simply moves downhill on the energy surface of the
network until it reaches a local minimum. In addition, independently of the initial
state, the Hopfield network always converges to a stable state in a finite number of
neuron-update steps (Hecht-Nielsen 1990). A major disadvantage of Hopfield
networks is that-they can rest in a local minimum state instead of a global minimum
state (i.e. equilibrium). In order to overcome the local minima problem, Hinton et al.
(1984) proposed a Boltzmann machine which is a discrete-time Hopfield network in
which the neuron transfer function is modified such that it utilises the simulated
annealing procedure.

Other supervised trained networks are the Radial Basis Function Network
(RBFN), Bidirectional Associative Memory (BAM), Hamming net, MAXNET, etc.
For a detailed description, readers are referred to (Zurada 1992, Kasabov 1996).

Unsupervised leaming is a human ability some ANNs possess. Humans usually
learn more by experience than by attending organised lectures. Similarly, ANNs
based on an unsupervised training are merely given input examples, as they
themselves can discover patterns and/or clusters in the presented data. A typical
unsupervised trained ANN is a Kohonen network.

Figure 3.8 illustrates the basic structure of a Kohonen network (also referred to
as the Kohonen layer). It consists of N neurons, each of which receives n inputs
from a layer of fan-out units below. Each x;, je {1,n} input to a Kohonen processing
element i has a real value weight w; assigned to it. Each processmg element i
calculates its input intensity I; = D(w;, x), where w; = (wy, .. wm) X=(Xp, o0y Xo)'s



and D(u, v) is a distance measurement function. Two common choices for D(u, v)
are the Euclidean distance and the spherical arc distance. After calculating their
input intensities, the Kohonen neurons “compete” to see which one has the smallest
input intensity, i.e. to find out whose weight vector w; is closest to x. Ties are
resolved based on the lowest processing-element-index number. This competition
can be implemented in various ways. One way is to facilitate each Kohonen neuron
to compare its I; value to those received from other processing elements to find out
whose value is smaller. Once the winning Kohonen processing element is
determined, its output is set to y; = 1 while the outputs of other neurons emit y; = 0.
At this point the Kohonen learning takes place:

new
i

where 0< @ <1 is a constant. The Kohonen learning law allows only the winning
neuron to modify its weight and it moves the pertinent weight vector a fraction & of
the way along the straight line from the old weight vector to the x vector. As new x
vectors are entered into the network, the neurons’ weight vectors are “drawn” to
them and form a cloud near where the x vectors actually appear. A Kohonen
network can be used for some statistical problems (e.g. for finding k-means), but in
general it does not perform well, except in the case of linearly separable clusters of
training data.

old
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Figure 3.8: Kohonen network

Other, more complex unsupervised trained ANNs are the Cluster Discovery
Network based on the adaptive resonance theory (ART) developed by Carpenter and
Grossberg (1987) and Self Organising Feature Maps (SOM) developed by Kohonen
(1982, 1990).
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Generalisation

The recall process in the human brain is characterised by generalisation, that is,
similar stimuli recall similar patterns of activity. In fact, the brain reacts to an unseen
stimulus according to previously learned patterns. Similarly, the generalisation
ability also characterises artificial neural networks. When a new input vector x’ is
presented to a trained ANN, a recall procedure is activated. The network would
produce an output y’ which is similar to the output y; from the training examples, if
x’ is similar to the input vector x; In other words, the generalisation principle is that
similar stimuli cause similar reactions. For a new input vector x’, this principle is
illustrated in Figure 3.9 as a mapping of the domain space to the solution space.

In the case of a recurrent ANN, generalisation can take several iterations of
calculating consecutive states of the network. Eventually, the network goes into a
state of equilibrium, when the network does not change its state during the next
iterations. The example is the processing of a Hopfield network.

X — training input vector
X’ — new input vector

Figure 3.9: The generalisation principle of ANN

Applications

By far the largest area of activity in neurocomputing is that of applications (for an

extensive review of the topic, the reader can consult (Rumelhart et al. 1994)).

Numerous technologists, business analysts, scientists and mathematicians are now

applying neuro-computing to a wide variety of problems. In this broad area of

applications, ANNs have been commonly recognised as being well suited for
solving problems in three domains:

e Sensor processing, in which the training data correspond to noisy, complex
sensor data, such as inputs from cameras and microphones. For instance, two
different facial feature detection schemes are integrated into the Facial Data
Extractor part of ISFER which are based on a neural network processing of the
facial image data (see section 4.3).
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o Control or decision learning tasks for which more symbolic representations are
used.

o Data analysis, in which the goal is either the development of a predictive model
or a summary representation of a large body of data.

3.4 Reasoning with uncertainty

One of the characteristics of human reasoning is the ability to form useful
judgements from uncertain and incomplete evidence. This ability is not only needed
for everyday activities which people would normally never formalise, but also for
tasks such as the medical diagnosis or securities analysis which have been subjected
to formal treatment. Because the general need to form judgements from uncertain
and incomplete data is so widespread, many techniques have been developed to aid
or supplant people in this task. This section introduces a number of basic ideas about
uncertainty measurement and inexact reasoning. It should be stressed that here the
empbhasis lies on methods for managing the uncertainty in expert systems in general
as well as on the reason why in the case of ISFER it was necessary to experiment
with a number of different formalisms. Hence, this section does not deal with the
topic of uncertainty in a global manner, or in great depth. For such a prevalent
discussion, the reader can consult the relevant literature (e.g. Shachter et al. 1990,
Shafer and Pearl 1990, and Jackson 1999).

Sources of uncertainty

In general there are many different sources of uncertainty in knowledge-based
problem solving, but most of them can be attributed to either imperfect domain
knowledge or imperfect case data.

In the first case the theoretical basis of the domain may be vague and incomplete.
Such domain theories typically use concepts which are not precisely defined or deal
with phenomena that are imperfectly understood. The knowledge built in the
reasoning mechanism of the Facial Action Encoder part of ISFER is in its entirety
acquired from the FACS, which for each facial action (AU code) provides an
unambiguous linguistic description of the facial change caused by the activation of
that facial action. Hence, the knowledge domain of the Facial Action Encoder is
narrow and well defined as opposed to vague and incomplete.

In the second case, data we deal with may be imprecise, missing, in conflict, or
simply unreliable. We shall refer to data as partial when some answers to relevant
questions about the data are not available. In the scope of ISFER, this might be the
case when none of the feature detectors integrated into the Facial Data Extractor
(chapter 4) succeeds to spatially sample the contour of a prominent facial feature.
We shall refer to data as redundant when there are multiple answers to a single
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relevant question. In the scope of ISFER, this might be the case when several of the
integrated facial feature detectors successfully perform spatial sampling of the
contour of a single prominent facial feature. We shall refer to data as approximate
when answers to relevant questions are available but these are of variable precision.
The facial feature detectors integrated into ISFER employ image processing
techniques as various as neural networking, template matching and fuzzy reasoning.
Each of these has a different performance when applied for localising the contour of
a certain facial feature and, consequently, data that should be dealt with are of
variable precision.

As already mentioned, the main goal for the development of ISFER is to build an
automated tool which can facilitate automated facial expression analysis in static
facial images and be used for behavioural-science investigations of the face.
Facilitating an automated facial action (FACS) coding from static facial images
implies modelling the changes in facial expression in general, estimating the current
deformations of the model based on the information extracted from the currently
examined image, and mapping the estimated model deformations on the appropriate
set of AU codes. In ISFER, a point-based dual-view face model (see Figure 5.2 for a
somewhat adapted model illustrated in Figure 2.16) models the changes in facial
expression. There are several motivations for choosing such a model (section 5.3),
but the crucial one is the observation reported by Bassili (1978) and Bruce (1986).
They showed that a point-based face model resembles the model used by human
observers judging a displayed facial expression. Hence, a point-based face model
facilitates a straightforward conversion of the rules for expression classification used
by human observers (e.g. the FACS rules) into the rules of an automatic facial
expression analyser. Further, the points of the deployed face model can be extracted
in a straightforward manner from the contours of the facial features detected in the
currently examined image by the Facial Data Extractor part of ISFER (Tables 5.4
and 5.6). In turn, the current deformations of the model can also be extracted in a
straightforward manner (section 5.5). Roughly speaking, the Facial Action Encoder
part of ISFER encodes the displayed facial actions and their intensities in two steps:
1. it estimates the current displacement of the model points from the relevant model

points extracted in an expressionless face of the observed subject, and
2. it performs a rule-based mapping of the estimated model-points displacements

and their intensity onto an appropriate set of quantified AU codes; this mapping
is not bijective in the sense that a set of model-points displacements may be used
for the encoding of a single AU code and a single model-point displacement may
be used for the encoding of multiple AU codes.

Thus, the Facial Action Encoder reasons about the encountered facial actions and
their intensity based upon the data which are extracted from the currently examined
static facial image by the Facial Data Extractor and are approximate, most likely
redundant and occasionally partial. In turn, despite of a well-defined knowledge
domain of the FACS, employing the exact reasoning methods in the Facial Action
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Encoder cannot lead towards some useful results, that is, towards the conclusions
having variable certainty measures corresponding to the uncertainties embedded
within the input data. To achieve this, some inexact reasoning methods should be
employed.

There is broad agreement among artificial intelligence researchers that inexact
methods are important in expert systems applications, but there is less agreement
concerning what form these methods should take (Jackson 1999). Roughly speaking
there are three principal formalisms for handling the uncertainty, namely probability
theory, belief functions (also called the Dempster-Shafer theory of evidence), and
fuzzy logic. The following subsections explore both the formalisms themselves as
well as their suitability for the estimation and propagation of data certainty on
various reasoning levels  Taple 3.3
of ISFER. Given the  Applicability of three formalisms for estimating
kind of data uncertainty  and propagating data certainty within ISFER
that may occur in the

input to the Facial Action Pnt): : : :)l,ny fulz::;ifls l;::;zg’
Encoder part ‘{f ISFER, a partial data no/yes no no
rough comparison of the  ["requndant data no/yes no no
three .forrr'lallsms IS | approximate data no/yes no no/yes
summarised in Table 3.3. | "data dependency no no yes

Probabilistic approach

The probabilistic approach to plausible reasoning on inexact data can be explained
in terms of conditional probability (Shafer 1990). The conditional probability of @
given d is the probability that a occurs if d occurs as defined by the Bayes’ Rule,
given in formula (7) in its simplest form and in formula (2) in a more general form.

Pland) _Pldla)P(a)

Pel)~ =@y~ ) U
e e

P(a) is the prior probability of a, that is, the probability prior to discovery of d.
P(ald) is the posterior probability, that is, the probability once d has been
discovered. The meaning of probability can be interpreted in two different ways, the
subjectivists’ and the objectivists’ way. Subjectivists contend that the probability of
an event is the degree to which someone believes that the event at issue is possible,
as indicated by a person’s willingness to place bets upon its occurrence. On the other
hand, frequentists or objectivists contend that the probability of an event is the
frequency with which it occurs.

One way in which this debate in mathematical statistics must be modified for
application to Al is in its identification of subjectivity with prior- and joint-
occurrences probabilities. Subjectivists and frequentists tend to agree on the
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objective (frequentist) character of the statistical model for the data. This model is
usually only partially known, however, and the two schools have different views on
how to handle this lack of knowledge. Subjectivists prefer to assess prior subjective
probabilities for different possible statistical models and then use the data to update
these prior probabilities to posterior probabilities. Frequentists, on the other hand,
prefer to rely on the data alone to estimate the model. Nevertheless, in many
problems of interest to Al the kind of data analysed by subjectivists and frequentists
is not available. Let us consider this issue for the case of facial expression
recognition that is applicable to automated FACS coding and based upon the point-
based face model employed by ISFER (Figure 5.2).

Estimating P(a|d) given some set of facial actions A and some set of face model
deformations D is not too problematic in the single model-deformation case. In that
case, estimating P(a)d) is limited to calculating for each facial action in A4 the
conditional probability that the subject is displaying 4 given that a single model
deformation in D is spotted in the observed image. Nevertheless, given m facial
actions in 4 and n face deformations in D, mn + m + n probabilities are required.
This means that in the simplest case, that is, under the assumption that each facial
action can be correctly encoded based merely on a single face-model deformation,
1088 probabilities are needed taking in consideration that ISFER automatically
encodes 32 different facial actions (AU codes).

This is not a small number, and the situation gets considerably more complicated
if a realistic system performance is to be achieved. When a single facial action is
coded in an input static facial image, more than one model deformation should be
taken into account since each facial action might cause several model deformations.
The more general form of the Bayes’ Rule given in formula (2) requires (mn)* + m+
n* probabilities, that is, 1049632 probabilities for even the most modest value k = 2

given m = n = 32. This is because P(d1|d2 Avondy )P(d2|d3 Andy )...P(d,,)

must be computed. Nevertheless, a simplification is possible under the assumption
that the model deformations are independent on each other; in that case P(d; A d) =
P(d)P(d) and formula (2) does not require more probabilities than the single-model-
deformation scenario.

It can therefore be concluded that the probability theory and the Bayes’ Rule can
provide a means for estimating the certainty of the data, which form the input to the
reasoning mechanism of the Facial Action Encoder part of ISFER, only if:

o all the P(dja) are available, where d; is a single deformation of the face model
employed in ISFER and a; is a single facial action, and

e it can be assumed that the data are independent, in which case the computation of
the joint probabilities of model-deformation sets becomes feasible.

Yet none of these requirements holds in the case of automated facial action
coding in static facial images based on the face model used by ISFER. Let us
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consider this issue in more detail and from the point of view of both the objectivists
and the subjectivists.

Frequentists regard the probability P(djla) as a long-run relative frequency of
that event which should be derived from an objective empirical investigation.
However, in the case of facial action encoding based on the face model employed by
ISFER, the necessary statistical data are difficult to obtain for a number of reasons.
The existing body of literature on psychological and anatomical investigations of the
face does not provide any cross-cultural statistical scrutiny on dependencies between
each change in facial expression and each facial action. Hence, no source for the
necessary statistical data is currently available. Nevertheless, let us assume that each
conditional probability that a certain change in facial expression is visible if a certain
facial action is present will be available after some period of time. In that case, yet
another problem would be encountered. Even if cross-culturally and empirically
defined frequencies of joint occurrences of changes in facial expression and facial
actions would be available, there would still be no record at our disposal of
dependencies between the facial actions and the relevant deformations of the face
model employed by ISFER. In addition, a single change in facial expression is
usually mapped on a set of deformations of the face model employed by ISFER.
Therefore, the face-model deformations that model a single change in facial
expression cannot be treated independently from each other. In turn, the problem of
data dependency is encountered. Hence, a simplification of the Bayes’ Rule given in
formula (2) is not feasible. As a result, more than a million probabilities are
required. Keeping track of dependencies between data, propagating probability
updates and detecting occasional inconsistencies turns out to be intractable in this
case. Furthermore, any facial action can be displayed at various intensity levels,
causing weaker or stronger relevant face-model deformations. Hence, the problem
becomes considerably more complicated since the track of dependencies between
different intensity levels of the face-model deformations and the related facial
actions should also be kept. Finally, the input data to the Facial Action Encoder
which result from the feature detectors integrated into the Facial Data Extractor part
of the system are redundant, moreover, they may be partial and of variable precision.
This means that the probability P(d) cannot merely be approximated with the long-
run relative frequency with which the event d; occurs; the overall accuracy of each
detector which may be used for delimiting the deformation d; as well as the degree
to which the results of other detectors confirm this result must be taken into account.
Altogether, this leads to the conclusion that a frequentists’ probabilistic approach is
not a convenient means for estimating and propagating data certainty within the
Facial Action Encoder.

The arguments to dismiss a subjectivists’ probabilistic approach are quite the
same as the ones described above. This dismissal has been furthermore aided and
abetted by another argument: a rigorous application of the Bayes’ Rule would not
have produced accurate probabilities in any case, since the used conditional
probabilities would have been subjective (McCarty and Hayes 1969, Buchanan and
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Shortliffe 1984). The issue here is that human beings do not appear to be reliable

Bayesian reasoners. People are apt to discount prior odds and accord more weight to

recently presented evidence (Kahneman and Tversky 1972), they are over-confident

in their judgements (Kahneman et al. 1982), and have poor understanding of the
sampling theory (Tversky and Kahneman 1990). However, any knowledge engineer
probably seeks to represent an expert’s knowledge of the world (imperfect though it
may be), rather than to create a veridical model of the world. Nevertheless, even
such an “imperfect” interpretation of probabilities turned out to be by no means a
trivial task in the case of ISFER. Let me explain this by an example. A contraction
of the lateral portion of the forehead muscle (FACS coded as AU2) results in an
upward pull of the outer corners of the eyebrows. This means that AU2 is a proper
coding of the change in facial expression in which the outer comers of the eyebrows
are pulled up. However, the rule of FACS for recognition of AU2 states that AU2
should be scored in both cases: if the outer corners of both eyebrows are pulled up as
well as if the outer corner of just one of the eyebrows is pulled up. In other words,
the activation of AU2 might be bilateral as well as unilateral. As already mentioned

above, subjectivists estimate the probability P(dja) based on the strength of a

person’s belief that the event at issue will indeed occur. But if we know that AU2

can be bilaterally as well as unilaterally activated, what is then a good probability
estimate for the event “raised outer corner of the left eyebrow” versus the event

“raised outer corner of the right eyebrow” given that AU2 is activated? Introducing

multiple levels of activation intensity makes the problem even more difficult to

handle: what is the strength of my belief that the outer corner of the left eyebrow

would be raised for 40% given that the intensity of AU2 activation is 70%?

In summary, a rigorous application of the probability theory and the Bayes’ Rule
does not provide a convenient means for estimating and propagating data certainty at
various reasoning levels of ISFER because:

o the assignment of probabilities to events, according either to the frequentists’
view or to the subjectivists’ view, requires information that is simply not
available;

¢ the data-independence assumption cannot be made and the computation of the
joint probabilities of face-model-deformation sets is therefore not feasible (i.e.
"too many numbers" required); in turn, keeping track of data dependencies and
accordingly updating belief values is intractable;

e keeping track of dependencies between different intensity levels of the face-
model deformations and the related facial actions tuns out to be intractable as
well; moreover, it is not clear how one must deal with the interaction of the
probabilities related to those events.

Due to these problems, a rigorous probabilistic formulation has not been adopted in

tackling the problem of assessing the certainty of the data resulting from the Facial
Data Extractor. However, in contrast to other formalisms for handling uncertainty,
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such as certainty factors and fuzzy logic, which assume that all prior probabilities
P(d) are available, a probabilistic approach provides a means for actual calculation
of these probabilities. So formalisms like certainty factors and fuzzy logic are not
suitable for estimating the prior probabilities P(dy), where d; is a face model
deformation related to a facial feature that has been either inaccurately spatially
sampled or redundantly detected by different detectors having variable precision.
They do not facilitate dealing with redundant, approximate and partial data
generated by the Facial Data Extractor. On the other hand, although a probabilistic
approach is not a convenient means for propagating data certainty within ISFER,
under certain considerations it might provide a means for estimating the prior
probabilities of that data. These issues are discussed in the subsection concerned
with the actually employed method for dealing with uncertainty in ISFER.

Certainty factors and belief functions approach

An alternative to the Bayesian reasoning with uncertainty is the use of certainty
Jactors (CFs). Shortliffe and Buchanan first proposed this method within their expert
system for medical diagnosis MYCIN (Shortliffe and Buchanan 1990). In terms of
subjectivists’ view, they defined the certainty factor CF(h,e) as the change in belief
that a hypothesis 4 is correct based on the evidence e:

P(nle)- P(n)

MB(h,e)= P(nle)> P(n)
CF(h,e)= P(h; P 1(’}3118) 3)
MD(h,e)= 0 P(k)> P(hle)

where if e is supporting evidence such that P(hle) > P(h),where P(h) is the expert’s
subjective probability that hypothesis 4 is correct, the increase of the expert’s degree
of belief in & will be given by the measure of belief (MB); if e constitutes evidence
against & such that P(h|e) < P(h), the increase of the expert’s degree of disbelief in A
will be given by the measure of disbelief (MD). The main uses of CFs are:

e to guide the program in its reasoning,

¢ to cause a hypothesis to be deemed unpromising if CF € [0.2, -0.2],

o to rank hypotheses after all the evidence has been considered.

The main criticism of certainty factors as defined by Shortliffe and Buchanan is
that, in general, the CF associated with a hypothesis by MYCIN does not correspond
to the probability of the hypothesis given the evidence if a simple probability model
based on the Bayes’ Rule is adopted (Adams 1976). Heckerman (1990) established a
probabilistic semantics for the certainty-factors calculus used in MYCIN and
showed that the belief changes are controlled by a monotonic transformation of
likelihood ratio P(e|h)/P(e|-h), a result obtained earlier by Good (1968) relative to
the notion of “weight of evidence”. This led further to uncovering of fundamental
assumptions implicit in a certainty-factor model which turned out to be satisfied
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only in tree-structured networks where no evidence bears on more than one
hypothesis variable. Otherwise, as shown by Adams (1976), in some circumstances
the ranking of hypotheses will depart from the ranking produced by applying the
probability theory.

The example he gives is the following. Let &, and A, be two hypotheses and e
supportive evidence for both hypotheses. Let k; have a higher subjective prior
probability than A, and let this superiority remain after the evidence is taken in
consideration. Thus, let P(h) = P(hy) and P(hjle) > P(hyle). Under these
circumstances it should hold that CF(h,,e) > CF(hje). Yet, suppose that P(hy) = 0.9,
P(hy) = 0.2, P(hjle) = 0.95, P(h;le) = 0.7. Then the increase of belief in &; and the
increase of belief in A, are given by:

0.95-0.9 . 0.7-0.2
MB(h, ,e) 109 0.5, respectively MB(h2 ,e) )
Thus, CF(h,,e) < CF(h,,e) even though P(h;|e) > P(h;je).

In the case of automated facial action coding based on the face model employed
by ISFER, a single deformation of the model may bear on the encoding of several
AU codes. For example, the distance between the left mouth corner and the inner
corner of the left eye is a model deformation that bears on the encoding of three
different AU codes: an upward pull (AU12), sharp upward pull (AU13), and
downward pull of the mouth corners (AU15). As we have already seen, a certainty-
factor model is not suitable for the cases where single evidence bears on more than
one hypothesis. This forms the primary argument against the employment of
certainty-factors-based inference in the Facial Action Encoder.

Another argument against applying certainty factors for estimating and
propagating data certainty at various reasoning levels of ISFER is abetted by the
Horvitz-Heckerman criticism of MYCIN (1986). They state that Shortliffe and
Buchanan use certainty factors as measures of change in belief while certainty
factors were actually elicited from experts as degrees of absolute belief. Yet it is not
possible to elicit degrees of either absolute or some "temporary" belief in a certain
event since that requires information which is simply not available. For instance, if
we know that an upward pull of the left mouth comer bears on the encoding of
AUI2 as well as on the encoding of AU13, what is then a good probability estimate
for the event “AU12 activated” versus the event “AU13 activated” given that the left
mouth corner is raised? The situation becomes even more complicated when
dependencies are introduced between different intensity levels of the face-model
deformations and the related facial actions. For example, what is the degree of my
belief in the event “AU12 activated with 60% of intensity” given that the left mouth
corner is raised for 60%? Due to these problems a certainty-factors-based inference
is not applicable in the case of automated facial action encoding based on the face
model employed by ISFER.

Another alternative approach to inexact reasoning is the theory of belief
functions, also called the Dempster-Shafer theory of evidence. While certainty

=0.625.
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factors represent a rather ad hoc approach to plausible reasoning, the Dempster-
Shafer theory is theoretically well founded. This theory assumes that there is a fixed
set, a so-called frame of discernment, of mutually exclusive and exhaustive elements
(hypotheses, conclusions) which are the subject of reasoning. Further, there is a
certain fixed amount of belief (=1) that is distributed over all subsets of the frame of
discernment including the empty subset representing the environment. Newly
encountered evidence causes a redistribution of the belief among the subsets. This
redistribution is defined by the Dempster’s Rule of Combination (Shafer and
Srivastava 1990) and it is done such that the sum of distributed belief always
remains 1. Finally, a belief interval of any given focal element 4 is defined as
[Bel(A), Pis(A)], where Bel(A) is the total belief of a given set A and all its subsets,
and Pls(A4) is the plausibility of A defined as Pls(4) = 1-Bel(—~A). The width of the
belief interval is regarded as the amount of uncertainty with respect to an element
(hypothesis, conclusion) given the available evidence.

An argument to dismiss the Dempster-Shafer theory as a means for estimating
and propagating data certainty at various reasoning levels of ISFER is that the
hypotheses in the Dempster-Shafer theory are assumed to be both exhaustive and
mutually exclusive. However, neither of these assumptions can be made in the case
of facial action encoding based on the face model employed by ISFER. As explained
above, a single deformation of the face model may bear on the encoding of several
AU codes. As a result, mutual exclusiveness cannot be assumed. In addition, from a
total of 44 AUs defined in FACS, the employed face model facilitates a unique
representation of merely 29 different AUs (Table 5.8). As a result, the system may
describe two different facial expressions (i.e. unlike in terms of displayed facial
actions) using identical AU-coded descriptions. When this drawback of the
employed face model is taken in consideration, exhaustiveness cannot be assumed.

Fuzzy Logic approach
The knowledge which an expert uses to interpret some signal or to perceive a
symptom as a manifestation of a particular change or disorder is usually based on
relations between classes of data and classes of hypotheses, rather than on individual
data and hypotheses. Many forms of problem solving involve some kind of data
classification; for instance, specific sensor signals, disease symptoms, changes in
facial expression are likely to be seen as the instances of more general categories
(e.g. malfunction classes, classes of diseases, emotion classes). Yet such categories
may not be accurately defined. Hence, class membership may be difficult to assess:
a datum may exhibit some properties of the class, but not all of them, or it may
exhibit the relevant properties only to a certain degree. Fuzzy set theory (Zadeh
1965) is a formalism for reasoning about such phenomena forming the basis of both
fuzzy logic (Zadeh 1975) and the possibility theory (Zadeh 1978).

In the classical set theory a set is a collection of any number of definite
distinguished objects that share common properties. For example, if A is the set of
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distances that are 40 centimetres, then for x to belong to 4, x must be 40. So if a
distance is 39.9 or 5 centimetres, the distance will be excluded from 4. Classifying a
5 centimetres long distance and a 39.9 centimetres long distance in the same
category, while at the same time classifying a 39.9 centimetres long distance and a
40 centimetres long distance into two different categories clearly demonstrates the
kind of inconsistencies associated with the classical set theory. Therefore, classical
sets are sometimes referred to as crisp sets. The crispness of the classical set theory
poses a problem when we deal with concepts that are not accurately defined.

This kind of observations led to the development of fuzzy set theory. The term
Sfuzzy was introduced by Zadeh to describe the sets whose membership criteria are
vague. In contrast to the classical set theory, an element can belong to a fuzzy set, be
completely excluded from a fuzzy set, or it can belong to a fuzzy set to any
intermediate degree between these two extremes. The extent to which an element
belongs to a given fuzzy set is called the degree of membership. Uncertainty about
the statement that a number belongs to a given fuzzy set is not represented by the
probability that the number belongs to that set, but rather by the possibility that the
number belongs to the set. A so-called degree of membership of a particular number
in a particular fuzzy set, generated by a so-called membership function represents the
possibility of truth that the number belongs to the fuzzy set. As given in formula (4),
a fuzzy set F can be viewed as an association between numbers in which to each
element f€ F one and only one degree of membership y+(f) is assigned, where g5 is
the related membership function.

F:feF-ze(rlefol] “@

Consider the concept denoted by the word “heavy” as applied to objects. Given
the vagueness of the concept, how do we characterise a set of heavy objects? In the
classical set theory, we could describe a set HEAVY by characterising the set of
objects heavier than 100kg as {x € HEAVY | weight(x)>100kg}. However if my
ambition is to select a heavy object but I am presented with a limited choice, then an
object of 80kg is still a better choice than an object of only 50kg. But neither an
object of 80kg nor an object of 50kg would be a member of the delimited HE4AVY
set and I would not be able to make any choice. So 1 need a set of heavy objects that
could be characterised by the function from the domain of available objects. Such a
set could be a fuzzy set HEAVY defined by the set of weights of the available
objects {40kg, 50kg, 60kg, 70kg, 80kg, 90,kg, 100kg} and the corresponding
degrees of membership {0.00, 0.05, 0.30, 0.50, 0.85, 0.95, 1.00}.

The fuzzy set HEAVY can be represented graphically as illustrated in Figure
3.10. In the first graph, HEAVY is represented as a discontinuous function which
does not take account of the intermediate weight values. In order to account for an
intermediate weight value, the values for the degree of membership should be
interpolated. An interpolation can be achieved by utilising smoothing functions like
a Sigmoid function or a m-function (given in formula (5)) or the piecewise-linear
interpolation illustrated in Figure 3.10.

76



S(x;a’ ﬂ’ 7)

li-

)

S(x;}'—ﬁ,r——gyrj x<y
”(x’-ﬂ’Y): ﬂ
1—S[x;y,7+?,y+ﬁ)x> Y

Graphical representation of HEAVY

0.8 A
0.6 1
0.4 A

0.2 1

T T T
40 50 60 70 80 90 100

Linear interpolation for HEAVY

0.8
0.6
0.4+

0.2 4

40 50 60 70 80 90 100

Figure 3.10: Discontinuous HEAVY and piecewise-linearly interpolated HEAVY
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The main difference between probability theory and fuzzy logic is that a
probability is regarded as an approximation to something more precise. There is a
50% chance that a fair coin will come down heads, but when tossed the coin will
come down 100% heads or 100% tails. In the “heavy object” example, the intended
meaning of HEAVY(90kg) = 0.95 is not that an object of 90kg is 100% heavy or
100% not heavy but that we are 95% sure that the object is heavy. The uncertainty is
inherent in the vagueness of the concept. Thus it seems reasonable to suppose that
there remains a degree to which the object in question is not heavy (e.g. it is light by
comparison with a concrete block of one ton).

Fuzzy logic deals with situations where the questions that we pose and the
relevant knowledge that we possess both contain vague concepts. However,
vagueness is not the only source of uncertainty; sometimes we are simply unsure of
the facts (e.g. of the data resulting from the Facial Data Extractor part of ISFER).
Possibility theory is a species of fuzzy logic for dealing with precise questions on
the basis of imprecise knowledge. To illustrate the relation between fuzziness and
possibility, we can use an example. A non-fuzzy statement “x is an integer in the
range [0,5]" has the following meaning:

Poss(x=u)=1 0<u<s
Poss(x=u)=0 u<Ovu>5

A fuzzy version of the above statement “x is a small integer in the range [0,5]” can
have, for example, the following meaning:

Poss(x=0)=1 Poss(x=2)=0.9 Poss(x=4)=0.3 Poss(x= u)=0
Poss(x=1)=1 Poss(x=3)=0.7 Poss(x=5)=02 u<Ovu>5

In the case of the fuzzy proposition, the possibility is assigned a value from the
interval [0, 1], rather than it is labelled either possible or impossible, as is the case
with the classical proposition. The possibility of the fuzzy proposition stated above
represents, in fact, the degrees of membership {1, 1, 0.9, 0.7, 0.3, 0.2} of the
corresponding elements {0, 1, 2, 3, 4, 5} of the fuzzy set SMALL INTEGER. As
mentioned above, Zadeh rather refers to uncertainty whether an object belongs to a
fuzzy set as the possibility that the object belongs to the set than as the probability
that the object belongs to the set. The differences between possibility and probability
can be summarised as:
¢ The probabilities have to sum to 1. The possibilities are not restricted in such
way.
A high possibility does not imply a high probability.
A small possibility usually implies a small probability but a small probability
does not imply a small possibility.

Fuzzy logic deals with negation, conjunction and disjunction in the following
way:
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e Iffe F, where Fis a fuzzy set (category), x_r(f)=1-2r(f).
o Iffe F,fe K,and F and K are fuzzy sets, xp x (f)=min(xr(f) 2% (f)).
e Iffe Forfe K, and Fand K are fuzzy sets, yr.x (f)=max(xr(f), 2x(f)).

The min and max operators are commutative, associative, and mutually
distributive. Like the operators of standard logic, they obey the principle of
compositionality. This means that the values of compound expressions are computed
from the values of their component expressions and nothing else. This is in contrast
to the laws of probability, where conditional probabilities must be taken into account
when conjunction and disjunction are computed. In turn, this facilitates a way for
dealing with dependant data like in ISFER. If a fuzzy logic approach is employed for
propagating data certainty in ISFER, the certainty about an encoded facial action
(compound expression) can be computed from the certainties about the detected
face-model deformations (component expressions) that reveal the pertinent facial
action. In other words, keeping track of dependencies between the face-model
deformations and the related AU codes and propagating the certainty updates is
tractable in that case. The actual implementation of a fuzzy logic approach within
the Facial Action Encoder is explained in chapter 5.

Dealing with uncertainty in ISFER

At this point, it can be concluded that a rigorous application of any of the three
principal formalisms for handling uncertainty is not suitable for estimating and
propagating certainty of the data resulting from the Facial Data Extractor. The
certainty factors, belief functions, or fuzzy logic do not provide a means for
estimating the certainty of redundant, approximate, and/or partial data which might
be generated by the Facial Data Extractor since those methods a priori assume
availability of those certainties (i.e. availability of the prior probabilities P(dy). A
data independence assumption cannot be made and the track of dependencies
between different intensity levels of the face-model deformations and the related AU
codes must be kept. This implies the inapplicability of an approach that would be
based exclusively upon the probability theory.

On the other hand, the knowledge about how to estimate the certainty of the data
resulting from the Facial Data Extractor does exist. For instance, it is known that
data redundancy can be exploited to compare the results of different detectors. If
different detectors yield the same spatial sampling of the contour of a certain facial
feature, then that datum should have a higher certainty. This can be also expressed in
the following way: the larger the number of different detectors yielding the same
spatial sampling of a certain facial feature's contour, the higher the certainty about
that datum. Further, the Facial Data Extractor generates data of variable precision in
the sense that a certain detector may be more suitable for detection of a certain
feature than another. Hence, the certainty of the data which represents the spatial
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sampling of a facial feature obtained by a given detector can be viewed as the
frequency with which that facial feature has been successfully spatially sampled by
the given detector. In addition, it is also known that some of the facial points are
immovable (stable) in the sense that no facial action can cause the displacement of
these points (FACS, Ekman and Friesen 1978). Such points are the inner corners of
the eyes, the inner corners of the nostrils, and the medial point of the mouth (for a
detailed discussion about stable facial points, the reader is referred to section 5.4).
Since the camera setting (two head-mounted cameras; see also sections 2.6 and 4.1)
ensures scale- and orientation-invariant images acquired during a single session, the
location of the stable facial points should remain the same during the entire session.
Therefore, the detected displacement of these model points from the relevant model
points extracted from an expressionless face of the observed subject represents in
fact the degree of the detection error. Hence, the certainty of the data which
represents the spatial sampling of a facial feature obtained by a given detector can be
estimated based upon the error made by the given detector while localising the stable
points belonging to the facial feature at issue; namely the larger the degree of the
detection error, the lower the certainty about the data at issue. Furthermore, it is also
known that people display some #ypical facial expressions more often than some
other expressions. The typicality of a facial expression can be viewed as the
frequency with which that expression occurs. In addition, the probability of an
expression whose occurrence might be expected but has not been actually detected
can be estimated based on the typicality of that expression. Finally, as already noted
above, keeping track of dependencies between the model deformations and the
related AU codes and propagating the certainty updates is tractable if a fuzzy
approach is applied.

These observations are reflective on a situation in which the properties used to
associate the elements in a set ¥ with those in a set U are uncertain, but we know the
process used to select the properties which play a role in the association. In other
words, the above listed observations model a situation in which the knowledge of
the appropriate functional form is expressed by process knowledge that could be
formalised either in terms of probabilities or in terms of possibilities. For a profound
discussion on models which exploit process knowledge of probabilistic type, the
reader can consult the Bayesian transition matrices (Yager 1988).

Dealing with partial data

In case a certain facial feature (e.g. an eyebrow, an eye or the mouth) fails to be
detected by the facial feature detectors integrated into the Facial Data Extractor, the
Facial Action Encoder utilises the pertinent facial feature detected in the
expressionless face of the observed person to substitute missing data (sections 2.6).
Hence, exact information about the examined expression is lost. This information
loss can be compensated in two different ways. The first one is to exploit a “higher-
level grammar of basic emotional expressions”, that is, to reason about possible but
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yet undetected changes in facial expression in the context of emotional expressions

of which the actually detected changes in facial expression make a part. In that case,

the following processing might be applied:

1. forward reasoning: classify the actually detected changes in facial expression
(coded in terms of AU codes) under one of the six basic emotion categories
(Pantic et al. 1998b, 1999b)

2. backward reasoning: specify the appropriate facial appearance (i.e. AU code) of
the undetected feature by finding the best match between the AU-coded
description of the observed facial expression and the AU-coded description of
the facial expression that characterises the emotion category delimited in step 1
(Pantic and Rothkrantz 2000a).

The motivation that underlies this reasoning process is based on the expectation that
a smile, for instance, is coupled with “smiling” eyes rather than with expressionless
eyes. However, this approach has several limitations. First, not every facial
expression that can be displayed by the face can be classified under one of the six
basic emotion categories. In other words, a smile could be coupled with “smiling”
eyes in an expression of joy, with wide opened eyes in an expression of pleasant
surprise, or with any other expression of the eyes. In turn, this approach would in
any case not produce an accurate assessment of the appearance (i.e. AU code) of an
undetected facial feature since the used emotional classification of facial expressions
would be singular and limited to the six basic emotion categories. Furthermore,
people display some typical facial expressions more often than other ones. Hence,
even if the employed classification would categorise the examined expression into
multiple user-defined interpretation categories, this approach would not produce an
accurate assessment of the appearance (i.e. AU code) of an undetected facial feature
since the typicality of an expression would not be taken into account.

Another way of dealing with partial data resulting from the Facial Data Extractor
is to apply a frequentists’ probabilistic approach. Such an approach seems very
suitable under the consideration that the typicality of an expression can be viewed as
the frequency with which that expression occurs. Expressing the typicality of facial
expressions by process knowledge of a probabilistic type is reflective on a situation
in which the characteristic (typicality) used to associate the elements (expressions)
of some set ¥ with some value U (degree of typicality) is uncertain, but we know the
process (calculating the frequency of each expression) that can be used to assign this
value.

We have seen that the Bayes’ Rule is applicable only if all the inverse
conditional probabilities are available and the data-independence assumptions can be
made such that the computation of the joint probabilities is feasible. When applied to
partial data from the Facial Data Extractor, the Bayes’ Rule given in formula (6)
computes the conditional probability that the displayed facial expression is AU-
coded as (AU, +...+AU+AU,,,) given that the actually detected facial expression is
AU-coded as (AU +...+AU)).
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P(AU, ++ AU, + AU, |AU, +-+ AU, )=
P(AU, +--+ AU, |AU, +--+ AU, + AU, JP(AU, ++-+ AU, + AU )
P(AU, +--+ AU,)

Since the activation of each and every AU which is a part of (AU,+...+AU;) forms a
prerequisite for (AU,+...+4U+AU,.,), then for any combination (AU+...+AU) of
activated AUs P(AU,+..+AUJAU+..+AU+AU,,) = 1. Furthermore, it is not
essential to prove the data independence since each combination of activated AUs
can be regarded as a single event and a more general form of the Bayes’ Rule (like
the one given in formula (2)) is unnecessary in that case. In tumn, the Bayes’ Rule
provides a convenient means for dealing with partial data from the Facial Data
Extractor. The actual implementation of a Bayesian approach to deal with partial
data resulting from the Facial Data Extractor is explained in detail in section 5.6.

(6)

Dealing with approximate data

The Facial Data Extractor generates data of variable precision in the sense that a
certain detector may be more reliable in detecting a certain feature than another
detector. In turn, the certainty of the data that represents the spatial sampling of a
facial feature obtained by a given detector can be viewed as the reliability of the
detector at issue, that is, as the frequency with which that facial feature has been
successfully spatially sampled by the given detector. Expressing the reliability of the
data generated by a given detector while spatially sampling a certain facial feature
by process knowledge of a probabilistic type reflects a situation in which the
characteristic (reliability) used to associate the elements (detected feature) of some
set ¥ with some value U (degree of reliability) is uncertain, but we know the process
(calculating the frequency with which the detector at issue successfully detects the
facial feature at issue) used to assign this value. Hence, the certainty of a facial
feature contour localised by a given detector will be estimated as the proportion
between the number of test cases for which the given detector successfully sampled
the facial feature at issue and the total number of test cases.

Nevertheless, this approach introduces a set of complications. First, the notion of
successful spatial sampling of a given facial feature should be defined. A
localisation of the contour of the given facial feature with an average localisation
error of 12 pixels per contour point should be less “successful” than a localisation
with an average error of 2 pixels per contour point. In addition, a localisation with an
average error of 12 pixels per contour point is not useful at all for the facial
expression analysis if the model deformations that can uncover a certain facial
action are approximately of the same scale. Let me assume that for a certain image
resolution and for each prominent facial feature it is possible to define a maximal
average localisation error with which the achieved localisation of the facial feature
will still be useful for the facial expression analysis. Then, by delimiting the
displacement between the currently localised stable facial points belonging to a
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certain feature and the pertinent points localised in an expressionless face of the
observed subject, the performed localisation could be classified as either successful
or unsuccessful. Still another problem remains. Independently of whether in the
currently examined image a given detector successfully localises a facial feature
with the maximal localisation error “allowed” for that feature or it localises it with a
much smaller error, the certainty measure assigned to the pertinent generated data
will be the same. Obviously, this is a serious drawback of the proposed frequentists’
probabilistic approach.

Another way of dealing with approximate data from the Facial Data Extractor is
to exploit the knowledge about the facial anatomy and dynamics. As already noted
above, some of the facial points are stable in the sense that no facial action can cause
a displacement of these points (e.g. the inner corners of the eyes, the inner corners of
the nostrils, and the medial point of the mouth). Since all the images acquired during
a single session are scale and orientation invariant, the location of the stable facial
points should remain the same during the entire session. Hence, the certainty of a
facial feature contour localised by a given detector can be estimated based on the
error made by the given detector in localising the stable points belonging to that
feature: the larger the error, the lower the certainty of the data. The goal is to define
a mapping between the displacement of the actually detected stable facial point from
the pertinent point detected in an expressionless face of the observed subject
(localisation error Ere [0,max(displace)]) and the certainty measure, CMe[0,100]
percent, assigned to the feature to which the stable point belongs. The mapping
should not have a detrimental effect upon our ability to act. In other words, if the
localisation error exists, say Er = 5, then the performed facial feature detection is
still better than that the one having an error Er = 12. Furthermore, the mapping
should be defined in such a way that a localisation error Er = 0 corresponds to a
certainty measure CM = 100%. Hence, the intended meaning of the mapping is not
that a performed feature detection is 100% accurate or 100% inaccurate but that we
are sure to some degree CM, based upon the measured error Er, that the performed
feature detection is accurate. The uncertainty about the accuracy of the performed
feature detection therefore can be expressed as the possibility that this detection is
accurate rather than the probability that this detection is accurate. In turn, a
functional form defined in the possibility theory (e.g. a Sigmoid membership
function or a Gaussian membership function) would be probably the best choice for
representing the intended mapping.

For example, the graphical representation of the mapping CERTAINTY(eye_Er)
= CM may be illustrated as given in Figure 3.11 under the following assumptions:

e for a 720x576 pixels image resolution the maximal localisation error of the inner
corner of the eye with which the eye detection will be still useful for further
analysis is eye_Er =35,
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o for a 720x576 pixels image resolution the maximal localisation error of the inner
corner of the eye with which the eye detection will be still considered as “well
performed” is eye_Er = 3.

Section 5.4 explains for each prominent facial feature and a given image
resolution how to determine the maximal average localisation error with which the
localisation of a certain facial feature is still useful for the facial expression analysis.
Section 5.4 also discusses in detail the choice of functional representation for the
mapping between the actual localisation error made in localising a certain feature
and the certainty measure assigned to that feature.
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Figure 3.11: Approximating the mapping CERTAINTY{eye_Er=CM with a Sigmoid
membership function and a Gaussian membership function; in the case of
Gaussian function, only the positive half of the x-axis will be actually exploited

Dealing with redundant data
The Facial Data Extractor generates redundant data when several of the integrated
facial feature detectors successfully sample the contour of the same prominent facial
feature. Data redundancy can be dealt with by choosing the best from the results of
all detectors that localise the same facial feature, that is, by simply classifying those
results according to the certainty measures assigned to them as explained in the
previous subsection. The datum to which the highest certainty measure has been
assigned will be used in a further processing of ISFER while the rest of data will be
discarded.

However, as noted above, data redundancy can be exploited to compare the
results of different detectors, that is, to make inter-detector accuracy checks. If
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different detectors yield the same spatial sampling of the contour of a certain feature,
then the results of those detectors confirm each other and the resulting data should
have a higher certainty. This might be also expressed in the following way: the
larger the number of different detectors yielding the same spatial sampling of the
contour of a certain facial feature, the higher the certainty of that data. This means
that a datum d; to which a lower certainty measure has been assigned during the
process explained in the previous subsection might still be chosen over a datum d,
where i # j, to which a higher certainty measure has been assigned if other available
data confirm the datum d;. Section 5.4 explains in detail the actual implementation
of both the inter-detectors consistency checks and the procedures for selecting the
best of the data redundantly extracted from an input facial image.

3.5 Machine learning

This section is concerned with the field of machine-learning and provides a short
overview of a number of well-known learning paradigms. For a more profound
discussion about different learning algorithms, theoretical results, and applications,
the reader is referred to (Mitchell 1997).

Machine learning is inherently a multidisciplinary field. It draws on results from
research fields as diverse as:

o Artificial Intelligence: Al forms a theoretical and methodological basis for
learning symbolic representations of concepts, learning in terms of classification
and pattern recognition problems, and learning by using prior knowledge
together with training data as a guideline.

e Bayesian methods: the Bayes’ theorem forms the basis for calculating
probabilities of hypotheses, the basis of the naive Bayes classifier, and the basis
of algorithms for estimating values of unobserved variables.

o Computational complexity theory: This theory imposes the theoretical bounds on
the inherent complexity of different learning tasks measured in terms of
computational effort, number of training examples, number of mistakes, etc.

e Control theory: This theory forms the theoretical foundation of procedures that
learn to control processes in order to optimise predefined objectives and to
predict the next state of the process they are controlling.

o Information theory. Measures of entropy and optimal codes are germane and
central to the issue of delimiting optimal training sequences for encoding a
hypothesis.

o Philosophy: Philosophical argumentations like “the simplest hypothesis is the
best” underlie the reasoning process of machine learning algorithms.

e Psychology: The view on human reasoning and problem-solving initiated many
machine learning models (e.g. see the discussion on CBR in section 3.6).
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o Neurobiology: Information processing found in biological organisms motivated
ANN models of learning (section 3.3).

As delimited by the definition given by Mitchell (1997), a computer program is
said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as measured by P, improves
with experience E. For example, the Facial Expression Classifier part of ISFER
which classifies facial expressions in terms of user-defined interpretation labels
(chapter 6), improves its performance as measured by its ability to accomplish user-
defined interpretations at the class of tasks involving classification of facial
expressions, through experience obtained by interacting with the user on the
meanings that he/she associates with different facial expressions. In general, in a
well-defined learning problem, these three features must be identified (i.e. the class
of tasks 7, the measure of performance to be improved P, and the source of
experience E). Once the learning problem is defined, the next step in designing a
learning system is to delimit exactly:

o the type of knowledge to be learned,

e the representation of this target knowledge (i.e. the definition of target function
to be learned, which when utilised will produce for any instance of a new
problem as input a trace of its solution as output), and

o the learming mechanism to apply.

Different target knowledge (hypotheses space) representations are appropriate
for learning different kinds of target functions. For each of these hypothesis
representations, the corresponding learning algorithm takes advantage of a different
underlying structure to organise the search through the hypotheses space. Therefore,
deciding about the issues listed above involves searching a very large space of
alternative approaches to determine the one that best fits the defined learning
problem. In order to decide a machine learning algorithm which will perform best
for the given problem and the given target function, it is useful to analyse the
relationships between the size of the hypotheses space, the completeness of it, the
number of training examples available, the prior knowledge held by the learner, and
the confidence we can have that a hypothesis that is consistent with the training data
will correctly generalise to unseen examples.

Though, generally, learning is considered as one of the basic facets of
intelligence, not all Al techniques are capable of learning. Expert systems are an
obvious example, at least in their most common form (section 3.2). The primary
algorithms and approaches to machine learning are described below.

Decision trees
Decision tree learning is one of the most widely used and practical methods for
inductive inference. It is a method for approximation of discrete-valued functions, in
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which a tree represents the learned function. A decision tree is in a nutshell a
discrete value functional mapping, a classifier. Each node in the decision tree
specifies a test of some attribute of the query instance, and each branch descending
from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the value
of the attribute. This process is repeated for the subtree rooted at the new node as
long as it takes to reach the appropriate leaf node, then returning the classification
associated with this leaf. Several algorithms are available that can be used to
construct a tree based on some data set. A typical example is the ID3 algorithm
proposed in (Quinlan 1993). This is a greedy search algorithm that constructs the
tree recursively and chooses at each step the attribute to be tested so that the
separation of the data examples is optimal. This decision-tree learning method
searches a complete hypothesis space (i.e. the space of all possible decision trees)
and, thus, avoids difficulties of restricted hypothesis spaces (i.e. that the target
function might not be present in the hypothesis space). Its inductive bias is a
preference for small trees over large trees. Experiments that compare decision-tree
learning and other learning methods can be found in numerous papers, for example,
in (Weiss and Kapouleas 1989), (Thrun 1991) and (Dietterich et al. 1995).

Artificial neural networks

ANNs provide a general, practical method for learning real-valued, discrete-valued,
and vector-valued target functions from examples. Algorithms such as
backpropagation use gradient descent to tune network parameters to best fit a
training set of input-output pairs. ANN learning is robust to etrors in the training
data and has been successfully applied to problems such as interpreting visual
scenes, speech recognition, etc. (section 3.3).

Learning set of rules

One of the most expressive and human readable representations of a learned target
function is a set of if-then rules that jointly define the function. One way to learn sets
of rules is to learn a decision tree first, then translate the tree into an equivalent set
of rules; one rule for each leaf node in the tree. A quite successful method for
converting the learned tree into a set of rules is a technique called rule post pruning
used by the C4.5 algorithm (Quinlan 1993), which represents an extension of the
original ID3 algorithm.

Another way to convert a tree into a set of rules is to apply a sequential covering
algorithm for learning sets of rules based upon the strategy of learning one rule,
removing the data it covers and then iterating this process. To elaborate, given a
LSR (learn-single-rule) subroutine, invoke it on all the available training examples,
remove any positive examples covered by the rule it learns, then invoke it again to
learn a second rule based on the remaining training examples. Thus, a sequential

87




covering algorithm sequentially learns a set of (disjunctive) rules that together cover
the full set of positive examples. Because this algorithm carries out a greedy search,
so it formulises a sequence of rules without backtracking, the smallest or best set of
rules that cover the training examples is not necessarily found. A prototypical
sequential covering algorithm is the general-to-specific beam search which searches
through the space of possible rules maintaining k best candidates, then generates
descendents for each of these k best candidates, and again reduces the resulting set
to k most promising members. This algorithm has been used by the CN2 program
(Clark and Niblett 1989). Many variations on this approach have been explored (e.g.
specific-to-general search like GOLEM (Muggleton 1992) and example-driven
searches such as FIND-S and CANDIDATE-ELIMINATION (Mitchell 1997)).

Inductive logic programming

The previous subsection discussed algorithms for learning sets of propositional (i.e.
variable-free) rules. This subsection is considered with learning rules that contain
variables, in particular, learning first-order Horn theories. Inductive learning of first-
order rules is also referred to as Inductive Logic Programming (ILP), because this
process can be viewed as automatically inferring PROLOG' programs from
examples. A variety of algorithms has been proposed for learning first-order rules. A
typical example is FOIL (Quinlan 1990), which is an extension of the sequential
covering algorithms to first-order representations.

Another approach to inductive logic programming is inverse deduction, which is
based upon the simple observation that induction is just the inverse of deduction. In
other words, the problem of induction is to find a hypothesis & that satisfies the
constraint (V{x;, fix))eD) (B A h A x;) — f(x), where B is general background
information, x;...x, are descriptions of the instances in the training data D,
J(x)...f(x,) are the target values of the training instances, and expression Z ~ C is
read “C follows deductively from Z”. A prototypical algorithm based upon inverse
deduction principle is CIGOL (Muggleton and Buntine 1988), which uses the
inverse resolution, an operator that is the inverse of the deductive resolution operator
introduced by Robinson (1965) and commonly used for mechanical theorem
proving. For further reading on ILP, the reader can consult (Lavrac and Dzeroski
1994), (De Raedt 1996), and (Furukawa et al. 1999).

Instance-based learning

In contrast to learning methods that construct a general, explicit description of the
target function when training examples are provided, instance-based learning
methods simply store the training examples. Generalising beyond these examples is
postponed until a new instance must be classified: given a new instance, its relations

! PROLOG is a general purpose, Turing-equivalent programming language in which
programs are expressed as collections of Horn clauses.
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to the already stored examples are examined in order to assign a target function
value (the classification) for the new instance. Due to this property, instance-based
learning methods are also called lazy learning methods, as opposed to the eager
learning methods represented by all other learning algorithms discussed in this
section. Examples of instance-based learning include nearest-neighbour learning and
locally weighted regression methods. Instance-based learning also includes case-
based reasoning methods that use more complex, symbolic representations for
instances. Early theoretical results on nearest-neighbour learning algorithms can be
found in (Cover and Hart 1967), while an overview of the topic can be found in
(Mitchell 1997). A survey of methods for locally weighted regression is given in
(Atkenson et al. 1997). Section 3.6 provides a detailed discussion on case-based
reasoning.

A key advantage of instance-based learning as a delayed, or lazy, learning
method is that instead of estimating the target function once for the entire instance
space, these methods can estimate it locally and differently for each new instance to
be classified. Yet, these methods are at a disadvantage because of their computation
and memory/storage requirements.

Genetic algorithms

Genetic Algorithms (GA) are optimisation techniques providing an approach to
learning that is based loosely on simulated evolution. One thing that distinguishes
GA from other optimisation algorithms is that GA simultaneously work on large sets
(populations) of possible solutions. The search for an appropriate hypothesis begins
with a population of initial hypotheses. Members of the current population give rise
to the next generation population by means of operations such as random mutation
and crossover, which are patterned after biological evolution processes. At each
iteration, the hypotheses in the current population are evaluated relative to a given
measure of fitness and the most fit members of the population are selected to
produce new offspring that replace the least fit members of the population. To
elaborate, the learning task of GA is to find the optimal hypothesis according to the
predefined fitness function.

Evolution-based computational approaches have been explored since the early
days of computer science (e.g. (Box 1957)). Evolutionary programming as a method
for finite-state machine evolution has been developed by Folgel et al. (1966).
Genetic algorithms have been introduced by Holland (1962) and an overview of the
subject can be found in (Forrest 1993) and (Mitchell 1996). GA are especially suited
to tasks in which hypotheses are complex (e.g. sets of rules for robot control, sets of
optimal routes, etc.) and in which the objective to be optimised may be an indirect
function of the hypotheses (Goldberg 1994). A variant of GA is genetic
programming, in which the hypotheses being manipulated are computer programs
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rather than bit strings’. Genetic programming has been demonstrated to learn
programs for tasks such as simulated robot control (Koza 1992) and recognizing
objects in visual scenes (Teller and Veloso 1994).

Reinforcement learning

Reinforcement learning addresses the question of how an autonomous agent (see
section 3.7), which senses and acts in its environment, can learn to choose optimal
actions to accomplish its goals. This generic problem covers learning tasks such as
to control CAM tools and robots, to optimise operations in factories, to search
Internet, to play board games, etc. In a nutshell, reinforcement learning is reward
hunting. Namely, each time a given agent performs an action in its environment, a
trainer may provide a reward or penalty to indicate the desirability of the resulting
state; the goal of the agent is to learn an action policy that maximises the total
reward it will receive from any starting state. The reinforcement learning
methodology fits a problem setting known as a Markov decision process, in which
the outcome of applying any action to any state depend: only on this action and this
state as opposed to being dependent on preceding actions or states. A prototypical
reinforcement learning algorithm is Q-learning, in which the agent learns the
evaluation function Q(5, a) representing the maximum expected, cumulative reward
the agent can achieve by applying action & to state s. Watkins (1989) introduced Q
learning to acquire optimal policies when the reward and action transition functions
are unknown. Some of the earliest work on reinforcement learning can be found in
(Samuel 1959). Recent surveys are given by Kaelbling et al. (1996) and Sutton and
Barto (1998).

Vantages and disadvantages of machine learning
The major vantage of a learning system is its ability to adapt to a changing
environment. Of course, the existing machine-learning techniques are still far from
enabling computers to learn nearly as well as people. Yet algorithms have been
invented that are effective for certain types of learning tasks. In the late 90s, a
formalised theoretical foundation of learning wasn established (Mitchell 1997) and
many practical computer programs have been developed to enable different types of
learning. Machine learning algorithms have proven to be of great practical value,
especially in:
e Data mining problems concerning large databases that may contain valuable
implicit regularities that can be discovered automatically (for an overview of this
topic, the reader is referred to the special issue on Intelligent Information

2 Though hypotheses may be represented by symbolic expressions or even computer
programs, they are usually described by bit strings. The interpretation of these bit strings
depends on the actual application.
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Retrieval of the IEEE Intelligent Systems and Their Applications, vol. 14, no. 4,
pp. 30-70).

e Poorly understood domains where humans might not have well-established,
generic knowledge needed to develop effective algorithms (e.g. in learning to
play games (Furnkranz 2001) or in learning to interpret human facial affect
(chapter 6)).

e Domains where the program must dynamically adapt to changing conditions
(e.g. see the special issue on Self-adaptive Software of the IEEE Intelligent
Systems and Their Applications, vol. 14, no. 3, pp. 26-63).

However, most of the machine-learning algorithms require a special training
phase whenever information is extracted (knowledge generalisation), which makes
on-line adaptation (sustained learning) difficult (Aamodt 1991). Virtually all
techniques discussed in this section (except instance-based learning) are not well
suited for on-line learning. Hence, learning in dynamic environments is cumbersome
(if possible at all) for most machine-learning methods. Another common problem is
that, in general, machine-learning techniques are data oriented: they model the
relationships contained in the training data set. In turn, if the employed training data
set is not a representative selection from the problem domain, the resulting model
may differ from actual problem domain. This limitation of machine learning
methods is aided and abetted by the fact that most of them do not allow the use of a
priori knowledge. Finally, machine-learning algorithms have difficulties in handling
noise. Though many of them have some special provisions to prevent noise fitting,
these may have a side effect of ignoring seldom occurring but possibly important
features of the problem domain.

3.6 Case-based reasoning

During the 70s and 80s, one of the most visible developments in Al research was the
emergence of rule-based expert systems (RBES). These programs were applied to
more and more problem domains requiring extensive knowledge for very specific
and rather critical tasks including hardware troubleshooting, geological exploration
and medical diagnosis (section 3.2). In general, the RBES should be based upon a
deep, explicit, causal model of the problem domain knowledge that enables them to
reason using first principles. But whether the knowledge is shallow or deep, an
explicit model of the domain must still be elicited and implemented. Hence, despite
their success in many sectors, developers of RBES have met several critical
problems (Schank 1984):
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1. Difficult and time-consuming construction of the intended knowledge base due
to complex and time-consuming expert knowledge elicitation. This is especially
the case with problem domains covering a broad range of knowledge.

2. Incapability of dealing with problems that are not explicitly covered by the
utilised rule base. In general, rule-based expert systems are useful if the built-in
knowledge is well formalised, circumscribed, established and stable.

3. Ifno learning facility is built into a rule-based expert system, any addition to the
existing program requires a programmer intervention.

Solutions to these problems have been sought through better elicitation
techniques and tools (Brooke and Jackson 1991), improved development paradigms,
knowledge modelling languages and ontologies (Wielinga et al. 1992), and
advanced techniques and tools for maintaining systems (Watson et al. 1992).
However, in the past decade an alternative reasoning paradigm and computational
problem-solving method attracted a great deal of attention: Case-Based Reasoning
(CBR) solves new problems by adapting previously successful solutions to similar
problems. CBR draws attention because it seems to acdress the problems outlined
above directly (Watson and Marir 1994):

o CBR does not require an explicit domain model and so elicitation becomes a task
of gathering case histories.

* Implementation is reduced to identifying significant features that describe a case,
an easier task than creating an explicit model.

o CBR systems can learn by acquiring new knowledge as cases. This and the
application of database techniques makes the maintenance -of large volumes of
information easier.

The work of Roger Schank (1982, 1984) is widely held to be the origin of CBR.
He proposed a different view on model-based reasoning inspired by human
reasoning and memory organisation. Schank suggests that our knowledge about the
world is mainly organised as memory packets holding together particular episodes
from our lives that were significant enough to remember. These memory
organisation packets (MOPs) and their elements are not isolated but interconnected
by our expectations as to the normal progress of events (called scripts by Schank). In
turn, there is a hierarchy of MOPs in which “big” MOPs share “small” MOPs. If a
MOP contains a situation where some problem was successfully solved and the
person finds himself in a similar situation, the previous experience is recollected and
the person can try to follow the same steps in order to reach a solution. Thus, rather
than following a general set of rules, reapplying previously successful solution
schemes in a new but similar context solves the newly encountered problems. Using
these observations about human reasoning process Schank (1984) proposed memory-
based expert systems, which are characterised as follows:
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e The utilised knowledge base is derived primarily from enumeration of specific
cases or experiences. This is founded upon the observation that human experts
are much more capable of recalling experiences than of articulating internal
rules.

e As problems are presented to a memory-based expert system to which no
specific case or rule can match exactly, the system can reason from more general
similarities to come up with an answer. This is founded upon the generalisation
power of human reasoning. In general, we are reminded of something by the
similarity, but the retrieval can be also based on differences. Furthermore, the
retrieval is almost never full breadth and is highly context dependent. The reason
for not performing an exhaustive recall is not only due to the cumbersomeness of
such a task but also due to the organisations of MOPs: once we focus on some
MORP it is very easy to recall other MOPs related to it by some features.

¢ The memory of experiences utilised by the system is changed and augmented by
each additional case that is presented. A cornerstone of the memory-based model
of reasoning is automatic learning: the system should remember the problems
that it has encountered and use that information to solve future problems. This is
founded upon the capability of the human brain to merge the progress of events
seamlessly into the previously developed scripts of events.

The area of Al concerned with case-based reasoning puts Schank’s memory-
based reasoning model in practice. In a nutshell, CBR is reasoning by remembering:
previously solved problems (cases) are used to suggest solutions for novel but
similar problems. Kolodner (1996) lists four assumptions about the world around us
that represent the basis of the CBR approach:

1. Regularity: the same actions executed under the same conditions will tend to
have the same or similar outcomes.

2. Typicality: experiences tend to repeat themselves.

3. Consistency: small changes in the situation require merely small changes in the
interpretation and in the solution.

4. Adaptability: when things repeat, the differences tend to be small, and the small
differences are easy to compensate for.

Figure 3.12 (Leake 1996) illustrates how the assumptions listed above are used to
solve problems in CBR. Once the currently encountered problem is described in
terms of previously solved problems, the most similar solved problem can be found.
The solution to this problem might be directly applicable to the current problem but,
usually, some adaptation is required. The adaptation will be based upon the
differences between the current problem and the problem that served to retrieve the
solution. Once the solution to the new problem has been verified as correct, a link
between it and the description of the problem will be created and this additional
problem-solution pair (case) will be used to solve new problems in the future.
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Adding of new cases will improve results of a CBR system by filling the problem
space more densely.

The CBR working cycle
In the problem solving illustrated in Figure 3.12 and explained above, the following
steps were taken: describing the current problem, searching for a similar previously
solved problem, retrieving
the solution to it, adapting
the solution to the current
problem, verifying the 0O
solution, and storing the 0o \
newly solved problem. In
turn, since the newly o)
found solution may be
used for solving future o
problems, the process §O
O

Problem space Solution space

—

illustrated in Figure 3.12
denotes, in fact, the CBR
working cycle.
According to Kolodner
‘ (1993), the CBR working
2 cycle can be described best
in terms of four processing Figure 3.12: Problem solving using CBR
stages:
1. Case retrieval: after the problem situation has been assessed, the best matching
case is searched in the case base and an approximate solution is retrieved.
2. Case adaptation: the retrieved solution is adapted to fit better the new problem.
3. Solution evaluation: the adapted solution can be evaluated either before the
solution is applied to the problem or affer the solution has been applied. In any
case, if the accomplished result is not satisfactory, the retrieved solution must be
adapted again or more cases should be retrieved.
4. Case-base updating: If the solution was verified as correct, the new case may be
added to the case base.

Aamodt and Plaza (1994) give a slightly different scheme of the CBR working
cycle comprising the four REs (Figure 3.13):
1. RETRIEVE the most similar case(s);
2. REUSE the case(s) to attempt to solve the current problem;
3. REVISE the proposed solution if necessary;
4. RETAIN the new solution as a part of a new case.
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Although they use different terminologies, the CBR working cycles denoted
above are essentially the same. A new problem is matched against the cases
furnishing the case base and one or more similar cases are refrieved. A solution
suggested by the matching cases is then reused. Unless the retrieved case is a close
match, the solution will probably have to be revised (adapted) and tested (evaluated)
for success, producing a new case that can be retained ensuing, consequently,
update of the case base.

Problem
RETRIEVE > ‘

/ R

E

U

S

RETAIN E

v
< REVISE

Confirmed Proposed
Solution Solution

Figure 3.13: The CBR cycle

Types of knowledge in CBR
CBR systems make use of many types of knowledge about the problem domain for
which they are designed. Richter (1995) identifies four knowledge containers: the
vocabulary, similarity measures, adaptation knowledge, and cases themselves. The
first three containers usually represent general knowledge about the problem
domain. If there are any exceptions from this knowledge, they are commonly
handled by appropriate cases.

Vocabulary includes the knowledge necessary for choosing the features utilised
to describe the cases. Case features have to be specified so that they satisfy both: (i)
being helpful in retrieving other cases, which contain useful solutions to similar
problems, and (ii) being discriminative enough to prevent retrieval of too different
cases, which could lead to falsé solutions and/or reduced performance. A thorough
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comprehension of the problem domain is necessary to be able to choose which of all
problem parameters are the best as case features. In addition, either the vocabulary
should be chosen such that it anticipates future expansion of the case base, or the
system should be developed such that it alleviates automatic expansion of the
vocabulary. Otherwise, it may be impossible to represent new problem features,
which will then either be mapped to the available descriptors or be ignored, probably
leading in both cases to wrong solutions.

Similarity measures include the knowledge about the similarity measure itself
and the knowledge used to choose the most efficient organisation of the employed
case base and the most appropriate case-retrieval method. For any given problem,
there are many possible similarity measures that can be used. Hence, choosing the
best among the available possibilities and implementing the chosen similarity
measure efficiently exacts sound knowledge of the problem domain. This is
especially important for classification problems involving complex structured cases
since the value of the similarity can be used as a basis for automatic classification.
As far as the organisation of the employed case base and the retrieval algorithm are
concerned, a balance has to be found between case-memory models that preserve the
semantic richness of cases and methods that simplify the access and retrieval of
relevant cases. In general, knowledge about cases can be used to choose the
organisational structure of the case base such that the cases can be accurately and
efficiently retrieved.

Adaptation knowledge includes the knowledge necessary for implementing the
adaptation and evaluation stages of the CBR working cycle. Generally, the
adaptation stage requires knowledge about how differences in problems affect the
solutions. This knowledge is usually coded in explicit rules. Yet, since for many
problem domains, this is the most difficult knowledge to acquire, the adaptation is
frequently left to the user of the system. This is especially the case when mistakes
made by the system are expensive effecting the reliability of the system and, in turn,
the user’s confidence in it (Mark et al. 1996). Usually, before applying a new
solution for solving a problem, its correctness has to be evaluated. The knowledge
required for the evaluation stage concerns estimating the significance of differences
and similarities between the situations. Thus, this type of knowledge can be viewed
as an extension and refinement of the knowledge furnishing the similarity measures
container.

Cases contain knowledge about solved problem instances and, in many CBR
systems, this represents the knowledge that the system acquires during use. What the
cases will contain is mainly determined by the chosen vocabulary. Sometimes the
employed case base is initialised with carefully selected cases that provide a
problem domain coverage that is as even as possible (e.g. this is the case with the
Facial Expression Classifier part of ISFER, section 6.4). This is commonly the case
when the necessary adaptation stage is to be kept simple, yielding manageable
system maintenance. Anyhow, new cases will usually be added during use. Yet, it is
often unwise to store all the solved problems as cases. Large case bases may have
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high memory/storage requirements, may impose long retrieval times and, in turn,
may reduce the system’s performance. Therefore, heuristics should be specified for
determining the useful cases to be stored in the case base.

Case representation
A case is a contextualised piece of knowledge representing an experience. It
contains the past lesson that is the content of the case and the context in which the
lesson can be used (Kolodner 1993). In general, a case comprises a:
e Problem description, which depicts the state of the world when the case
occurred;
Problem solution which states the derived solution to that problem; and/or
Qutcome, which describes the state of the world after the case occurred.

Cases that comprise problems and their solutions can be used to derive solutions
to new problems, whereas cases comprising problems and outcomes can be used to
evaluate new situations. If such cases contain solutions in addition, they can be used
to evaluate the outcome of proposed solutions and prevent potential problems (e.g.
in MEDIATOR (Simpson 1985)). The more information is stored, the more useful
the case can be. Yet entering all available information makes the system more
complex and, in turn, more difficult to use. Due to these reasons, most of the CBR
systems are limited to storing only problem descriptions and solutions.

The problem description essentially contains as much data about the problem and
its context as necessary for an efficient and accurate case retrieval. Principally, it is
useful to store retrieval statistics like the number of times the case was retrieved and
the average match value. These statistics may be valuable for handling the case base:
for prioritising cases, for pruning the case base by removing seldom used cases, and
generally for maintenance of the case base.

The problem solution can be either atomic or compound. Atomic solutions are
typical for CBR systems used for diagnosis or for classification in general.
Compound solutions can be found for instance in CBR systems utilised for planning
or design. A compound solution may be composed of a sequence of actions, an
arrangement of components, etc. In the case of the Facial Expression Classifier part
of ISFER, compound solutions consist of multiple, user-defined, facial-expression
interpretation labels (chapter 6). The main use of a solution is to serve as a starting
point for educing new solutions. Therefore, the way a solution is derived may be of
equal importance as that of the solution itself.

Cases can be represented as simple feature vectors, or they can be represented
using any Al representational formalism such as frames, objects, predicates,
semantic nets, or rules. The choice of particular representational formalism is largely
determined by the information to be stored within a case. Cases can be monolithic or
compound. Individual parts of compound cases can be processed or used separately.
For example, a problem can be solved by reusing partial solutions from several
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compound cases, like within the Facial Expression Classifier part of ISFER (chapter
6). Most representational formalisms are proprietary for the more complex cases.
Nevertheless, there is a lack of consensus within the CBR community as to exactly
what information should be stored within a case and, in turn, which representational
formalism should be used. However, two pragmatic measures can be taken into
account in deciding both the information to be stored in a case and the appropriate
representational formalism: the intended functionality and the ease of acquisition of
the information represented in the case (Kolodner 1993).

Finally, cases are the basis of any CBR system: a system without cases would
not be a case-based system. Yet, a system using only cases and no other explicit
knowledge (not even in the similarity measures) is difficult to distinguish from a
nearest-neighbour classifier or a database retrieval system. In other words, such a
system does not exploit the full generalisation power of CBR, resulting usually in
poor system performance due to inefficient retrieval based upon case-by-case search
of the whole case base.

Indexing

Within the CBR community, an explicit formal specification (i.e. ontology) of what
the terms “indices” and “indexing” actually mean in terms of a CBR system has not
been established yet. Kolodner (1996) identifies indexing with an accessibility
problem, that is, with the whole set of issues inherent in setting up the case base and
its retrieval process so that the right cases are retrieved at the right time. Thusly, case
indexing involves assigning indices to cases to facilitate their retrieval. CBR
researches proposed several guidelines on indexing (Watson and Marir 1994).
Indexes should be:

o predictive of the case relevance;

e recognisable in the sense that it should be understandable why they are used;

e abstract enough to allow for widening the future use of the case base;

e concrete (discriminative) enough to facilitate efficient and accurate retrieval.

Both manual and automated methods are used nowadays to select indices.
Choosing indices manually involves deciding the purpose of a case with respect to
the aims of the user and deciding under which circumstances the case will be useful.
Kolodner (1993) claims that people tend to be better at choosing the indices than
automatic algorithms. Anyhow, there is an ever increasing number of automated
indexing methods. For a review of these the reader is referred to (Watson and Marir
1994). For an example of an automatic indexing algorithm performing indexing
cases by (case) features that tend to be predictive across the entire problem domain,
the reader is referred to sections 6.4 and 6.5, which describe the processing of the
Facial Expression Classifier part of ISFER.

Indices do not have to be rigid; they may change during use of the system. In
fact, changing the indexes is one way of learning. Changes may be made if, for
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instance, a wrong case was retrieved or an entirely novel problem situation is
encountered. Changes may involve changing weights (importance/priority) of the
features, changing or adding features, changing or adding pointers to other cases in
the case base, etc. Similarly to selecting/generating the indexes, changing the
indexes can be done either manually or automatically.

Case-base organisation

Case storage is an important aspect in designing efficient CBR system, in that it
should reflect the conceptual view of what is represented in the case and take into
account the indexes that characterise the case. As already mentioned above, the case
base should be organised into a manageable structure that supports efficient and
accurate search and retrieval methods. Accurate retrieval guarantees that the best
matching case will be retrieved, and efficient retrieval guarantees that cases will be
retrieved fast enough for acceptable system response times. These two factors are
inversely proportional: it is easy to guarantee accurate retrieval at the expense of
efficiency (e.g. by matching all the cases) and easy to have fast retrieval if only a
fraction of the employed case base is searched (possibly missing some examples).
Hence, a good case-base organisation and a good retrieval algorithm are the ones
which yield the best compromise between accuracy and efficiency of the retrieval
algorithm.

In general, three main approaches to case-base organisation can be distinguished:
flat organisation, clustered organisation, and hierarchical organisation. Also a
combination of these methods within the same case base is possible (e.g. in
Ultrasonic Rail-Inspection System proposed in (Jarmulak, 1999)).

Flat organisation is the simplest case-base organisation that yields a
straightforward flat structure of the case base. Though advantageous due to its
simplicity and facile case addition/deletion, a flat case-base organisation imposes, in
general, case retrieval based upon a case-by-case search of the whole case base.
Hence, for medium and large case bases, this leads to time-consuming retrieval,
yielding an inefficient CBR system.

Clustered organisation, originating in the dynamic memory model initially
proposed by Schank (1982) and refined by Kolodner (1983), is the type of case-base
organisation in which cases are stored in clusters of similar cases. The grouping of
cases may be based on their mutual similarity (like in the case of the dynamic
memory of experiences used by the Facial Expression Classifier part of ISFER,
section 6.4) or on the similarity to some prototypical cases (as proposed in (Malek et
al. 1998) or in (Schmidt and Gierl 1998)). The advantage of this organisation is that
the selection of the clusters to be matched is rather easy, as it is based upon the
indexes and/or prototypical cases characterising the clusters. A disadvantage is that
it needs a more complex algorithm for case addition/ deletion than a flat organised
case base.
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Hierarchical organisation, originating in the category-exemplar memory model
of Porter and Bareiss (1986), is the case-base organisation that is generally obtained
when cases that share the same features are grouped together. The case memory is a
network structure of categories, semantic relations, cases, and index pointers. Each
case is associated with a category, while the categories are inter-linked within a
semantic network containing the features and intermediate states referred to by other
terms. Different case features are assigned different importance in describing the
membership of a case to a category. It is important to note that this importance
assignment is static; if it changes, the case-base hierarchy has to be redefined. A new
case is stored by searching for a matching case and by establishing the relevant
feature indexes. If a case is found with only minor differences to the new case, the
new case is usually not retained. In turn, a hierarchical case-base organisation
facilitates fast and accurate case retrieval. However, its higher complexity implies a
rather cumbersome case addition/deletion, potentially involving expensive case-base
reorganisation and an inapt case-base evaluation and maintenance.

Retrieval

Given a description of a problem, a retrieval algorithm should retrieve cases that are
most similar to the problem or situation currently presented to the pertinent CBR
system. The retrieval algorithm relies on the indices and the organisation of the case
memory to direct the search to case(s) potentially useful for solving the currently
encountered problem.

The issue of choosing the best matching cases can be referred to as analogy
drawing (Falkenehainer 1988), that is, comparing cases in order to determine the
degree of similarity between them. Many retrieval algorithms have been proposed in
the literature up to date: induction search (e.g. ID3, Quinlan 1979), nearest
neighbour search (e.g. Kolodner 1993, Owens 1993), serial search (e.g.
Navinchandra 1991), hierarchical search (e.g. Maher and Zhang 1993), parallel
search (e.g. Andersen et al. 1994), etc.

The simplest form of retrieval is the 1%-nearest-neighbour search of the case
base, which performs similarity matching on all the cases in the case base and
returns just one best match (Mitchell 1997). It is to be expected that this method
implies long retrieval times, especially in the case of large case bases. Therefore,
cases are usually preselected prior to similarity matching. Cases can be preselected
using a simpler similarity measure; commonly, this is done using the indexing
structure of the case base. A typical problem with preselection concerns handling a
situation where no best match has been found in the preselected set of cases; since
preselection is merely approximate, there is a possibility that amongst the non-
selected cases a better match can be found.

Another way of speeding up the retrieval is to employ ranking of cases. The
simplest ranking method concerns exploiting the retrieval statistics for cases in the
case base. The frequently retrieved cases can be considered as prototypical cases and
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probably should be matched first. Another ranking method is applicable to the
clustered case-base organisation. It concerns matching the current case to the
clusters’ prototypes and then searching the matching clusters in the order determined
by the degree of similarity between the matching clusters’ prototypes and the current
case.

The retrieval may result in retrieving single or multiple best match cases. In
general, the retrieval mechanism tends to be simpler and faster if: (i) a larger number
of possibly similar cases are retrieved, (ii) all of them are used to find solutions, and
then (iii) the best solution is chosen. In this case, the retrieval algorithm itself may
be less selective (and, therefore, simpler and faster) since the usefulness of the
retrieved cases is to be determined in succeeding processing phases.

Finally, a way of speeding up the retrieval is to do it in parallel. A parallel
search of the case base is realisable since case matching does not require exchange
of much information between the parallel running processes. Thus, the speed gain
scales up with the number of processing units. While the implementation of parallel
retrieval is simple for flat and clustered case bases, it is rather difficult for
hierarchical case bases (Jarmulak 1999). Though bringing significant speed gains,
parallel retrieval is usually accompanied by an increase in implementation costs and
software complexity.

Adaptation

Generally, once a matching case is retrieved, it will not correspond to exactly the

same problem as the problem for which the solution is currently being sought.

Consequently, the solution belonging to the retrieved case may not be optimal for

the problem presently encountered and, therefore, it should be adapted. Adaptation

looks for prominent differences between the retrieved case and the current case, and
then (most commonly) applies a formulae or a set of rules to account for those
differences when suggesting a solution. In general, there are two kinds of adaptation

in CBR (Watson and Marir 1994):

1. Structural adaptation applies adaptation rules directly to the solution stored in
cases (Kolodner 1993). If the solution comprises a single value or a collection of
independent values, structural adaptation can include modifying certain
parameters in the appropriate direction, interpolating between several retrieved
cases, voting, etc. However, if there are interdependencies between the
components of the solution, structural adaptation requires a thorough
comprehension and a well-defined model of the problem domain.

2. Derivational adaptation reuses algorithms, methods, or rules that generated the
original solution to produce a new solution to the problem currently presented to
the system. Hence, derivational adaptation requires the planning sequence that
begot a solution to be stored in memory along with that solution. This kind of
adaptation, sometimes referred to as reinstantiation, can only be used for
problem domains that are well understood.
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An ideal set of rules must be able to generate complete solutions from scratch,
and an effective and efficient CBR system may need both structural adaptation rules
to adapt poorly understood solutions and derivational mechanisms to adapt solutions
of cases that are well understood. However, one should be aware that complex
adaptation procedures make the system more complex but not necessarily more
powerful. Complex adaptation procedures make it more difficult to build and
maintain CBR systems and may also reduce system reliability and, in turn, user’s
confidence in the system if faulty adaptations are encountered due to, for example,
incompleteness of the adaptation knowledge, which is the most difficult kind of
knowledge to acquire (Mark et al. 1996). Therefore, in many CBR systems,
adaptation is done by the user rather than by the system. Mark et al. (1996) report
that in a well-designed system, the users do not perceive “manual” adaptation as
something negative.

Vantages and limitations of CBR

CBR is a lazy problem-solving method and shares many characteristics with other

lazy problem-solving methods, including advantages and disadvantages. Aha (1998)

defines the peculiarities of lazy problem-solving methods in terms of three Ds:

e Defer: lazy problem solvers simply store the presented data and generalizing
beyond these data is postponed until an explicit request is made.

e Data-driven: lazy problem solvers respond to a given request by combining
information from the stored data.

o Discard: lazy problem solvers dismiss any temporary (intermediate) result
obtained during the problem solving process.

Unlike lazy problem solvers, eager problem-solving methods try to extract as
much information as possible from the presented data and then to discard the data
prior to the actual problem solving. An example of a lazy problem solver is a CBR
classifier, while an ANN classifier is an example of an eager problem solver. Eager
algorithms can be referred to as knowledge compilers, as opposed to lazy
algorithms, which perform run-time knowledge interpretation. This is the key
difference between lazy and eager problem solvers, which can also be explained by
the following:
¢ Lazy methods can consider the current query instance x when deciding how to

generalise beyond the training data (which have already been presented).
¢ Eager methods cannot, because their global approximation to the target function

has already been choosen by the time they observe the current query instance x.

To summarise, lazy methods have the option of selecting a different hypothesis
or local approximation to the target function for each presented query instance.
Eager methods using the same hypothesis space are more restricted because they
must choose their approximation before the presented queries are observed.
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Consequently, a lazy method will generally require less computation during training,
but more computation when it must generalise from training data by choosing a
hypothesis based on the training examples near the currently presented query.

The benefits of CBR as a lazy problem-solving method are:

Ease of knowledge elicitation. Lazy methods, in general, can utilise easily
available cases or problem instances instead of rules that are difficult to extract.
So, classical knowledge engineering is replaced by case acquisition and
structuring (Aha 1998).

Absence of problem-solving bias: Because cases are stored in a “raw” form, they
can be used for multiple problem-solving purposes. This in contrast to eager
methods, which can be used merely for the purpose for which the knowledge has
already been compiled.

Incremental learning: A CBR system can be put into operation with a minimal
set of solved cases furnishing the case base. The case base will be filled with
new cases as the system is used, increasing the system’s problem-solving ability.
Besides simple augmentation of the case base, new indexes and
clusters/categories can be created and the existing ones can be changed. This in
contrast to virtually all machine-learning methods (section 3.5), which require a
special training period whenever information extraction (knowledge
generalisation) is performed. Hence, dynamic on-line adaptation to a non-rigid
environment is possible (Aha 1991, Mitchell 1997).

Suitability for complex and not-fully formalised solution spaces: CBR systems
can be applied to an incomplete model of problem domain; implementation
involves both to identify relevant case features and to furnish, possibly a partial
case base, with proper cases. In general, because they can handle them more
easily, lazy approaches are often more appropriate for complex solution spaces
than eager approaches, which replace the presented data with abstractions
obtained by generalisation.

Suitability for sequential problem solving: Sequential tasks, like these
encountered in reinforcement learning problems, benefit from the storage of
history in the form of a sequence of states or procedures. Such a storage is
facilitated by lazy approaches.

Ease of explanation: The results of a CBR system can be justified based upon the
similarity of the current problem to the retrieved case(s). Because solutions
generated by CBR are easily traceable to precedent cases, it is also easier to
analyse failures of the system. As noted by Watson and Marir (1994), the
explanations provided based upon individual and generalised cases tend to be
more satisfactory than explanations generated by chains of rules.

Ease of maintenance: This is particularly due to the fact that CBR systems can
adapt to many changes in the problem domain and the pertinent environment,
merely by acquiring new cases. This eliminates some need for maintenance; only
the case base(s) needs to be maintained.
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Major disadvantages of lazy problem solvers are their memory requirements and

time-consuming execution due the processing necessary to answer the queries. The
limitations of CBR can be summarised as follows:

Handling large case bases: High memory/storage requirements and time-
consuming retrieval accompany CBR systems utilising large case bases.
Although the order of both is at most linear with the number of cases, these
problems usually lead to increased construction costs and reduced system
performance. Yet, these problems are less and less significant as the hardware
components become faster and cheaper.

Dynamic problem domains: CBR systems may have difficulties in handling
dynamic problem domains, where they may be unable to follow a shift in the
way problems are solved, since they are usually strongly biased towards what
has already worked. This may result in an outdated case base.

Handling noisy data: Parts of the problem situation may be irrelevant to the
problem itself. Unsuccessful assessment of such noise present in a problem
situation currently imposed on a CBR system may result in the same problem
being unnecessarily stored numerous times in the case base because of the
difference due to the noise. In turn this implies inefficient storage and retrieval of
cases.

Fully automatic operation: In a typical CBR system, the problem domain is
usually not fully covered. Hence, some problem situations can occur for which
the system has no solution. In such situations, CBR systems commonly expect
input from the user.

CBR application domains

Although CBR is a relatively new Al methodology, numerous successful
applications exist in the academic as well as in the commercial domain. Already in
1994, Watson and Marir reported over 100 commercially available CBR
applications. The domains of these numerous CBR systems reported in the literature
are the following:

Interpretation as a process of evaluating situations/problems in some context
(e.g. HYPO for interpretation of patent laws (Ashley 1991), KICS for
interpretation of building regulations (Yang and Robertson 1994), LISSA for
interpretation of non-destructive test measurements (Jarmulak 1999)).
Classification as a process of explaining a number of encountered symptoms
(e.g. CASEY for classification of auditory impairments (Koton 1989),
CASCADE for classification of software failures (Simoudis 1992), PAKAR for
causal classification of building defects (Watson and Abdulah 1994), ISFER for
classification of facial expressions into user-defined interpretation categories
(chapter 6)). '

Design as a process of satisfying a number of posed constraints (e.g. JULIA for
meal planning (Hinrichs 1992), Déja Vu for control-software production (Smyth
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1996), CLAVIER for design of optimal layouts of composite airplane parts
(Kolodner 1993, Mark et al. 1996), EADOCS for aircraft panels design (Netten
1997)).

e Planning as a process of arranging a sequence of actions in time (e.g. BOLERO
for building diagnostic plans for medical patients (Lopez and Plaza 1993),
TOTLEC for manufacturing planning (Costas and Kashyap 1993)).

e Advising as a process of resolving diagnosed problems (e.g. DECIDER for
advising students (Farrel 1987), HOMER — a CAD/CAM help desk (Goker et al.
1998)).

3.7 Distributed Al

During the last decades, computing devices have been used as sophisticated tools,
greatly advancing and augmenting human abilities such as memory and calculation
as well as publishing and communication capabilities. Within the research areas in
information technology and computer science, research in Al has aimed at
developing software to emulate some intelligent capabilities of human beings such
as reasoning, communication (verbal as well as non-verbal), and learning. By
descending further down the tree delimiting conjugate foci of research areas in
computer science, we come across distributed artificial intelligence (DAI), which is
a sub-field of Al concerned with the investigation of knowledge models and
communication and reasoning techniques which so-called computational agents
might need to participate in “men-machine societies” that are composed of
computers and people. In other words, DAI is concerned with situations in which
several systems (e.g. persons, computers, sensors, robots, mobile vehicles, etc.)
interact in order to solve a common problem; it aims to understand and model
actions and knowledge in collaborative enterprises (Gasser 1991). The research in
DAI can be divided into two main areas (Moulin and Chaib-Draa 1996): distributed
problem solving and multi-agent systems.

Distributed problem solving considers how the task of solving a particular
problem can be divided among a number of modules that cooperate in splitting and
sharing the available knowledge about the problem and about its evolving solutions.
Durfee et al. (1989) remarked that many applications are inherently distributed :
some are spatially distributed (e.g. a system for integrating and interpreting data
obtained from spatially distributed sensors), and others are functionally distributed
(e.g. a group of experts with different specialisations collaborating in solving a
complex problem like in ISFER, see section 2.6). For the sake of clarity, it is
important to note that DAI does not address the issues related to parallel computer
architectures, parallel programming languages, and distributed operating systems
designed merely for their efficiency. DAI techniques have been applied to
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distributed interpretation, distributed planning and control, cooperating expert
systems, computer-supported cooperative work, etc. (for a more detailed account of
DAI applications, the reader is referred to (van Dyke Parunak 1996, Shoham 1999)).

Research in multi-agent systems is concerned with the behaviour of a collection
of possibly pre-existing autonomous agents which aim at solving a given problem.
As defined by Durfee et al. (1989), multi-agent systems are loosely-coupled
networks of problem solving agents that work together to solve problems that are
beyond their individual capabilities. '

It is most remarkable that almost all of the definitions given in DAI concern
agents and agent technology, but none of these definitions resolve what is meant by
the term “agent”. As remarked by Shoham (1999) and Hendler (1999), having a
discussion about software agents is not easy; there is no clear and comprehensive
definition of the notion. At best, what an interested party can get is a clear definition
of one person’s version of the concept, which is guaranteed to exclude various
elements that others will swear are the essence of software agents. At worst, he/she
will get an answer so general and imprecise that it has little informational content.

Two factors seem to be responsible for the use of the term agent in such an
ambiguous way that no explicit formal specification (i.e. ontology) can be
established: over-hype and the confusing amalgamation of quite different ideas and
motivations under the agents’ umbrella. The hype is inevitable — since 1995, many
of the IEEE and ACM journals have devoted special issues to software agents; since
1997, many agents conferences have taken place; nowadays, special panels on
agents are even organised during industry symposia; agents that sort e-mails,
adaptively recommend Web pages, translate between different knowledge bases, and
sometimes have an individual electronic personality are commercially available at
present (e.g. Hayes-Roth et al. 1999). Notwithstanding, this hype is unfortunate; due
to the popularity of the revolutionary agents, there is a general tendency to label
software programs (especially the ones aimed at Internet applications) with agent-
oriented terms. In turn, alongside fairly creative ideas, quite shoddy ones also seek
legitimacy under the agent’s umbrella. As a result, negative reactions might (and
probably will) be directed indiscriminately towards all work in the area.

Agent categories

Thus, if there is no clear definition of agents, what can be done to expound what the

term stands for? Shoham (1999) proposed to identify dimensions (axes) of software

agency, that is, to distinguish the properties that characterise various versions of

agents. The idea behind is to enable grouping of software agents that embrace

roughly the same properties. Among the numerous properties agents can have, the

ones commonly present in the relevant research literature are (Shoham 1999):

e Ongoing execution: Unlike software routines that are invoked to achieve
particular tasks and then disappear, agents function continuously for a lengthy
period of time.
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o Autonomy. Agents do not require perpetual human control, supervision or
feedback.

e Environmental awareness: Agents model the environment in which they operate
and they sense and react to changes in it.

e Adaptability: Besides adapting to the environment in which they operate, agents
adapt their behaviour over time to suit the preferences and behaviour of
individual users.

o Intelligence: Agents exhibit intelligent behaviour facilitated by embodied
techniques such as probabilistic reasoning, machine learning, and automated
planning.

o Agent awareness: Agents may model other agents, reason about them, and
interact with them using special communication languages and protocols.
Mobility: Agents can migrate in a network.

o Anthropomorphism: Agents may exhibit human-like qualities: respond to queries
about their “beliefs” or “obligations”, emulate facial and vocal expression
responses by displaying animations, etc.

Though the properties listed above expound some global characteristics that
agents might have, categorising various agent-related works along these or similar
dimensions will not result in a useful scheme. This is because most of the listed
properties are vague and because, in the agent-related field, there is work that is so
dissimilar to other work in goals and technology that it is misleading to even speak
of some common properties. Therefore, it is perhaps more useful to first home in on
the primary orientation of the work and then on its functionality in terms of
problem-solving capability of the intended agent-based system.

As far as the orientation of agent-related works is considered, three strands can
be distinguished (Shoham 1999):

1. Nouvelle expert systems (NES): NES-motivated agent work attempts to create
novel software applications, or to enhance the power of existing ones, based
upon advances in Al and related fields. Prototypical examples of NES-
applications deal with mining and managing vast data available online (e.g.
Kushmerick 1999). The techniques in this area are fairly established, especially
if we consider the area of machine learning and probabilistic techniques, which
has seen significant progress in the past decade. Though important, this area
intrigues computer-literate users rather than scientific researchers and is,
therefore, not expected to revolutionise computing today (Pentland 2000).

2. Exotic distributed systems (EDS): EDS-motivated work is aimed at: (i) building
novel middleware to increase developers’ productivity, creating novel
infrastructures to advance the local- and/or wide-area networks, and at (ii)
generating novel protocols for negotiation over the Internet to leverage electronic
commerce. Typical examples of EDS-research objectives aimed at enrichment of
the infrastructure are: facilitating remote programming featuring mobile code
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and advancing communication languages featuring high-level semantic
primitives (e.g. Labrou et al. 1999). The main focus of EDS research aimed at ¢-
commerce is developing novel negotiation mechanisms that are network aware,
i.e. that take into account that the Internet tends to change fixed pricing to
dynamic pricing, having a profound impact on businesses (e.g. Jamali et al.
1999). The EDS-area of research is rather new, having been explored in the past
few years. Due to its recent origin and the potential impact it might have on the
way people think about computing and about “doing business”, the EDS-area of
research has a fair potential of biasing some standard views on the pertinent
issues.

3. Anthropomorphic design (AD): AD-inspired work attempts to make computers
more accessible to the non-technical user by endowing them with an appearance
and behaviour that are, at least superficially human-like. Typical examples of
AD applications engender and incorporate animated (virtual) characters within a
man-machine interactive environment (e.g. Hayes-Roth et al.1999, Kshirsagar
and Thalmann 2000). As remarked by Shoham (1999), Coen (1999), and
Pentland (2000), breakthroughs in AD-oriented agents could bring about the
most radical change to the computing world. They could change not only how
professionals practice computing, but also how mass consumers conceive of and
interact with the technology. This research area of future human-computer
interfaces is not concerned with menus, mice and keyboards, but with gestures,
speech, affect, context and animation. In contrast to animation and natural
language understanding, where the technology has advanced to a level of
commercial relevance and where many companies are investing significant
industrial resources (Thalmann et al. 1998, Juang and Furui 2000), other aspects
of AD-type agents, in particular ones that attempt to translate and emulate human
behaviour at a deeper level, are less mature and undoubtedly need many
improvements of the state of the art (Tekalp 1998, Pentland 2000, Pantic and
Rothkrantz 2001a, chapter 8).

Next to being characterised by its primary orientation, an agent-based system can
be distinguished by its problem-solving capabilities (behaviour). An agent’s
problem-solving behaviour can be classified into the following categories (Moulin
and Chaib-Draa 1996):

1. Reactive behaviour: A reactive agent reacts to changes in its environment or to
messages from other agents. It is not able to reason about its intentions, that is, it
is not capable of manipulating its goals. Its actions are predefined by some rigid
set of rules or stereotype plans and aim, in general, either at updating the agent’s
fact base or at sending messages to other agents or to the environment. Expert
systems, at least in their most common form (section 3.2) and if exhibiting
communication capabilities in terms of receiving/sending messages to other
agents within the same multi-agent system, are typical examples of reactive
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agents (e.g. Facial Action Encoder and Facial Expression Classifier parts of
ISFER (sections 5.2 and 6.3)).

. Intentional behaviour: An intentional agent is able to reason on its intentions and
beliefs, that is, it is capable of manipulating its goals, of creating new plans of
actions, and of executing those plans. Intentional agents may be considered
planning systems (Werner 1996): they can select their goals, reason on them by
detecting and resolving goal conflicts and coincidences, select or create plans,
detect conflicts between plans, execute and, if necessary, revise plans of actions.
Intentional agents often resemble classic expert systems in that they encode (by
using rule-based approaches now and then) domain-specific information to
achieve the intended functionality. The key difference between these agents and
the traditional expert systems is that the agent-based approaches generally focus
on programs that provide capabilities for the user (e.g. the ability to gather
information from the Web or databases, to access and download Web resources,
etc.). As noted by Hendler (1999), intentional agents are like expert systems with
hands and feet: they exhibit the ability to manipulate the information world on
the behalf of the user. Typical examples of intentional agents are Web browsers
providing an alert if some conditions hold (e.g. Rosenschein and Krulwich
1999).

. Social behaviour: In addition to intentional agent capabilities, a social agent also
includes and manipulates explicit models of other agents: it maintains these
models by updating the pertinent goals and plans of actions, it reasons on the
knowledge (intentions, expectations, reactions, etc.) incorporated in these
models, and it makes its decisions and creates its plans of actions with respect to
other agents’ models. Social agents may be considered control agents (Hendler
1999): a social agent primarily provides control services to other agents. Such an
agent’s problem-solving behaviour is not tied to a particular application domain.
Rather, a social agent is a program that helps other agents to function together —
to find each other, perhaps to control the use of resources, and in any case to
coordinate them. Examples of frameworks for agent ensembles can be found in
(Jamali et al. 1999) and (Arisha et al. 1999).

Agent design

As already remarked above, DAI literature, with the emphasis on agent-oriented
work, is very abundant and covers a variety of topics and experiments. Facing such
abundance, a software designer may wonder how to decide if DAI technology is the
best choice for the intended application, that is, if it can bring about the best relevant
solutions to the recognised problems. This is a principal issue, at least if the
designer’s preference is effectiveness of the intended software rather than voguish
employment of an agent-based approach independently of its applicability to the
delimited problem domain. Alas, as noted by Shoham (1999), nowadays many
designers prefer fashionable designs over effective ones. Besides, there is another

109




reason for (mis)placing an abundance of dissimilar work under the same agent’s
umbrella — the lack of established evaluation criteria (which, for some, is precisely
the charm). Issues like choosing a DAI-design method relative to the problem
domain, designing the relevant test beds, and establishing a firm description of
possible applications, have not been addressed in literature in a comprehensive way
(Moulin and Chaib-Draa 1996, Shoham 1999).

Agents’ vantages and disadvantages

The area of software agents offers exciting research playgrounds and presents
attractive commercial opportunities. Lately, anthropomorphic-design-oriented agent
work induced an upsurge of interest due to the fact that automating, monitoring,
analysing and emulating human communicative behaviour is essential for the design
of future human-computer interfaces (Pentland 2000, chapter 8). Similarly, the work
that focused on exotic distributed systems opened up novel possibilities for
enrichment of the computing infrastructure and devising Internet-based commerce
and, in turn, attracted many Al researchers. Finally, the work that focused on
nouvelle expert systems (with the emphasis on data retrieval, filtering and mining)
already enjoys substantial interest among entrepreneurs and investors, the main
reason being the exploding number of information sources available online and the
growing number of potential users having online access.

Nevertheless, it should be clear by now that the field of agent technology is
really not one field at all. Just as conferences on agents present abundance of papers
ranging from Web routers via large-scale scheduling systems to robot programs, the
scientific literature contain terminological confusions and a blend of dissimilar
issues as well. Hence, agent-oriented work involves a high risk, not because of
technical difficulties but because the field lacks standards among the research
communities carrying out widely different work.

ISFER as a functionally distributed system

ISFER can be viewed as a multi-agent, functionally distributed system. The key idea

behind discussing the architecture of ISFER as a set of agents is that of task-level

decomposition, defined by Brooks (1991) as follows:
A multi-agent system can be viewed as a collection of modules, each of which
has its own specific competence, operates autonomously, and is solely
responsible for the sensing, modelling, computation and/or reasoning
necessary to accomplish its competence. Communication among modules is
reduced to a minimum and it is achieved on an information-low level. The
global behaviour of such a system is not necessarily a linear composition of
the behaviours of its modules, but a more complex behaviour(s) may emerge
due to interaction of behaviours generated by the individual modules.
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Each part of ISFER, namely the Facial Data Extractor, the Facial Action Encoder

and the Facial Expression Classifier, can be viewed as a module forming an integral

part of the system as a whole and having its own competence (i.e. performing a

certain task). These tasks involve: spatial sampling of the contours of the prominent

facial features in an input facial image (Facial Data Extractor, chapter 4), analysis of
facial expressions such that it is applicable to automated FACS coding and based on
the data obtained from the Facial Data Extractor part of the system (Facial Action

Encoder, chapter 5), and classification of facial expressions into multiple, quantified,

user-defined interpretation labels based on the data obtained from the Facial Action

Encoder part of the system (Facial Expression Classifier, chapter 6). In turn, it can

be said that the communication among modules is reduced to a minimum and that a

global behaviour of ISFER is a linear composition of the behaviours of its modules.

The three parts of ISFER (Figure 2.25) can be further characterised as being:

e Problem-solving modules, where the problem domain of each is restricted by the
specific task the relevant module performs. Further, the modules have a
“medium” degree of heterogeneity since they differ in utilised problem-solving
methods and expertise but have the same computational resource (the current
input facial image).

e Autonomous, since they do not require the user to be in control at all times (for a
further discussion on the issue, the reader is referred to sections 4.2, 5.2 and 6.3).

o Environmentally unaware, since they have no knowledge about the environment
in which they operate and cannot react to changes in it (for a detailed discussion
about context-dependent facial expression analysis, the reader is referred to
chapter 8). Though ISFER is, thus, not adaptable to its environment, it is
adaptable to its current user. Due to the Facial Expression Classifier part of
ISFER, the system adapts its behaviour (i.e. the facial expression interpretation it
achieves) over time to suit the preferences of the current user (chapter 6).

e Intelligent in the sense that they embody sophisticated techniques based on
ANN-based reasoning (section 4.3), rule-based and probabilistic reasoning
(chapter 5), and machine learning (chapter 6).

e Stationary as opposed to mobile since ISFER is a functionally distributed
application as opposed to a spatially distributed application.

Thus, ISFER might be viewed as a multi-agent system. However, note that this is
just one way of viewing the architecture of ISFER. As explained by Moulin and
Chaib-Draa (1996), any expert system can be seen as an agent, at least as a reactive
agent (as is the case with the Facial Action Encoder and the Facial Expression
Classifier parts of ISFER) if not as an intentional or a social agent. The reason to
discuss ISFER as a multi-agent system is not the catalyst behind the recent “agents
hoopla” — the accelerating spread of the Internet — which has given rise to an
explosion of applications involving intentional and social agents that can manipulate
their goals and create new ones in order to search the Internet successfully. The
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reason lies in the fact that the current functionality of ISFER can easily be enhanced
for the monitoring of a particular information source (e.g. a certain participant in a
video conference, a certain patient in a group therapy, a certain student attending a
course) and providing an alert if some set of conditions holds (e.g. if a certain
attitudinal state like frustration or inattention is observed). By this, ISFER would
represent a consumer-based problem-solving agent (Hendler 1999), which would be
able to manipulate the incoming information on the behalf of the current user. By
allowing the user to define his current interest while monitoring facial expressions,
the commercial potential of ISFER would be increased — ISFER would embody an
application-independent automatic tool for facial expression analysis (see also
chapters 5, 6 and 8).

Currently, however, none of the three parts of ISFER is able to manipulate its
goals and create new ones (e.g. according to the wishes of the user); they all achieve
a predefined set of goals by selecting from the action space predefined plans that can
be used to reach these goals. In other words, each part of ISFER is a reactive agent.
Hence, for the sake of clarity and precision, in the remainder of this thesis the Facial
Data Extractor is discussed as a framework for hybrid data extraction from an input
static facial image (chapter 4), the Facial Action Encoder is discussed as a rule-
based expert system that reasons on facial actions and their intensity based upon the
data generated by the Facial Data Extractor (chapter 5), and the Facial Expression
Classifier is discussed as a memory-based expert system that performs case-based
reasoning about facial expression classification in terms of the interpretation
categories defined by the current user and based upon the data from the Facial
Action Encoder (chapter 6).

3.8 Al application development

The whole process of developing and maintaining a software product is called the
software life cycle (Boullart 1992). The software life cycle is structured in several
phases. All the activities of those phases that are required to define, develop, test,
deliver, operate and maintain a software product form a so-called software life cycle
model. Different models and variations of those models emphasise different aspects
of software life cycle and are appropriate for a range of situations. There are three
commonly used software life cycle models: Waterfall, Prototyping, and Incremental
development.

Waterfall is the paradigm of the conventional software-engineering model. This
is a highly structured phased model. At each phase, it must be verified that the
application is built correctly, that it meets the specifications developed in the
previous phases and satisfies all the requirements. Waterfall is a sequential model;
revisiting a previous stage indicates a bad design. When developing an Al system
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like an expert system, the expert (which is often also the future user) is usually

closely involved in all stages of the development. Such constant involvement results

in a dynamic change of specifications and requirements, in contrast to conventional
software engineering where requirements and specifications are essentially static.

Hence, as a conventional engineering model, the Waterfall model is not the most

suitable for the development of an Al system; because of a dynamic change of

specifications, the developers will often be required to revisit prior phase, which is
not intended if one uses the Waterfall model.

In the case of prototyping, multiple iterations have to be performed through the
phases of knowledge acquisition, coding and testing until a final prototype of the
intended Al system is obtained. This method has two major drawbacks. It might
give a wrong impression, based merely on early prototypes, that the effort to
complete the whole system will scale linearly from the effort to encode the partial
prototypes. In addition, with the complexity of the system to be built, the time and
costs per prototype will grow almost exponentially. Consequently, it can be
concluded that prototyping can be used as a life cycle model when the problem is
sufficiently small. Usually, it is used as a part of a more complex model. For
example, Boehm (1988) proposes a spiral life cycle model where subsequent
prototypes are developed until the full system is defined by an operational prototype
and the Waterfall model is used thereafter for detailed design, coding, testing, etc. of
the final system.

Incremental development represents a refinement of the waterfall model as the .
prototyping is integrated. In this model the product development phases of the study
of feasibility, requirements analysis, and global product design, are the same as in
the Waterfall model, but the phases concerning the detailed design, coding,
integration, and implementation are split in successive increments of functionality.
Each increment refines the functional design of the future Al system and adds new
functionality to it. An important characteristic of the incremental development
model is that it allows the incorporation of new user requirements as the project
develops. Thus, it facilitates dynamic development of system specifications. Another
crucial property of the incremental development model is related to:

1. Breadth: during the whole process the system as a whole has to be developed
and each increment must satisfy all system specifications that are already
defined.

2. Depth: each increment has to be deep enough so that it clearly enhances the
functional design. It must be kept in mind that none of increments may exceed
some “reasonable” depth. If developers focus too much on a certain part of
knowledge, they will generate deep and robust solutions for that part, but this
does not guarantee a deep and robust general solution.

In general, independently of the chosen development model, the development of

an Al application may be split into the following phases (Boullart 1992):
1. assessment and scoping,
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system specification,

refinement and implementation (coding),

final system integration, testing, and transfer, and
. maintenance, enhancement and support.

n s W

As already noted in section 3.1, the primary actions of the assessment and

scoping development phase are:

e appointing a so-called target group (experts, users, management) and analysing
the user requirements,

¢ estimating the potential for success of the future expert system (i.e. performing
the study of feasibility), and

e selecting the development team (i.e. project leader, knowledge engineer(s),
domain expert(s), software engineer(s) and programmers, external consultants).

In small projects, the knowledge and the software engineer may be the same
person, but in medium and big projects there will be enough work for two or more
specialists. External consultants could be incorporated in a project to provide help
in, for example, hardware or specialised topics of AL They can also be of great help
as third (objective) party by performing the validation tests. Although these
considerations are not of the least importance, the crucial issue in an Al system
development is to ensure both:

o that the AI paradigm is the best choice for the development of the intended
application, and
e that there is a real demand for the future Al system (see section 3.1).

The actions belonging to the system specification development phase are:
making a conceptual model of the future Al system,
making a design model of the future system,
selecting the appropriate Al techniques to be employed and the appropriate
software tool(s) for developing the future system,

¢ formalising an initial prototype in the form of an offer.

The main objective of the conceptual model is to model expertise. That is, to
extract the underlying process that the human expert uses to generate a solution of a
problem and then to model it. The conceptual model represents an abstraction of the
acquired knowledge that is independent of further implementation. The design
model represents an implemented conceptual model in terms of the users’ and the
external requirements (resulting in a certain performance of the expert system). The
design model must define the future system’s:
¢ functional aspect — what the system has to “do”,
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e Dbehavioural aspect — how the functions of the system have to be performed
(methods or a combination of methods have to be selected to achieve these
functions),

e structural aspect — how the modularization of the system has to be established to
achieve the defined functions and behaviour of the system (i.e. with how many
modules, what is the functionality of each module, what are the relations
between modules, what are the relations (interfaces) with other systems and/or
humans).

The next step in the development of an Al application is to select the appropriate
Al techniques and paradigms to be employed. Al techniques are often
computationally intensive and, therefore, an undue burden might be placed on the
hardware on which the AI application should run. Hence, it is important to
determine the hardware constraints like the deployment platform in an early stage of
the Al application development process. Sometimes the actually available hardware
may influence the choice of a specific technique, and sometimes a chosen technique
will determine the hardware requirements. In any case one should be aware that both
the hardware and the software tools available might change during the project and
the simpler the system, the easier it is for the engineering team to develop it and for
the users to accept it. To select a proper software tool for the development of the
future expert system, the following tool-selection criteria have to be kept in mind:
e [Integration: the tool must allow efficient integration of all subsystems.
e Portability. the tool should operate on the same platforms as the subsystems.
¢ Support: the vendor’s financial viability and its commitment should be assured
before purchasing a tool in order to guarantee that the problems which may arise
during the usage of the tool will not prove to be not insurmountable.
o Easy learning and use: the tool should be easy to learn in order to assure that the
future users will incur no training delays.

Finally, the results of the whole system specification phase may be formalised in
a prototype. This (first) prototype should focus on a general description of the future
system’s functionality, behaviour and structure. It is reasonable to make such a
prototype before proceeding with a more detailed design of the system because the
customer management can still cancel the whole project (and in-depth development
would be a complete waste of time). Accepting this prototype in the form of an offer
would commit customer management to their further (full) support of the project.

The refinement and implementation phase involves the development of a
detailed design of the future system and the production of the code of the intended
Al application. For example, in the incremental development model, this phase
involves selecting the appropriate successive increments covering the full breadth of
the future system in an easy-to-integrate way. Each increment forms a proper
functional extension of the design model (in other words, has the proper depth),
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which further has to be coded and tested. Some increments can be developed and
implemented in parallel (especially those that have no knowledge component as, for
example, system interfaces) but, in any case, it is essential that all increments should
be fully compatible and integrable with all previous and future increments. When the
last increment is implemented, the whole specification must be as complete as it
should be in waterfall model; the only difference is that it is already coded. All the
subsystems can now be integrated and tested as a whole.
By final system testing the developed Al system has to be validated and verified.
In other words, the system should satisfy:
o all of the specified requirements (to assure that it is the right product), and
» all of the additional specifications generated during the development (to assure
that it is a product of quality).

In the system-transfer phase, the following actions have to be carried out:
acceptance of the developed system,

release of user manuals and complementary documentation,

training of the users, and

performance of all necessary modifications in order to overcome the problems
that could arise when the system is integrated within the customer’s hardware
platform.

Once the final Al system has been validated, accepted and installed in its definite
environment, the system needs some degree of maintenance and enhancement in
order to evolve with its environment. The more dynamic the environment, the more
maintenance effort will be required. The working environment of an Al system is
usually highly dynamic and therefore maintenance, enhancement and support form
an important phase in an Al system’s life cycle.
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4 Facial expression data extraction

Discerning the existence and location of a face, localising its features and
tracking its movements, are perceptual abilities that have not found their own
place in the behavioural science literature, but duplicating these native,
autonomous functions computationally is not trivial. Yet, this task is a
precursor to determining the information that the face provides.

(Yuille and Pentland 1993)

A first step in automating facial expression analysis from digitised facial images is
to investigate and decide on sensing and processing techniques that can
automatically extract representations of faces and facial features from static images
or image sequences. These representations should be further automatically
transformed into descriptions that psychologists usually use to describe facial
expressions (such as the AUs defined in FACS; see also the discussion on the issue
in section 2.1).

This chapter is organised as follows. The issues of sensing and processing the
facial images are explained in section 4.1. First the selection and arrangement of
sensors for monitoring facial expressions is discussed. Then the detection of the
presence of the face in an observed image and the detection of the facial features
from static images and image sequences are discussed next. Finally, we consider
these issues in the scope of ISFER. Next, the first part of ISFER, that is the Facial
Data Extractor (see Figure 2.25), is presented in section 4.2. The Facial Data
Extractor is a framework for hybrid facial feature detection from an input, static
dual-view facial image. The facial expression information extracted by the system is
hybrid in the sense that per facial feature, multiple feature detectors integrated into
the framework are applied. The detectors integrated into the Facial Data Extractor
part of ISFER are summarised in section 4.3. Finally, the benefits and the limitations
of the proposed technique for automatic extraction of facial expression information
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from a static facial image are discussed in section 4.4. Some guidelines for
enhancing the proposed method are also summarised.

4.1 Sensing and processing

Various factors must be considered when selecting and arranging sensors for
monitoring facial expressions. The essential parameters are quite simple: the spatial
resolution of the static images or the spatial and temporal resolution of the video
images, and the camera’s field of view. The sensor must provide sufficient detail to
enable the discrimination of expressions of interest, and it must provide either a
sufficiently wide field of view or a way for controlling camera gaze and zoom in
order to ensure that the face stays in view. The sensor data rate is the product of
field of view, spatial resolution (samples per unit angle), and temporal resolution
(frame rate). While it may be desirable to use cameras with the highest possible
spatial and temporal resolution and the widest possible field of view, this can place
an undue burden on the computer that must analyse the resulting data. Therefore,
while deciding on the appropriate facial expression monitoring sensor(s) two factors
should be taken into account: the required sensor data rates strongly depend on the
intended application, and they can easily exceed the limits set on processing time
and/or computing devices. Hence it is highly beneficial to investigate and develop
strategies for extending the field of regard (e.g. by controlling camera gaze and
zoom) while maintaining a high resolution and making the most effective use of
limited computing resources. Finally, one should decide on the strategies that would
ensure successful detection of the existence and location of the face and extraction
of the facial expression information from the images obtained by the facial
monitoring sensors selected for the intended application.

Sensing and application environment

A standard NTSC (National Television System Committee) or PAL (Phase Alternate
Line) video camera provides an image that, when digitised, measures approximately
720480, respectively, 720x576 pixels. For a typical face-monitoring task it may be
necessary to arrange the camera so that there are at least 100 pixels across the width
of a subject’s face. The field of view can then be about five times the width of the
face. This camera setting should be sufficient for applications like performance
monitoring or HCI, in which the subject is seated but otherwise free to move his
head. On the other hand it may not be sufficient for applications like lip reading or
facial action tracking, in which a high spatial resolution is necessary for the
discrimination of subtle facial changes, or for applications like animation and virtual
reality, in which the subject is free to-walk in front of the camera and to approach
and move away from the camera.
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The temporal frame rate required for monitoring facial expressions depends on
the types of expressions that are of interest. Some expressions, such as a smile or
frown, may persist for several seconds. Others, like blink or wink, last only for a
fraction of a second. A frame rate as low as one frame per second may suffice if one
needs only to determine presence as opposed to temporal information. Monitoring
more subtle or quick changes in facial expression may require ten or more frames
per second. Lip reading, for instance, requires full NTSC or PAL frame rates (i.e. 30
or 25 frames per second).

As noted above, it would be highly beneficial to develop strategies for extending
the field of regard while maintaining a high resolution and keeping the
computational load low. Using a single camera which can pan and zoom under
computer control to facilitate following of the moving faces is such a strategy. Still,
using a controlled camera introduces other complications. Namely, a special camera
mount with drive motors is required and fast image analysis should be facilitated in
order to determine where to orient the camera on a moment-by-moment basis.
Another strategy which can provide high-resolution images and keep data rates and
computational loads low while imposing no constraints on the field of view is to use
a head-mounted camera. This strategy also introduces a new set of drawbacks. For
instance, a special camera mount like a helmet or a headphone device is required.
Such a device can be heavy and hence inconvenient for the user as it reduces the
freedom with which he/she can move around and with which he/she can turn the
head.

The investigation and development of sensors and analysis techniques having the
capabilities described above is the subject of research in the field of so-called active
vision. In general terms, the objective of active camera control is to focus sensing
resources on relatively small regions of the scene that contain critical information.
Hence, an active vision system has to observe the scene with a wide field of view at
a low spatial resolution in order to determine where to direct high spatial resolution
observations. This is analogous to human vision in the fovea. The fovea is a small
depression in the retina where vision is most acute; the fovea provides the resolution
needed for discriminating patterns of interest, while the periphery provides broad-
area monitoring for alerting and gaze control. Applying the principle of the fovea
and allocating the sensing resources to both broad-area monitoring and observations
of the region of interest can reduce the actual data that needs to be provided by a
sensor and then processed by a factor of 1000 or more (Bajcsy 1988). This can
easily mean the difference between a system that is too large to be considered at all
and one that is sufficiently small to be generally used.

There are two primary areas of research in the field of active vision: the design
of fast, intelligent, control processes to direct the camera and the development of
special sensors based on the principle of the fovea, i.e. facilitating foveal vision. In
addition, vision should serve a purpose (Aloimonos et al. 1987) and a vision system
should operate continuously and furnish the results within a fixed delay, i.e. a vision
system should achieve real-time visual computation determined by the goals of the
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intended application. Although active vision technology is a hot topic nowadays and
quite some progress in the field has been made, this work needs to be extended for
face localisation and tracking for the specific application of automatic facial
expression analysis. It is certain that the field of automating facial expression
analysis would highly benefit from the field of active vision; it could make
automatic observing of the facial expressions more efficient, more effective, and
more feasible in domains such as medicine, HCI, and in other commercial
applications.

Detecting the position of the face and its features

Determining the exact location of the face in a digitised static facial image or an
image sequence is by no means a trivial task. However, this task is a precursor to
determining the information that the face provides. Without knowledge of where the
face is, most feature-extraction algorithms (see Table 2.6) will produce many false
targets and hence be useless. A robust way to locate the faces in images that is
insensitive to scale, pose, self-occlusions (e.g. eye blinking), hair style, wearable
accessories, facial expression, illumination and lighting conditions has been
proposed by only one facial-expression-analysis research group (Essa and Pentland
1997, Pentland et al. 1994). This is still a key research topic, especially when it
comes to complex environments with multiple moving objects. However, it is likely
that the currently existing algorithms for head tracking (e.g. Rowley et al 1998,
Terrillon et al. 1998, Smeraldi et al. 2000) will suffice for the needs of automated
facial expression analysis.

Once the faces have been properly located, the knowledge about spatial features
of a face can be used very effectively. The face is a good subject for computer vision
research because the (global) shape of the prominent facial features (eyebrows, eyes,
nose, mouth and chin), their relative arrangement, and the anatomical rules by which
their appearance changes are universal, regardless of age, gender and race (Ekman
and Friesen 1978). Consequently we
have a priori knowledge to model
the face. By using that model (see
Table 2.5 for various face models)
we can extract information-bearing
features.

Feature extraction may be
. divided into at least three
I Py SA3D dimensions, represented in Figure
4.1 (each vertex of the cube is

SG20 SG3D

DA3D annotated with Static or Dynamic,

Global (holistic) or Analytic, 2D

Figure 4.1: The Necker Cube of view-based or 3D volume-based).
Image processing The first consideration is dynamic
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versus static features; whether or not temporal information (i.e. a sequence of
images) is used? The second consideration is the grain of the features. The features
may be global (i.e. holistic), spanning roughly the whole object being analysed, or
they may be analytic (i.e. part-based) features, spanning only subparts of the image.
These issues have been elaborated throughout section 2.1. The third consideration is
view-based (i.e. 2D) versus volume-based (i.e. 3D) features. 3D features can be
extracted using special sensors or active sensing and are out of the scope of this
thesis, whose goal is automatic static-image-based facial expression analysis. Some
considerations that have been left out of the Necker Cube include whether the
sensors are active or passive and whether the features are predefined or learned by
an adaptive mechanism depending on the data. Chapter 2 discusses in detail those
issues as well as what has been accomplished in these traditional corners of the
Necker Cube. In summary, given the nomenclature illustrated in Figure 4.1, most of
the computer-vision systems for automatic facial expression analysis proposed in the
literature are directed towards static, holistic or analytic, 2D feature extraction (see
Table 2.2 and Table 2.3).

Feature extraction and computation of changes in facial expression is a
prerequisite for automatic facial expression analysis. Hence, when building a vision-
based system for automatic facial expression analysis, one should be aware that
defining and segmenting facial expression information well is probably not
sufficient, but in any case it is a necessary step towards a reliable, robust, fully-
automatic facial expression recognition.

Sensing and processing in ISFER

The Integrated System for Facial Expression Recognition (ISFER) is strongly
application dependent (see also section 2.6). The main goal for its development was
to achieve fully automatic facial expression analysis, which is applicable to
automated FACS coding and automated facial expression classification in observer-
defined interpretation categories, so that it can be employed for behavioural science
investigations of the face. Hence, this application domain defines the environment in
which the system is to be used primarily. Since in behavioural science investigations
of the face the research material usually consists of full-face photographs of
subjects, the sensor utilised for obtaining visual data of the examined facial
expressions should provide the system with static facial images of the monitored
subject. In order to facilitate encoding of facial actions in images, the presence of the
monitored face in images must be ensured. Also, a high spatial resolution is
necessary for the discrimination of subtle facial changes. The sensor used to acquire
visual data of the examined facial expression consists of two CCD (Charged
Coupled Device) PAL video cameras whose digitised output is used as input to
ISFER. The employed cameras are mounted on the head of the observed subject and
provide high-resolution images while imposing no constraints on the field of view.
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The cameras acquire images that, when digitised, measure approximately 720x576
pixels.

The cameras are mounted in the following manner. Two holders carrying the
cameras are attached to a head-phone-like device, which is then mounted on the
head of the monitored subject. One camera is placed in front of the face, at
approximately 15 centimetres from the tip of the nose. This camera acquires a
frontal-view image. The second camera, placed on the right side of the face at
approximately 15 centimetres from the centre of the right cheek, acquires a profile-
view image. Figure 4.2 illustrates the utilised head-mounted cameras and provides
an example of an input dual-view facial image acquired by this monitoring device.
The cameras move as the subject moves his/her head, ensuring both the presence of
the examined face in the acquired images and the absence of rigid head movements
while monitoring the non-rigid facial movements at a high spatial resolution. In
other words, the images obtained during a single session are scale- and pose-
invariant.

Figure 4.2: Camera setting for acquiring fro
images and an example of acquired dual-view

The utilised camera setting ensures the acquisition of visual facial-expression
data that are highly suitable for the purposes of behavioural science. Nevertheless,
the device described above introduces other complications. The device is heavy and
therefore inconvenient for the observed subject since it reduces the freedom with
which the subject can move around and with which he/she can turn the head. The
subject is required to remain seated and to move the head rather slowly since a quick
body movement may cause a displacement of the device and, therefore, a change of
the viewing angle. On the other hand, when reasoning about the accuracy of the
input data and about displayed facial actions, the system compares the currently
examined facial expression and the prior recorded expressionless face of the
observed subject in terms of few characteristic, immovable facial points (section
5.4). Hence, a change in the viewing angle will produce many false conclusions and
thus make the result of the system useless.

The actual input to the system can either be a static frontal-view facial image
obtained from a database containing behavioural science research material or
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obtained by the head-mounted camera placed in front of the face, or a static dual-
view facial image representing combined information acquired by both head-
mounted cameras. The question that had not been answered yet is the motivation for
facilitating an automated facial expression analysis from static dual-view facial
images given that dual views do not represent a standard image format used for
behavioural investigations of the face. The reason is the increase in quality of the
facial expression analysis, which emerges from the increase of the available
information (Wojdel, A. et al. 1999). First, automatic extraction of a dual-view facial
representation from static dual-view facial images facilitates automatic encoding of
32 different AU codes (Table 5.8) as opposed to 22 different AU codes that can be
automatically encoded from a frontal-view facial image (Table 5.5) using the
detectors currently integrated into the Facial Data Extractor. Second, a more
accurate estimation of the certainty of the input data is facilitated since there is more
data, resulting from different detectors, which can be compared (sections 5.4 and
5.6). Hence, this leads to more accurate results. Chapter 5 explains these issues in
detail.

The input data (a frontal-view facial image or a dual-view facial image) is further
processed by the Facial Data Extractor part of ISFER, which represents a framework
for hybrid facial feature detection in facial images. Given the nomenclature
illustrated in Figure 4.1, the hybrid facial feature detector explained in section 4.2
belongs to the static, analytic, 2D corner of the Necker Cube.

4.2 Framework for hybrid facial feature detection

Recent advances have been made in computer vision on the topic of automatic
recognition of facial expressions in images. In chapter 2, a number of different
systems for facial expression recognition in static facial images and image sequences
are explored and compared. In summary, the approaches include:

e analysis of facial motion (Mase 1991, Yacoob and Davis 1994, Rosenblum et al.
1994, Black and Yacoob 1997, Cohn et al. 1998, Lien et al. 1998, Essa and
Pentland 1997, Otsuka and Ohya 1998),

e holistic spatial pattern analysis (Cottrell and Metcalfe 1991, Matsuno et al. 1993,
Vanger et al. 1995, Padgett and Cottrell 1996, Edwards et al. 1998, Hong et al.
1998, Huang and Huang 1997, Yoneyama et al. 1997, Kimura and Yachida
1997, Wang et al. 1998, Lyons et al. 1999),

s grey-level pattern analysis using local spatial filters ( Zhang et al. 1998, Lyons et
al. 1999),

e analytic spatial analysis (Rahardja et al. 1991, Kobayashi and Hara 1992a-b,
Ushida et al. 1993, Kearney and McKenzie 1993, Moses et al. 1995, Zhao and
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Kearney 1996, Kobayashi and Hara 1997, Huang and Huang 1997, Cohn et al.
1998), and

* image analysis based on physical models of the facial skin and musculature
(Mase 1991, Terzopoulos and Waters 1993, Li and Roivainen 1993, Thalmann et
al. 1995, Essa and Pentland 1997, Matsumura et al. 1997, DeCarlo et al. 1998,
Eisert and Girod 1998).

Most, if not all, of these systems detect facial features in facial images by utilising
detectors of a single kind (Bartlett et al. 1999, Donato et al. 1999, Pantic and
Rothkrantz 2000d). In contrast, the Facial Data Extractor part of ISFER takes a
“hybrid” approach to facial-expression-data extraction.

The Facial Data Extractor is a framework for Aybrid facial feature detection in
the sense that it applies facial feature detectors of different kinds. In fact, to localise
the contour of a prominent facial feature (profile, eyebrow, eye, nose, mouth and
chin) in an input static facial image, multiple feature detectors of different kinds are
concurrently applied. The motivation for applying multiple different detectors to
localise any of the prominent facial features is the increase in quality of the results
obtained. This is because most of the known methods for facial feature detection in
static facial images (e.g. snake fitting, template matching, local spatial filtering) are
prone to changes in illumination and lighting conditions and distractions like
blinking, facial hair, glasses, etc. In turn, each feature detector has circumstances
under which it performs poorly and circumstances under which it performs
extremely well. Introducing redundancy in facial expression data by employing a
hybrid facial feature detector and then selecting the best of the acquired results
yields a more accurate and complete set of detected facial features (i.e. less missing
data). Hence, a hybrid facial feature detector of the kind explained above results in a
more robust performance than either a single detector used for all facial features or a
set of different detectors, each of which used for one facial feature.

Another main characteristic of the framework for facial feature detection
employed in ISFER is that it has been built by reusing the existing knowledge. That
is, each facial feature detector integrated into the Facial Data Extractor is an already
existing feature detector modified to fit the purposes of localising contours of the
prominent facial features. So rather than fine-tuning the existing techniques or
inventing new techniques for feature localisation in static facial images, known
techniques were modified and then combined. Section 4.3 provides an overview of
the feature detectors integrated into the Facial Data Extractor. A detailed algorithmic
representation of the processing of Facial Data Extractor part of ISFER is provided
in Appendix A.

Facial features
The features extracted by the Facial Data Extractor from a static dual-view facial
image are the contours of the eyebrows, eyes, nostrils, mouth, and profile,
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representing typical predefined features as opposed to the features learned by an
adaptive mechanism depending on the data. Hence, when mapped to the Necker
Cube illustrated in Figure 4.1, the features extracted by the Facial Data Extractor
belong to the static 2D analytic corner as opposed to the dynamic 3D holistic corner
of the Necker Cube.
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Figure 4.3: A) original image B) approximation by two
2™ degree parabolas C) approximation by an ellipse
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B

Figure 4.4: A) original image B) approximation by two
2™ degree parabolas C) approximation by an ellipse

C
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Figure 4.5: A) original image B) approximation by three
2™ degree parabolas C) approximation by an ellipse

For profile detection, a spatial approach to sampling the profile contour from a
thresholded profile-view image is applied (Wojdel, J. et al. 1999). The result of the
profile detector is the curvature of the profile contour function. As far as the frontal-
view prominent facial features are concerned, generally the detectors integrated into
the Facial Data Extractor approximate the contours of those features in terms of two
2" degree parabolas. Arguably, the contour of any prominent facial feature to be
localised from a frontal-view facial image (eyebrow, eye, mouth) can also be
approximated by a single 2™ degree parabola like a circle or an ellipse. Yet, as
illustrated in Figures 4.3 to 4.5, utilising two instead of a single 2" degree parabola
yields a more accurate approximation of the contours of the eyebrows, eyes, and
mouth. An accurate approximation of the facial features’ contours is crucial for the
detection of subtle changes in facial expression and hence necessary for a robust
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facial action encoding from facial images, which represents one of the main goals of
ISFER development. This explains the choice of approxxmatmg the contours of the
eyebrows, eyes, and mouth by two instead by a single 2" degree parabola.

Design and implementation
Since 1992 there is an ongoing research project at the Knowledge Based Systems
group of Delft University of Technology whose aim is the design and
implementation of an automated analyser of human non-verbal communicative
signals (Figure 1.1). Most work concerned the design and development of an
automated facial expression analyser and the implementation of different modules
for the extraction of facial expression data from either static full-face images
(Rothkrantz et al. 1998) or static profile images (Wojdel, J. et al. 1999). While the
existence of various facial feature detectors facilitated the development of the
framework for hybrid feature detection from static dual-view facial images, the
course of the performed research imposed some additional constraints on the
development of the Facial Data Extractor. First, the research is still ongoing. This
means that integrating new facial feature detectors into the Facial Data Extractor
should be facilitated while no constraints must be imposed by the programming
language in which the detectors are implemented (the code of most of the existing
modules has been written in either C or C++). Second, the framework should be a
portable interactive user-friendly platform that will facilitate developers to
implement, edit and test new facial feature detectors while working on either Sun
Solaris, MS Windows, or Macintosh work stations, which are usually used in our
group. Finally, the framework should also perform as an integral part of ISFER.
Availability of the Abstract Window Toolkit being a part of JDK (Java
Development Kit), which is a platform-independent visual-interface tool builder, and
JNI (Java Native Interface), which facilitates invoking native (non-Java) coded
methods, made Java perfectly suitable for development of the Facial Data Extractor.
The Facial Data Extractor has been implemented in Java and developed as a portable
easy-to-enlarge interactive user-friendly platform that can operate stand-alone as
well as part of a larger system and extract facial expression information
automatically either from static frontal-view facial images or from static dual-view
facial images. One might argue that the time-consuming execution of a Java-
implemented application forms a serious drawback of the system. However, this is
of little concern in the case of the Facial Data Extractor since the time spent by the
processor on executing the code of the framework itself is very short compared to
the time spent on executing the code of various modules integrated into the
framework.
The modules of the Facial Data Extractor can be classified into three groups:
1. The pre-processing group of modules, which contains: the modules for acquiring
the images from a database containing some behavioural science research
material, the modules for generating digital static facial images (frontal-view or
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dual-view) from the analogue signals coming from two mounted CCD PAL
video cameras, and the modules for filtering the image data. The modules of the
pre-processing group are explained in Table 4.1.

2. The detection group of modules, which contains the modules detect facial
regions (face region, eyebrow-eye region, nose region and mouth region) in a
frontal-view facial image. These modules are described in Table 4.2.

3. The extraction group of modules, which contains the modules that localise the
contours of the prominent facial features in static facial images. These modules
are described in detail in section 4.3.
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Figure 4.6: Algorithmic representation of the processing of the
Facial Data Extractor
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The modules of different groups interact as illustrated in Figure 4.6 (see also
Appendix A). The contours of the prominent facial features detected by the Facial
Data Extractor may be displayed to the user or further analysed by ISFER,
depending on the operating mode in which the Facial Data Extractor is executed.

Table 4.1
The modules of the pre-processing group
Module Module Description
Image to Colour Conversion of Java Image data to a flat array of pixels
Implemented in Java
Colour to Grey Conversion of the colour picture to a grey picture
Implemented in Java
Convolution Filter Noise removal and smoothing of the image by applying linear
Implemented in Java convolution filtering with Gaussian or a Uniform filter (Glassner
1993)
Median Filter Enhancement of the continuous areas of constant brightness in
Implemented in Java | the image and slight sharpening of the edges by applying non-
linear Median filter (Glassner 1993)

Different modules integrated into the Facial Data Extractor can be invoked in a
stand-alone mode or so-called ISFER mode. When used in the stand-alone
operating mode, the Facial Data Extractor facilitates developers to implement, edit
and test new facial feature detectors. The user is allowed to select and then connect
an arbitrary number of modules in order to form a network of modules that performs
a desired task; for instance, the localisation of the prominent facial features from a
frontal-view facial image (Figure 4.7). At any moment the current network is
displayed to the user in the form of a directed graph, where the nodes of the graph
depict the modules and the branches depict the connections between the modules.
Each node of the network is represented as a box containing the name of the module
and the types of input and output of the module. When executed, each module can
accept as input and generate as output any number of data elements. Each of these
data elements has a specific type such as:

e grey-scale image, depicted in a module box as “Grey”,
e feature contour points, depicted in a module box as “FCP”,
o filed data, depicted in a module box as “FD”.

For each of the data elements a module accepts as input, there is a specific area in
the module box labelled with the data type of the given data element. At this area,
called the in-comnector, a connection from another network module can end.
Similarly, for each of the data elements a module generates as its output, there is a
specific area (out-connector) in the module box which is labelled with the data type
of the given data element and at which connections to other network modules can
start.
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Table 4.2

The modules of the detection group

Module

Module Description

Grey to MRP
implemented in C
(De Bondt 1995)

Creation of the layers of the Multi Resolution Pyramid by
calculating the half of the current image resolution (rounded
to higher integer value) and averaging squares of 2x2 to one,
which half the image in both directions. The routine is
performed recursively until both image sizes equal 1 (see
figure below).

MRP to RFM
implemented in C
(De Bondt, 1993)

The module reads the given Multi Resolution Pyramid and
locates, on the given layer (the default layer is 2), the Raw
Feature Map that represents a rough approximation of the
locations of the facial features. First the head is located by
applying sequentially the analysis of the vertical histogram
(showing the colour differences between the successive rows,
pixelwise) and then the horizontal histogram (showing the
colour differences between the successive columns,
pixelwise). The peaks of the vertical histogram of the head
box correspond with the borders between the hair and the
forchead, the cyes, the nostrils, the mouth and the boundary
between the chin and the neck. The horizontal line going
through the eyes goes through the local maximum of the
second peak. The x co-ordinate of the vertical line going
between the eyes and across the nose is chosen as the
absolute minimum of the contrast differences found along the
horizontal line going through the eyes. The box bounding the
left eye is first defined to have the same size as the upper left
face quadrant (defined by the horizontal and the vertical line)
and to lie so that the horizontal line divides it in two. By
performing the analysis of the vertical and the horizontal
histogram, the box is reduced so that it contains just the local
maxima of the histograms. A similar procedure is applied to
define each of the boxes bounding the right eye, the nose and
mouth. The initial mouth box is set around the horizontal line
going through the mouth, under the horizontal line going
through the nostrils and above the horizontal line
representing the border between the chin and the neck. The
initial nose box is set around the horizontal line going
through the nostrils, under the horizontal line going through
the eyes and above the horizontal line going through the
mouth.

Find Head Contour
Implemented in C
(Rothkrantz et al. 1998)

The algorithm is based on the HSV colour model. The first
step is to define the value of the parameter Hue € [-60, 300].
Analysis of 120 fuli-face images of different people results in
the conclusion that the Hue of the face colour seldom exceeds
the interval of [-40, 60]. These experimental results also yield
the fact that the range of Hue never exceeds 40 for the images
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of a single face, irrespective of changes in lighting
conditions. The Hue is defined as [-40 < average Hue 20,
average Hue +20 < 60], where the average Hue is calculated
as the average of the Hue in the box containing a horizontal
middle of the face. The box is defined by analysing the
vertical and the horizontal histogram of the input image. The
face is then extracted as the biggest object in the scene
having the Hue in the defined range. Yang and Waibel (1996)
have presented a similar method, but based on the relative

RGB model.
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Figure 4.7: Screen shot of the stand-alone operating mode of the Facial
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Two modules can be connected in a network when the output of one module forms
the input to the other module. Each time when a connection is made, it is checked if
the in-connector and the out-connector of that connection have matching data types.
Only connections between matching data types are allowed. In addition, the
framework prevents the user from introducing loops in the network. Once a network
has been created and the input to the Facial Data Extractor has been specified, the
network can be executed. The framework then searches for the modules that have all
the required input specified, executes those modules, collects their output and
displays and/or saves it according to the user’s instructions defined in the out-
connectors of the modules.

When used in the ISFER operating mode, the Facial Data Extractor does not
interact with the user; each and every facial feature detector integrated into the
framework is invoked automatically (see Appendix A). The result of each detector is
stored in a separate file, that is, for each module which belongs to the extraction
group of framework modules, the out-connector labelled with “FD” is clicked.
Those files form further the input to the next part of ISFER, that is, to the Facial
Action Encoder explained in chapter 5.

4.3 Overview of the integrated facial feature detectors

The extraction group of the modules integrated into the Facial Data Extractor
contains the modules that localise the contours of the prominent facial features in
static facial images. These modules can be further classified into a few categories:

e Profile detectors: these modules localise the profile contour in an input static
profile-view image. Only one such module is currently integrated into the Facial
Data Extractor.

o Eyebrow detectors: these modules localise the contour of an eyebrow in an input
static frontal-view image. Two such modules are currently integrated into the
Facial Data Extractor.

e Eye detectors: these modules localise the contour of an eye in an input static
frontal-view image. Two such modules are currently integrated into the Facial
Data Extractor.

e Nostril detectors: these modules localise the contours of the nostrils in an input
static frontal-view image. Only one such module is currently integrated into the
Facial Data Extractor.

o Mouth detectors. these modules localise the mouth contour in an input static
frontal-view image. Two such modules are currently integrated into the Facial
Data Extractor.

o Mouth classifiers: these modules classify an input frontal-view image into some
interpretation categories (e.g. smile, sad and neutral) according to the extracted
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shape of the mouth. Two such modules are currently integrated into the Facial
Data Extractor.

These categories of feature detectors integrated into the framework for hybrid facial
feature detection are explained in the rest of this section. However, it should be
stressed that this section does not provide an exhaustive overview of each feature
detector integrated into the Facial Data Extractor. Per prominent facial feature, all
relative facts are provided for only one of the integrated detectors. The processing of
the other detectors that localise the same facial feature is just described shortly.

Database of test images

In the course of years, a large database of static facial images of subjects displaying
different facial actions and basic emotional expressions has been collected (e.g. De
Bondt 1995, Profijt 1995, Pantic 1996, etc.). The full database contains over 1600
frontal views, profile views, and dual views showing hundreds of distinct facial
actions, and action combinations, displayed by 25 different subjects. The subjects
were college staff and students of both sexes, who ranged in age (20 to 45), and
ethnicity (European, Chinese, and South American). None of the subjects had a
moustache, beard or wore glasses.

The database images were collected from various sources using various
techniques. Approximately one fourth of the images have been acquired by scanning
the photographs used as behavioural science research material. The rest of the
images have been acquired under a constant illumination by recording the faces
using the mounted camera device (Figure 4.2) or a standard PAL camera placed in
front of the subject. All of the collected images, when digitised (or scaled), measure
approximately 720 by 576 pixels.

Profile detector

The overall properties of the profile detector integrated in the Facial Data Extractor
are summarised in Table 4.3. The applied method represents a spatial approach to
sampling the profile contour from a thresholded input profile-view facial image.
First the Value of the HSV colour model is calculated and exploited for the
thresholding of the input image. The tip of the nose is then found as the most right
highlighted part of the binary image (Figure 4.8). The tip of the chin is found as the
first distinct minimum in the vector of summed background pixels from the bottom.
To solve the problem of face rotation, which may be present if the input image has
been acquired from a database containing behavioural science research material, the
line between the tip of the nose and the tip of the chin is used as the x-axis of the
new co-ordinate system. To obtain the profile contour from the binary image, the
number of background pixels is counted between the right edge of the image and the
first foreground pixel. This yields a vector that represents a sampling of the profile
contour curve. To remove the noise from the contour, an average procedure is
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performed with a three-pixel wide window, which is slid along the vector. The zero
crossing of the 1% derivative of the profile function defines extremes. Usually, many
extremes are found (depending on the local profile change). The list of extremes is
processed in both directions from the global maximum. The decision about
particular extreme rejection is made using two consecutive records in the list. This
obtains the list of extremes that reflect the most distinct peaks/valleys in the profile
contour.

Table 4.3

Characteristics of the Profile Detector
Presented in: Wojdel, J. et al. 1999
Implemented: Java
Applied to: Profile-view facial image
Method: Spatial sampling of a

thresholded image

Tested on: 112 profile-view images
Accuracy: High

Figure 4.8: Thresholded
Table 4.4 profile-view facial image
Distribution of d(p, pm) for the localised profile
characteristic points (PCPs) over 112 test

images; numbers in the 1* column depict the *
number of images for which d(p, pw = 0,
numbers in the 2" column depict the number of »
images for which d(p, pm) = 1, etc. »3
o |1 [2 |3 |4 |5 |6
PCP "
Pl 8 14 149 |27 |11 |3 0
P2 4 10 {43 |36 [ 12 [7 0 nd™
P3 5 |9 [48 [39 |9 [2 [0 "
P4 12 19 | 51 29 1 0 0
PS5 5 23 147 |34 |3 0 0 o
P6 7 20 {50 {29 j2 4 0
P7 3 8 45 140 110 |6 0
gg ; ?(1) :g §-9, ?5 g 8 Figure 4.9: Profile
P10 1T 117 150 |28 |5 1 0 Characteristic Points

The algorithm has been tested on 112 profile images representing seven basic
emotional expressions shown twice by eight different subjects. The images were cut
to contain just the profile and then scaled to measure approximately 240x290 pixels.
Using Adobe PhotoShop and a mouse device, the profile characteristic points
(Figure 4.9) were manually pointed by a human observer in all 112 images. The
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performance of the framework module Find Profile Contour, which is described
above, has been evaluated by calculating the block distance (maximal difference in x
and y direction) between the estimated and the manually located profile
characteristic points in each test image. The performance of the algorithm is shown
in Table 4.4. The localisation error for all profile characteristic points remained
below 5 pixels and in most images the error was approximately 2 pixels. Most errors
were caused by the difference in “definition” of the profile characteristic points in
the case of manual and automatic estimation. Manually, the points were defined as
the extremes of the profile contour while the automatic scheme tends to find the
extremes of the curvature of the profile contour.

Eyebrow detectors

Two modules, namely Curve Fitting of the Eyebrow and Chain Code Eyebrow,
localise the contours of the eyebrows. The overall properties of each are summarised
in Table 4.5 and Table 4.6.

Table 4.5 Table 4.6
Characteristics of the framework Characteristics of the framework
module Curve Fitting of the Eyebrow module Chain Code Eyebrow

Presented in: Rothkrantz et al. 1998 Presented in: Raducanu et al. 1999
Implemented: | C Implemented: | C

Applied to: Frontal-view fac. image || Applied to: Frontal-view fac. image
Method: Contour following Method: Contour following
Tested on: 60 frontal-view images Tested on: 240 frontal-view images
Accuracy: Medium Accuracy: High

The framework module Curve Fitting of the Eyebrow localises the contours of
the eyebrows one at a time. To localise the left eyebrow, a box containing the eye
and the eyebrow is segmented from the frontal-view facial image. The box is first
defined to have the same size as the upper left face quadrant (defined by the facial
axes found by the detection-group module MRP to RFM) and to lie so that the
horizontal axis divides it in two. The box is then reduced so that its boundary is
defined by the contour of the face found by the detection-group module Find Head
Contour (see Table 4.2). The eye-eyebrow region is determined by analysing the
horizontal and the vertical signature (Haralick and Shapiro 1992) of the linearly
filtered binarised image segment containing this box. The eyebrow region is then
obtained by clipping the triangle defined by the eye points (the corners and the top
of the eye found by one of the eye detectors explained in the following subsection)
out of the eye-eyebrow region. Depending of the colour of the eyebrow (dark or
light), the eyebrow region is thresholded. After a unique colour is assigned to each
of the objects in the scene, the largest is selected and the rest of the objects are
discarded. The contour-following algorithm based on 4-connected chain codes
(Ritter and Wilson 1996) has been applied to localise the eyebrow contour. The
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processing of the module terminates by smoothing the localised contour with two
simplified 2™ degree curves. A typical result of the module is shown in Figure 4.10.

Flgdre 4.10: Contour of the ) »
eyebrow localised by the Figure 4.11: Contours of the eyebrows
Curve Fitting of the Eyebrow localised by the Chain Code Eyebrow

The module Chain Code Eyebrow localises the contours of the eyebrows
simultaneously. To localise the left eyebrow, a box containing the eye and the
eyebrow is segmented from the frontal-view facial image. The box is determined by
the same procedure used by the module Curve Fitting of the Eyebrow and explained
above. The segmented part of the image containing the box is then thresholded by
applying the algorithm of minimum variance clustering (Haralick and Shapiro
1992). By analysing the horizontal and the vertical image signature of this segment,
the eye-eyebrow region is located. The signatures are filtered using closing
morphological filters given in formula (7), where v[n] is the signature on columns,
s[n] is the smoothed version of the signature, and 2k+1 is the size of the applied
structural element. The width of the eye-eyebrow region is set to the width between
the first and the last index of the maximal value of the smoothed vertical signature.
The height of the region is set to the width of the smoothed horizontal signature. The
similar procedure of thresholding and segmenting is applied once again in order to
define the eyebrow region. Then, the contour-following algorithm based on 4-
connected chain codes is applied to localise the eyebrow contour. The very same
procedure, only applied to the upper right face quadrant, is used to localise the
contour of the right eyebrow. The algorithm has been tested on a set of 240 “almost”
frontal-view facial images (i.e. some of the images contained limited in-plane and
out-plane head rotations) picturing various facial expressions shown by 12 different
subjects. The images have been scaled to measure approximately 360x290 pixels.
First, all of the images were given to a human observer. Using Adobe PhotoShop
and a mouse device, the observer pointed to the exact location of the four reference
points: the outer and the inner corner of the left, respectively right, eyebrow. The
performance of the detection scheme has been evaluated by calculating the block
distance d(p, pu) between the estimated reference points p = (x, y) and the manually
located reference points pys = (Xa Yag). A typical result of the module is shown in
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Figure 4.11 and the

performance of the algorithm is  v*[n] = min(v[n+i])

given in Table 4.7. As can be  v[n]=max(v[n+i]) -k<i<k 1)
seen, the localisation error of  s[n] =v"[n]

each reference point remained

below 7 pixels, which is a Table 4.7

sufficiently low localisation  pistribution of d(p, pw for the reference

error for detecting changes in  points of the eyebrows over 240 test images;

the appearance of the eyebrows  numbers in the 1* column depict the number

automatically (see also section  of i images for which d(p, pw) = 0, numbers in

5.4). the 2™ column depict the number of images
for which d(p, pw = 1, etc.

Eye detectors 0 [1 12 [3 {4 [>5 [>T
Two modules, namely Snake Lout |61 19|83 |14 }54 ]9 0
Eye and Eye NN, localise the L in 66 |58 [39 117|573 0
contours of the eyes. The Rout |40 | 20 | 51 |48 | 46 | 32 3
overall properties of each are Rin |53 |8 |64 ]1 |38]2 0

summarised in Table 4.8 and
Table 4.9.

The framework module Snake Eye localises the contours of the eyes one at a
time. To locate the box enclosing just one eye, the same method is used as in the
Chain Code Eyebrow module. Namely, the box is first defined to have the same size
as the upper left face quadrant (defined by the facial axes found by the detection-
group module MRP to RFM) and to lie so that the horizontal axis divides it in two.
The box is then reduced so that its boundary is defined by the contour of the face
found by the detection-group module Find Head Contour (see Table 4.2). The eye-
eyebrow region is then determined by analysing the horizontal and the vertical
signature of the image segment containing this box. By applying this procedure
again, but now on the image segment containing the defined eye-eyebrow region, a
box containing just the eye region is determined. The algorithm applies further the
active contour method proposed by Kass et al. (1987) with the greedy algorithm for
minimising the snake’s energy function proposed by Williams and Shah (1992). The
method has been tested on a small number of test images (merely 45 frontal-view

Table 4.8 Table 4.9

Characteristics of the framework Characteristics of the framework

module Snake Eye module Eye NN-
Presented in: Rothkrantz et al. 1998 Presented in: De Jonge 1995
Implemented: | C Implemented: | C
Applied to: Frontal-view fac. 1mag__‘ Applied to: Frontal-view fac. image
Method: Snake fitting Method: Pattern recognition (NN)
Tested on: 45 frontal-view images Tested on: 252 frontal-view images
Accuracy: Low Accuracy: High
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images) and in 60% of the cases a successful
snake fitting was obtained. This evaluation
indicates that the method is not particularly
useful for an application like facial action
encoding from facial images, as a rather
high precision of the detection schemes is
necessary for detecting subtle facial :
changes. In addition, the processing of the Figure 4.12: Contour of the eye
modute is highly time consuming (+2min on localised by the Snake Eye
average). A result of the module is shown in

Figure 4.12.

The module Eye NN localises the contours of the eyes simultaneously. The
method represents a neural network approach to sampling the contours of the eyes
from an input frontal-view facial image. Neural networks have an excellent
capability to recognise specific patterns. This property is exploited here to extract
graphical patterns from digitised images. The graphical pattern that is searched for is
a combination of pixel values (grey values). The Eye NN module utilises an 81x4x1
back-propagation neural network with a Sigmoid transfer function. To detect the
eyes in a digitised frontal-view facial image, the detector processes in two stages,
coarse and fine.

For each of the eyes, a 9x9 pixels box enclosing approximately the iris of the eye
is located in the coarse stage. The eye box is first segmented from the input image
using the result of the MRP to RFM module. Then, a 9x9 pixels scan window is
scanned over this segmented region. Each pixel of the scan window is attached to an
input neuron of the neural network which has been trained to recognise the iris of the
eye. The location where the highest neural response is reached is assumed to be the
centre of the iris. In the next step, the scan window is set around this point. If the
location where the highest neural response has been reached remains the same as in
the previous step, the position of the iris is found. Otherwise, this step is repeated
until the iris is found. A 9x9 pixels scan
window that will be used in the fine stage of
the algorithm is then set around the iris.

In the fine stage, the eye sub-features are
localised. The idea behind searching the
characteristic points of the eye by applying a
neural network originates from the
Hierarchical Perceptron Feature localisation
method of Vincent et al. (1992). A
difference between the two methods is the
choice of the eye micro-features. The micro-  Figure 4.13: Curve fitting on the
features that are localised by the Eye NN  eye micro-features localised by
module are illustrated in Figure 4.13. These Eye NN
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micro-features are invariant to the
Table 4.10 changes in size of the eye, in the
Distribution of d(p, pw for the micro-  ghown facial expression, and in
features of the eyes over the training set; hysiognomic characteristics of
numbers in the 1 column depict the f’hy g hom  th
number of images for which d(p, pw = 0, € person fco whom the eye
numbers in the 2™ column depict the belongs. Similarly to the process
number of images for which d(p, pw = 0.5,  Of localising the iris of the eye
etc. (coarse stage of the algorithm), a

9%9 pixels search area is set for

o {5t [s5]2 |53 each micro-feature. Each pixel of
R eye the Televant search area is
left 14 18 12245 12 |0 10 attached to an input neuron of a
top }5 17413049 |4 11 [3 neural network that has been
:;g;l: Z6 ;: ﬁ (1)2 ? (5) (2) trained to recognise the relevant
ot 18 17713216 11 10 10 micro-feature. The location of the
ot 16 18113312 [3 [1 Jo highest neural response reached
centre 18 16514518 [0 [0 |0 represents the location of the
L eye micro-feature. A priori knowledge
Teft 91811812 10 10 o0 such as the symmetrical position
op |4 |62 1411212 |0 [5 of the features is used to discard
rtop |3 |68 13919 (2 |1 |4 false positives. In a final step of
right |22 [89 [15]0 |0 |0 [0 the algorithm, the border between
bot 11118212914 [0 |0 [0 the eyelids and the eye on which
Ibott 19 [81]32]2 [0 [2 [o the  micro-features lie s
centre |9 |69 [38|10]0 |O |O approximated by two 3'd-degree

polynomials (see Figure 4.13).

For the experiments 252 frontal-view facial images of nine different persons
were used. The images were scaled and clipped to measure approximately 320 by
240 pixels and the colour depth of 24 bits was reduced to 256 grey levels. The input
material was divided into two groups of 126 images. Each group consists of 2x7
basic emotional expressions shown by nine different persons. One group of images
has been used as a training set and the other as the test set of images. First, all
images were given to a human observer. Using Adobe PhotoShop and a mouse
device, the observer pointed to the exact location of the eye micro-features. Per
image and for each micro-feature the training pattern has been obtained by
extracting (row by row) an 81-dimensional vector of the grey levels of the pixels in a
9x9 pixels window that has been set around the micro-feature pointed out by the
user. Per micro-feature an 81x4x1 back-propagation neural network was trained.
Each network was trained using 126 input vectors until a small mean-squared error
(<0.01) was reached for the training vectors (after approximately 1000 training
epochs). Then the performance of the detection scheme was evaluated by calculating
the block distance d(p, p)) between the estimated micro-feature p = (x, ) and the
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manually located pertinent point

Py = (X yu). The performance Table 4.11

Distribution of d(p, ps) for the micro-

of the algorlt!m‘n was mfaasured features of the eyes over the testing set;
first for the training set of images. . \bhers in the 1* column depict the

The results of this test are shown  pymber of images for which d(p, pw) = 0,
in Table 4.10. From this table one  npumbers in the 2™ column depict the
can see that for all of the micro- number of images for which d(p, pw) = 0.5,
features in all 126 images, the etc.

localisation error remained below 5 11

3 pixels. In most of the images R 0 |5 ]2 3 [4
the localisation error of each 1 gye R ATRERG
micro-feature is approximately <
. |-top 1 17 149 |31 {24 |3 1

0.5 pixels. Table 4.11 expounds

r-top 0 21 143 32 121 (3 6
the performance of Eye NN -

right 11 119 |62 132 [0 2 0
moQule measured for. the test set ot 14 117151140 1212 [2
of images. From this table one bot. 12 12015114119 [1 |2
can see that for all of the micro- centre 12 14215712411 10 |o
features, the localisation error L eye
remains below 4 pixels and that in Teft 11181513912 10 10
most of the images, the error is I-top 0 1214914211516 2
approximately one pixel. In fact, r-top 1 13 15313611217 |4
most of the larger localisation right |8 [26 (612714 Jo [0
errors were caused by the r-bot. 16 121 |50 [33}113]2 |1
difference in the “definition” of lbot. 13 [19 (5214014 |5 |3
the eye centre in the case of centre |2 (47 |59 |15§3 {0 |0

manual  estimation and of

automatic estimation. Manually, the centre of the eye was defined as the centre of
the iris, while the neural network tends to find the centre as the darkest point of the
iris. Anyhow, the Eye NN module performs similarly to other eye detectors
(Reinders 1997): for the pertinent resolution of test images, the average error is 0.98
pixels.

Nostrils detector

The overall properties of the nostrils detector integrated in the Facial Data Extractor
are summarised in Table 4.12. Except the contours of the nostrils, the Find Nose &
Chin module localises the tip of the chin in a frontal-view facial image as well. The
linearly filtered input image is thresholded and the seed-fill algorithm (van Dam and
Foley 1995) is applied for colouring the important facial regions such as the eyes,
nostrils, and mouth. The symmetry line between the important facial regions is
found using an adapted version of the algorithm based on the Voronoi diagrams and
presented by O’Rourke (1994). The region that is searched for the nostrils is defined
by the second deepest valley of the brightness distribution along the symmetry line
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(a similar algorithm has been used by Hara and Kobayashi (1997a)). In this nostrils
region, the small regions which are at approximately the same perpendicular
distance from the symmetry line and which have the highest intensity values are
considered the nostrils and approximated by two small circles. The tip of the chin is
defined as the first peak after the third deepest valley (the mouth) of the brightness
distribution along the symmetry line. A typical result of the module is shown in
Figure 4.14.

Table 4.12
Characteristics of the framework module
Find Nose & Chin

Presented in: Rothkrantz et al. 1998
Implemented: | C
Applied to: Frontal-view facial image
Method: Brightness distribution analysis
. Tested on: 88 frontal-view images
Figure 4.14: The tip of the Accuracy: Medium
chin and nostrils localised
by Find Nose & Chin

The algorithm has been tested on a set of 88 “almost” frontal-view facial images
(i.e. the images contained limited in-plane and out-plane head rotations, usually
along the y-axis) picturing various facial expressions shown by 10 different subjects.
The images have been scaled to measure approximately 360x290 pixels. First, all of
the images were given to a human observer. Using Adobe PhotoShop and a mouse
device, the observer pointed to the exact location of the three reference points: the
inner corner of cach nostril and the tip of the chin. Then the performance of the
detection scheme was evaluated by calculating the block distance between the
estimated reference points and the manually located reference points. For instance, if
we denote the manually located inner corner of the left nostril by /i, = (x);, yaJ and
the closest by point of the circle that represents the contour of the left nostril
approximated by the Find Nose & Chin module (Figure 4.14) by / = (%, y), then the
performance indicator is expressed by d(7, J ). The performance of the algorithm is
given in Table 4.13. From this table one can see that the localisation error of each
reference point remained under 6 pixels. In fact, most of the errors have been caused
by the difference in the “definition” of the reference points in manual and automatic
estimation. The human observer usually marked the upper points of the nostrils as
the inner corners (Figure 4.15) while the Find Nose & Chin module usually
excluded those points since it approximates the contours of the nostrils by two
circles (Figure 4.14). Also, the human observer usually marked the brightest point of
the chin as the tip of it while the automatic scheme located this point as the border
between the bright chin and the shadow under it.
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Table 4.13

Distribution of d(l, Iy) for the reference
points of the nose and the chin over 88 test
images; numbers in the 1* column depict
the number of images for which d(l, Iy) = 0,
numbers in the 2" column depict the
A number of images for which d(l, Iy) = 1, etc.

Figure 4.15: Manual localisation

. 0 1 2 3 4 5 6

of the lnns; :tc::'lr;ers of the o 0 3 37 124 120 11 0
right 0 0 39 117 129 | 3 0

chin tip 0 9 32 1 4 39 | 2 2

Mouth detectors

Two modules, namely Snake Mouth and Curve Fitting of the Mouth, localise the
mouth contour from an input frontal-view image. Their overall properties are
summarised in Table 4.14 and Table 4.15.

The Snake Mouth module accepts as input a 24-bit true-colour frontal-view
facial image and the result of the detection module MRP to RFM. The box enclosing
the mouth, found by the MRP to RFM module, is first segmented from the input
image and converted to a grey-scale image by using the original primary colours and
the relation Y = 0.299R + 0.587G + 0.114B for the resulting intensity. Further, the
red colour component and the green colour component are processed as independent
images: the first stage of the algorithm processes the red component while its second
stage processes the green component. This is because the red component does not
highlight the lips while bearing the information about the mouth-through line
whereas the green component bears the information about the lips, which are
particularly dark in this component and with suppressed reflections. In the first stage
of the algorithm, the mouth-through line is found as a distinct valley in the vertical
section of intensity. The minimum of the line with the lowest horizontal integral
projection of intensity, representing the centre of the mouth, is found next. A
function of the vertical section of intensity through the found minimum is then

Table 4.14

Characteristics of the framework
module Snake Mouth

Table 4.15
Characteristics of the framework
module Curve Fitting of the Mouth

Presented in: Rothkrantz et al. 1998 Presented in: Profijt 1995
Implemented: | C Implemented: | C

Applied to: Frontal-view fac. image Applied to: Frontal-view fac. image
Method: Colour-based snake fit. Method: Fit 3x2"-degree parabola
Tested on: 55 frontal-view images Tested on: 280 frontal-view images |
Accuracy: Medium Accuracy: High
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created. The minimum of this function is found and the valley is detected by
searching in both directions for edge points (zero crossings in the 2™ derivation of
intensity starting from a previously found minimum). The mouth-through line is
further defined using an altered area-growing algorithm. The algorithm starts from
the centre of the mouth and adds points that are 4-connected to the current point and
whose intensity is lower than the mean intensity of the previously found valley. In
its second stage, the algorithm applies the active contour method proposed by Kass
et al. (1987) with the greedy algorithm for minimising the snake’s energy function
proposed by Williams and Shah (1992). The snake starts in the shape of ellipse
whose horizontal axis is the mouth-through line, elongated on both sides for 25%.
The method has been tested on a rather small number of test images (merely 55
frontal-view images) and in 85% of these cases a successful snake fitting was
obtained. Although this correct recognition rate is not particularly high, the method
achieves a rather precise localisation of the mouth (e.g. Figure 4.16) if the snake
does not collapse and shrink into a single point. The main drawback of the method is
its robustness; it is highly prone to changes in illumination and lighting conditions.
The presence of a light source providing rather yellow light increases the
successfulness of the algorithm with even 10%. This is because yellow light
increases the contrast of the lips in the green component and conversely decreases
their contrast in the red component. Another disadvantage is that the processing of
the module is highly time consuming (some 2 minutes on average).

Figure 4.16: The mouth-through line igure 4.17: The mouth contour
and the mouth contour localised by localised by Curve Fitting of the
the Snake Mouth module Mouth

The Curve Fitting of the Mouth module accepts a grey-scale frontal-view facial
image and the result of the detection module MRP to RFM. The box enclosing the
mouth, found by the MRP to RFM module, is segmented from the input image and
then filtered with a two-dimensional Gaussian low-pass filter. In the binarised
image, the lowest highlighted pixel is then selected as the starting point for
following the boundary. A pixel directly connected to the current pixel, representing
a zero crossing of the 2" derivative function of the mouth image, continues the
mouth boundary. The points where the conjunction of the lips ends and changes in a
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disjunction are marked as mouth corners. A refined estimate of the mouth shape is
then obtained by fitting two 2™-degree parabolas on the upper lip and a 2"-degree
parabola on the lower lip. The 2"order least-square model algorithm is used to find
the best relation between the points of the extracted mouth contour and the
parameters of each of the parabolas. A typical result of the module is shown in
Figure 4.17.
The performance of the  Table 4.16

algorithm has been tested  Distribution of d(p, pw) for the reference points of
on a set of 280 frontal- the mouth over 280 test images; numbers in the
view facial images of 20 1* column depict the number of images for which
different persons. The d(p, pm) = 0, numbers in the 2™ column depict the
images were used in their number of images for which d(p, pu) =1, etc.

original resolution, i.e. 720 0 1 2 |3 4 |>5 |[>8
by 576 pixels. First, all of left 8 | 131571138 |54 ]9 1
the images were given to a ctop | 17 [ 77 [ 49 | 97 37 13 0
human observer. Using right |5 |19 |82 126 [41 |5 2
Adobe PhotoShop and a c-bot. §22 |27 |61 116 [52 |2 0

mouse device, the observer

pointed to the exact location of the four utilised reference points: the left mouth
corner, centre of the upper lip, right mouth corner, and centre of the lower lip. Then
the performance of the detection scheme was evaluated by calculating the block
distance d(p, pyy) between the estimated reference points p = (x, y) and the manually
located reference points py, = (45, yar). The performance of the algorithm is shown in
Table 4.16. As can be seen, in most of the images the localisation error of each
reference point is approximately 3 pixels. This proves that the detection scheme
employed by the Curve Fitting of the Mouth is sufficiently accurate for an automatic
detection of subtle changes in the appearance of the mouth.

Mouth classifiers

Examining children’s or caricature
drawings may lead to an interesting
conclusion. A sad mouth or a smile can be -~ -
shown using only a single drawing line
that still perfectly reflects the intention of

the artist (Figure 4.18). The main reason
for this is that the pertinent mouth F'gu"? 4.18, People easily detect

. L . the facial features pattern from the
expressions affect primarily the facial line drawings of faces
position of the mouth corners. This leads
further to the conclusion that an appropriate representation of such mouth
expressions may be the information about the average edge intensity and direction in
the corners of the mouth. If on average the edge is “going up”, the mouth expression
could be interpreted as “smiling”. If on average the edge is “going down”, the mouth
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expression could be interpreted as “sad”. This idea has been implemented in the
form of an ANN classifier of “vertical” mouth expressions that applies fuzzy
reasoning for edge detection (Wojdel and Rothkrantz 1998). If on average the edge
is “protruding”, the mouth expression could be interpreted as “stretched”. If on
average the edge is “shrinking”, the mouth expression could be interpreted as
“puckered”. This idea has been implemented as a rule-based classifier of
“horizontal” mouth expressions that also applies fuzzy reasoning for edge detection
(Pantic et al. 2001b). Thus, both the Vertical ANN Mouth Classifier and the
Horizontal Rule-based Mouth Classifier apply fuzzy reasoning for edge detection
and while the Vertical ANN Mouth Classifier employs a neural-network-based
classification, the Horizontal Rule-based Mouth Classifier applies a rule-based
classification of the mouth expression in an input frontal-view image. The
processing of only one classifier, namely the original (vertical) ANN mouth
classifier, is explained below. The overall properties of each of the classifiers have
been summarised in Table 4.17 and Table 4.18.

Table 4.18
Table 4.17 Characteristics of the framework
Characteristics of the framework module Horizontal Rule-based Mouth
module Vertical ANN Mouth Classifier Classifier

Presented in: Wojdel-Rothkrantz ‘98 Presented in: Pantic et al. 2001b

Implemented: | C++ Implemented: | C++

Applied to: Frontal-view fac. image Applied to: Frontal-view fac. image |

Method: Fuzzy reasoning and a| | Method: Fuzzy reasoning and
NN-based classification rule-based classification

Tested on: 100 frontal-view images Tested on: 120 frontal-view images

Accuracy: High Accuracy: High

The processing of the module starts with segmenting the mouth region from the
original input frontal-view image based on the result of the detection module MRP
to RFM. Then a fuzzy reasoning for edge detection is performed based on two
characteristics of the gradient, namely, that the gradient value corresponds with local
steepness of the function and that the function is locally symmetrical along the
gradient direction. The basic idea of fuzzy reasoning for edge detection originates
with Law et al. (1994). Still, the two approaches differ: the main information in the
detection scheme of the Vertical ANN Mouth Classifier is the direction of the
gradient rather than its value.

The fuzzy reasoning proceeds as follows. The numerical values representing the
symmetry and steepness level are first fuzzified into the labels low, medium or high
and then passed to the reasoning part of the process. The reasoning part is based on
nine rules, such as “if the steepness is high and the symmetry level is high then the
edge intensity in this point is high”. This part results in the labels low, medium and
high, which depict the edge intensity in a given point. The information about the
direction of the mouth symmetry axis (the axis is determined based on the result of
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the detection module MRP
to RFM) is used to obtain
the information about both,
the intensity and the
direction of the edge in a
given point. Combining the
intensity and the direction
of the edge in a given point
results in a  vector
representation of that point.
The obtained vector field
for the whole mouth region
is then averaged and
sampled in a fixed number
of regions. In the case of

features
network

recognition
network

smile

neutral

;sad

the Vertical ANN Mouth copy of

Classifier, Wojdel and features

Rothkrantz (1998) used a -+ network

rectangular-grid Figure 4.19: NN-architecture of the fuzzy
decomposition of the mouth classifier of mouth expressions

region with 10 columns and
5 rows of average edge direction vectors. The resulting 50 vectors (100 values) are
further classified by a 100x6x4x4x3 back-propagation neural network.

The used network layout, illustrated in Figure 4.19, reflects the vertical
symmetry of the mouth. The implemented architecture contains two S50x3x2
“features” networks set in parallel (one for each side of the mouth) whose output is
passed further to a 4x3 “recognition” network. The output of the network is a
singular classification of the shown mouth expression — in the smile, neutral or sad
categories. Both features networks should carry out the same task and therefore, they
can be implemented as two copies of the same network. In that case, the error is
propagated within the single network as well as from the recognition network to
both features networks. This speeds up the training process and results in better
generalisation properties (Wojdel and Rothkrantz 1998).

To evaluate the method, a set of 100 frontal view facial images has been used.
The images were given first to a human observer who classified the images
according to the appearance of the mouth into one of the three used categories.
Then, in each experiment, ten images were randomly chosen as the test set. The
remaining 90 images were processed first by the fuzzy part of the algorithm and then
passed to the network as the training set. In each experiment the network achieved
full 100% recognition level for both the training and the test set of images. The
training took 60 epochs on average. Changes of the average error of the network

145



response during the training is illustrated in Figure 4.20. The average response error
on the test set is calculated as 0.08.
It has not yet been proven whether the proposed
151 method is sufficiently sensitive. The method uses only
some average properties of the image, which do not
necessarily depict subtle differences between various
mouth expressions. Still those fine changes in mouth
appearance are crucial for a proper (emotional)
interpretation of mouth expressions. The method
proved quite efficient, however, as a check facility.
Overall correctness of the results of the mouth
0.0 detectors integrated into the Facial Data Extractor can
Figure 4.20: Average be easily checked on the ba§is of tl}e results obtained
error in the training by the fuzzy classifiers. U§1ng a simple set of mlt;s,
epoch the output of a fuzzy classifier can be compared with
the properties of the mouth contour localised by a
mouth detector. Rules such as “if smile then the corners of the mouth are up” and “if
stretched then the mouth is elongated” extend the fuzzy classifiers of mouth
expressions, which in that way form automated tools for checking the results of the
mouth detectors integrated into the Facial Data Extractor (see section 5.6).

1.2
0.9
0.6
0.3

4.4 Key challenges for future research

The utilised head-mounted camera device (Figure 4.2) facilitates the acquisition of
visual facial expression data that are highly suitable for the purposes of behavioural
science in the sense that a high image resolution and the presence of the face in an
acquired image are ensured. However, the employed device has its drawbacks as
well. The device is heavy and reduces the freedom with which the subject can move
the head or move around. The subject is required to remain seated and to move the
head rather slowly. A quick body movement may cause a displacement of the device
and, in turn, a change of the viewing angle which will produce many false
conclusions and thus make the result of the system useless. Therefore, the key
challenge in the field of selecting and arranging the sensors for monitoring facial
expressions for the purposes of behavioural science relates to finding strategies for
employing a fixed camera while maintaining the high resolution of the acquired
images and as wide a field of view as possible. As noted in section 4.1, a single
camera can pan and zoom under computer control to follow faces as they move. This
strategy can, in effect, provide a very wide field of view at a high resolution while
keeping data rates and computational loads low. However, this strategy requires a
fast image analysis in order to determine where the camera must be oriented on a .
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moment-to-moment basis. It also requires robust analysis techniques for locating the
head in the observed scene, for dealing with rigid head motions and various viewing
conditions, and for dealing with changes in illumination due to changes in the
subject’s body position in respect to light sources. For future developers of ISFER,
this suggests moving towards research of real-time purposive image processing in
the field of active vision.

The design and implementation of the Facial Data Extractor as a portable,
malleable, interactive, user-friendly platform for facilitating hybrid facial-feature
detection in static frontal-view or dual-view facial images introduces many benefits.
First of all, introducing redundant facial expression data by concurrently applying
multiple facial feature detectors on a dual-view facial image ensures that a more
accurate and more complete set of detected facial features is obtained than with any
of the conventional facial-feature detection schemes. Second, the design and
implementation of the platform enable the current and future developers to
implement, edit, test and integrate new facial feature detectors independently of both
the programming language used to implement new detectors and the operating
system worked on.

Nevertheless, the Facial Data Extractor and the integrated facial feature detectors
have their drawbacks as well. The execution of a Java-implemented application is
time consuming. This is not a crucial issue for the current version of the Facial Data
Extractor since the execution of some of the integrated feature detectors is a dozen
times more time consuming. Althoug} this might form a serious drawback once the
currently integrated detectors are replaced with some advanced real-time facial-
feature detection techniques, it is likely that the current platform will suffice for the
immediate needs of the researchers at the Knowledge Based System group. On the
other hand, in order to account for the time-consuming execution of the individual
feature detectors integrated into the Facial Data Extractor, future developers of
ISFER should investigate the implementation on parallel hardware, which could
speed up the processing of the system as a whole.

A more important issue concerns the fact that the Facial Data Extractor performs
facial-expression-information extraction from static images. It has been proven,
however, that such extraction is sensitive to noise and changes in illumination. The
key challenges in the field of detection of the facial features in static facial images
are therefore the very same problems which are still considered generally unsolved
in the field of image processing. For future developers of ISFER, this means that
investigations towards a robust detection of the face and its features are necessary,
despite the changes in viewing and lighting conditions and the distractions like
glasses, birth marks, facial hair, and self-occlusions such as blinking.

Finally, integrated new modules for facial-feature tracking from image sequences
would facilitate an automatic facial expression analysis in static facial images as
well as in facial image sequences. If performed in real-time, this would enlarge the
applicability of the system to fields as various as performance monitoring, stress
monitoring, animation, and advanced HCI, in which the extraction of spatial and
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temporal facial expression information on a moment-by-moment basis is required.
More importantly, this would facilitate the recognition of fast subtle facial changes
such as blink and wink and make the system suitable for behavioural science
investigations of the face from video imagery.
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5 Facial action coding

Automating the process of facial signals coding would be enormously
beneficial... In behavioural science, facial expression is an important
variable for studies on human interaction and communication; is a focus of
research on emotion, cognition, and development of infants and young
children... Measurement of facial expressions is important for medicine,
neurology, neurophysiology, psychiatry, political science and economics,
linguistics... To automate coding of facial expressions would advance
research in diverse domains.
(Golomb and Sejnowski 1993)

An automated system for facial expression analysis from digitised facial images
should translate the automatically extracted facial features into a description of the
encountered facial expression (see the discussion on the issue in sections 2.1 and
2.2). Usually one expects the description that is generated automatically to be
identical, or at least very close, to a human’s description of the displayed facial
expression. But which kind of the human-like description of the shown facial
expression should be actually generated generally depends on the specific
application domain (and/or context) in which the intended facial expression analyser
is to be employed.

The first section of this chapter gives an introduction to the Facial Action Coding
System (FACS), which is probably the most prominent and commonly used method
in behavioural science investigations of the face for measuring facial activity and
describing facial expressions in terms of this activity. This section also summarises
the potential benefits of automating facial action coding and indicates the wide
variety of application areas where benefits could accrue from an automatic system
like ISFER. The rest of this chapter is concerned with the second part of ISFER, that
is, with the Facial Action Encoder (see Figure 2.25). The Facial Action Encoder is a
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rule-based expert system that converts the contours of the facial features localised
automatically by the Facial Data Extractor part of the system (chapter 4) into a
quantified FACS-coded description of the encountered facial expression. The
architecture of the Facial Action Encoder is described in section 5.2. Three main
parts of the Facial Action Encoder can be distinguished: the pre-processing data
evaluator, the data analyser, and the post-processing data evaluator, each of which
performs a certain task (function). The pre-processing data evaluator makes the best
possible selection of the redundantly localised contours of the facial features,
evaluates the certainty of the selected data, and represents those data in terms of a
point-based face model. The utilised face model is discussed in section 5.3 while the
processing of the pre-processing data evaluator is explained in section 5.4. The data
analyser of the Facial Action Encoder performs quantified facial action coding as
applied to automated FACS coding and outputs a description of the displayed facial
expression in terms of 32 quantified AU codes. The processing of the data analyser
is described in section 5.5 (a full list of rules used for the coding and quantification
of AUs from an input dual-view facial image is provided in Appendix B). Based on
a statistical prediction, the post-processing data evaluator optionally adjusts the AU-
coded description of the shown facial expression which has been generated by the
data analyser part of the Facial Action Encoder. The post-processing data evaluator
is presented in section 5.6. Finally, the benefits and the limitations of the proposed
technique for automatic facial action coding in static images are discussed in section
5.7. Some guidelines for enhancing the proposed method are also summarised. For a
detailed algorithmic representation of the processing of the Facial Action Encoder,
readers are referred to Appendix A.

5.1 Facial action coding

The human face is involved in an impressive variety of different activities. It houses
the majority of our sensory apparatus: eyes, ears, mouth and nose, allowing the
bearer to see, hear, taste and smell. Apart from these biological functions, the human
face provides a number of signals essential for interpersonal communication in our
social life. The face houses the speech production apparatus and is used to identify
other members of the species, to regulate the conversation by gazing or nodding, to
interpret what has been said by lip reading, and to understand somebody’s affective
state and intentions on the basis of the shown facial expression. Personality,
attractiveness, age and gender can be also seen from someone’s face. Thus the face
is a multi-signal sender/receiver capable of tremendous flexibility and specificity. In
general, the face conveys information via four kinds of signals (Ekman 1978).
1. Static facial signals represent relatively permanent features of the face, such as
the bony structure, the soft tissue, and the overall proportions of the face. These
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signals contribute to an individual’s appearance and are usually exploited for
person identification (Bruce et al. 1992).

2. Slow facial signals represent changes in the appearance of the face that occur
gradually over time, such as development of permanent wrinkles and changes in
skin texture. These signals can be used for assessing the age of an individual.
Note that these signals might diminish the distinctness of the boundaries of the
facial features and impede recognition of the rapid facial signals (see below).

3. Artificial signals are exogenous features of the face such as wearables like
glasses and cosmetics. These signals provide additional information that can be
used for gender recognition. Note that these signals might obscure facial features
or, conversely, might enhance them.

4. Rapid facial signals represent temporal changes in neuromuscular activity that
may lead to visually detectable changes in facial appearance, including blushing
and tears. These signals are responsible for facial expressions.

The main consideration here is rapid facial signals. These movements of the
facial muscles pull the skin, causing a temporary distortion of the shape of the facial
features and of the appearance of folds, furrows, and bulges of skin. The changes in
facial appearance caused by the facial muscle activity are usually brief, rarely lasting
more than five seconds or less than 250ms (Ekman and Friesen 1978). The common
terminology for describing the changes in facial appearance refers either to
culturally dependent linguistic terms indicating a specific change in the appearance
of a particular facial feature (e.g. frowned eyebrows) or to the linguistic universals
describing the activity of specific facial muscles that caused the observed facial
appearance changes. In these linguistic universals the muscles may be designated
either by their Latin names or by Action Units (AUs) as proposed in Ekman and
Friesen’s Facial Action Coding System (FACS, 1978). In general, psychologists
favour the usage of linguistic universals (although those might be sometimes a
burden to understanding the discussed issue, they can help to avoid
misunderstandings caused by usage of culturally dependent linguistic terms). For
example, terms like smile, smirk, frown, sneer, etc. might (and probably will) be
interpreted differently in different cultures. Further, such terms are imprecise as they
may refer to a variety of different muscular actions and their intensities. In the rest
of the text, the usage of linguistic universals is favoured.

There are several methods for (linguistically universal) recognition of facial
changes based on the facial muscular activity (for a review of 14 such techniques see
Ekman 1982b). From those, FACS is the best known and most commonly used
system for facial action coding. It is being used by most (if not all) researchers who
are currently working on automating facial action coding from facial static images or
image sequences (for a further discussion on this issue see also chapter 2, Bartlett et
al. 1999, Donato et al. 1999). Following this trend, the first stage of automatic facial
expression recognition presented in this thesis concerns automatic facial action
coding in static facial images applicable to automated FACS coding.
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Facial Action Coding System (FACS)

As mentioned in section 2.1, FACS is a system designed for human observers to
visually determine how the activation of each facial muscle (individually activated
or in a combination with other facial muscles) changes the appearance of the face.
The changes in facial appearance are measured with FACS in terms of Action Units
(AUs) rather than in terms of muscular units due to two reasons. First, in some
cases, activation of several different muscles produces a single facial appearance
change (e.g. to lower the eyebrow and to draw the eyebrows together, three muscles
are activated). In FACS the muscles involved in the production of a single change in
facial appearance were combined into one specific AU (e.g. AU4 in the case of the
drawing of the eyebrows together). Second, in some cases, the same muscle is
involved in the production of various changes in facial appearance. For instance, the
outer portion of the frontalis muscle can be activated independently of the activation
of the inner portion of this muscle, causing merely the outer portion of the eyebrow
to rise. In FACS, the activity of such muscles is separated into a few AUs, each of
which represents a distinct change in facial appearance (e.g. AUl and AU2 in the
case of the raising of the inner, respectively the outer, portion of the eyebrows).

Table 5.1
List of upper face facial actions defined in FACS

AUL:
Raised inner eyebrow

AU2:
Raised outer eyebrow

AUI + AU2: AU4:

Raised eyebrows Lowered eyebrow
Eyebrows drawn together

AUS: AU6:

Raised upper eyelid Raised check
Compressed eyelid

AU41:
Drooped eyelid

AUT:
Tightened eyelid

AU43:
Closed eyes

AU42:
Slit — eyes are opened
just a bit (“slit eyes”)

AU44:
Squinted eyes

AU4S:
Blink - same as AU43 but
lasting less than Y2 second

AU46:
Wink
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Table 5.2
List of lower face facial actions (AU8 to AU29) defined in FACS

AUS: AU9:

Lips towards each other Wrinkled nose

AU10: AUlL:

Raised upper lip Deepened
nasolabial furrow

AU12; AUI13:

Lip corners pulled up Lip corners pulled
up sharply

AU14: AU15:

Dimpler — mouth Lip corners

corners pulled inwards depressed

AU16: AU17:

Lower lip depressed Chin raised

AUIS: AU19:

Puckered lips Tongue shown

AU20: AU21:

Mouth stretched Neck tightened

horizontally

AU22: AU23:

Lip funneler — as when Lips tightened

pronouncing “flirt”

AU24: AU25:

Lips pressed Lips parted

AU26: AU27:

Jaw dropped Mouth stretched
vertically

AU28: AU28t:

Lips sucked into the Upper lip sucked

mouth into the mouth

AU28b: AU29:

Bottom lip sucked into Jaw pushed forward

the mouth

153




Table 5.3
List of lower face facial actions (AU30 to AU39) defined in FACS

<y AU30: AU31:
g Jaw sideways Jaw clenched

AU32:

AU33:
Bitten lip Blow
AU34: AU35:

Cheeks puffed out by the
air forced into the mouth

AU36:
Bulge produced by the
tongue

AU38:

% Nostril wings flared out Nostril wings compressed
* (not flared and flared Y (uncompressed and

nostrils) compressed nostrils)

Lip comers sucked into
the mouth

AU37:
Wiped lips

AU39:

There are 44 different AUs defined in FACS that account for the changes in facial
expression (Tables 5.1 to 5.3) and 14 other actions grossly describing changes in
gaze direction and head orientation. Along with the definitions of various AUs,
FACS also provides the rules for AUs’ encoding in a full-face photograph and in the
case of five AUs, namely AUS, AU10, AU12, AU15, and AU20, it provides an
option to score intensity on a 3-level scale (low, medium, high). Using these rules, a
FACS coder (i.e. a human expert having a formal training in FACS coding of facial
images) decomposes an observed facial expression into the specific AUs that
produce the expression.

Although FACS is the most prominent method for measuring facial expressions
in behavioural science, a major impediment to its widespread use is that its manual
application is time consuming in addition to the time required to train human coders.
Each minute of videotape takes approximately one hour to score and it takes 100
hours of training to achieve minimal competency on FACS. Automating FACS
would not only make it widely accessible as a research tool, it would also increase
the coding speed and improve the precision and reliability of facial measurements.

Applications of automated FACS

The main objective for the development of ISFER presented in this thesis is to
provide an automated tool for behavioural science investigations of the face. Yet an
automated system like ISFER, which outputs facial action codes, would also provide
a useful tool for other basic sciences, medicine, and computer science.
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Investigation of human facial reactions is crucial for research on human
interaction and communication (Mehrabian 1968, Bruce 1992), research on
emotions (Ekman 1982a), and for research on the development of infants and young
children (Salovey and Mayer 1990, Goleman 1995, Sigman and Capps 1997). In
anthropology, the cross-cultural perception and production of facial expressions is a
topic of considerable interest (e.g. Ekman 1980, Matsumoto 1990, Russell 1994,
Ekman 1994). For political science and economics, facial expression analysis is
important in studies on negotiations and interpersonal influence (McHugo et al.
1985). In linguistics, co-articulation of spoken words and lip movements (Perkell
1986), relations between facial muscles and the soft palate in speech (van Gelder
and van Gelder 1990), and lip reading, are all important for speech recognition
(Adjoudani and Benoit 1995, Meier et al. 1996, Kober et al. 1997, Yang et al. 1998).
All of these research fields would benefit from an automated, inexpensive, reliable
and rapid facial measurement tool. In brief, such a tool would revolutionise these
fields by raising the quality of research in which reliability and precision are
currently nagging problems and by shortening the time necessary to conduct
research that is now lengthy due to the time-consuming manual FACS coding of
research material.

Many disorders reported in medical files, particularly in neurological and
psychiatric diagnoses, involve aberrations in expression, perception, and
interpretation of facial actions. Coding of facial actions is thus necessary to assess
the effect of the encountered disorder, to understand the disorder, and to devise
strategies to overcome the limitations imposed by the disorder. For instance, in the
psychiatric domain, schizophrenia and psychosomatic illnesses blunt the
expressiveness of patients (Steimer-Krause et al. 1990). Also, central and sensory
impairments like autism and schizophrenia can also cause lack of the ability to
“read” and interpret the shown facial expression (Mandal and Palchoudhury 1986,
Sigman and Capps 1997). In neurology, analysis of facial expressions may provide
evidence for the location and type of brain lesions. The research on the topic has
proven that, for example, brainstem damage may lead to emotional lability (Hurwitz
et al. 1985), and Parkinson’s disease is accompanied by reduction of spontaneous
facial activity (Buck and Duffy 1980). Automated methods for assessing facial
responses could provide increased reliability, sensitivity, and precision needed to
uncover psychiatric and neurological disorders based on facial signs displayed by
patients and could lead to new insights and diagnostic methods.

Automated systems that could monitor and detect facial signals will greatly
enhance the state of the art in computer technology and have great commercial
potential. Such a system combined with facial expression interpretation in terms of
labels like “did not understand”, “does not agree”, “no attention”, and “approves”
could be employed as a tool for monitoring human reactions during video
conferences. When combined with automatic tools for speech recognition and
synthesising facial expressions and speech, an automated facial action encoder
facilitates development of talking heads and virtual actors ‘inhabiting’ a virtual
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world (e.g. Thalmann et al. 1995, 1998, 2000). Within a virtual environment the
users are represented by personalised avatars and they can meet, chat, and acquire
information in a more natural way than currently available tools like ICQ and
Internet search engines can provide. In addition, talking heads and personalised
avatars could significantly enhance international, commercial and political
interactions. Finally, an automated facial action encoder forms a front-end of future
4™.generation anthropomorphic, perceptual, multi-modal human-computer
interfaces (for a discussion on this topic see chapter 8 and for reviews on the topic
see Pantic and Rothkrantz 2001a, Pentland 2000, Sharma et al. 1998, Waibel et al.
1995).

Other markets for automated facial action encoders combined with automatic
facial expression interpretation facilities include specialised areas in professional
sectors (Golomb and Sejnowski 1993). For instance, monitoring and interpretation
of facial signals is important to lawyers, police, security and intelligence agents, who
are often interested in issues concerning deception or attitude. Automated facial
reaction monitoring could form a valuable tool in these situations, as now only
informal interpretations are used. Automatic assessment of boredom, inattention,
and stress, could be of high value in preventing critical situations in the hazardous
(working) environments such as aircraft control cockpit, air traffic control tower,
space flight operation chambers, nuclear plant operation chamber, or simply a
vehicle like a car, truck, or train. An advantage of machine monitoring is that human
observers need not to be present to monitor — a personalised artificial observer could
provide prompts for better performance.

The different examples listed here illustrate a great potential for an automated
facial action encoder. However, the reader should be aware that some, perhaps the
most important applications and benefits of such an automatic tool could be the ones
that nobody has imagined yet. Once this technology is available, it could enhance
our common understanding of human facial behaviour, it could change some of the
taboos considered as ground truth for many decades, and hence it could give rise to
the emergence of a totally different set of applications. Nonetheless, the reader
should be aware of the likelihood that automatic recognition of the full range of
facial behaviour still lies in the relatively distant future. As discussed in chapter 2,
none of the automatic facial action encoders proposed in the literature up to date is
capable of performing this task. Although the automatic facial action encoder
discussed in the rest of this chapter performs better than other existing facial action
encoders, it is still not capable of encoding the full range of facial behaviour. The
relative advantages of ISFER’s facial action encoder, its disadvantages, and some
general recommendations for tackling automating facial action encoding are
discussed further in section 5.7.
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5.2 Architecture of the Facial Action Encoder

For its utility in the various application domains outlined above, automatic facial
expression recognition as applied to automated FACS coding has attracted the
interest of several computer-vision researchers (see Table 2.7). Yet none of the
methods reported up to date is sufficient for describing the full range of facial
behaviour, that is, for encoding all 44 individual AUs. In addition, none of the
systems presented in the literature up to date deals with quantification of the facial
action codes. Yet, for investigations of the facial behaviour itself, such as studying
the difference between a person’s genuine and simulated affective state, an
objective, personalised, and detailed measure of any possible facial activity is
needed. Therefore, the design of the Facial Action Encoder was aimed at automating
a part of the FACS scoring being as copious as possible and resulting in a highly
reliable quantified AU-coded description of the examined facial expression.

Design requirements

As stated before, the main goal of the development of the Facial Action Encoder part

of ISFER was to enhance the state of the art in facial expression recognition

applicable to automated FACS coding. The aim was to develop a fully automated
and robust tool for facial expression analysis from static facial images in terms of:

1. an extensive set A of individual AUs,

2. a level of the activation intensity i € [0, 100] assigned in a subject-dependent
manner to each encoded AU for which such a quantification is reasonable (see
Table 5.9), and

3. any combination of AUs from A having any intensity level i.

From an engineering point of view, the intended tool should be both efficient and
effective. This means that the desirable features of the tool are the following:

o The processing of the tool is easy to construct from the input data. In the case of
the Facial Action Encoder, the input data are the files which result from the
processing of the Facial Data Extractor and contain the localised contours of the
facial features. In order to achieve easy construction, the aim was to design the
Facial Action Encoder as an integration of various simple processes (Figure 5.1).

o The tool is easy to update. In the case of the Facial Action Encoder this is of
crucial importance since the intended users are psychologists and other subjects
having usually no technical background. In order to achieve easy update, the aim
was to design the Facial Action Encoder such that it facilitates facial action
encoding from images of subjects of both sexes and any age. Otherwise, if the
recognition of displayed facial actions would depend on physiognomic
variability of the observed person, the user would have to update the recognition
mechanism each time a novel subject is to be analysed. Hence, the tool would be

157



highly inefficient. On the other hand, quantifying the encoded facial actions is
person dependent since everybody displays a certain facial action with a different
maximal intensity. Thus, the aim was to design the Facial Action Encoder such
that it performs a generic facial action classification and then adapts (in a facile
way) to a particular individual in order to quantify the encoded AUs.

The tool is easy to use. Once more, this is of particular importance since the
potential users of the Facial Action Encoder are persons without a high level of
technical knowledge. Therefore, the aim was to design the Facial Action Encoder
such that it does not require the user to be in control at all times.

The tool itself is efficient to store. In order to achieve this, the aim was to split
the code efficiently in functions. Nevertheless, the major impediment to
achieving efficient storage of the Facial Action Encoder is not the size of its code
but the size of the utilised databases (Figure 5.1). Large databases are coupled
with high memory/ storage requirements and long retrieval times. While the
database of extreme model deformations is small (it contains 20 variables, see
Table 5.9 and section 5.5 for a further discussion), the database of all
encountered facial expressions may become large since it should keep records of
all expressions ever encountered while monitoring a particular subject for whom
it has been defined (section 5.6). Though the aim was to organise the database of
all encountered facial expressions efficiently (section 5.6) — such that it supports
short retrieval times — its expansion is not controlled. In consequence, depending
on the actual frequency with which a particular person is subjected to the
system’s facial analysis and on the actual variety of that person’s facial
expressions, the database of all encountered facial expressions defined for that
person might impose high storage requirements. Though this forms a
shortcoming of the Facial Action Encoder part of ISFER (see also section 5.7),
one should bear in mind that this problem becomes less and less significant as
the cost of computer memory drops (e.g. Hassler 2001).

Functional design

The Facial Action Encoder part of ISFER represents a first step towards an
automated personalised tool for facial expression recognition in static facial images.
This step was achieved by fulfilling the design requirements listed above. The Facial
Action Encoder performs five functions (Figure 5.1, Appendix A):

1.

Function FI scavenges the incoming set of files containing the contours of the
facial features localised by the detectors integrated into the Facial Data Extractor
part of the system, from the files holding a singularity (i.e. holding a single point
as the localised facial feature contour; see section 5.4).

Function F2 reduces the incoming data to a set of files containing merely the
relevant points of the utilised face model (see sections 5.3 and 5.4).

Function F3 selects the best among the redundant data stored in the files and
evaluates the certainty of the selected data (see section 5.4).
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4. Function F4 performs a person-independent facial expression recognition in
terms of 32 AU codes and a person-dependent quantification of those codes (see
section 5.5).

5. Function F5 deals with partial data by performing person-dependent reasoning
about the typicality of the encountered facial expression (see section 5.6).

The Facial Action Encoder is a rule-based expert system that converts an analytic
description of the encountered facial expression, given in terms of the spatially
sampled facial features’ contours, into a quantified AU-coded description of the
input expression. In general, the employed rules encode three different kinds of
knowledge.

1. The knowledge about the basic anatomy of the human face: the facial point’s
stability and/or degree of freedom, overall facial proportions, anatomically
possible changes in the facial appearance, etc.

2. The knowledge about the facial muscle activity: the relationship between a
certain muscle activation and a certain facial appearance change, classification of
facial changes into unilateral/bilateral, facial changes’ co-occurrence rules, facial
changes overruling rules, etc. This type of knowledge has been acquired from the
FACS in a straightforward manner (see also section 5.3).

3. The knowledge about the currently observed subject: the extreme facial changes
and the typicality of different facial expressions. This subject-oriented type of
knowledge is acquired for each novel subject. The personalised data are stored
further in two databases used by the Facial Action Encoder, namely the database
of extreme model deformations (for a further discussion see section 5.5) and the
database of all facial expressions displayed by the current subject (section 5.6).

As already mentioned in section 3.7, the Facial Action Encoder can be viewed as
a problem-solving autonomous agent that is a part of a functionally distributed
system. It is an “autonomous agent” since it does not require that the user is in
control at all times. In fact, as soon as the initial furnishing of the database of
extreme model deformations is accomplished and as long as the observed subject
remains the same, the processing of the Facial Action Encoder is fully independent
of the user’s feedback. It is a problem-solving agent, which resembles conventional
expert systems since it encodes domain-specific knowledge to achieve the intended
functionality — FACS coding of static images — by using a rule-based approach (see
sections 5.4 and 5.5). The kernel of the Facial Action Encoder, illustrated in Figure
5.1 as supervisor, performs the following agencies:
o It creates action plans depending on the quality of the incoming data.
¢ [t carries out those plans by executing the appropriate procedures on the relevant
data.
o It encodes and quantifies facial actions.
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Figure 5.1: Architecture of the Facial Action Encoder part of ISFER
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Let us examine how the five functions, listed above and illustrated in Figure 5.1,
support the problem-solving behaviour of the Facial Action Encoder. The supervisor
receives the input data — a set of files containing the localised contours of the facial
features — from the Facial Data Extractor part of the system. The perceived
information is then categorised and reduced by function FI and function F2. The
resulting information is a set of files, each of which contains the model points
belonging to the detected contour of a certain facial feature. The first (predefined)
goal that the supervisor will try to reach is to select per facial feature the best of the
redundantly detected contours. To this end, the supervisor classifies per facial
feature the reduced information: each class contains just the files related to one
particular facial feature. Then the supervisor selects from the action space
predefined plans that can be used to reach the active goal. For example, if a certain
class contains one or more files, function F3 will be activated to calculate the
certainty of the data stored in each file and then to select the best result. But if a
certain class contains no files (i.e. all files containing the detected contour of the
relevant facial feature have been previously discarded by function F1), missing data
will be substituted by relevant data extracted from the expressionless face of the
currently observed subject. The supervisor will carry out this substitution by
accessing the appropriate data stored in the DB of all encountered facial expressions.
The second (predefined) goal that the supervisor will try to reach is to encode and
quantify the displayed AUs. The supervisor again selects from the action space
predefined plans that can be used to reach this goal. First, the supervisor will retrieve
the appropriate data from the DB of extreme model deformations and activate
function F4 in order to perform reasoning with uncertainty about the activated AUs
and the intensity of that activation. In the case that a currently encountered model
deformation exceeds the maximal value for that model deformation stored in the DB
of extreme model deformations, the supervisor will access and replace the relevant
data in this database. In the case that data about a facial feature have been
substituted by the relevant data extracted from the expressionless face of the
currently observed subject, the supervisor activates function F5, which represents a
statistical approach to dealing with partial data based on typicality of the displayed
facial expression. Finally, the supervisor accesses once again the DB of all
encountered facial expressions and updates the counter for the expression just
encoded.

Thus, the Facial Action Encoder might be viewed as a problem-solving
autonomous agent. However, note that this is just one way of viewing the
architecture of the second part of ISFER. As explained by Moulin and Chaib-Draa
(1996), any expert system can be seen as an agent, at least as a reactive agent (as in
the case of the Facial Action Encoder) if not as an intentional or a social agent. The
reason to discuss the Facial Action Encoder as an agent is not the catalyst behind the
recent “agents hoopla” — the accelerating spread of the Internet — which has given
rise to an explosion of applications involving intentional and social agents that can
manipulate their goals and create new ones in order to search the Internet
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successfully. The reason lies in the fact that the current functionality of the Facial
Action Encoder can be easily enhanced for monitoring a particular information
source (e.g. a certain participant in a video conference, a certain patient in a group
therapy, a certain student attending a course) and providing an alert if some set of
conditions holds (e.g. if a smile is observed). By this, the Facial Action Encoder
would represent a consumer-based problem-solving agent (Hendler 1999) which
would be able to manipulate the incoming information on current behalf of the user.
By allowing the user to define his current interest while monitoring facial
expressions, the commercial potential of ISFER would be increased: ISFER would
embody an application-independent automatic tool for facial expression analysis
(see also section 3.7).

Currently, however, the Facial Action Encoder is not able to manipulate its goals
and create new ones (e.g. according to the wishes of the user); it achieves a
predefined set of goals by selecting from the action space predefined plans that can
be used to reach these goals. In other words, it is a reactive agent as any other expert
system. Hence, for the sake of clarity and precision, in the remainder of the text the
Facial Action Encoder is discussed as a rule-based expert system that performs
reasoning with uncertainty on quantified facial actions based on data automatically
extracted from static images.

Implementation

As mentioned above, from an engineering point of view, the design requirements for
the development of the Facial Action Encoder part of ISFER concem efficiency and
effectiveness of the intended tool. In brief, the Facial Action Encoder should be easy
to construct and to integrate into ISFER, it should be easy to use by the potential
users of the system while placing no constraints on the operating system of the
utilised work station, and it should be efficient to store. Hence, the aim was to
design an efficient, portable, interactive user-friendly tool for facial expression
recognition applicable to automated FACS coding.

Because the Facial Data Extractor part of ISFER has been implemented in Java
and because of the availability of the JDK's Abstract Window Toolkit, which is a
platform-independent GUI tool builder, Java was perfectly suitable for the
development of the Facial Action Encoder. Similarly to the case of the Facial Data
Extractor, one might argue that a time-consuming execution of Java code forms a
serious drawback of the system. Yet this is of little concern since the time spent by
the processor on executing the code of the Facial Action Encoder is rather short
compared to the time spent on executing the code of various facial features detectors
integrated into the Facial Data Extractor (chapter 4).

162




5.3 Modelling facial expressions

The internal representation of the visual information that an examined face might
reveal is a crucial issue in facial expression analysis. Namely, the utilised face model
determines the variety of facial expressions that can actually be recognised by an
automated facial expression analyser. As noted in section 2.2, an ultimate goal is the
development of a face model which quickly and accurately provides a person-
independent unique representation for any expression. If coupled with automated

FACS rules, such a universal model would facilitate automatic encoding of the full

range of facial behaviour for any person.

Two basic approaches can be taken to address the problems of face modelling
and visual facial-expression-information representation:

o Volume-based approach: This class of methods attempts to recover the 3D facial
information, both geometrical (shape) and photometric (texture), from the sensed
data (2D face images). The first work in developing 3D face models was done in
early 70s (Parke 1972, 1974; Gillenson 1974) and the field has seen considerable
activity in the last couple of years (e.g. Terzopulos and Waters 1993, Thalmann
et al. 1998, Eisert and Girod 1998, Decarlo and Metaxas 1999, Malciu and
Preteux 2000, Zhang and Kambhamettu 2000). These face representations have
the advantage that they can be extremely accurate, reflecting the changes of the
face by modelling the properties of facial tissue and muscle actions. But they
have the disadvantage that they are often slow, fragile, and that usually they must
be trained by hand.

o View-based approach: This class of methods attempts to model a face as a whole
(holistic methods), as a set of facial features (analytic methods), or as a
combination of these (hybrid methods), based on the 2D appearance of the face
and without attempting to recover the 3D geometry of the scene. These methods
can be further classified into two categories according to the temporal aspect of
facial modelling, namely, into methods that model faces from static images and
those that model faces from image sequences (see also Table 2.5 and Table 2.6).
View-based methods have the advantage that they are typically fast and simple,
and that they can be trained directly from the image data. They have the
disadvantage that they cannot be used for modelling some of the subtle facial
changes (e.g. wiping the lips, clenched jaw) when merely a frontal view is
considered. Moreover, these methods may become unreliable when there are
many different views that must be considered.

Although we agreed that automating the entire process of facial action coding would
be enormously beneficial (see section 5.1), we should recognise the likelihood that
the realisation of such a goal might lie in the relatively distant future. A universal
face model may be too difficult to develop because it should satisfy all following
requirements:
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o It should uniquely reflect each and every change in facial appearance — unilateral
or bilateral, similar to another change, and caused by activation of any facial
muscle.

It should be person-independent.
It should be composed of features that can be reconstructed or straightforwardly
detected in a 2D facial image or image sequence.

However, the automation of as many of the tedious and time-consuming FACS
scoring parts as possible would allow trained human observers valuable time for
making the most difficult judgements (on the shown affective state, mood, intention,
etc.). Therefore independently of the chosen approach to modelling facial
expressions (i.e. the volume-based or view-based approach), efforts should be made
to develop a face model that provides a person-independent unique representation
for a set of facial expressions that is as broad as possible.

Facial expression modelling in ISFER

As noted in section 2.6, the development of ISFER has been aimed at devising an
automatic tool that will serve the purposes of behavioural science investigations of
the face. This application domain defined all the requirements for the system’s
design, including the requirements for the facial expression modelling that the
system achieves. In order to facilitate automated analysis of human facial behaviour,
ISFER should perform person-independent modelling and unique AU-based
recognition of a set of distinct facial expressions as copious as possible. Since the
researchers of human facial behaviour use static full-face photographs (rather than
movies) as research material, ISFER should be able to analyse facial expressions in
static frontal-view facial images automatically. Finally, from an engineering point of
view, the desirable features of internal data representation are easy to construct from
sensed data, easy to use for the intended application and efficient to store. This
means that the features of the face model used by ISFER should be easy to acquire
from the contours of the prominent facial features localised by the Facial Data
Extractor part of the system, easy to use for encoding and quantification of AU
codes, and efficient to store.

The face model utilised by ISFER is a point-based model composed of two 2D
facial views, namely the frontal view and the profile view (Figure 5.2). There is a
number of motivations for this choice. As discussed in section 2.1, Bassili’s (1978)
and Bruce’s (1986) experiments suggest that the visual properties of the face,
regarding the information about facial expression, could be made clear by describing
the movements (displacements) of points belonging to the prominent facial features
and then by analysing the relationships between those. Hence, taking into
consideration that each and every facial expression that can be displayed by the face
can be FACS coded, it seems that the rules of FACS could be converted into the
rules for automated FACS coding based upon a point-based face model.
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Furthermore, a point-based face

model as well as the rules of D P2
automated FACS based upon @ P3¢

such a model should be easy to B \
validate. The changes in the \
position of the model points are ps ‘P4
directly observable. By proP6
comparing the deformation of the p9> P8
model and the modelled facial \
appearance, the validity of the P10

model and the validity of the
modelled FACS rules can be
visually inspected. Finally, a

Figure 5.2: Dual-view Face Model

point-based dual-view face model yields a more realistic representation of an
observed 3D face than a single-view face model and avoids inefficiency and manual
initialisation of a volume-based face model. In addition, the dual-view face model
illustrated in Figure 5.2 has the following characteristics:

1. Since the camera setting ensures that scale- and orientation-invariant images are

acquired (at least during a single session; see section 4.1), the model points can
be extracted automatically and in a straightforward manner from the contours of
the prominent facial features localised by the Facial Data Extractor (Tables 5.4
and 5.6).

. It is possible to establish a simple and unique mapping between deformations of
the frontal-view face model and 22 distinct facial appearance changes (i.e. 22
AUs; see Table 5.5). It is also possible to establish such a mapping between
deformations of the profile-view model and 24 distinct facial appearance changes
(i.e. 19 distinct AUs, 3 variations of AU28, and 2 variations of AU36; see Table
5.7). Finally, it is possible to combine those mappings and define a simple and
unique mapping between deformations of the dual-view face model and 32
distinct facial appearance changes (i.e. 27 distinct AUs, 3 variations of AU28,
and 2 variations of AU36; see Table 5.8).

. It is possible to determine the intensity of the currently encountered AUs by
determining the extent of the deviation of the face model fitted to the currently
examined facial expression from the face model fitted to the neutral expression
of the observed person. In other words, by quantifying the deformations of the
face model, quantification of changes in facial expression can be accomplished
(see section 5.5, Table 5.9, Figure 5.12).

. The model points are efficient to store while facilitating automatic analysis of the
widest range of facial behaviour reported in the literature up to date (i.e. 32
distinct facial actions and their combinations vs. 16 distinct AUs and their
combinations reported by Tian et al. (2001)). In other words, the point-based
dual-view face model shown in Figure 5.2 facilitates enhancement of the state of
the art in automated facial expression analysis.

165



The point-based frontal-view face model

The frontal-view face model utilised by ISFER is composed of 21 facial points
belonging to the contours of the prominent facial features, namely the contours of
eyebrows, eyes, nostrils, mouth, and chin. These points are illustrated in Figure 5.2
and described in Table 5.4.

The degree of freedom of various frontal-view face model points and the manner
in which those points are extracted from the facial features® contours, localised by
the Facial Data Extractor in the input frontal-view static facial image, are also given
in Table 5.4. The information about the degree of freedom of various frontal-view
facial points has been acquired from FACS and various studies on human anatomy
(e.g. McCracken, 1999). This information represents a part of the knowledge about
the basic anatomy of the human face integrated into the system. For example, points
B and Bl representing the inner corners of the eyes and points H and Hl
representing the inner corners of the nostrils have 0-degree of freedom since they are
stable facial points, meaning that no facial muscle activity can cause a physical
displacement of these facial points. Similarly, the facial points having a degree of
freedom = I are so-called non-stable facial points, meaning that the activity of
certain facial muscle(s) causes a physical displacement of those points. The only
exceptions from this rule are points A and Al representing the outer corners of the
eyes. As far as the anatomy of the human face is concerned, these points are stable
facial points since no facial muscle activity can cause their physical displacement.
Consequently, points A and Al should have 0-degree of freedom assigned to them.
Yet, self-occlusions produced by a squint, raised lower eyelid, lowered upper eyelid,
or raised cheeks, could interfere with the
localisation of the position of these points and
result in the detection of a horizontal inwards
spatial displacement of these points (Figure
5.3). Hence, I-degree of freedom was assigned
to these points in order to take into account
commonly encountered seif-occlusions of the
eyes that affect the measurement of points A
and Al and emerge as a consequence of image
processing techniques utilised by the eye-
contour detectors of the Facial Data Extractor.

The frontal-view face model has been generated and then validated through
analysis and synthesis, respectively, of linguistic labels used to describe the visual
propetrties of FACS AUs (Ekman and Friesen 1978). For example, the analysis of
the label upward pull of the inner portion of the eyebrow(s), which describes
activation of AU, caused the addition of points B, B1, D, and D1 to the model. An
observed increase of the distance(s) BD (and/or B1D1) will cause trained FACS
coders to conclude that AU1 is activated (see also section 7.2).

Figure 5.3: A) Original position
of point A; B) Self occlusion of
A produced by tightened eyes
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Table 5.4
Facial points of the frontal-view face model utilised by ISFER

Characteristics Extraction

B Right eye inner comer, freedom degree: 0 (Xmax» y) of right eye’s contour

B1 | Left eye inner corner, freedom degree: 0 (Xmins ¥) of left eye’s contour

A Right eye inner comer, freedom degree: 1 (Xmin» ) Of right eye’s contour
Displacement: horizontal inwards

Al | Left eye inner comer, freedom degree: 1 (Xmaxs p) of left eye’s contour
Displacement: horizontal inwards

F Right eye top, freedom degree: 2 (X, Ymax) Of right €ye’s contour
Displacement: vertical, horizontal inwards
(only if A is displaced)

F1 | Lefteye top, freedom degree: 2 (X, ¥max) Of left eye’s contour
Displacement: vertical, horizontal inwards
(only if Al is displaced)

G Right eye bottom, freedom degree: 2 (X, Ymin) of right eye’s contour
Displacement: vertical, horizontal inwards
(only if A is displaced)

G1 | Left eye bottom, freedom degree: 2 (X, Ymin) Of left eye’s contour
Displacement: vertical, horizontal inwards
(only if Al is displaced)

D Right eyebrow inner corner, freedom degree: 2 | (Xmax, Ymin) Of right eyebrow’s
Displacement: vertical, horizontal inwards contour

D1 | Left eyebrow inner corner, freedom degree: 2 (Xmins Ymin) Of left eyebrow’s
Displacement: vertical, horizontal inwards contour

E Right eyebrow outer corner, freedom degree: 2 | (Xmin» Ymin) Of right eyebrow’s
Displacement: vertical up, horizontal inwards contour

El1 | Left eyebrow outer corner, freedom degree: 2 (Xomax s Ymin) Of left eyebrow’s
Displacement: vertical up, horizontal inwards contour

H | Right nostril inner corner, freedom degree: 0 (Xmaxs Yave) Of right nostril’s contour

H’ | Right nostril outer corner, freedom degree: 1 (Xomins Yavg) Of right nostril’s
Displacement: horizontal inwards / outwards contour

H1 | Left nostril inner corner, freedom degree: 0 (Xmin» Yave) Of left nostril’s contour

H1® | Left nostril outer corner, freedom degree: 1 (Xmax s Yavg) Of left nostril’s
Displacement: horizontal inwards / outwards contour

K | Mouth top, freedom degree: 2 (X, %(Ymaxt + Ymaxz)) of mouth’s
Displacement: any horizontal or vertical contour

L Mouth bottom, freedom degree: 2 (X, ¥min) of mouth’s contour
Displacement: any horizontal or vertical

I Right mouth corner, freedom degree: 2 (Xmin» ¥) of mouth’s contour
Displacement: any horizontal or vertical

J Left mouth comer, freedom degree: 2 (Xmaxs ¥) of mouth’s contour
Displacement: any horizontal or vertical

M | Tip of the chin, freedom degree: 1 (X, ¥min) of chin’s contour

Displacement: vertical downwards
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Table 5.5
Representation of AUs with the frontal-view face model using an informal
pseudo code

AU | FACS description Mapped onto the frontal-view face model

1 Raised inner eyebrow(s) | Increased BD v Increased B1D1

2 Raised outer eyebrow(s) | Increased AE v Increased A1E1

1+2 | Raised eyebrows Increased BD, AE, B1D1, A1E1

4 _ [Eyebrows drawn together | Decreased DDI

5 Raised upper eyelid(s) Increased FG v Increased F1G1

6 Raised cheek(s) AUI2 or AU13 present

7 Raised lower eyelid(s) | (Absent AU9, AU12) A ((FG > 0 A Decreased GX) v
(F1G1 > 0 A Decreased G1Y))!

8 Lips towards each other { (Absent AU9, AU12, AU13, AU1S5, AU17, AU18, AU20,
AU23, AU24, AU35) A Increased CK2 A KL >0

12 Mouth corner(s) up {(Decreased IB A Increased CI) v (Decreased JB1 A
Increased CJ)

13 Mouth corner(s) (Decreased IB A Decreased CI) v (Decreased JB1 A

sharply up Decreased CJ)

15 Mouth corner(s) down Increased IB v Increased JB1

18 Lips puckered Absent AU28 A Decreased IJ A 1J > t1 A Not decreased
KL

20 | Mouth stretched Increased IJ A IB and JB1 remain the same

23 Lips tightened (Absent AU28t, AU28b) A Decreased KL AKL >0 A

Not decreased 1J A Not increased.IB A Not increased JB1

24 | Lips pressed (Absent AU1S5, AU28t, AU28b, AU+AU17, AU10+
AU17, AU12+AU17, AU13+AU17) A Decreased KL A
KL > 0 A Decreased IJ A 1J > t1

25 Lips parted Increased KL A Not increased CM

26 Jaw dropped Increased CM A CM <2

27 Mouth stretched CM>t2

28 | Lips sucked in KL=0

35 Cheeks sucked in II<tt

38 | Nostrils widened (Absent AU8, AU9, AU10, AU12, AU13, AU15, AUIS,
AU24, AU28) A Increased H’H1’

39 Nostrils compressed (Absent AUS, AU9, AU10, AU12, AU13, AUIS, AU1S,
AU24, AU28) A Decreased H’'H1’

41 Upper eyelid dropped Absent AU7 A (FG > 0 A Decreased FG A Decreased

FX) v (F1G1 > 0 A Decreased F1G1 A Decreased F1Y))

! Point X is the centre of the left eye calculated as the intersection point between AB and FG.
Point Y is the centre of the right eye calculated as the intersection point between A1B1 and

FI1GI.

2 point C is the centre of HHI.
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From the total of 44 AUs defined in FACS, 22 AUs can be uniquely described
using the frontal-view face model (Table 5.5). The importance of a unique
representation of AU codes, and the utilised manner of achieving it in terms of the
frontal-view face model, can be explained using an example. In FACS, the
activation of AU38 is described as widening of the nostrils. However, it is also
stated that activation of any of AU8, AU9, AU10, AU12, AU13, AUILS, AUIS,
AU24, and AU28 obscures the activation of AU38. In order to obtain a unique
description of AU38 activation with the utilised frontal-view face model, the
following rule has been defined:

AU38 & distance H'H1’ increased A (AU8, AU9, AUl10, AUl2,
AU13, AU1lS5, AU18, AU24, AU28 are absent)

Similarly, all rules listed in Table 5.5 describe the relevant AUs uniquely and were
acquired from FACS in a straightforward manner. These rules represent the first part
of the knowledge about the facial muscle activity integrated into the system.

The point-based profile-view face model

The profile-view face model utilised by ISFER is composed of 10 face profile
points. Harmon et al. (1981) have developed a similar model of the profile points for
a face identification system. However, analysing an observed face in terms of
displayed facial actions vs. in terms of person identification are two fundamentally
different tasks. Personal characteristics such as the length of the nose are considered
as unimportant data in facial action encoding while the opening of the mouth is
considered as noise in face identification. The profile-view point-based face model
utilised by ISFER is developed such that it is suitable for facial action encoding and
facial expression interpretation and, therefore, merely resembles Harmon’s model.

Table 5.6
Facial points of the profile-view face model utilised by ISFER

Point description

P1 | Top of the forehead, uppermost point of the curvature of the profile contour function
P2 | Eyebrow arcade, 1* peak of the curvature of the profile contour function

P3 | Root of the nose, 1¥ valley of the curvature of the profile contour function

P4 | Tip of the nose, absolute maximum of the curvature of the profile contour function
P5 | Upper jaw, 1% valley after P4 peak of the curvature of the profile contour function
P6 | Upper lip, 1* peak after P4 peak of the curvature of the profile contour function

P7 | Lips’ joint, 1¥ valley after P6 peak of the curvature of the profile contour function
P8 | Lower lip, 1¥ peak above P10 peak of the curvature of the profile contour function
P9 | Lower jaw, 1¥ valley above P10 peak of the curvature of the profile contour function
P10 | Tip of the chin, last peak of the curvature of the profile contour function

The points of the utilised profile-view face model correspond with the peaks and
the valleys of the curvature of the profile contour function (Table 5.6). When
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locating the extremities of the curvature of the profile contour function, a priori
knowledge is used to delete false positive/negative extremities (Wojdel, J. et al.
1999, section 4.3). The order of the selected extremities can be changed, however, if
the tongue is visible or if either one or both lips are sucked into the mouth. In the
case of a visible tongue, a valley representing the attachment of the upper lip to the
tongue, a peak representing the tip of the tongue, and a valley representing the
attachment of the tongue to the bottom lip, will be detectable between the points P6
and P8. In the case of the lips sucked into the mouth, only the valley of P7 will be
detectable while peaks P6 and P8 will not exist. Therefore it is important to localise
the profile points in a particular order. Points P1 to P5 are located first. Then, points
P10 and P9 are located. After the exclusion of all extreme cases such as a visible
tongue, points P8, P7 and P6 are located.

From the total of 44 AUs defined in FACS, 24 distinct facial appearance changes
can be uniquely described using the profile-view face model (Table 5.7). Obtaining
unique descriptions of distinct AUs in terms of the profile-view face model can be
explained using an example. In FACS, the activation of AU9 as well as the
activation of AU10 is described with the label upward pull of the upper lip. It is also
stated, however, that activation of AU9 obscures the activation of AU10. On the
other hand, the label wrinkled root of the nose describes AU9 exclusively. To obtain
unique descriptions of AU9 and AU10 with the profile-view face model, the
following rules have been defined:

AU9 ¢35 curvature between P2 and P3 increased

AU10 ¢ distance P5P6 decreased A P6 upwards A P6 outwards
A curvature between P2 and P3 is not increased

Similarly, all rules listed in Table 5.7 describe the relevant AUs uniquely and were
acquired from FACS in a straightforward manner. These rules represent the second
part of the knowledge about the facial muscle activity integrated into the system.

The point-based dual-view face model

The main motivation for combining the frontal- and the profile-view face model into
a dual-view face model (Figure 5.2) is the increase in quality of facial modelling
caused by the increase in quantity of facial expressions that can be modelled using
the combined face model. With the frontal-, profile-, and dual-view face model,
activation of 22, 21 and 29 AUs, respectively, can be uniquely described. The reason
is that each facial view is, in fact, more suitable for observing facial changes caused
by certain AUs. For instance, changes in the appearance of the eyes, eyebrows and
mouth corners can be perceived easier in the frontal view while changes in the
appearance of the jaw and chin can be apprehended from the profile view more
easily. The set of rules for facial action encoding based on the dual-view face model
is given in Table 5.8. It is composed of the rules given in Table 5.5 and Table 5.7.
This set of rules forms the knowledge about the facial muscle activity integrated into
the system.
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Table 5.7
Representation of AUs with the profile-view face model using an informal
pseudo code

AU FACS description Mapped onto the profile-view face model

1 |Raised inner eyebrow(s) Absent AUI+AU2 A P2 upwards A Decreased P1P2

4 |Eyebrows drawn together | P2 outwards

8 |Lips towards each other (Absent AU9, AUI12, AU13, AUIS, AU17, AUIS,
AU20, AU23, AU24, AU3S) A Increased PSP6 A (P6 A
P8 outwards) A curvature P6-P8 has | shape A
Increased P8P10

9 |Wrinkled nose Increased curvature P2-P3

10 [Raised upper lip P6 upwards A P6 outwards A Decreased P5P6 A
Not increased curvature P2-P3

12 {Mouth corner(s) pulled up | Decreased PSP6 A (P6 A P8 inwards) A Increased P6P8

13 |Mouth corner(s) pulled Decreased P5P6 A (P6 A P8 inwards) A P6P8 remains

sharply up the same
15 {Mouth corner(s) pulled Increased P5P6 A Not increased curvature P5-P6 A
downwards (P6 A P8 downwards) A Not increased P6P8

16 |Lower lip depressed Decreased P8P10 A P8 downwards A P8 outwards

17 |Chin raised (Absent AU28, b, t) A P10 inwards

18 |Lips puckered (P6 A P8 outwards) A curvature P6-P8 has not [ shape

19 |Tongue shown Curvature P6-P8 contains two valleys and a peak

20 |Mouth stretched Increased PSP6 A Not increased curvature P5-P6 A
(P6 A P8 inwards) A Not decreased P6P8

23 |Lips tightened (Absent AU28, b, t) A P6 downwards A P8 upwards A
(P6 A P8 inwards) A Not increased curvature P5-P6 A
Increased P5P6 A Decreased P6P8 A 0 <P6P8 > 3

24 |Lips pressed (Absent AU1S, AU28, b, t, AUStAUL7, AU10+
AU17, AU12+AU17, AU13+AU17) A P6 downwards
A P8 upwards A (P6 A P8 inwards) A Increased P5SP6 A
Not increased curvature P5-P6 A Decreased P6P8 A 0 <
P6P8 < t3

25 |Lips parted Increased P6P8 A Not increased P4P10

26 {Jaw dropped Increased P4P10 A P4P10 < t4

27 [Mouth stretched P4P10 > t4

28,t,b|Lip(s) sucked in (Absent P6 A Absent P8) v (Absent P6) v (Absent P8)

29 |Jaw forward Absent AU27 A P10 outwards

36b | Tongue under the lower lip | Absent P9

36t | Tongue under the upper lip | Increased curvature P5-P6

Each single-view face model, when considered separately, uniquely models the
appearance of facial features and when deformed does not contain any redundant
information about the modelled facial expression. When two face models are
combined, however, the resulting dual-view point-based face model reveals

171



redundant information about the modelled facial expression. This redundant
information is used for:

Control of the accuracy of the performed model-points’ localisation: For
example, the distance KL measured in the frontal-view model should be equal to
the distance P6P8 measured in the profile-view model. If that is not the case,
then either points K and L or the profile-view model points have been localised
inaccurately. Uncovering inaccurate data and dealing with these is explained in
detail in section 5.4,

Dealing with partial data: Several cases can be distinguished. In the case that all
dual-view model points are successfully detected, the rules given in Table 5.8 are
applied for facial action encoding. If the spatial sampling of the profile contour is
not successfully performed, the facial action encoding is obtained according to
the rules listed in Table 5.5. If merely the profile contour is successfully
detected, the rules of Table 5.7 are employed for the facial action encoding. In
the case of successful spatial sampling of the profile contour and partially
successful localisation of the frontal-view model points, an appropriate
combination of the rules given in Tables 5.5 and 5.7 will be utilised for facial
action encoding. For example, if none of the detectors of the Facial Data
Extractor successfully localises the mouth contour, encoding the change in the
facial appearance of the mouth is based on the relevant rules given in Table 5.7.
Dealing with missing data is further explained in sections 5.4 and 5.6.

Handling the cases where just a full-face image represents the input image: This
is in fact a special case of dealing with partial data. In this case, as noted above,
the facial actions will be coded by employing the rules given in Table 5.5.

Table 5.8
Representation of AUs with the dual-view face model

Based on the frontal-view point-based face model (Table 5.5)

AUI, AU2, AU4, AUS5, AU6, AU7, AU12, AUI3, AULS, AULS, AU20, AU23, AU24,
AU35, AU38, AU39, AU41

Based on the profile-view point-based face model (Table 5.7)

AUS, AU9, AU10, AU16, AU17, AUI9, AU25, AU26, AU27, AU28, AU28t, AU28b,

AU29, AU36t, AU36b

5.4 Handling ambiguous facial expression information

The input to the Facial Action Encoder part of ISFER is a set of files (Figure 5.1),

each of which contains a contour of a prominent facial feature localised by a
detector integrated into the Facial Data Extractor part of the system. This input data
is most likely to be redundant since for each facial feature which is to be spatially
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sampled, several different detectors have been integrated into the Facial Data
Extractor (see chapter 4). The input data might be also partial; this is the case when
none of the relevant detectors can spatially sample the contour of a certain facial
feature successfully. Finally, the input data is usually approximate as opposed to
exact since the detectors integrated into the Facial Data Extractor are not 100%
accurate and hence generate data of variable precision. In turn, the Facial Action
Encoder should deal with ambiguous input information while recognising facial
expressions in terms of quantified AU codes.

In general, there are three principal formalisms for handling uncertainty in an
expert system: probability theory, belief functions, and fuzzy logic. In section 3.4,
the suitability of these approaches for handling uncertainty within the Facial Action
Encoder part of ISFER has been explored in detail. It has been shown that an
appropriate method for estimating and propagating certainty of the data resulting
from the Facial Data Extractor should not be based solely on either of these
formalisms but should rather form a certain blend of these formalisms. This
association should be further devised to reflect a situation in which the properties
used to assign the elements of a set U to the elements of a set ¥ are uncertain, but
the process used to select the properties which play a role in this assignment is
known and can be represented either by probabilities or by possibilities. In other
words, an inexact reasoning method appropriate for handling uncertainty within the
Facial Action Encoder part of ISFER should exploit the available process knowledge
that can be represented either by probabilities or by possibilities. For instance, a
piece of the available process knowledge that can be represented by probabilities
and used for dealing with uncertain data resulting from the Facial Data Extractor
concerns the following — the larger the number of detectors that spatially sample the
same contour of a certain facial feature, the higher the certainty of that datum.

The rest of this section elucidates the kind of process knowledge involved in
handling ambiguous facial expression information resulting from the Facial Data
Extractor and exploited by the pre-processing data evaluator part of the Facial
Action Encoder (Figure 2.25). For the sake of clarity and readability, the process of
dealing with imperfect input data is explained further by examining how the three
functions of the pre-processing data evaluator (F1, F2 and F3; Figure 5.1) support
this process.

F1 and F2: Abridging the input data

A successful processing of the Facial Action Encoder part of ISFER implies that at

least one of the following assumptions is true:

1. A full-face image of the currently observed person represents the input image
and all points of the corresponding frontal-view face model are available.

2. A profile-view facial image of the currently observed person represents the input
image and the points of the corresponding profile-view face model are available.

173



Therefore, the first predefined goal that the Facial Action Encoder’s supervisor
(Figure 5.1) will try to achieve is to ensure that the points of the applicable face
model (frontal- or profile- or dual-view face model) are available. To this end, the
supervisor first abridges the input data by activating functions F1 and F2.

If a certain detector integrated into the Facial Data Extractor part of ISFER fails
to spatially sample the contour of a particular facial feature, the file forming the
input to the Facial Action Encoder part of ISFER and carrying this result will be
either empty or hold a singularity. The data stored in such a file do not provide any
information on the currently examined facial expression and will be cast off as
useless by function F1. Function F2 further reduces the amount of data furnishing
the remaining input files so that each file contains merely those points of the stored
facial feature’s contour that correspond to certain model points. Function F2 is
carried out by activating the relevant rules for extracting the model points from the
localised contours of the prominent facial features (Tables 5.4 and 5.6). Since for
further system processing, the whole eyebrow contour and the whole profile contour
are necessary (see the rest of this section and section 5.5), function F2 is not
executed for the “eyebrow” files and the “profile” file(s).

Once the input files are cleaned from superfluous data, the supervisor classifies
the remaining files per prominent facial feature (profile, eyebrows, eyes, nose,
mouth, chin). In the case that a certain class contains no files (i.e. all files containing
the localised contour of the relevant facial feature have been discarded by function
F1), the problem imposed by encountering partial data jeopardizes achievement of
the first goal that the supervisor tries to reach. In the case that the system processes
facial image sequences rather than static facial images, the (process) knowledge
about how to estimate the spatial location of the contour of a missing facial feature
will be available; i.e., the larger the number of the frames per minute .of the
examined video sequence, the higher the certainty that the appearance of the
monitored facial features remains the same. In that case, the missing data could be
substituted by the relevant data extracted from the previous frame of the examined
facial image sequence. However, ISFER deals with static facial images and there is
no available knowledge that can be used to estimate the spatial location of a facial
feature that was not detected in an input static facial image. Yet, in order to proceed
with the analysis of the available (partial) information on the currently examined
facial expression, the supervisor generates per missing facial feature a file labelled
as missing where the relevant data extracted from the expressionless face of the
currently observed person are stored. The supervisor furnishes “missing” files by
accessing the appropriate data stored in the personalised DB of all encountered
facial expressions of the current subject (Figure 5.1). Of course, substituting missing
data with the relevant data extracted from the neutral facial expression of the
currently observed person implies that the exact information about the examined
facial expression is lost. Nevertheless, in a later processing stage and by activating
function F35, the Facial Action Encoder deals with the problem imposed by this
information loss. Section 5.6 is dedicated to that issue.
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F3: Dealing with approximate data

Once the supervisor achieves the goal of making the points of the appropriate face
model available for a further processing, it Will try to reach the next goal: to select
per facial feature the most accurate contour from the redundantly detected contours
of that feature. To this end, the supervisor selects from the action space three
predefined plans that are sequentially executed, namely:

1.

For each file forming a part of the abridged input data (see the previous sub-
section), activate function F3 to perform an intra-file consistency check and
compute an “intermediate” certainty of the data stored in the file. This action-
plan addresses the issue of dealing with approximate input data.

For each class of files containing the data about the spatial sampling of a
particular facial feature, activate function F3 to perform an inter-file consistency
check and compute a “final” certainty of the data stored in the files.

For each class of files containing the data about the spatial sampling of a
particular facial feature, classify the files according to the certainty of the data
stored in each file and select the ones holding the data having the highest
certainty. Combined with the second action plan listed here, this action plan
addresses the issue of dealing with redundant input data.

Let us examine first how function F3 supports handling of the approximate data.

As already explained in section 3.4, a way of dealing with approximate data
resulting from the Facial Data Extractor part of ISFER is to exploit the process
knowledge that is based on the knowledge about the facial anatomy and dynamics.
This involves association and employment of the following facts:

Some facial peculiarities are stable in the sense that no facial muscle action can
cause their temporary change. Those facial characteristics are the size of the
eyebrows’ facial area (Figure 5.4) and the facial position of the inner corners of
the eyes (Figure 5.3, Figure 5.5), the medial point of the mouth (Figure 5.6), the
inner corners of the nostrils (Figure 5.7), and the tip of the nose (Figure 5.9).

All of the single-session images acquired on-line or downloaded (and then
scaled) from an existing database of behavioural science research material are
scale and orientation invariant (section 4.1). Hence, the measurements of the
stable facial peculiarities computed from a neutral facial expression of the
current subject should remain the same during the whole session with that
subject.

The certainty of an input datum, representing the spatial sampling of a certain
facial feature by a particular detector, can be estimated based on the error made
by that detector while detecting the stable facial characteristic particular for the
given facial feature. Namely, the larger the spatial sampling error, the lower the
certainty assigned to the datum in question and, if no spatial sampling error is
encountered, a maximal certainty measure (say 100%) is to be assigned to the
relevant datum.
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Thus, function F3 models a situation in which the property (approximativeness of
the input data) used to associate the element of some set ¥ (spatially sampled facial
feature) with some value u € U (degree of certainty) is uncertain, but we know the
process used to assign this value (calculating the degree of deviation of the actually
detected stable facial characteristic from the pertinent characteristic detected in the
expressionless face of the observed subject). For each input file, function F3
performs an intra-file consistency check (i.e. it calculates the spatial sampling error
mentioned above) and, based on this process knowledge, it expresses the
approximativeness of the input data in terms of possibilities. In the case that just a
full-face facial image forms the input to the system, function F3 will not evaluate the
approximativeness of the “profile” file(s); it will omit this processing step.

Evaluating “eyebrow” input files

Per input file containing a spatial sampling of an eyebrow contour, function F3
assigns a certainty measure CM € [0,100] to the input data x according to the
computed deviation of the currently sampled size of the eyebrow area sizecusren from
the pertinent $izepqru Measured in the expressionless face of the observed subject.
The functional form of this mapping is further defined as CM = S(x) * 100, where
S(x) is defined as .

Sigm(ldev‘.a’ion(skewrrenb Sizeneutnf)‘); Sizenamul*o-Ola Sizenamalto-oz Stzenamal‘o- 1 5)

while sigm(y; a, 8, y) is a Sigmoid membership function defined in the possibility
theory as given in formula (7).

1 1244
. _h-2y-a)/(y-af a<y<p
sigm(yia p.7) Ay-7)/r-al} B<y<y @
0 y2y

The method used for computing the size of the eyebrow area concerns counting
the pixels of the input image that lay within the boundaries of the eyebrow contour
sampled by an eyebrow detector. In the case that |deviation(sizecurrent, SEZeneusral)) is 0
pixels or does not exceed 1% of Sizeneuras CM = 100 will be assigned to the data
constituting the file that carries the result of the detector in question. Since the
eyebrow detection for which |deviation(size urrent, Siz€neurrar)} does not exceed 7% of
Sizeneurrar iS considered rather accurate (see Figure 5.4 — the difference between the
two computed sizes of the right eyebrow is 3.75%), the CM € (50, 100) will be
assigned to the pertinent input data. If |deviation(Size urrents SiZ€neurrar)l €xceeds 15%
of Sizepeurrats CM = 0 will be assigned to the pertinent input data and handling the
highly inaccurate data becomes the next problem posed to the supervisor of the
Facial Action Encoder. The problem of handling highly inaccurate data is very
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similar to the problem of handling
missing data and it has been
addressed as a part of the inter-file
consistency check performed by
function F3 (see the next section).

Evaluating “eye” input files

Per input file containing a spatial
sampling of an eye contour, L L.
function F3 assigns a certainty  Figure 5.4: Spatial sampling of eyebrows’

measure CM e [0,100] to the input contours in input images of 720x576
data x according to the calculated pixels; computed sizes of the eyebrow
deviation of the actually detected areas: 2133 pixels (left image, right

inner corner of the eye B, en from eyetl,)row)), 2222212 (‘lji)f(te‘ls (righ: ifr;lagei)righ)t
the pertinent point Bpesa localized ~ ©YEProW), 2224 (lelt image, lell eyebrow),
in the expressionless face of the 2240 (right image, left eyebrow).

observed subject. The functional
form of this mapping is defined as
CM = S(x) * 100, where S(x) =
Sigm(d(Bcurrems Bnamal);l’4, 10) and
d(p;, py) is the block distance
between points p; and p, (maximal
difference in x and y direction), :
while sigm(y; a, 8, y) is a Sigmoid Figure 5.5: Spatial sampling of

membership function given in the eye contour - measured Er:
formula (1). d(Beurrent, Bneutral) = 14 (left image)

As already explained in section d(Beurrent, Bnoutral) = 1 (right image)

3.4, spatial sampling of the eye

. contour for which d(B urrents Breura) < 4 is considered rather accurate given that the
examined facial images measure 720x576 pixels. In the case that d(B yrrens Breutrad) 2
10 (see Figure 5.5), CM = 0 will be assigned to the input data constituting the file
that carries the result of the eye detector in question.

Evaluating “mouth” input files

The approximativeness of the input data generated by a mouth detector is expressed
by function F3 in terms of possibilities based on the knowledge about the facial
stability of the medial point of the mouth. This knowledge originates from the
anatomy of the face. Namely, independently of the action of the facial muscles
(horizontal action like mouth stretching, vertical action like jaw drop, oblique action
like smile, or orbital action like tightening the lips) that can affect the facial
appearance of the mouth, the (imaginary) medial point M of the mouth computed
according to formula (2) remains stable (Figure 5.6).
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M = centre (M), M,), where M,, = centre (I, J) and M, = centre (K, L) (2)

given that I is the right corner of the mouth, J is the left corner of the mouth, K is the
top of the mouth, L is the bottom of the mouth (Table 5.4), and centre (X, Y) is the
middle point of the line defined by the points X and ¥.

Figure 5.6: Spatial sampling of the mouth contour - measured Er.
d(Mcurrent, Mneutrat) = 6, (left image), d(Mcurrent, Mnoutrat) = 1 (middle

image), d(Mcurent, Mneutral) = 4 (right image)

Per input file containing a spatial sampling of the mouth contour, function F3
assigns a certainty measure CM € [0,100] to the input data x according to the
calculated deviation of the actually detected medial point of the mouth M, rex from
the medial point of the mouth M, localized in the expressionless face of the
observed subject. This mapping is defined as CM = S(x) * 100, where S(x) =
sigm(d(M urrent; Mueural); 2, 7, 15), M is the medial point of the mouth calculated
according to formula (2), d(p;, p») is the block distance between points p; and p,,
and sigm(y; a, B, y) is a Sigmoid membership function given in formula (7).

In an input facial image of 720x576 pixels, the size of the mouth area varies
between 70 and 300 pixels in the horizontal and between 20 and 200 pixels in the
vertical direction (unless the lips are sucked into the mouth; handling this special
case of the mouth shape is discussed in the next section of this chapter). Hence, the
spatial sampling of the mouth contour for which d(Murrens Mueura) < 7 is considered
rather accurate (see Figure 5.6). In the case that d(Meurens Mpeurra) 2 15, CM =0
will be assigned to the input data constituting the file that carries the result of the
eye-detector in question.

Evaluating “nose/chin” input file(s)

For an input file containing the spatial sampling of the nostrils and the chin, function
F3 assigns a certainty measure CM € [0,100] to the input data x according to the
calculated deviation of the actually detected inner corners of the nostrils Heyrene and
H1 yrrene from the pertinent points Hyypypqr a0d H1, o0 localized in the expressionless
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face of the observed subject. This
mapping is further defined as CM = S(x)
* 100, where S(x) = avg (sigm(d(H .urrent,
Hyeurrat);1,3,7), (sigm(d(H1 cyrrens,
H1,00a);1,3,7), d(p;, p) is the block
distance between points p; and p,, and
sigm(y; a, B, p) is a Sigmoid membership Figure 5.7: Manual localisation of
function given in formula (/). the inner corners of the nostrils

When asked to point out the inner
corners of the nostrils in a digitised facial image, human observers usually marked
the upper points of the nostrils located close to the tip of the nose (Figure 5.7).
However, since the detector Find Nose & Chin integrated into the Facial Data
Extractor part of ISFER approximates the nostrils’ contours by two circles (Figure
5.8), in the current version of the system the model points H and H1 intuitively
suggested by human observers cannot be localised automatically. Points H and H1
are extracted from the detected nostrils’ contours as respectively the innermost and
outermost point of the relevant nostril contour (Table 5.4).

Since in an input facial image of 720x576 pixels the size of a nostril area varies
between 25 and 30 pixels in either direction, the spatial sampling of a nostril contour
for which d(H urrents Hueurra) < 3 (OF d(H1 yrrenty Hlpourra) < 3) is considered rather
accurate (see Figure 5.8). In the case that d(H urens Hpeusra) 2 7 and d(H1 yrrens
Hl,.upo) 2 7, CM = 0 will be assigned to the input data constituting the file that
carries the result of the eye-detector in question.

Figure 5.8: Spatial sampling of the nostrils’ contours - measured Er:
d(chmnt. anutral) = 1 (Ieft image), d(H1cumn¢, H1n.utr.|) = 1 (left image),
d(chmnt, Hn.uml) = 5 (I"ight image), d(H1cumm, H1ngutra|) = 3 (right image)

Evaluating “profile” input file(s)

Because the tip of the nose is relatively stability with respect to the static facial
signals such as the bony structure and the overall proportions of the face, this facial
landmark is most commonly used for automatic person identification together with
the inner corners of the eyes (Samal and Iyengar 1992). No facial muscle action can
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cause its temporary displacement relative to the static facial signals (Figure 5.9).
This fact is used by function F3 to calculate the approximativeness of the data x
furnishing the “profile” input file.

Function F3 assigns a certainty measure CM € [0,100] to the input data x
according to the calculated deviation of the actually detected tip of the nose Pécurrent
from the relevant point P4, localized in the expressionless face of the observed
subject. The functional form of this mapping is further defined as CM = S(x) * 100,
where S(x) = sign(d(P4current; Pdnerat); 1, 4, 10), d(p), p2) is the block distance
between points p; and p,, and sigm(y; a, 8, y) is a Sigmoid membership function
given in formula (7).

Figure 5.9: Spatial sampling of the profile contour - comparison between the
profile contour spatially sampled in the neutral expression (thin line) and the
profile contour detected in the examined facial expression (thick line)

A spatial sampling of the profile contour for which d(P4curenty Péneunra) < 4 is
considered rather accurate given that the examined facial images measure 720x576
pixels. In the case that d(P4rens Poneurra) 2 10, CM = 0 will be assigned to the
input data representing the result of the profile detector. However, the probability
that this will happen is very low taking into account the test results of the profile
detector integrated into the Facial Data Extractor part of ISFER (i.e. for all of the
test images, the localisation error for P4 remained under 5 pixels, see Table 4.4).

F3: Dealing with redundant and highly inaccurate data

The Facial Data Extractor generates redundant data when several of the integrated
facial feature detectors successfully spatially sample the contour of the same
prominent facial feature. As already explained, the goal that the supervisor of the
Facial Action Encoder will try to reach is to select per facial feature the most
accurate contour from the redundantly detected contours. To this end, the supervisor
will activate function F3 as explained in the previous section. Once function F3
executes the predefined action plan that deals with approximate data it will execute
the action plans that deal with redundant input data. According to these action plans
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an inter-file consistency check is performed and per facial feature the input file is
selected containing the data having the highest certainty.

Performing the intended inter-file consistency check is, in fact, exploiting the
process knowledge based on the existence of (and derived from) redundant input
data. Namely, if different detectors result in a same spatial sampling of a certain
feature’s contour, the results of these detectors confirm each other and yield a higher
confidence in the resulting datum. In other words, the larger the number of detectors
performing the same spatial sampling of the contour of a certain feature, the higher
the certainty about that datum.

For each class of files containing the data about the spatial sampling of a
particular facial feature, function F3 performs an inter-file consistency check,
calculates a final data certainty DC of the input data, and selects per facial feature
the input datum having the highest DC assigned to it. Since the data about the
spatially sampled profile contour are used for checking the consistency of the data
stored in the other input files, function F3 evaluates the input “profile” file(s) first.
Hereafter, the order in which function F3 evaluates the rest of the classes of input
files is not of importance. If just a full-face facial image forms the input to the
system, function F3 will not evaluate the “profile” file(s); it will omit this processing
step. Also the inter-file consistency checks, containing a step in which the
consistency of the data stored in the currently examined input file is checked against
the data stored in the “profile” file, will omit this processing step.

Evaluating “profile” input file(s)

If the supervisor of the Facial Action Encoder part of ISFER has labelled an input
“profile” file as “missing” (after executing functions F1 and F2) and furnished this
file with the relevant data X, extracted from the neutral expression of the
currently observed subject, function F3 assigns CM = P(Xyauura) * 100 to this data.
P(Xpeueray) is the probability of the neutral expression (i.e. the probability that no AU
has been activated) calculated according to formula (3). This reflects the situation
where we want to calculate the probability that a specific marble (neutral
expression) will be taken out of a hat full of marbles (all individual AUs and all their
anatomically possible combinations that could be recognised from the profile
model’s deformations).

1
Z?:l Xy ,

where n is the total number of visually distinguishable expressions of the
prominent facial feature in question and x; is one such expression.

)

P (x neutral )=

Since there are 24 distinct AU codes and more than 100 different combinations of
these AUs that can be uniquely encoded based on the observed deformations of the
profile model (Table 5.7), the CM = 0 will be assigned to the data constituting a
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“profile” file labelled as “missing”. Yet, due to the test results of the profile detector
integrated into the Facial Data Extractor (Table 4.4), the probability that function F3
will assign CM = 0 to the data furnishing an input “profile” file is very low.
Currently, a single profile detector is integrated into the Facial Data Extractor
part of ISFER. Hence, function F3 cannot perform an inter-file consistency check
and it assigns a final data certainty DC = CM to the data constituting the existing
“profile” input file. Yet the method with which final data certainty DC for the input
“profile” file is computed, should not have a detrimental effect upon the further
development of the system. If at some point in the future another profile detector
were to be integrated into the system, function F3 should accomplish a proper inter-
file consistency check and calculate a final data certainty accordingly. Depending on
the number j 2 1 of different profile detectors integrated into the Facial Data
Extractor, function F3 executes the following inter-file consistency check: '
1. Ifj = 1, then DCyuectort = CMgesector1- Terminate the execution of this algorithm
and use the available “profile” file in the system’s further processing.

avg (CM det ector] » S (x detector] » X det ector? )) CM<s
CM 40t oetor CM =5’

where § =S(Xiaecrort, Xdetectorz) = 100 * avg(Vi € [1, 101 | sigm(d(Pi € Xiuector1, Pi
€ Xiaector2); 0, 2, 3)) is the measure of similarity between the results of two
profile detectors in question, Pi is a profile face model point, d(p;, p,) is the
block distance between the points p; and p,, and sigm(y; a, 8, y) is a Sigmoid
membership function given in formula (7). If the measure of similarity between
the detectors’ results is high, the confidence in the examined result is increased
as expressed by the given formula. Go to step 4.

3. Ifj=n> 2, then (Vj € [2, n]) execute step-2 and assign the calculated DCymectors
t0 2 NeW CM yyezor1 that is to be used in the next loop. After the termination of all
loops, assign DCyuectorr = CMuaectors- Repeat the process for each of n detectors.
Gotostep 4.

4. If j 2 2, then select the input “profile” file having the highest DC assigned to its
data. If this process results in a draw, the data resulting from the detector having
the highest priority is to be selected. A priority k € {1,n] is to be assigned (off-
line) to each “profile” detector in accordance with its test results. Terminate the
execution of this algorithm and use the selected “profile” file in the system’s
further processing.

2. If j =2, then DC g pct0r1 ={

Evaluating “eye” input files

While estimating the approximativeness of the input data, function F3 might have
assigned a certainty measure CM = 0 to the data constituting an input “eye” file. If
this is the case, handling this highly inaccurate data becomes the next problem posed
to the supervisor of the Facial Action Encoder. The supervisor treats highly
inaccurate data in the same way as missing data. That is, it labels the “eye” file in
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question as “missing” and fills it further with the relevant data extracted from the
expressionless face of the currently observed subject.

If the supervisor has labelled an input “eye” file as “missing” and furnished this
file with the relevant data X« extracted from the neutral expression of the
currently observed subject, function F3 assigns CM = P(Xp.pq) * 100 to this data.
P(Xpeurra) 15 the probability that no AU whose activation induces a change in the
facial appearance of an eye has been activated. This probability is calculated
according to formula (3). Since there are S distinct AUs and 18 different
combinations of these (allowed by the co-occurrence rules defined in FACS) which
can be uniquely recognised based on the observed displacement of the frontal-view
face model points modelling the eye (Table 5.5), a certainty measure CM = 100/24
will be assigned to the data constituting an “eye” file labelled as “missing”.

Depending on the number of different eye detectors integrated into the Facial
Data Extractor (j 2 1), function F3 executes the same inter-file consistency check as
that defined for the class of input “profile” files. The only difference lies in the
definition of function S, which is defined in the case of input “eye” files as given in
the following formula:

s(xd’dedorh xddecwr)) = IOO*an(ViG [1,4]|SigM(d(Pl' € Xg, 1» Pie xy, 2);0,2,3)),

where S(Xgeectort, Xderectorz) 15 the measure of similarity between the results of
two eye detectors in question, Pi is a frontal-view face-model point belonging
to the contour of the relevant eye, d(p;, p,) is the block distance between the
points p; and p,, and sigm(y; a, B, ) is a Sigmoid membership function given
in formula (7).

Evaluating “eyebrow” input files

While estimating the approximativeness of the input data, function F3 may have
assigned a certainty measure CM = 0 to the data constituting an input “eyebrow”
file. In this case, the supervisor deals with this highly inaccurate data by labelling
the “eyebrow” file in question as “missing” and supplying it with the relevant data
Xneurrat €Xtracted from the expressionless face of the currently observed subject.

If the supervisor has labelled an input “eyebrow” file as “missing”, function F3
assigns CM = P(Xpeura) * 100 to the data Xpaera constituting this file. P(Xpeura) is the
probability that no AU whose activation induces a change in the facial appearance of
an eyebrow has been activated. This probability is calculated according to formula
(3). Since there are 4 distinct AUs and 7 different combinations of these (allowed by
the co-occurrence rules defined in FACS and affecting the appearance of the
eyebrows) which can be uniquely recognised based on the observed relevant
deformations of the dual-view face model (Table 5.5, Table 5.7), a certainty measure
CM = 100/14 will be assigned to the data constituting an “eyebrow” file labelled as
“missing”.

Depending on the number of different eyebrow detectors integrated into the
Facial Data Extractor (f 2 1), function F3 executes the same inter-file consistency
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check as that defined for the class of input “profile” files, where function S is
defined as:

S(xddeaarl: xddecmri’) = IOO*avg(ViE [192]ISigm(d(P i € Xdetectorls P 1 € xddedarZ);O’zaB))’

where S(Xiuectort; Xdetector2) IS the measure of similarity between the results of
two eyebrow detectors in question, Pi is a frontal-view face-model point
belonging to the contour of the relevant eyebrow, d(p;, p») is the block
distance between the points p; and p,, and sigm(y; a, B, y) is a Sigmoid
membership function given in formula (7).

Evaluating “nose/chin” input file(s)

While estimating the approximativeness of the input data, function F3 may have
assigned a certainty measure CM = 0 to the data constituting an input “nose/chin”
file. If this is the case, the supervisor labels the “nose/chin” file in question as
“missing” and supplies it with the relevant data X,msa extracted from the
expressionless face of the currently observed subject.

If the supervisor has labelled an input “nose/chin” file as “missing”, function F3
assigns CM = P(Xyeurra) * 100 to the data Xpeupq constituting this file. P(Xpeurad) is the
probability (calculated according to formula (3)) that no AU whose activation
induces a change in the facial appearance of the nostrils and/or of the chin has been
activated. Since there are 11 distinct AU codes and 24 different combinations of
these (allowed by the co-occurrence rules defined in FACS and affecting the
appearance of the nostrils and/or of the chin) which can be uniquely encoded based
on the observed relevant deformations of the dual-view face model (Table 5.5, Table
5.7), a certainty measure CM = 100/36 will be assigned to the data constituting an
“nose/chin” file labelled as “missing”.

Currently, a single nose/chin detector (i.e., Find Nose & Chin detector, Table
4.12) is integrated into the Facial Data Extractor part of ISFER. Hence, function F3
cannot perform an inter-file consistency check and it assigns a final data certainty
DC = CM to the data constituting the existing “nose/chin” input file. Yet, if at some
point in the future another nose/chin detector were to be integrated into the system,
function F3 should accomplish a proper inter-file consistency check and calculate a
final data certainty accordingly. Depending on the number of different nose/chin
detectors integrated into the Facial Data Extractor (j 2 1), function F3 executes the
following inter-file consistency check:

1. Ifj = 1, then DCuuector1 = CMuetector1. Terminate the execution of this algorithm
and use the available “nose/chin” file in the system’s further processing.

avg (CM det ector] * S (xdelecmrl » X det ector? )) CM<s
CM 4y peton CM2s’
where § = S(Xauecort, Xdetector2) = 100*avg(Vi € [1,3] | sigm(d(Pi € Xgaectors, Pi €

Xamector2); 0, 2, 3)) is the measure of similarity between the results of two
nose/chin detectors in question, Pi is one of the frontal-view face-model points

2, Ifj=2, then Dcdeuctorl ={
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H’, HI” or M (Figure 5.2, Table 5.4), d(p;, p2) is the block distance between the
points p; and p,, and sigm(y; a, 8, y) is a Sigmoid membership function given in
formula (7). If the measure of similarity between the detectors’ results is high,
the confidence in the examined result is increased as expressed by the given
formula. Go to step 4.

3. Ifj=n>2, then (Vj € [2, n]) execute step-2 and assign the calculated DCyuecrors
to a new CM z.0q01 that is to be used in the next loop. After the termination of all
loops, assign DCyaector1 = CMuerecior1- Repeat the process for each of n detectors.
Go to step 4.

4, If a dual-view facial image forms the input to the system, then Vj assign the
calculated DCiurectorr 10 @ NEW CM o0,y and perform an inter-file consistency
check which compares the result of the nose/chin detector with the result of the
selected / available profile detector. Since a displacement of the tip of the chin is
observable in the frontal-view as well as in the profile-view facial image of the
current expression and given that all of the single-session images are scale and
orientation invariant (section 4.1), the proportion MCeamined / MCheutra =
P4P10cxamined / P4P10eurat, Where point C is the centre of the line HH1 (Table
5.5), should hold. If the measure of similarity between the examined nose/chin
detector’s result and the selected profile detector’s result is high, the confidence
in the nose/chin detector’s result is increased. This is expressed by the formula
computing a final data certainty DCeecrors Of the examined nose/chin detector:

DC - an(CMdetectorl ’ S(Mcdeuctorl ’ P4P10s¢le¢ted_pmﬁle )) CM <s
det ector] CMdet ector] CM>s’

S(M Cdaedorl ,P 4Pl oselected J)mﬁle)z 1 OO*Sig m [

MCddzctarl _ P4P10s¢lected_pmﬁle |.0 2 3J
neutral P4P10n¢umﬂ |, "
is the measure of similarity between the examined nose/chin detector’s result
and the selected profile detector’s result while sigm(y; a, 8, ) is a Sigmoid
membership function given in formula (7). Go to step 5.

5. Ifj 2 2, then select the input “nose/chin” file having the highest DC assigned to
its data. If this process results in a draw, the data resulting from the detector
having the highest priority is to be selected. A priority ¥ € [1,n] is to be assigned
(off-line) to each “nose/chin” detector in accordance with its test results.

Terminate the execution of this algorithm and use the selected “nose/chin” file in
the further processing.

Evaluating “mouth” input files

While estimating the approximativeness of the input data, function F3 may have
assigned a certainty measure CM = 0 to the data constituting an input “mouth” file.
If this is the case, the supervisor labels the “mouth” file in question as “missing” and
supplies it with the relevant data x,..,» extracted from the expressionless face of the
currently observed subject.
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If the supervisor has labelled an input “mouth” file as “missing”, function F3
assigns CM = P(Xpeyra)) * 100 to the data Xpeuear constituting this file. P(Xpaupra) is the
probability (calculated according to formula (3)) that no AU whose activation
induces a change in the facial appearance of the mouth has been activated. Since
there are 22 distinct AUs and more than 350 different combinations of these
(allowed by the co-occurrence rules defined in FACS and affecting the appearance
of the mouth) which can be uniquely recognised based on the observed relevant
deformations of the dual-view face model (Table 5.5, Table 5.7), a certainty measure
CM =~ 0, say CM = 0.25 (i.e. 100/400), will be assigned to the data constituting an
“mouth” file labelled as “missing”.

Depending on the number of different mouth detectors integrated into the Facial
Data Extractor (j 2 1), function F3 executes the same inter-file consistency check as
that defined for the class of input “nose/chin” files. The only two differences are:

o Function § exploited in step 2 of the algorithm is defined in the case of input
“mouth” files as given in the following formula:

S(Xdetector1, Xdetector2) = 100*avg(Vie [1,4)|sigm(d(Pi € Xeector1, Pi € Xdetector2);0,2,3)),
where S(Xyuector1, Xaetector2) 1 the measure of similarity between the results of two
nose/chin detectors in question, Pi is one of the frontal-view face-model points I,
J, K or L (Figure 5.2, Table 5.4), d(p,, p2 is the block distance between the
points p; and p,, and sigm(y; a, 8, y) is a Sigmoid membership function in (7).

e The inter-file consistency check which compares the result of the examined
mouth detector with the result of the selected / available profile detector (step 4
of the algorithm) is based on a comparison between the distance KL and the -
distance P6P8. Since a displayed opening of the mouth is observable in the
frontal-view as well as in the profile-view facial image of the current expression
and given that all of the single-session images are scale and orientation invariant
(section 4.1), the proportion KLeyamined / KLneutral = P6P8examined / P6P8geurrat should

- hold (at least if AU28, AU28t, and AU28b have not been activated; otherwise
one or both points P6 and P8 will be absent, see Table 5.7). If AU28, AU28t, and
AU28b have not been activated and if the measure of similarity between the
examined mouth detector’s result and the selected profile detector’s result is
high, the confidence in the mouth detector’s result is increased. This is expressed
by the following formula, which computes a final data certainty DCuetectors Of the
examined mouth detector:

DC = avg (CM det ector! ? s (Kl‘det ectorl » P6P sselected _ profile )) CM<s
detectorl M det ector) CM2s ’

P6P38
S(KL seectort, POP8sctecte rogu) = 100*sigm }4‘—““ ol ”"““‘—""’f“",ﬂ,z,s]
KLneutml P6P 8n¢ulml |

is the measure of similarity between the examined mouth detector’s result and
the selected profile detector’s result while sigm(y; a, 8, y) is a Sigmoid
membership function given in formula (7).

and
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5.5 Encoding and quantification of facial actions

The main goal of the Facial Action Encoder part of ISFER is to achieve a quantified

facial action coding applicable to automated FACS coding for an input facial image.

So, once the supervisor of the Facial Action Encoder has abridged and estimated the

approximativeness of the input data generated by the Facial Data Extractor part of

ISFER, it will try to reach the next predefined goal: to encode and quantify the

displayed AUs. To this end, the supervisor selects from the action space three

predefined plans that are sequentially executed:

1. Calculate the face model deformations and their certainty factors CF based on
the data constituting the files selected by function F3.

2. Retrieve the appropriate data from the DB of the extreme model deformations.

3. Activate function F4 in order to perform reasoning with uncertainty about the
activated AUs and the intensity of that activation.

Neutral facial expression

The information extracted from a neutral facial expression of the currently observed
subject is necessary for both dealing with imperfect input data resulting from the
Facial Data Extractor part of ISFER (section 5.4) and encoding and quantifying the
displayed AUs based upon that data (this section). A successful processing of the
Facial Action Encoder part of ISFER implies, therefore, that the information about
the current person’s neutral facial expression is available and stored in the “neutral
expression” file of the DB of all encountered facial expressions.

In order to ensure correct extraction of the necessary data from an acquired
image of the neutral expression of the currently observed subject, the Facial Data
Extractor is invoked in the stand-alone operating mode (section 4.2) for the acquired
image and each of the detectors belonging to the extraction group of the Facial Data
Extractor’s modules (section 4.3). The obtained results are visually inspected and the
detectors producing the most accurate spatial sampling of the prominent facial
features are selected and then connected in a new network of modules (e.g. as
illustrated in Figure 4.7). The “neutral expression” file is then generated by
executing the newly designed network of modules and activating the relevant rules
for extracting the model points from the localised contours of the facial features
(Table 5.6 and/or Table 5.4).

If the invoked detectors have failed to spatially sample a prominent facial
feature, the current subject’s neutral expression is to be acquired and processed once
more. For example, if the detectors integrated into the Facial Data Extractor fail to
spatially sample one or more facial features due to improper lighting, the monitoring
device employed by ISFER (Figure 4.2) is to be biased by adjusting the current
positions of the lamps mounted on the device and the current subject’s neutral
expression is to be acquired and processed once more.

187



Computing the face model deformations

Depending on the kind of the input image (i.e. frontal- or dual-view image) and
using the relevant data about the neutral facial expression of the observed subject,
the supervisor of the Facial Action Encoder calculates the appropriate face model
deformations (frontal-view face-model deformations listed in the last column of
Table 5.5 or dual-view face-model deformations listed in the last column of Table
5.5 and the last column of Table 5.7). For example, to calculate the face model
deformation BD ;.ui0n, the supervisor applies the following formula:

BD g iation = BD examined — BDneutrar, Where AB=\/(xA—xB)2+(yA—yB)2 ,

where Beouminea i €Xtracted from the input “eye” file selected by function F3,
D, aminea is €xtracted from the input “eyebrow” file selected by function F3, Baeusra
and Dpaqa are extracted from “neutral expression” file stored in the DB of all
encountered expressions.

The supervisor associates further a certainty factor CF with each calculated face
model deformation. The certainties DC assigned by function F3 to the data
constituting the selected files and used to calculate a particular face model
deformation define the certainty factor CF associated with that model deformation.
For instance, the certainty factor associated with the deformation BD s iaion Will be
calculated as CF, BD_deviation = "UR(DCB examined> DCD a:amlnad)’ where DCB examined is
the data certainty ass1gned by function F3 to the data constituting the selected “eye”
file and DCp ccaminea is the data certainty assigned by function F3 to the data
constituting the selected “eyebrow” file.

If a dual-view facial image forms the input to the system and the certainty
assigned by function F3 to the data constituting the “profile” input file is DC = 0, the
further processing of the system is the same as that for a frontal-view input facial
image. However, considering the test results of the profile detector integrated into
the Facial Data Extractor (Table 4.4), the probability that function F3 will assign DC
= 0 to the data constituting the “profile” file is very low. Similarly, if a dual-view
facial image forms the input to the system and all “non-profile” input files have been
labelled as “missing”, the further processing of the system is the same as that for a
profile-view facial image. This means that the supervisor will compute the profile-
view face-model deformations listed in the last column of Table 5.7 and that the
processing of function F4 will be solely based on the AU-recognition rules listed in
Table 5.7. Finally, irrespective of the kind of an input image, if all files generated by
the Facial Data Extractor part of ISFER have been labelled as “missing”, the
processing of the system terminates with:

The displayed expression is neutral (CF = 0.01%)

The certainty factor CF of this result calculated according to formula (3) represents
the probability of the neutral expression, i.e., the probability that no AU has been
activated. Since there are 32 distinct AUs and more than 10,000 different
combinations of these that can be uniquely recognised based on the observed
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deformations of the dual-view face model (Table 5.8), the CF = 100/10,000 will be
assigned to this result.

Database of extreme model deformations

The main goal for the development of ISFER is to achieve a fully automatic facial
expression analysis. The intended analysis should further resemble automated FACS
coding in digitised static input facial images so that it can serve the purpose of
behavioural science investigations of the face. In other words, the system should
encode facial actions in input images and quantify those codes (Donato et al. 1999,
Bartlett et al. 1999).

As noted in sections 2.3 and 2.4, none of the systems for automatic facial
expression analysis presented in the literature up to date quantifies the facial action
codes on a 100-level intensity scale. This task is particularly difficult to accomplish
for a number of reasons. First, FACS only provides five different AUs which can be
assigned an intensity on a 3-level scale (section 5.1). Second, some facial actions
such as blinking, winking, and sucking the lip(s) into the mouth are either
encountered or not. It is not reasonable to describe a blink as having a "higher
intensity" than another blink (for a full list of AUs, which can be recognised by
ISFER but whose activation can be quantified merely on a 2-level intensity scale,
see Table 5.9). Finally, each person displays a particular facial action with a
different maximal intensity, which depends on his/her expressiveness as well as on
the flexibility and strength of his/her facial muscles. Therefore, the aim was to
design the Facial Action Encoder such that it facilitates a generic facial action
classification (i.e. independent of the observed subject's sex, age and ethnicity) and a
person-dependent quantification of the encoded AUs for which measuring of the
activation intensity is "reasonable". This has been accomplished by encapsulating
within the Facial Action Encoder part of ISFER the FACS's person-independent
rules for AU recognition (Tables 5.5, 5.7, 5.8) and an AU codes quantification
method which uses a subject-profiled database of extreme face model deformations.

Since the DB of extreme model deformations should facilitate person-dependent
quantification of the encoded AUs, it should be subject-profiled; it should be
furnished with the extreme face model deformations of the currently observed
subject. Thus, each time before a session with a new subject starts, the DB of the
extreme model deformations is initialised. The subject is asked to display with a
maximal intensity a representative set of facial expressions, so called individual-
extreme-displays set (IEDS), which is further processed by the system in order to
measure the relevant model deformations (Table 5.9) and their certainty factors CF
that will constitute the DB of extreme model deformations. The IEDS consists of 6
basic emotional expressions (fear, happiness, sadness, surprise, disgust and anger;
Ekman and Friesen 1975), which are to be displayed according to the rules given in
Table 5.10, and 7 maximal displays of AUS, AU18, AU23, AU24, AU27, AU39,
and AU41. The 13 expressions of the IEDS are sufficient for an initial furnishing of
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the DB of extreme model deformations since they reveal the maximal model
deformations coupled with any AU that can be recognised by ISFER and whose
activation can be quantified on a 100-level intensity scale (Table 5.9).

Table 5.9
Quantification of the AU codes that can be recognised by ISFER (Table 5.8)
AU| Description Quantification AU | Description Quantification
1 | Raised inner 100-level scale, 20 | Stretched 100-level scale,
eyebrow(s) based on BDgeviation mouth (horiz.) | based on Igevigrion
2 | Raised outer 100-level scale, 23 | Tightened lips | 100-level scale,
eyebrow(s) based on AEgcviation based on KL gevinion |
4 | Eyebrows 100-level scale, 24 | Pressed lips 100-level scale,
drawn together | based on DD1gevigion based on KL geviation |
5 | Raised upper 100-level scale, 25 Parted lips 100-level scale,
eyelid(s) based on FGyevigrion max = AU8,,.) | based on P6P8evission |
6 | Raised 100-level scale, 26 | Jaw dropped 100-level scale,
cheek(s) based on AU1 2006ty based on P4P10eviatiof
7 | Raised lower 100-level scale, 27 | Stretched 100-level scale,
eyelid(s) based on GXgevigtion mouth (vertic.) based on P4P104e ission |
8 | Lips towards 100-level scale, 28 | Sucked lips 2-level scale
each other based on PSP6gevistion into the mouth
9 | Wrinkled nose | 100-level scale, 28b | Bottom lip 2-level scale
based on P2-P3geviyiion sucked in
10| Raised upper | 100-level scale, 28t | Upper lip 2-level scale
lip based on P5P6gcviion sucked in
12| Raised mouth | 100-level scale, 29 | Jaw pushed 2-level scale
corner(s) based on IBgeviation forward
13| Sharp AUI12 100-level scale, 35 | Cheeks 2-level scale
(max = AU12,,, )| based on IBgevigion sucked in
15| Depressed 100-level scale, 36b | Tongue under | 2-level scale
mouth corner(s)| based on IBgevigiion the lower lip
16| Depressed 100-level scale, 36t | Tongue under | 2-level scale
lower lip based on P8P10geviation the upper lip
17| Raised chin 2-level scale 38 Wide nostrils | 100-level scale,
max = AU9,,) | based on H'H1'gevizion|
18| Puckered lips 100-level scale, 39 | Compressed 100-level scale,
based on 1J deaton nostrils based on H'H1'geviation
19{ Shown tongue | 2-level scale 41 | Dropped 100-level scale,
: upper eyelid based on FXgeviation |

3 The intensity of AU19 activation could be measured based on the level to which the tongue
is protruding out of the mouth. However, the rule used to recognise AU19 activation is merely
based on detection of two valleys and a peak between the profile points P6 and P8 (Table 5.7).
Hence, there is no model deformation whose intensity (and not merely its existence) could be
used to compute the intensity of AU19 activation.
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Table 5.10
AU-coded representation of 6 basic emotional expressions (Pantic and
Rothkrantz 2000b)

Expression | AU-coded description

happiness AU6 + AU12 + (AU25 or AU26)

sadness AU1 + AU4 (with or without AU7) + AU1S5 + AU17 + (AU25 or AU26)
surprise AUl + AU2 + AUS (without AU7) + AU26

disgust AU9 (with or without AU17) + (AU25 or AU26)

fear AUl + AU4 + AUS + AU7 + AU20 + (AU25 or AU26)

anger AU2 + AU4 (with or without AU7) + AU10 + AU16 + (AU25 or AU26)

Facial Data Extractor

Facial Action Encoder

DB of all
encountered fac

expressions
- DBof
Detected | extreme model
features neutral J. .o nities\ deformations
XP- - 1% their CFs —
file
F1. Check for ‘E.El.‘i‘l.e_ relevant fil F2. Extract
missing data I TP Supervisor reduced file | model features
P .

m-features & relevant files all m-features & extremities &

their certainty per f-feature their CFs &{ | their CFs
neutral exp. file v
F3. Check for data’ | Compute model
consistency deformations & their CFs

Figure 5.10: Initial furnishing of the DB of extreme model deformations
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The initial furnishing of the DB of extreme model deformations is performed
off-line. A set of 26 images showing two IEDS displayed by 2 different trained
FACS-coders is shown to the novel subject who is further asked to display his/her
own IEDS according to the provided example images. The processing of the system,
algorithmically illustrated in Figure 5.10, is then invoked for each of the acquired
images. The DB of extreme model deformations is altered on-line however. As
noted above, each time a new facial image of the currently observed subject is
entered into the system for analysis, the supervisor of the Facial Data Extractor
retrieves the values constituting the DB of extreme model deformations in order to
quantify the displayed AUs. If a currently computed model deformation x equals the
related extremity x_extreme stored in the DB of extreme model deformations and
CF, > CF;_cureme, the supervisor adjusts the content of the DB accordingly. Hence,
even if the initial values constituting the DB of extreme model deformations have
not been measured accurately or the observed subject was reluctant or unable to
display the IEDS with maximal intensity, the system is enabled to learn the subject-
dependent parameters necessary for quantifying the encoded AUs.

As mentioned in section 5.2, the employment of a large database is coupled with
high memory/storage requirements and long retrieval times. However, since each
subject-profiled DB of extreme model deformations contains merely 20 different
variables (Table 5.9), the efficiency of storage and retrieval is not an issue here.

F4: Encoding and quantifying the displayed AUs

The supervisor of the Facial Action Encoder activates function F4 in order to
accomplish reasoning with uncertainty about the displayed facial actions and their
intensities. Since it performs the main task of the Facial Action Encoder, function F4
forms its kernel. Broadly speaking, it encodes and quantifies the displayed facial
actions based on the calculated face-model deformations and according to the
mapping between 32 FACS rules and 32 face-model-based rules given in Tables 5.5,
5.7 and 5.8. Actually, function F4 infers appropriate conclusions and their certainties
about the displayed AUs and their intensities based on both the internally stored
face-model-based rules illustrated in Figure 5.12 (for a complete list of utilised
functions, thresholds, and rules, the reader is referred to Appendix B) and a set of
facts stored in a so-called blackboard and provided by the supervisor of the Facial
Action Encoder (Figure 5.11).

Each of the rules utilised by function F4 encodes and quantifies a single AU
based on the existence and the extent of a particular discrepancy of the spatial
arrangement of the model points between the current and the neutral expression of
the observed subject (Figure 5.12). As explained in section 5.3, the rules given in
Tables 5.5, 5.7, 5.8, and hence in Figure 5.12 are uniquely defined in the sense that
each model deformation corresponds to a unique set of AU codes. A relational list
(R-list, see also section 3.2) has been utilised to represent the relations between these
rules. The utilised R-list is a 4-tuple list, where the first two columns identify the
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conclusion clause of a certain rule that forms the premise clause of another rule
identified in the next two columns of the R-list (Figure 5.12).

Facial Action Encoder

DB ofall DBof
encountered fac: extreme model
deformations-

expressions -

neutral exp. file

Model deformations and their CFs
Quantified AU codes & & Extremities and their CFs

certainty of that data

Figure 5.11: Function F4 of the Facial Action Encoder part of ISFER

Function F4 applies fast direct chaining as its inference procedure (Schneider et
al. 1996; see also section 3.2). In other words, it starts with the first internally stored
rule and then searches the R-list to find if the conclusion of the fired rule forms a
premise of another rule that will be fired in the next loop. If such a relation does not
exist, function F4 will try to fire the rule that in the internal storage comes after the
rule last fired. In order to prevent function F4 from firing a rule more than once, a
list of fired rules (LFR) is utilised. Thus, if a rule has fired (i.e. the certainty factor of
the premise CF, € [0, 100] of the rule is greater than or equal to a threshold 7), the
rule number is added to the LFR.

The overall certainty factor CF, of the premise p of a fired rule is calculated as:
1. For the portion of the premise p that contains clauses cI and c2 related as cl

AND ¢2, CF, = min (CF,,, CF_).

2. For the portion of the premise p that contains clauses ¢/ and c2 related as ¢ OR
¢2, CF, = max (CF,;, CF_y.
3. For the portion of the premise p that contains just clause ¢, CF, = CF,.

~
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The certainty factor CF, of a premise clause c is calculated in the following way:

1. For a premise clause ¢ of a kind “NOT AU;”, CF, = CF1, where CF; is the
certainty factor of the first conclusion clause of the rule encoding AU;.

2. For a premise clause ¢ where the existence or the location of a particular profile-
view face-model point P; is examined (for the examples see Table 5.7), CF, =
DCp; where DCpy is the data certainty assigned by function F3 to the data
constituting the selected “profile” file.

3. For a premise clause ¢ where the shape of a profile-view face-model deformation
x is examined (for the examples see Table 5.7), CF. = DC,, where DC; is the
data certainty assigned by function F3 to the data constituting the selected
“profile” file.

4. For a premise clause ¢ where a model deformation x is compared to a threshold
t, CF, = min (CF,, CF,), where CF, is the certainty factor of the model
deformation x and CFy, is the certainty factor of the extreme model deformation
related to the threshold ¢ (for the examples see Figure 5.12).

5. For a premise clause ¢ where a model deformation x is compared to zero, CF, =
CF,, where CF, is the certainty factor of the model deformation x.

If the overall certainty factor CF, of the premise p of a rule is CF, > T, the rule
will be fired. The value of the threshold T is set as follows:

T = min(min(DCprofue), min(DC ), Min(DC gyepron), Min(DCroserchin), Min(DCmourr)),
where min(DC,) is the minimal data certainty that can be assigned by function F3 to
data x constituting the given file (see section 5.4). The threshold T is set in such a
manner because this enables the Facial Action Encoder part of ISFER to potentially
encode all displayed AUs. In other words, the design of the system is such that it can
encode all displayed AUs even if the reached conclusions might have low certainties
(due to low certainties of the relevant input data).

The conclusion part of each of the internally stored rules, exemplified in Figure
5.12, consists of two conclusion clauses. The first conclusion clause, ccl, implies
that a certain AU; has been activated, while the second conclusion clause, cc2,
implies that the AU; in question has been activated with a particular intensity I(AU)).
Instead of computing an overall certainty factor CF ., = min (CFc), CF,;) of the
conclusion con of a fired rule, function F4 calculates the certainty factor CF
separately for each of the conclusion clauses. Unfolding the certainties associated
with each of the inferred conclusions on encoding and quantification of the
displayed AUs provides the user with insight into the system’s performance: it
enables the user to estimate the quality of the internally stored data (the model-
deformation extremities, the neutral expression data) and successfulness of the
invoked detectors vs. the quality of the acquired images. One can use this knowledge
to enhance the performance of the system by acquiring more accurate data and/or
adjusting the monitoring device used to acquire the facial images of the observed
subject.
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f-on 1 | extent (x) = 100 * sigm (Ix]; 0, 2 Xoxremels |Xextremel)s Where X is a particular face
model deformation currently computed by the supervisor and forwarded to function
F4 (Figure 5.11), Xexeme is retrieved from the DB of extreme model deformations
and forwarded to function F4 by the supervisor (Figure 5.11), and sigm(y; a, 8, y)
is a Sigmoid membership function given in formula (7).

>
e l?
y x<y

f-on 2

var 1 | tI = X upeme, Where X = Wieviation aNd Xoxreme €ncCountered by maximal AU18

vard | 4 = Xoureme. Where X = PAP10yeviation a0d Xereme €ncountered by maximal AU26
(see “surprise” in Table 5.10)

rule 1 | If BDyeviation > 0 OR B1D1 geviarion > 0 Then AU AND I (AU1),
1 (AU 1) = max (me”t (BDdevialion) , extent (BIDI deviation))

rule 2 | If AEgeviation > 0 OR A1E] geviaion > 0 Then AU2 AND 1 (AU2);
1(AU2) = max (extent (AE seviation), extent (A1E 1 geviation))

rule 3 | If DD 1geyiaton < 0 AND NOT AU9 Then AU4 AND I (AU4);
{ (AU4) = extent (DDldevia\ion)
rule 5 | If AU12 OR AU13 Then AU6 AND I (AU6); I (AU6) = I (AU12 OR AU13)

rule 8 | If P2-P3 g iaion decreased Then AU9 AND I (AU9); I (AU9) = extent (P2-P3 geviation)

rule 10| If (IBdcvialion <0 AND CIdeviation > 0) OR (JBldevintion <0 AND CJdeviation > 0) Then
AUI2 AND I (AU12); I (AU12) = max (extent (1Bgeviaion), extent (JB1yeviation)

rule 27| If Ugeviation < I Then AU35 AND 1 (AU35) = 100
rule 32| If ((FG > 0 AND FGgevintion < 0 AND FXgeviation < 0) OR (FI1G1 > 0 AND

F1Ggevision < 0 AND F1Y goyinion < 0)) AND NOT AU7 Then AU41 AND I
(AUA1); I (AU41) = max ( extent @Wextent (Pﬂw

Conclusion Clause Premise Clause
Rule # Clause # Rule # Clause #
8 1 3 2
10 1 5 1

Figure 5.12: Functions, variables, rules (given in Tables 5.5, 5.7 and 5.8) and
R-list representation of the relations among the rules utilised by function F4
(a complete list is provided in Appendix B)
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The certainty factors CF,.; and CF,; of the conclusion clauses ccl and cc2 are
calculated in the following manner:

1. CF.; = CF,, where CF, is the overall certainty factor of the premise p of the
relevant rule that has been fired.

2. CF,; = min(CF,, CFxoaemd, Where CF, is the overall certainty factor of the
premise p of the relevant rule that has been fired, Xoureme is retrieved from the DB
of extreme model deformations and used by function F4 to calculate the intensity
I(AU) of the relevant AU;, and CFXurem is the certainty factor associated with

the Xozreme -

5.6 Dealing with partial data

If a certain prominent facial feature is not detected or is detected highly inaccurately
by the detectors integrated into the Facial Data Extractor, the supervisor of the
Facial Action Encoder generates for that facial feature a file labelled as “missing”
and stores there the relevant data extracted from the neutral expression of the
currently observed subject (section 5.4). The substitution of imperfect input data
with the relevant data constituting the “neutral expression” file, which is stored in a
personalised database of all encountered facial expressions of the currently observed
person, implies that the exact information about the presently examined facial
expression is lost. Dealing with this information loss, that is, handling the partial
data resulting from the antecedent processing of the system, is the final goal that the
supervisor of the Facial Action Encoder will try to reach before it forwards the
accomplished results to the Facial Expression Classifier part of ISFER (Figure 5.1).
As explained in section 3.4, a way of dealing with partial data resulting from the
preceding processing of the system is to exploit the process knowledge that is based
on the knowledge about the personal patterns of facial behaviour of the currently
observed subject. Since people usually display some (typical) facial expressions
more often than some others, the patterns / typicality of the displayed facial
behaviour can be viewed as the frequency with which that facial behaviour is shown.
Yet, people have various levels of facial expressiveness and the set of someone’s
typical facial expressions varies depending on the person’s personality, cultural and
social background, etc. Thus, rather than having a priori (generic) rules for dealing
with partial data, the appropriate (personalised) rules can be learned and the
underlying statistical model of the current subject’s facial behaviour can be devised
by watching the subject and recording the observed facial patterns. This reflects a
situation in which the properties used to associate the elements in a set ¥ (the input
data set) with those in a set U (the AU codes set) are uncertain (due to the
encountered partial data) but we know the process (recording the frequency of each
expression) used to select the properties (the typicality of a facial expression) which
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play a role in the association (select the facial expression having the highest
typicality and the AU-coded description AU; + ... + AU;, where AU; encodes the
appearance of the “missing” facial feature).

Within the Facial Action Encoder, function F5 employs this process knowledge
and handles the problem created by encountered partial data using the data resulting
from the antecedent processing of ISFER and the data stored in the subject-profiled
DB of all encountered facial expressions (Figure 5.13).

DBofall . /
encountered.\"
fac. expressions

neutral
exp. file

Facial Action Encoder

Search DB
A

- Supervisor

AUs-coded description of
fac. exp. & typicality &
missing fac. feature &
relative selected data files

adjusted AU-
coded description
of input fac. exp.

Figure 5.13: Function F5 of the Facial Action Encoder part of ISFER

Database of all encountered facial expressions

Since the DB of all encountered facial expressions should store the patterns of facial
behaviour of the currently observed subject, it should be subject-profiled. Thus, each
time prior to a session with a novel subject, the DB of all encountered facial
expressions is supplied merely the “neutral expression” file of the current subject
(see section 5.5). If the subject has been subjected to the system’s analysis before,
the DB of all encountered facial expressions used in the antecedent sessions with
that subject will be employed anew.
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Bearing in mind that the DB of all encountered facial expressions should keep
records of all expressions ever encountered while monitoring a particular subject for
whom it was defined (section 5.6), efficient organisation of such a potentially large
database is crucial for the accomplishment of an acceptable level of system
performance (Kan 1995). In principle, a database is considered well organised if its
organisation facilitates accurate and efficient retrieval of the stored data. Having
accurate retrieval guarantees that the desired datum will be retrieved. Having
efficient retrieval guarantees that data will be retrieved fast enough to give
acceptable system response times. These two factors are inversely proportional
however. Namely, it is easy to guarantee accurate retrieval at the expense of
efficiency (e.g. by searching the whole database for the best matching case) and easy
to have fast retrieval if only a fraction of the utilised database is searched (possibly
missing the desired datum/data). In order to organise the DB of all encountered
facial expressions such that it keeps these two factors in balance, that is, such that it
guarantees accurate retrieval of the desired datum in a relatively short time, a
clustered database organisation was adopted.

In general, the DB of all encountered facial expressions is divided into 32
clusters corresponding to the 32 AU codes that the Facial Action Encoder is able to
recognise from an input dual-view facial image. Each cluster is split further into a
number of partitions corresponding to the number of different AU codes forming the
AU-coded descriptions of the facial expressions classified into the pertinent cluster.
Of course, the actual number of clusters and accompanying partitions constituting a
specific subject-profiled DB of all encountered facial expressions depends on the
variety of expressions that the pertinent subject displayed during his/her sessions
with ISFER. Anyway, for each facial expression displayed by the currently observed
subject, there is a file (record) stored in his/her personalised DB of all encountered
facial expressions constituting the AU-coded description of that facial expression
and the frequency with which the subject has displayed that expression. Each of
these files is stored as a part of the appropriate cluster and its appropriate partition,
which is decided by the “smallest” AU code of the AU-coded description of the
pertinent facial expression (e.g. AUI+AU2 will be classified into the AU1 cluster)
and by the number of different AUs forming the AU-coded description of that
expression (e.g. AU1+AU2 will be classified into the partition “2” of AU cluster)
respectively. For each expression e analysed by the system during a single session,
the supervisor of the Facial Action Encoder adjusts the contents of the currently
employed DB of all facial expressions in the following manner (Figure 5.13):

1. If the currently examined facial expression e has been previously analysed by the
~ system, the supervisor uses the function Search DB to retrieve the file e-file from
the database (this function decides the relevant cluster based upon the “smallest”

AU code forming a part of the AU-coded description of e and the relevant

partition based upon the number of different AU codes forming the AU-coded

description of e), enlarges the total number of ever encountered expressions Npew
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= N,u + 1, calculates the new frequency F, e = (1 + Nyt * Feod) / Napew, adjusts
the e-file accordingly and stores the new e-file into the database.

If the currently examined facial expression e has not been previously analysed by
the system, then the supervisor enlarges the total number of ever encountered
expressions Np,, = N,q + 1, calculates the frequency F, = 1 / N,.,, generates the
e-file (supplies it with the AU-coded description of e and the frequency F,), and
stores it into the proper cluster (and its proper partition) of the database.

F5: Post-processing aimed at dealing with partial data

For each file labelled as “missing” and selected by function F3 (as the only choice;
see section 5.4), the supervisor of the Facial Action Encoder activates function F5 in
order to handle this partial data resulting from the antecedent system’s processing.
Depending on the facial feature ff, whose spatial sampling failed completely (i.e.
none of the detectors integrated into the Facial Data Extractor detected the feature ff
successfully) and whose related ff-file has been labelled as “missing”, function F5
carries out the procedure explained here in general and illustrated in Figure 5.13:

1.

2.

Define the list of AUs AU-list holding each and every AU that codes a possible
appearance of the facial feature ff (Table 5.11).

From this list exclude all AUs that are already included in the AU-coded
description d(e;,p,,) of the currently examined expression €;,,,; forming the input
to function F5.

Perform an inter-file consistency check and place a hypothesis about the
appearance d(ff) of the facial feature ff given in terms of AUs.

Verify the hypothesis based on the typicality of the expression e,j,ses having the
AU-coded description d(€ayjused) = d(€mpud + d(ff). The hypothesis is verified if
Feugjustea > Feinpu, Where Feugiugea is the frequency of €ugjustes and Fepmpy is the
frequency of €i,pu retrieved from the DB of all encountered expressions by
function Search DB.

If the hypothesis has not been verified, return df€ugused) = d(€inpur) to the
supervisor. Otherwise, return d(€agjusiedd = d(€inpud) + d(fF).

Table 5.11
Possible AU-coding of the facial feature ff labelled as “missing” (Table 5.8)

“file labelled as “missing” | Possible AU-coding

‘eye” file AUS5, AU6, AU7, AU4I

‘eyebrow” file AUl, AU2, AU4, AU

‘nose/chin” file AU26, AU27, AU38, AU39

‘mouth” file AUS, AU10, AUI2, AU13, AU15 to AU20, AU23 to

AU28, AU28b, AU28t, AU29, AU35, AU36t, AU36b

As mentioned in section 5.4 and considering the test results of the profile

detector (Table 4.4), the probability that the “profile” file will be labelled as
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“missing” is very low. Therefore, this case has been excluded from the processing of
function F5.

Post-processing of the “eye” files
If one of the “eye” files has been labelled as “missing” while the data x constituting
the other “eye” file have been assigned a data certainty DC, > DCy.neutrar, Where DC,.
neutral = 100/24 (section 5.4), the supervisor of the Facial Action Encoder will not
activate function F5. The underlying reasoning is based upon the fact that the eyes
are bilateral facial features and although the facial muscles affecting the facial
appearance of the eyes may be activated unilaterally, affecting just one of the eyes,
most of the times those activations are bilateral, affecting both eyes. Furthermore,
each AU that codes the facial appearance of the eyes (Table 5.11) is scored
unilaterally — if an appropriate model deformation is extracted from either of the
eyes’ contours, the AU is scored (Table 5.5). Hence, by activating function F5, the
system’s processing will assume in fact that two different AUs have been activated
unilaterally, each one affecting different eye. This is highly improbable taking once
more into consideration that the AUs affecting the facial appearance of the eyes are
usually activated bilaterally.

If both “eye” files were labelled as “missing”, function F5 executes the
procedure outlined above for a general case with the following adjustments to steps
3 and 4:

e Since there is no file supplied with data that could be used to control the
correctness of the hypothesis that a certain AU affecting the appearance of the
eyes has been activated, no inter-file consistency check (step 3) can be
performed while the “eye” files are post-processed. For each AU; € AU-list and
each anatomically possible combination of these, a hypothesis is placed that the
AU or the AU combination in question is present. In total, there are 7 distinct
hypotheses at most: AUS, AU6, AU7, AU41, AU5+AU6, AUS+AU7,
AU6+AUA41.

o The hypothesis verification (step 4) is performed for each hypothesis placed in
step 3. If a hypothesis A is verified but not all hypotheses from step 3 have been
checked, the hypothesis 4 and the frequency Fe,gux.s related to the expression
d(€adjusied = d(€impu) + h Will be stored temporarily. Once all hypotheses from
step 3 have been checked, the hypothesis & stored together with the highest
frequency Feuguses is selected and d(€ugused = d(€inp) + b is returned to the
supervisor of the Facial Action Encoder.

Post-processing of the “eyebrow” files

The eyebrows are bilateral facial features and, similarly to the case of the eyes, the
facial muscles affecting the facial appearance of the eyebrows are usually activated
bilaterally. The only exception from this rule is AU2, which is often activated
unilaterally. Thus, if one of the “eyebrow” files has been labelled as “missing” while
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the data x constituting the other “eyebrow” file have been assigned a data certainty
DC, > DCy.peytrat, Where DCy pouras = 100/14 (section 5.4), function F5 executes the
procedure outlined above for a general case with the following adjustments to steps
3and 4:

Since no file consists of data that can be used to control the correctness of the
hypothesis & that AU2 has been activated, no inter-file consistency check (step
3) can be performed.

In the case that a hypothesis /& is verified, the calculated d(€,gjused) = d(€inpud + h
is returned to the supervisor of the Facial Action Encoder.

If a dual-view facial image forms the input to the system and both “eyebrow”

files have been labelled as “missing”, function F5 executes the procedure outlined
above for a general case with the following adjustments to steps 3 and 4:

Based on both the data constituting the “profile” file and the rules given in Table
5.7, check if any of AU; € AU-list can be scored and place the hypothesis &
accordingly. Except the hypothesis 41 = h, place hypothesis, h2 = h + AU2.

The hypothesis verification (step 4) is performed for both hypotheses from step 3
If the hypothesis 1 is verified but the hypothesis #2 has not been checked yet,
the hypothesis &7 and the frequency Fe,yjuses related to the expression d(€gjusteq)
= d(€inpu) + h1 are stored temporarily. Once the hypothesis k2 has been checked,
the hypothesis & stored together with the highest frequency Feagjuwea is selected
and d(€agjusicd) = d(€inpuy) + h is returned to the supervisor.

If a frontal-view facial image forms the input to the system and both “eyebrow”

files have been labelled as “missing”, function F5 executes the procedure outlined
above for a general case with the following adjustments to steps 3 and 4:

Based on in the AU-coded description d(ei,p.) of the currently examined
€Xpression e,y that forms the input to function FS5, check if AU10 has been
scored. If not, remove AU9 from the AU-list. The underlying reasoning is based
upon the knowledge contained in FACS. Namely, AU9 and AU10 cause the
same facial appearance of the mouth but AU9 obscures AU10 (section 5.3).
Hence, if AU10 has been scored, AU9 might be present, but if AU9 has been
scored, AU10 cannot be scored. Since no file consists of data that can be used to
control the correctness of the hypothesis that a certain AU affecting the facial
appearance of the eyebrows has been activated, no inter-file consistency check
(step 3) can be performed while the “eyebrow” files are post-processed. For each
AU; € AU-list and each anatomically possible combination of these, a hypothesis
is placed that the AU or the AU combination in question is present. In total, there
are 9 distinct hypotheses at most: AU1, AU2, AU4, AU9, AUI+AU2,
AU1+AU4, AU2+AU4, AU2+AU9, AUI+AU2+AUA4.

The hypothesis verification (step-4) is performed for each hypothesis from step
3. If a hypothesis A is verified but not all hypotheses from step 3 have been
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checked, the hypothesis 4 and the frequency Feqgused related to the expression
d(€adjustcd) = d(€inpuy) + h Will be stored temporarily. If the two hypotheses h4y
containing AU9 are placed in step 3, their verification is postponed until all other
hypotheses placed in step 3 are checked. Then, if a h,y is verified, it will be
temporarily stored together with the frequency Feggug.s related to the expression
d(€agusted) = A(€inpu) — AU10 + h4y9. Once all hypotheses from step-3 have been
checked, the hypothesis k stored together with the highest frequency Feagjustea is
selected and the related d(€ugused is returned to the supervisor of the Facial
Action Encoder.

Post-processing of the “nose/chin” file

If a dual-view facial image forms the input to the system and the “nose/chin” file
selected by function F3 has been labelled as “missing”, function F5 executes the
procedure outlined above for a general case with the following adjustments to steps
3 and 4:

Based on both the data constituting the “profile” file and the rules given in Table
5.7, check if any of AU; € AU-list can be scored and place the hypothesis A
accordingly. Based on the AU-coded description d(eup of the currently
examined expression e that forms the input to function F5, check if any of
AUS, AU9, AU10, AUI12, AU13, AUI15, AU18, AU20, AU24, AU28 has been
scored. If so, remove AU38 from the AU-list (see Table 5.5). Except the
hypothesis kI = h, place the hypothesis #2 = & + AU39 and, if AU38 € AU-list,
place the hypothesis k2 =k + AU38.

The hypothesis verification (step 4) is performed for each hypothesis from step
3. If a hypothesis & is verified but not all hypotheses from step 3 have been
checked, the hypothesis & and the frequency Feuguseq related to the expression
d(Cagjusted) = A(€inpu) + h Will be stored temporarily. Once all hypotheses from
step 3 have been checked, the hypothesis k stored together with the highest
frequency Feogustea is selected and d(€ugusiedd = d(€mpud + h is returned to the
supervisor of the Facial Action Encoder.

If a frontal-view facial image forms the input to the system and the “nose/chin”

file selected by function F3 has been labelled as “missing”, function F5 executes the
procedure outlined above for a general case with the following adjustments to steps
3and 4:

Based on the AU-coded description d(eap) of the currently examined
€Xpression e,y that forms the input to function F35, check if any of AUS, AU9,
AU10, AU12, AU13, AU1S, AU18, AU20, AU24, AU28 has been scored. If so,
remove AU38 from the AU-list (see Table 5.5). Since no file consists of data that
can be used to control the correctness of the hypothesis that a certain AU
affecting the facial appearance of the nose and/or chin has been activated, no
inter-file consistency check (step 3) can be performed. For each AU; € AU-list
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and each anatomically possible combination of these, a hypothesis is placed that
the AU or the AU combination in question is present. In total, there are 8 distinct
hypotheses at most: AU26, AU27, AU38, AU39, AU26+AU38, AU26+AU39,
AU27+AU38, AU27+AU39.

The hypothesis verification (step 4) is performed for each hypothesis from step
3. If a hypothesis h is verified but not all hypotheses from step 3 have been
checked, the hypothesis # and the frequency Fe,guses related to the expression
d(€agjusted) = d(€impuy) + h Will be stored temporarily. Once all hypotheses from
step 3 have been checked, the hypothesis h stored together with the highest
frequency Feugusea is selected and d(€ugused) = d(€inpu) + It is returned to the
supervisor of the Facial Action Encoder.

Post-processing of the “mouth” file
If a dual-view facial image forms the input to the system and the “mouth” file
selected by function F3 has been labelled as “missing”, function F5 executes the

procedure outlined above for a general case with the following adjustments to steps
3 and 4:

Based on both the data constituting the “profile” file and the rules given in Table
5.7, check if any of AU; € AU-list can be scored and make the list AU-list1
accordingly. Based on both the rules given in Table 5.12 and the result of the
module Vertical ANN Mouth Classifier integrated into the Facial Data Extractor
(section 4.3), check if any of AU; € AU-list can be scored and make the list AU-
list2 accordingly. Based on both the rules given in Table 5.12 and the result of
the module Horizontal Rule-based Mouth Classifier (section 4.3), check if any of
AU, € AU-list can be scored and make the list AU-list3 accordingly. Make a new
list AU-list composed of the common elements of lists AU-listl, AU-list2 and
AU-list3. For each AU; € AU-list and each anatomically possible combination of
these, a hypothesis is placed.

The hypothesis verification (step 4) is performed for each hypothesis from step
3. If a hypothesis & is verified but not all hypotheses from step 3 have been
checked, the hypothesis & and the frequency Feaguses related to the expression
d(€agjusted) = d(€inpud) + h Will be stored temporarily. Once all hypotheses from
step 3 have been checked, the hypothesis & stored together with the highest
frequency Feuyuses is selected and d(€ugusied) = d(€inpu) + b is returned to the
supervisor of the Facial Action Encoder.

If a frontal-view facial image forms the input to the system and the “mouth” file

selected by function F3 has been labelled as “missing”, function F5 executes the
general-case procedure with the following adjustments to steps 3 and 4:

Based on the AU-coded description d(ejy) of the currently examined
€Xpression ey that forms the input to function FS5, check if AU9 has been
scored. If so, remove AU10 from the A U-list. The underlying reasoning is based
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upon the knowledge contained in FACS (see Table 5.5). Similarly, check if any
of AU26 and AU27 has been scored. If so, remove the other one as well as
AU25 from the AU-list. Based on both the rules given in Table 5.12 and the
result of the module Vertical ANN Mouth Classifier (section 4.3), check if any of
AU; € AU-list can be scored and make the list AU-list1 accordingly. Based on
both the rules given in Table 5.12 and the result of the module Horizontal Rule-
based Mouth Classifier (section 4.3), check if any of AU; € AU-list can be
scored and make the list AU-list2 accordingly. Make a new list AU-list
composed of the common elements of lists AU-list1 and AU-list2. For each AU,
€ AU-list and each anatomically possible combination of these, a hypothesis is
placed.

e The hypothesis verification (step 4) is performed for each hypothesis from step
3. If a hypothesis & is verified but not all hypotheses from step 3 have been
checked, the hypothesis & and the frequency Fe,gjuq.q related to the expression
d(€aqusted) = d(€impu) + h Will be stored temporarily. Once all hypotheses from
step 3 have been checked, the hypothesis h stored together with the highest
frequency Feugusea i selected and d(eugusied = d(€inpud + h is returned to the
supervisor of the Facial Action Encoder.

Table 5.12

Mapping between the results of modules Vertical ANN Mouth Classifier and
Horizontal Rule-based Mouth Classifier and the individual AU codes that can
be recognised by ISFER (Table 5.8)

Module’s result | Possible AU-coding
Vertical ANN Mouth Classifier

Smiling AU12, AU13, AUl6, AU18, AU19, AU23, AU25, AU26, AU28,
AU28b, AU29, AU36b

Neutral AUS8, AU10, AUlL6, AU17, AU18, AU19, AU20, AU23, AU24,
AU25, AU26, AU27, AU28, AU28b, AU28t, AU29, AU3S5, AU36b

Sad AU10, AU135, AUI16, AU17, AU19, AU23, AU25, AU26, AU28b,

AU28t, AU29, AU36t
Horizontal Rule-based Mouth Classifier

Stretched AU10, AU12, AUI13, AUILS, AUL6, AU17, AUI19, AU20, AU23,
AU25, AU26, AU27, AU28, AU28b, AU28t, AU29, AU36b, AU36t

Neutral AUS, AU10, AU16, AU17, AU19, AU23, AU24, AU25, AU26,
AU27, AU28, AU28b, AU28t, AU29, AU36b, AU36t

Puckered AU10, AU16, AU17, AUIS8, AU19, AU24, AU25, AU26, AU27,

AU28, AU28b, AU28t, AU29, AU35, AU36b, AU36t

Terminating the processing of the Facial Action Encoder
Prior to terminating its processing and forwarding the accomplished results to the
Facial Expression Classifier (Figure 5.1), the supervisor of the Facial Action
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Encoder calculates the intensities I(4U;) and the appropriate certainty factors CF,y;
and CFyyyy associated with each AU; € d(euyjusied), Where d(€agjuseed) represents the
result of function F5. The following procedure has been applied:
1. (VA Ui € d(eadjusted) l AUi =A U; € d(einpur))
CF ;= CF 4y A I(AU) = KAU) A CFppy = CFyy,
where €, formed the input to function FS and CF,y;, I(AU), CFyyyy have
been computed by function F4 (section 5.5).
2. (VAU; € d(eygjusted) | AUi = AUj € d(€inpur))
CF, AU T 100 * P (A ’Ui + d(einpul) l d(einpul)) A
IAU) = avg(IAU), YAU; € d(€inpur)) A
CF vy = min(CF 4y;, min(CFyp, YAU; € d(€inpur)))s
where €., formed the input to function FS, P(AU; + d(€inpur) | d(€inpur)) = P(AU;
+ d(einpul)) ! P (d(einpul)) - typicah'o’(d(eadjuﬂed)) / (" 'in(CF AUjs VAl}j € d(einpul)) /
100) as already explained in section 3.2, and CF4y;, KAU;), CFyy; have been
computed by function F4 (section 5.5).

Finally, the supervisor of the Facial Action Encoder adjusts the DB of all
encountered expressions as explained above and forwards the quantified AU-coded
description of the currently examined facial expression as well as the certainties of
that data to the last part of ISFER, namely the Facial Expression Classifier (Figure
2.25, Figure 5.1).

5.7 Discussion

Analysis of facial expressions in terms of rapid facial signals (i.e. in terms of the
activity of the facial muscles causing the visible changes in facial expression) is an
intriguing problem. Numerous methods exist for measuring the facial movements
resulting from the action of the muscles manually (Ekman 1982b). Among those, the
Facial Action Coding System (section 5.1, Ekman and Friesen 1978) is probably the
most comprehensive and versatile system. In any case, it is the method most
commonly used by researchers of facial behaviour (Hager 1985, Bartlett et al. 1999).
Also, it is used by most researchers working on automating facial action coding
from digitised images (chapter 2, Donato et al. 1999, Pantic and Rothkrantz 2000d).
While the automation of the entire process of facial action coding from digitised
images would be enormously beneficial (section 5.1), we should recognise the
likelihood that such a goal still lies in the relatively distant future. Yet, with the
current technology it is potentially possible to automate much of the tedious and
time-consuming FACS scoring parts and allow trained human observers valuable
time for conducting the most difficult investigations of human facial behaviour (e.g.
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on moods and intentions). The Facial Action Encoder part of ISFER, presented in

this chapter, represents such an effort to automate parts of FACS scoring.

Based upon the data on spatially sampled prominent facial features coming from
the Facial Data Extractor part of ISFER (chapter 4), and unlike any other system
presented in the literature up to date (chapter 2, Tian et al. 2001), the Facial Action
Encoder analyses facial expression fully automatically, robust and effectively in
terms of’

1. an anatomically possible combination of 32 individual AU codes scored in a
generic manner (i.e. independently of the physiognomy of the currently observed
subject),

2. an intensity level assigned in a subject-adaptive manner to each encoded AU
code,

3. a certainty measure assigned to these data based on the certainty measure
assigned to the input data carrying usually ambiguous information about the
currently examined facial expression captured in a static frontal-view or a dual-
view facial image of the currently observed subject.

Thus, due to the Facial Action Encoder, ISFER outperforms any existing system
for automatic facial expression recognition applicable to automated FACS coding in
digitised facial images (see Table 2.7 and section 7.2). Yet, the processing of the
Facial Action Encoder implies some drawbacks as well. First, the Facial Action
Encoder performs the facial action coding in terms of 29 AUs (i.e. 32 AU codes,
Table 5.8). Hence, it is not capable of encoding the full range of facial behaviour
(i.c. all 44 AUs defined in FACS). Consequently, for two facial expressions that
differ in terms of displayed AUs the system may generate the same AU-coded
description. It is crucial, therefore, that the user is aware that the system automates
merely a part of FACS scoring and that, depending on the kind of the input facial
image, it can be used for detecting a limited number of specific facial actions listed
in Table 5.5 and Table 5.8.

Further, the Facial Action Encoder is implemented in Java even though it is
known that executing a Java-coded application is time consuming. Also, the Facial
Action Encoder employs the subject-profiled database of all encountered facial
expressions (Figure 5.1), which may become large since it keeps records of all
expressions ever encountered while monitoring a particular subject for whom it has
been defined. In principle this implies long retrieval times and, in turn, time-
consuming execution of the system’s code. However, since the clustered
organisation of the DB of all encountered facial expressions supports efficient
retrieval (section 5.6) and the execution of the Facial Action Encoder’s code is
incomparably faster than the execution of the code of the Facial Data Extractor part
of the system, these issues do not form significant problems for the current version
of ISFER. Although these problems might form serious shortcomings of ISFER
once the facial feature detectors integrated into the Facial Data Extractor are
replaced with a real-time detection techniques, or their current sequential processing
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is replaced by a parallel processing, the performance of the current version of the
Facial Action Encoder is satisfactory (see also chapter 7) and it is likely that it will
suffice the needs of the system as well as the needs of the potential users for some
time.

As far as the subject-profiled DB of all encountered facial expressions is
concerned, it might impose high storage requirements since its expansion is not
controlled. Although this forms a shortcoming of the Facial Action Encoder part of
ISFER, one should bear in mind that this problem becomes less and less significant
as computer memory prices drop (e.g. Hassler 2001).

Another peculiarity of the Facial Action Encoder’s design, which might be
thought of as drawback, is the employment of thresholds (i.e. #1 and £2 in Table 5.5
and 73 and ¢4 in Table 5.7; see also varl-var4 in Figure 5.12 and Appendix B). In
general, thresholds induce a reduced flexibility of the performed reasoning,
especially if used in an inference engine that should be capable of adapting to a
particular individual (like the AU-quantification process of the Facial Action
Encoder). Yet the thresholds employed by the reasoning mechanism of the Facial
Action Encoder are not generically defined; for each novel subject, they are
initialised by the relevant values stored in the related subject-profiled DB of extreme
model deformations (Figure 5.12). Hence, they do not form an impediment to the
intended adaptive reasoning of the Facial Action Encoder.

A more important issue concerns the fact that the Facial Action Encoder does not
take into account the temporal aspect of facial expression analysis. It has been
developed to perform a quantified facial action coding based on the data extracted
from static facial images of the currently observed subject rather than from facial
image sequences. Yet, a recently growing body of psychological research argues that
timing of facial expressions is a critical factor in facial action coding. Namely, it is
thought that information about the time course of a facial action has a psychological
meaning relevant to the intensity and genuineness of the displayed facial action
(Izard 1990, Davidson et al. 1993). From an engineering point of view, at least,
associating a temporal aspect with the current spatial aspect of facial expression
analysis will improve the reliability of the system's results. In that case, dealing with
partial and highly inaccurate data resulting from the Facial Data Extractor could be
based upon the knowledge on facial expression dynamics. The currently employed
DB of all encountered facial expressions (that grows with each session performed
with the pertinent subject and, therefore, can eventually slow down ISFER’s
processing) would not be necessary in that case. Namely, each facial action has its
onset, apex, and offset, which can be recognised based on the changes in facial
expression characteristic for these time markers of the facial action in question.
Using the information on both the spatial and the temporal course of an encountered
facial action, statistical predictions can be made on the current changes in facial
expression related to the given facial action and its current time marker. In addition,
the larger the number of the frames recorded per minute of the examined image
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sequence, the higher the certainty that the appearance of the monitored facial
features remains the same.

Furthermore, including the temporal aspect of facial expression analysis will
potentially facilitate encoding of a wider range of facial behaviour. By applying an
optical flow computation method or some other method for estimating the motion in
various facial areas (for examples see Table 2.6), brief muscle actions like blinking
(AU45), winking (AU46) and wiping the lips (AU37) and the muscle actions
involving conspicuous facial movements like moving the jaw sideways (AU30),
producing a bulge by pushing the tongue against the cheeks (AU36l, AU36r), and
possibly clenching the jaw (AU31) would be detectable in a frontal-view facial
image sequences. If combined with a method for separating permanent slow facial
signals like wrinkles and dimples from similar changes in facial expression caused
by the activity of the muscles (e.g. by separating these features in terms of their
temporal stability), a facial-motion tracking method could facilitate detection of the
muscle actions like dimpling the mouth corners (AU14) and deepening the
nasolabial furrow (AU11).

Moreover, if the automated expression analysis were based on a facial motion
tracking method, this would potentially facilitate facial action coding in image
sequences of any person, independently on his/her appearance. Artificial and natural
facial signals like glasses, facial hair, birth marks and unibrow would not form
untreatable sources of noise (Simoncelli 1993).

Finally, with the information on the spatial and temporal course of encountered
facial actions, the problem of occlusion of the monitored facial features (e.g. by a
hand), causing partial data, can be tackled. Statistical predictions about the current
changes in facial appearance could be made based upon the knowledge about the
facial actions encountered in the previous frame of the currently examined facial
image sequence and their spatial and temporal course. This would enable the system
to “fill in” missing parts of the observed face and to “perceive” a whole face even
when a part of it is occluded.

In summary, by basing the intended automatic facial expression analysis upon a
facial-motion tracking method and including both the spatial and temporal
segmentation of the examined facial image sequences, could greatly enhance the
current state of the art in automatic facial expression analysis and draw it rather
close to the ideal model proposed in section 2.2. For future developers of ISFER,
this means investigating a robust and reliable method for facial action encoding and
quantification applicable to automated (and preferably complete) FACS-scoring,
which is to be based upon automatic analysis of facial expression dynamics in dual-
view facial image sequences.
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6 Facial expression classification

The abilities to have, express and be aware of our true feelings, coupled with
the abilities to handle feelings so that they are appropriate, to marshal the
emotions in the service of a goal, to recognize emotions in others and to
skilfully handle the affective arousal of others, are the abilities termed as
“emotional intelligence”.

(Goleman 1995)

The topic of automatic interpretation of human communicative behaviour, that is,
giving machines the ability to detect, identify, and understand human interactive
cues, has become a central topic in machine vision research, natural language
processing research and in Al research in general. The catalyst behind this recent
upsurge of interest in the research topic of human-centred computing is the fact that
the automation of monitoring and interpretation of human communicative behaviour
is essential for the design of future smart environments, perceptual user interfaces,
and ubiquitous computing in general. As embedded computing devices become part
of more and more aspects of our lives (office, home, car, and even clothes (Pentland
2000, Clarkson et al. 2000)), the next generation of computing and information
technology requires more than engineering enhancement of the state of the art; it is a
kind of an emotional intelligence context, that is, it is the translation and emulation
of human behavioural cues what will determine the uses and usefulness of the
computers of our future (Pantic and Rothkrantz 2001a).

Human face-to-face interaction consists of a complex interplay of thoughts,
language and non-verbal communicative signals. If that is the intended model for
future computing devices, as suggested by Thalmann et al. (1998), Pentland (2000),
and Marsic et al. (2000), then the computers of the future must be equipped with
techniques that enable them to sense and understand user’s context, to construct
theories of human mind, and to respond in an automatic and intelligent (i.e. context-
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dependent) way. In turn, the key technical goals of human-centred computing
concern the determination of the context in which the user acts, that is, disclosing in
an automatic way who the user is, where he is, what he is doing, and how he is
feeling, so that the computer can act/respond accordingly. In addition, the socio-
technical issues of determining how and when to interrupt the user, discovering the
appropriate question to ask, and deciding in which way to respond (e.g., which
words, facial expression and intonation to generate in response), have become great
challenges in the design and development of next-generation computing.

In general, this thesis pertains to the 'specific facet of sensing the user’s context;
it is concerned with providing machines with the ability to detect and interpret how
the user is feeling based on the sensed user’s facial expression. In particular, this
chapter pertains to the last problem of automating the recognition of human affective
states, that is, to the problem of automating the interpretation of the displayed facial
expression in terms of attitudinal states. The first section of this chapter summarises
the potential benefits of automating affect-based interpretation of human facial
expressions and, in turn, indicates a great diversity of application domains where
benefits could accrue from an automatic system like ISFER. The psychological
background of the production and interpretation of human facial affect is provided in
the second section. The rest of this chapter is concerned with the third part of
ISFER, that is, with the Facial Expression Classifier (see Figure 2.25). The Facial
Expression Classifier is a memory-based expert system that performs case-based
reasoning about the interpretation of the AU-coded description of the presently
examined facial expression in terms of a quantified set of interpretation labels used
by the current user. The theory of human autobiographical memory organisation
(Schank 1982, 1984) and the instance-based machine learning methods (Mitchell
1997) inspired the organisation and the processing of the developed Facial
Expression Classifier. The architecture of the Facial Expression Classifier is outlined
in section 6.3. Section 6.4 discusses the employed dynamic memory of experiences
(i.e. the utilised case base), which expounds the AU codes generated by the Facial
Action Encoder (chapter 5) in terms of the interpretation labels learned from the
user. The processing of the Facial Expression Classifier is explained in detail in
section 6.5. For a detailed algorithmic representation of the processing of the Facial
Expression Classifier, readers are referred to Appendix A. Finally, the advantages
and the limitations of the proposed technique for automatic affect-based facial
expression classification from static facial images are discussed in section 6.6.

6.1 Why automating affect-sensitive expression analysis?

Not all computing devices need to pay attention to users’ affective states (think
about a calculator or a scanner), or to have “emotional” abilities to translate the
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user’s attitudinal states and emulate appropriate behavioural cues in response. Some
machines are useful as rigid (i.e. non-adaptive) tools, and it is probably best to keep
them that way. However, there are many situations, especially in ubiquitous
computing, which is widely thought to be the coming of the next-generation
computing and information technology (Pentland 2000), where man-machine
interaction could be improved by the introduction of machines that can adapt to their
users (think about computer-based advisors, virtual information desks, cars’ on-
board computers and navigation systems, pacemakers, etc.). The information about
when the existing processing should be adapted, the importance of such an
adaptation, which part of that processing/reasoning should be adapted, and how,
involves information about the context in which the user acts, that is, what he works
on (i.e. which part of the existing processing is invoked at the moment) and how he
feels (e.g. confused, irritated, frustrated, interested, etc.). The focus of the recently
initiated research area of affective computing (Picard 1997) lies on sensing, detecting
and interpreting human affective states and devising appropriate means for handling
this affective information in order to enhance interaction in man-machine interfaces.

In addition to practical concems of ubiquitous computing such as interfaces and
virtual environments, which will be perceived more natural (Nakatsu 1998), more
efficacious and persuasive (Reeves and Nass 1996), and more trustworthy (Olson
and Olson 2000, Cassell and Bickmore 2000) if given the ability to sense and
respond appropriately to the user’s affective feedback, the potential benefits of the
automation of affect-sensitive monitoring of facial displays are varied and
numerous. The preceding sections of this thesis have separately enumerated many
benefits of the efforts to automate facial expression analysis in general. This section
summarises these benefits and indicates additional research areas where benefits
could accrue from an automated facial-affect-sensitive monitoring tool that were not
emphasised previously.

A considerable amount of research in social psychology has shown that affective
state recognition plays an important role in learning and attending to what is
important (Salovey and Mayer 1990, Boyle et al. 1994). Children show signs of
recognizing parents’ affective expressions like approval and disapproval long before
they comprehend the language. Lack of the ability to express and “read” the
affective expressions is typical for central and sensory impairments like autism or
schizophrenia (Sigman and Capps 1997, Steimer-Krause et al. 1990) and may
provide evidence for the location and type of brain lesions (Hurwitz et al. 1985).
Assessment of emotional abilities may serve not only as a marker for psychosomatic
dysfunctions, but may also serve for discovering socio-behavioural disorders like
delinquency (McCown et al. 1988) and as an aid in management of children who fail
to elaborate or fail to heed normal social signals (Horton 1987). Hence, monitoring
facial behaviour and assessing emotional abilities is important for a large number of
studies in behavioural science (e.g. in the studies of emotion, cognition, and
development of children), in anthropology (e.g. in the studies on cross-cultural
perception and production of facial expressions), in psycho-physiology (e.g. in the
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studies on affect measured from physiological signals), in neurology (e.g. in the
studies of dependence between brain lesions and emotional abilities impairments),
and in psychiatry (e.g. in the studies on schizophrenia). A reliable, inexpensive, and
rapid automated facial-affect-sensitive monitoring tool that would be widely
accessible could greatly improve the research in these fields. It could raise the
quality of the research in which reliability, sensitivity, and precision are currently
significant problems. Because it would decrease the amount of time currently
necessary for conducting research, it could create opportunities for conducting more
studies of greater quality at lower costs.

In addition, automatic assessment of boredom, inattention, and stress will be
highly valuable for preventing critical situations in hazardous working environments
like aircraft cockpits, air traffic control towers, space flight operation chambers,
nuclear power plant surveillance rooms, or simply in the vehicles like trucks, trains,
and cars. An advantage of the machine facial-affect-sensitive monitoring is that
human observers need not be present to perform privacy-invading monitoring; the
automated tool could provide prompts for better performance based on the sensed
user’s affective state.

This enormous variety of commercial and basic science research areas that
would reap substantial benefits from an automated facial-affect-sensitive monitoring
tool is the catalyst behind the recent upsurge of interest in the research topic of
automatic analysis and interpretation of human facial behaviour (for an extensive
review of the existing methods for automatic facial expression analysis, the reader is
referred to chapter 2).

6.2 The psychology of human facial affect

Since it would be extremely beneficial to all of the research fields enumerated above
to automate the interpretation of sensed facial displays in terms of affective states,
this research topic is rapidly becoming an area of intense interest in the machine
vision research and Al research generally. In turn, the question of how human
perception of affective states can be characterised best has become a critical issue
for many researchers in affective computing. Ironically, the growing interest in
affective computing comes at a time when the established perception of human
facial affect is strongly being challenged in the basic research literature.
Considerable recent methodological criticisms have questioned the validity of the
large body of data that have been widely accepted and considered as ground truth for
already a few decades.

The classic psychological research on perception of facial affect has been carried
out since the beginning of 60s by psychologist Paul Ekman and colleagues (for
extensive reviews of the ensued studies see (Ekman 1982, Ekman 1994, Keltner and
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Ekman 2000)). A substantial body of evidence, gathered in almost four decades,

primarily focuses on the human observers’ interpretations of photographed facial

expressions and identifies what facial configurations are associated with what
emotions'. These classic psychological studies on the facial expression of emotion
claim the validity of the following assertions:

1. Existence of six basic emotions: there are six distinct facial expressions of
emotion (sadness, happiness, anger, disgust, fear and surprise; contempt was
tentatively added just recently) that are universal (Ekman 1980).

2. Universality of recognizing the six basic emotional expressions: the six basic
facial expressions represent the same emotions in every culture (Frijda 1986);
human observers label the basic facial expressions in the same way, regardless of
culture (Fridlund et al. 1987).

3. Universality of expressing the six basic emotions: there exists a universal set of
emotion reaction modes including facial expressions (Mesquita and Frijda 1992);
six basic emotions are expressed in much the same way in all cultures (Carlson
and Hatfield 1992); the six basic facial expressions can be found in neonates and
the blind as well as sighted adults, although the evidence on the blind and
neonates is more limited than that for sighted adults (Ekman and Sejnowski
1993).

4. Genetic foundation of the six basic emotional expressions: the six basic facial
expressions of emotion are genetically based or pre-programmed (Izard 1980)
and emotion-specific activity in the autonomic nervous system appears to
emerge when facial prototypes of emotion are produced on request, muscle by
muscle (i.e. AU by AU; Ekman and Sejnowski 1993).

In the past few years, psychologist James Russell and colleagues (Russell 1994,
Russell and Fernandez-Dols 1997) have strongly challenged the classic approach to
the perception of facial affect, mostly on methodological grounds. Russell argues
that emotion in general, and facial expressions of emotion in particular, can be best
characterised in terms of a multi-dimensional affect space, rather than in terms of a
small number of emotion categories such as the basic emotion categories proposed
by Ekman and colleagues. More specifically, Russell claims that two dimensions —
valance and arousal — are sufficient to characterise facial affect space (this is a
reduction of the dimensionality of the facial affect space proposed by Scholsberg
(1954), where the underlying dimensions were pleasant-unpleasant i.e. valance,
attention-rejection, and the degree of activation i.e. arousal). Apart from this central
question in the field of emotion, concerning whether emotions are better thought of

! The classic psychological studies on perception of facial affect favour the term “emotion”
rather than terms like “affect”, “attitude” or “communicative display”, which are related less
to the actual experiencing of some emotional excitement / inner feeling and more to any
displayed facial communicative behaviour which may but does not have to portray an actually
felt emotion (Fridlund 1991).
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as distinct categories or as interrelated entities that differ along global dimensions
such as valance and arousal, Russell’s criticisms of classic studies address a number
of additional related issues (Russell 1994).

First, Russell points out that a great deal of the data from a large number of
classic studies was generated using a single corpus of rather unnatural stimuli (e.g.
posed facial expressions rather than spontaneous expressions). Also, he criticises
certain experimental design flaws in the previous research (e.g., failure to properly
randomise stimuli, biasing procedures for practice trials, small number of trials) and
argues against the common reliance on “within-subject” designs’. Russell’s primary
criticism, however, concerns the commonly used response format. Virtually all
classic studies employed the forced-choice response format, in which human
observers were presented with a rigid list of emotion labels and were asked to pick
the one that best matches the facial expression on the stimulus image. The subjects
were not given the option of saying “none of the above” or of choosing a non-
emotional interpretation label. Russell’s critique of the forced-choice response
format is that (i) it forces the subject to choose merely one of the given emotion
labels and is, therefore, insensitive to perceived differences in intensity of emotion,
and (ii) if a multiple choice of the given responses or inventing a new interpretation
label was allowed, the universality of facial expressions of emotion might not be
demonstrated. As a result of his criticism and in order to improve the inadequate
research methods relying on the forced-choice response format, Russell proposed
two alternatives:

1. freely chosen interpretation labels, and
2. quantitative ratings of the freely chosen interpretation labels.

As could be expected, this open-ended approach using quantitative ratings and
freely chosen interpretation labels resulted in the conclusion that each human
observer uses a range of interpretation labels that are applicable to a given facial
expression to different degrees (Russell, 1994). In addition to the considerable body
of research in anthropology and social psychology indicating that the comprehension
of a given emotion label and the ways of expressing the related affective state differ
from culture to culture (Efron 1941, Matsumoto 1990, Shigeno 1998), Russell’s
criticisms questioned the classic consensus on the existence of six basic facial
expressions of emotion. In other words, it is rather improbable that each of us will
express a particular affective state by displaying the same facial expression as it is
improbable that a particular facial expression will always be interpreted in the same
way independently of who the observer is. Consequently, there is no psychological

2 In a within-subject design each subject is asked to judge the entire set of stimulus posed
facial images within a relatively short period of time. This invites a more direct comparison
between various facial expressions than everyday encounters with facial expressions allow us.
In other words, the subject might feel called on to notice the difference between two
expressions and assign different labels to them.
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scrutiny of universal facial expressions of affective states which can safely be
adopted and employed in studies on automatic facial affect analysis and in affective
computing in general. Hence, the definition of interpretation categories in which any
displayed facial expression (i.e. any set of activated AUs) can be classified is a key
challenge in the design of automated affect-sensitive face-monitoring tools like
ISFER.

Several issues make this problem even more complex. Neither verbal (spoken
words) nor non-verbal communicative signals (facial expressions, posture, body
gestures, clamminess, respiration, intonation of the spoken words) reveal exact
information about the affective state of the observed person; some aspects of
innermost feelings may remain private, however, especially if the subject wishes
them to be that way and sufficiently disguises them. Thus, even if a unified
psychological scrutiny of universal facial affect expressions were to exist and facial
communicative signals could always be acquired accurately (which is not feasible
using the currently available sensors; chapter 4), this would still not be sufficient to
determine the exact nature of the observed affective states.

The only way to reveal the (almost’) exact nature of facial affect expressed by a
particular user is to employ a personalized facial-affect analyser trained by that user,
that is, an analyser capable of adapting the facial expression classification
mechanism according to the user-provided interpretations of those expressions. An
additional advantage of an automated, user-profiled, facial-affect-sensitive
monitoring tool is that doctrinal confrontations on emotions discussed above cannot
have an effect on it. '

6.3 Architecture of the Facial Expression Classifier

This section provides the reader with the details on the design and implementation of
the Facial Expression Classifier part of ISFER. The section will begin by examining
the problem domain of affect-based facial expression interpretation in digitised
facial images. The design requirements arising from the taxonomy of the problem
domain will then be summarised. A way of fulfilling these design requirements will
be proposed and the types of knowledge necessary for the intended case-based
reasoning approach will be discerned. Finally, a discussion concerned with the
functional design and the actual implementation of the Facial Expression Classifier
will be provided.

? As already explained above, the exact nature of someone’s affective state may remain
private if that person wishes it to be that way.
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Problem domain

The domain of affect-based facial expression interpretation is probably the most
complex area of facial image understanding. Like all other areas of machine
perception of human faces (e.g. person identification or facial action encoding), it
includes the problems concerned with sensing, detecting and modelling faces and
facial features. However, the affect-based facial expression interpretation domain
also includes the problem of adaptability, that is, the problem of adjusting the
interpretation process in accordance with the situation in which the observed facial
behaviour occurred (context dependency) and in accordance with the meaning that
the current user associates with the displayed facial behaviour (user dependency).
Let me explain these issues in more detail.

The problem of context dependency is closely related to the problem of
intentionality and reactivity, that is, to the problem of uncovering the meaning of
purposive, reactive and communicative facial behaviour. For instance, to interpret
facial displays of video-conference participants requires making use of the idea that
an observed person either intends to communicate some information to other
participants or reacts to the present communication. A frown, for example, can help
the speaker to emphasise the complexity of the discussed problem, or the listener to
express disagreement with the communicated information or confusion about that
information, etc. Thus, uncovering the exact meaning of a frown depends on the role
of the expresser in the currently monitored situation. In other words, affect-based
facial expression interpretation is context dependent. Yet acquiring information
about the context in which a facial expression appears is rathér difficult to
accomplish in an automatic way and forms a separate research area in the field of
machine vision (Pentland 2000). Although very important for the affect-based facial
expression interpretation domain, the problem of context dependency has been
handled neither by the existing -automated systems for facial expression analysis
(Pantic and Rothkrantz 2000d) nor by ISFER (the limitations of ISFER in general,
and of the Facial Expression Classifier part of ISFER in particular, are summarised
in section 6.6).

The problem of user dependency is related to the fact that facial displays are
typically communicative acts whose interpretations are not cross-culturally universal
(see section 6.2); what a certain facial expression means to me can be entirely
different from what it means to somebody else. In other words, the interpretation of
facial expressions can differ from person to person. Although much work has been
done on automating facial-affect recognition in facial images and image sequences
(chapter 2, Pantic and Rothkrantz 2000d), almost all of this work employs singular
classification of input facial data into one of the six basic emotion categories as
defined by Ekman and Friesen (1975). This approach has many drawbacks. The
preceding section has separately enumerated most of the shortcomings related to the
pertinent psychological research on perception of facial affect. Besides those,
automated systems for facial affect recognition that classify the sensed facial
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expression information into one of the six basic emotion categories have a number

of additional limitations that may be summarised as follows:

1. Singular classification: As noted by Ekman himself, pure facial expressions of
six basic emotions are seldom elicited; most of the time people show blends of
emotional facial displays. In Ekman’s theory, the facial displays of the six basic
emotions are considered to be the building blocks of facial expressions of more
complex emotional states (Ekman and Friesen 1975, Ekman 1982). In turn,
classification of sensed facial displays into a single basic emotion category is not
realistic. An automated affect-sensitive analyser of facial expressions must
accomplish, at least, a quantified facial expression classification into multiple
basic emotion categories. Zhang et al. (1998) and Pantic and Rothkrantz (2000b)
proposed such classifications of input facial data.

2. Multiple  classification:  As
argued by Russell and
colleagues, it is not at all certain
that each and every facial
expression which can be
displayed by a human face, can
be classified as a combination
of the six basic emotion
categories (Russell and
Fernandez-Dols 1997). One can
think, for instance, about the  Figure 6.1: Facial displays of “bored” (left

“bored” and “are you joking image) and “are you joking me?” (right
me?” attitudinal facial displays image) attitudinal states. When classified
that, if classified into multiple in multiple basic emotion categories by

the system of Pantic and Rothkrantz
(2000b), the associated interpretations
are: anger & sadness (left image) and
anger & happiness (right image).

basic emotion classes, would
probably not retain their initial
intention  (Figure 6.1). In
addition to the fact that a given
emotion label may be comprehended differently by different persons,
quantitative ratings on multiple basic emotion labels are not sufficient for a
realistic interpretation of each and every displayed facial expression.

As explained in the preceding section, a way of dealing with these shortcomings
of the currently existing automated affect-sensitive facial expression interpreters is
to enable the intended automated interpreter to adjust the employed facial expression
classification mechanism to the interpretations the current user associates with
various facial displays. In other words, the solution to the problems listed above is
machine learning: rather than having a priori classification rules and a priori defined
interpretation categories, the rules can be potentially learned through interaction
with the user and by learning the meanings he/she associates with different facial
expressions.

217




Design requirements

In order to enhance the state of the art in automated affect-sensitive analysis of facial
expressions, the design of the Facial Expression Classifier part of ISFER has been
aimed at the realisation of an automated, adaptive (user-profiled), affect-sensitive,
facial expression classifier such that doctrinal confrontations on emotions discussed
above cannot have an effect on it. Thus, the Facial Expression Classifier part of
ISFER has been envisioned as a learning facility of the system capable of
performing a fully automated, robust classification of the input data generated by the
Facial Action Encoder part of the system in terms of:

1. one or more learned interpretation labels freely defined by the current user, and
2. aquantitative rating on each of the scored interpretation labels.

From an engineering point of view, the intended automated classifier of input
facial data should be efficient and effective. Consequently, the desirable properties
of the Facial Expression Classifier have been defined as follows:

o The processing of the tool is easy to construct from the input data.

o The tool is easy to update. Similarly to the case of the Facial Action Encoder, in
the case of the Facial Expression Classifier this is of crucial importance since the
future users are psychologists and subjects having usually little or no technical
background.

o The tool is easy to use. Once more, this is of particular importance since the
potential users of ISFER are persons without a high level of technical
knowledge. Here, one of the main aims is to develop a user-friendly interactive
tool that does not require the user to be in control at all times.

¢ The tool itself is efficient to store.

Learning concept

According to the design requirements listed above, the Facial Expression Classifier
part of ISFER should represent an interpreting facility of the system capable of
learning from the user the appropriate interpretations of facial expressions. As
explained in section 3.5, three issues crucial for the design of a learning system are:
(i) to define the learning problem, (ii) to determine the appropriate target function(s)
to be learned such that for any instance of a new problem as input it can produce a
trace of its solution as output, and (iii) to choose the appropriate machine learning
algorithm for the given learning problem and the defined target function(s).

As delimited by the definition given by Mitchell (1997), a computer program is
said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in 7, as measured by P, improves
with experience E. Hence, to represent an adaptive interpreting facility of the
system, the Facial Expression Classifier should improve its performance at the class
of tasks involving classifying facial expressions, as measured by its ability to
accomplish user-defined interpretations, with experience obtained through
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interaction with the user about the meaning that he/she associates with different

facial expressions.

Once the learning problem is defined by task T, performance measure P, and
training experience E, the next choice in the design of a learning system is to
determine exactly what type of knowledge will be learned and how this will be used
by the performance program. In the case of the Facial Expression Classifier part of
ISFER, the target function to be learned should choose the best matching user-
defined interpretation label(s) for any input facial expression described in terms of
quantified AU codes. Hence, if an input facial expression has not been previously
encountered, the Facial Expression Classifier should choose one or more best
matching user-defined interpretation labels that have been associated with facial
expressions similar to the input facial expression. In other words, each time a new
query instance (i.e. the AU-coded description of the input facial expression) is
presented to the system, its relationship to the previously encountered examples
(various facial expressions and the associated interpretation labels) should be
examined by the system so that it can then assign a target function value for the new
instance. In addition, the user should be able to define a novel interpretation label for
an examined expression at any time. This implies, in fact, that the system should be
capable of on-line learning, the main reason being that there are too many various
facial expressions, that is, that there are too many different possible combinations of
AU codes for the system to learn through training. In fact, it would be extremely
difficult (if possible at all) and highly time consuming to perform such a training.
Also, the user should be given the freedom to “change his mind” and redefine the
interpretation associated with a certain facial expression. By this, the Facial
Expression Classifier will resemble humans more closely in the way in which they
become experts, namely through trial and error (i.e. experience). As defined by Aha
et al. (1991) and Mitchell (1997), a technique suitable for both on-line learning and
approximating the target function affer the query instance has been observed, is
instance-based learning (i.e. lazy learning as opposed to eager learning, see section
3.5).

The Facial Expression Classifier part of ISFER has therefore been designed and
developed as a memory-based expert system inspired by both Schank’s theory of
human autobiographical memory organisation (Schank 1982) and case-based
reasoning. From an engineering point of view, the memory-based design of the
Facial Expression Classifier meets the design requirement outlined above in the
following way:

e The processing of the tool is easy to construct from the input data. In the case of
the Facial Expression Classifier, the input data is a quantified AU-coded
description of the currently examined facial expression generated by the Facial
Action Encoder part of the system. Optionally, the input data may be also the
information provided by the user about a novel interpretation of the currently
examined facial expression. In order to keep the construction of the processing of
the intended tool simple, the Facial Expression Classifier has been developed as
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an integration of a dynamic memory of experiences and various simple processes
(see Figure 6.2) that converts the quantified AU-coded description of the input
facial expression into a quantified set of interpretation labels learned from the
current user. The memory of experiences (i.e. case base) is dynamic since it
changes and augments by each novel case that is presented (see also the next
point).

o The tool is easy to update. To keep the update simple, the Facial Expression
Classifier enables an automatic update of the dynamic memory of experiences
where AU-coded descriptions of encountered facial expressions and related user-
defined interpretation labels are stored (see section 6.4). Each time the user is not
satisfied with interpretations provided by the system and associates a novel
interpretation label with the examined facial expression, the Facial Expression
Classifier automatically adapts the memory of experiences accordingly (section
6.5).

e The tool is easy to use. The Facial Expression Classifier does not require the user
to be in control at all times, merely when he/she is not satisfied with the
interpretation provided by the system for the currently examined facial
expression. To enable a facile interaction between the user and the system, the
aim was to provide the system with a visual user-friendly GUIL

o The tool itself is efficient to store. In order to achieve this, the aim was to split
the code in functions efficiently (see Figure 6.2). Yet the main drawback of CBR
systems is not the extensiveness of the code but the size of the used case base.
Employing a large case base involves high memory/storage requirements and
implies long retrieval times. Although there is no limit imposed on the size of the
memory of experiences utilised by the Facial Expression Classifier, its expansion
is controlled as proposed by Surma and Tyburcy (1998). Namely, if the user
changes his/her mind about the interpretation that should be assigned to a certain
(previously encountered) facial expression, the old (incorrect) case will be
removed from the dynamic memory of experiences and the novel case will be
added. Furthermore, the problems posed to the Facial Expression Classifier are
compound (as opposed to monolithic) in the sense that individual parts of an
encountered problem (i.e. individual AU codes) can be processed separately or in
combination. In other words, a problem can be solved by reusing a single case or
by reusing several cases constituting the dynamic memory of experiences. This
allows the expansion of the case base to be control in the sense that only some of
the encountered problems, or merely some parts of the encountered problems,
have to be stored as novel cases in the dynamic memory of experiences (see
sections 6.4 and 6.5 for a further discussion). In this way efficient case storage
and retrieval is maintained.
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Types of knowledge

Case-based reasoning (CBR) systems make use of many types of knowledge
concerning the problem domain they are intended for. Richter (1995) identifies four
different knowledge containers present in CBR: the vocabulary, similarity measures,
adaptation knowledge, and the cases themselves. The first three containers usually
hold the general knowledge about the problem domain. If there are any exceptions
from this knowledge, they are typically handled by appropriate cases. According to
this glossary, the Facial Expression Classifier part of ISFER comprises the following
types of knowledge:

Vocabulary includes, in general, the knowledge needed to choose the features
used to describe the cases. The case features should be discriminative enough so
that they can be used to select the cases similar to the input case and to prevent
selection of too different cases that could lead to false solutions. In general, a
case consists of the problem description and of the solution to that problem.
Since the Facial Expression Classifier should interpret input AU codes in terms
of user-defined interpretation labels, the vocabulary knowledge includes 32
different AU codes that the Facial Action Encoder is able to encode from an
input facial image (see Table 5.8) and the user-defined interpretation labels. Each
case is further defined as a feature vector that contains a unique set of AU codes
describing the relevant facial expression and a user-defined interpretation label
associated with that expression. Since the power of a CBR system lies in its
ability to learn, that is, to increase its knowledge by collecting novel solved
cases, the system should be able to extend the (initial) vocabulary fairly easy.
The dynamic memory model which the Facial Expression Classifier utilises to
organise the employed case base enables easy extension of the existing
vocabulary (see section 6.4 and 6.5).

Similarity measures include the knowledge that is used to choose both the case
base organisation and the method of case retrieval. There are several methods for
case base organisation (see section 3.6) and, in general, the knowledge about the
cases actually employed can be used to choose the most appropriate one, that is,
the organisation that will facilitate accurate and efficient case retrieval. Since
different facial expressions can be associated with the same interpretation label,
the cases constituting the case base of the Facial Expression Classifier have been
organised in clusters: each cluster expounds a specific interpretation category
and contains all cases that have been associated with the pertinent interpretation
label. In other words, specific cases sharing the similar property (i.e.
interpretation) are organised under a more general structure (ie. a Memory
Organization Packet (Schank 1982) forming the basic unit of a dynamic
memory). In order to accomplish easy and accurate case retrieval, each cluster of
the dynamic memory of experiences has been associated with certain indexes
delimiting the AU codes characteristic for that cluster and within each cluster the
cases have been hierarchically ordered according to the occurrence typicality of
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the related set of AU codes. For a detailed discussion on these issues, the reader
is referred to sections 6.4 and 6.5.

Adaptation knowledge is probably the most obvious type of knowledge in a CBR
system. It involves the knowledge about how differences in the problem affect
the solutions. The case base can be adapted, in general, either automatically (by
the system) or manually (by the user). In both cases, it is usually done by a set of
rules. The case base of the Facial Expression Classifier is adapted by using a
small set of hard-coded rules (i.e. choosing from a number of adaptation
procedures, see section 6.5) which are directly applied to the input AU codes,
interpretation by the system and user’s feedback. The adaptation knowledge also
includes the knowledge about how the correctness of a new solution can be
evaluated. In the case of the Facial Expression Classifier, the correctness of a
solution is evaluated in a straightforward manner. Namely, if the user does not
provide feedback after the system has displayed a solution, the solution is
considered to be correct. Conversely, if the user is not satisfied with the
interpretation by the system and provides feedback, the system ensures that the
entered solution does not violate the consistency of the case base and adjusts the
dynamic memory of experiences accordingly. Once more, for a detailed
discussion about the adaptation procedure, the reader is referred to section 6.5.
Cases include knowledge about solved problem instances. The cases stored in
the dynamic memory of experiences of the Facial Expression Classifier represent
the knowledge that the system acquires over time. The organisation of the
dynamic memory of experiences, the initial furnishing of it, and the
representation of the specific cases is explained in detail in section 6.4.
Manipulation, alteration and augmentation of the dynamic memory of
experiences are all explained in section 6.5.

Functional design

To interpret an input facial expression successfully and to learn novel interpretation
labels provided by the user automatically, the Facial Expression Classifier part of
ISFER implements four functions (see Figure 6.2, section 6.5, and Appendix A)
defined in accordance with the design requirements listed above:

1.

Function F1 (retrieval) classifies the input AU codes generated by the Facial
Action Encoder part of the system according to the cases constituting the
dynamic memory of experiences.

Function F2 calculates a quantitative rating for each scored interpretation label.
Function F3 evaluates the certainty of the resulting conclusions about
interpretation of the currently examined facial expression.

Function F4 (adaptation) adjusts the content of the dynamic memory of
experiences when the user introduces a novel interpretation label for an
examined facial expression (or a part of it).
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Figure 6.2: Architecture of the Facial Expression Classifier part of ISFER

As mentioned in section 3.7, the Facial Expression Classifier can be viewed as a
problem-solving autonomous agent forming a part of a functionally distributed
system. It is an autonomous agent since it does not require the user to be in control
at all times. Namely, as soon as the initial furnishing of the dynamic memory of
experiences is accomplished and as long as the user does not provide a novel
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interpretation label for the currently examined facial expression (i.e. as long as the
Facial Expression Classifier is in interpret mode), the processing of the system is
fully independent of the user’s feedback. If the user is not satisfied with the
interpretation provided by the system for the currently examined expression, the user
may provide a novel interpretation label for it (i.e. the user may trigger the learn
mode of the Facial Expression Classifier). The Facial Expression Classifier accepts
the feedback provided by the user and adjusts the dynamic memory of experiences
autonomously, that is, it does not require the user to be in control at all times while
the dynamic memory of experiences is adapted. It is a problem-solving agent which
resembles conventional CBR systems, since it uses domain-specific knowledge
stored in the dynamic memory of experiences to achieve the intended functionality:
facial expression interpretation in terms of interpretation labels defined by the user.
The kernel of the Facial Expression Classifier, illustrated in Figure 6.2 as the
supervisor, carries out the following agencies:
e It interprets the incoming data in terms of multiple quantified interpretation
labels defined by the user.
e It adjusts the dynamic memory of experiences each time a novel case is
presented.
o It creates action plans depending on the breadth of the set of cases constituting
the dynamic memory of experiences.
o It carries out those plans by executing the appropriate procedures on the relevant
data.

As noted above, the processing of the Facial Expression Classifier can be
invoked in either an interpret mode or a learn mode. As long as the user does not
provide a novel interpretation label for the currently examined facial expression, the
Facial Expression Classifier runs in the interpret mode. By providing a novel
interpretation label for the currently examined facial expression, the user triggers the
learn mode of the system. As soon as the Facial Expression Classifier adjusts the
dynamic memory of experiences to reflect the encountered novel case, it switches
(automatically) back to the interpret mode. Let us examine how the four functions of
the Facial Expression Classifier (Figure 6.2) support its problem-solving behaviour
in each of the two execution modes.

In the interpret mode, the supervisor of the Facial Expression Classifier receives
the input data — a quantified AU-coded description of the input expression and the
certainty of that data — from the Facial Action Encoder part of the system. The first
predefined goal that the supervisor will try to accomplish is to classify the incoming
AU codes into the interpretation categories defined in the dynamic memory of
experiences. To this end, the supervisor selects from the action space appropriate
predefined plans. If the incoming combination of AU codes matches exactly a
certain case stored in the dynamic memory of experiences, the supervisor retrieves
the associated interpretation label to be used in the further processing. However, if
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no specific case stored in the memory of experiences matches the input combination
of AU codes exactly, function FI will be activated to decompose the input
combination of AUs into its components, each of which matches exactly a specific
case stored in the dynamic memory of experiences. The second goal that the
supervisor will try to achieve is to calculate a quantitative rating for each of the
scored interpretation labels. To this end, the supervisor retrieves appropriate
information about the relevant interpretation categories from the dynamic memory
of experiences and then activates function F2 to compute the quantitative rating for
each scored interpretation label. Finally, the supervisor activates function F3 to
calculate the certainty of the obtained conclusions and displays these results to the
user.

As noted above, the learn mode of the Facial Expression Classifier is triggered
each time a novel case is encountered. In that case, the supervisor of the Facial
Expression Classifier receives the input from the user — a novel interpretation label
for the currently examined facial expression — and tries to reconstruct the dynamic
memory of experiences to reflect the pertinent encountered novel event. To this end,
the supervisor selects from the action space appropriate predefined plans. If no event
stored in the memory of experiences matches exactly the AU-coded description of
the currently examined facial expression for which a novel interpretation label has
been introduced, the supervisor activates function F4 to augment the dynamic
memory of experiences with the pertinent additional case. Conversely, if the AU-
coded description of the expression for which a novel interpretation label has been
introduced matches a specific event stored in the dynamic memory of experiences
exactly, the supervisor changes the content of the case base by removing the
matching event and then activates function F4 to augment the dynamic memory of
experiences with the novel user-defined event.

So, like the Facial Action Encoder part of ISFER, the Facial Expression
Classifier part of ISFER might be viewed as a problem-solving autonomous agent.
However, note that this is just one way of viewing the architecture of the third part
of ISFER. As explained by Moulin and Chaib-Draa (1996), any expert system can
be seen as an agent, at least as a reactive agent (like the Facial Action Encoder and
the Facial Expression Classifier) if not as an intentional or social agent. The reason
for discussing the Facial Expression Classifier part of ISFER as an agent is that its
current functionality can easily be enhanced to provide an alert if some attitudinal
state is encountered (e.g. boredom, frustration, stress, etc.). In that case, the Facial
Expression Classifier would represent a consumer-based problem-solving agent
(Hendler 1999) capable of manipulating the incoming information on behalf of the
user, Allowing the user to define his/her current interest (i.e. a particular information
source like a certain participant in a video conference or a certain patient in a group
therapy as well as a particular attitudinal state of interest) would increase the
commercial potential of ISFER. In that case, ISFER would embody an application-
independent automatic tool for facial expression analysis (see also section 3.7).
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Currently, nevertheless, the Facial Expression Classifier is not able to manipulate
its goals and create new ones according to the wishes of the user; it achieves a
predefined set of goals by selecting from the action space appropriate predefined
plans. In other words, it is a reactive agent as any other expert system. Hence, for the
sake of clarity and precision, in the remainder of the text the Facial Expression
Classifier is discussed as an adaptive memory-based expert system that performs
case-based reasoning with uncertainty on facial expression interpretation based on
the input facial expression data, generated by the Facial Action Encoder part of
ISFER, and the interpretations learned from the current user.

Implementation

As noted above, the aim was to design the Facial Expression Classifier part of
ISFER such that it represents efficient and effective learning facility of the system.
In brief, the Facial Expression Classifier should be designed such that it is easy to
construct and to integrate into the ISFER, efficient to store, and easy to use and to
update by the potential users of the system while imposing no constraints on the
operating system of the utilised work-station. Hence, the aim was to design an
efficient, portable, interactive, adaptive, user-friendly tool which classifies
automatically facial expressions into the interpretation categories freely defined by
the user.

Because both the Facial Data Extractor and the Facial Action Encoder part of
ISFER have been implemented in Java and because of the availability of the JDK's
Abstract Window Toolkit, which is a platform-independent GUI tool builder, Java
was perfectly suitable for the development of the Facial Expression Classifier. Like
by the Facial Data Extractor and the Facial Action Encoder, one might argue that the
time-consuming execution of the Java code forms a serious drawback of the system.
Yet this is of little concern since the time spent by the processor on executing the
code of the Facial Expression Classifier is rather short compared to the time spent on
executing the code of facial features detectors of the Facial Data Extractor (chapter
4). A more important issue is that CBR systems using large case bases impose high
memory/storage requirements and long retrieval times (although the order of both is
at most linear with the number of cases). Nevertheless, since the expansion of the
utilised dynamic memory of experiences is controlled (see the third sub-section of
this section), long retrieval times are of little concern in the case of ISFER.

6.4 The dynamic memory of experiences

As noted above, the case base organisation and the retrieval algorithm are
interrelated. The organisation of the case base should be such that it enables accurate
and efficient case retrieval. Accurate retrieval means that the best matching case will
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be retrieved. Efficient retrieval means that cases will be retrieved fast enough
yielding acceptable system response times. These two factors are inversely
proportional: it is easy to guarantee accurate retrieval at the expense of efficiency
(e.g. by matching all the cases) and easy to offer fast retrieval if only a fraction of
the employed case base is searched (possibly missing some examples). Hence, the
accomplishment of both a good case base organisation and a good retrieval
algorithm means to accomplish the best compromise between accuracy and
efficiency of the retrieval algorithm. While this section explains in detail the actually
utilised cases, the organisation of the employed case base and its initial furnishing,
the next section discusses the employed retrieval algorithm (i.e. function F1, Figure
6.2) and the overall processing of the Facial Expression Classifier part of ISFER.

Cases

Cases are the basis of any CBR system. A case is a piece of knowledge representing
an experience. Typically, a case comprises the problem description and the solution
to that problem. Cases can be represented in a variety of forms using any of the
existing Al representational formalisms including frames, objects, semantic nets and
rules. There is a lack of consensus within the CBR community as to exactly what
information should be stored for each case (Watson and Marir 1994). However, two
pragmatic measures can be taken into account in deciding in which way cases should
be represented: the intended CBR system’s functionality and the ease of acquisition
of the information represented in cases (Kolodner 1993).

The Facial Expression Classifier part of ISFER should classify the input AU
codes, generated by the Facial Action Encoder part of the system, into the
interpretation categories freely defined by the user. Hence, the best and the simplest
way to represent a case utilised by the Facial Expression Classifier is to use a feature
vector composed of the input AU codes describing the observed facial expression
and the interpretation label associated with that expression. A sample case can be
represented in a reader-oriented pseudo code as given in (7).

(*I don’t know”, AU1+AU2+AU15) )

Organisation

As noted above, the utilised case base should be organised in a manageable structure
that supports efficient case search and retrieval. A system that uses just cases and no
other explicit knowledge (e.g. the relations between cases, that is, their
“chunkiness”) is in fact a nearest-neighbour classifier or a database retrieval system
that does not exploit the full generalisation power of CBR systems. Such a flat
organisation of the case base is usually inefficient since for the retrieval the whole
case base has to be searched and every case matched. Thus, a balance has to be
found between case memory organisations that expound and preserve the semantic
richness of cases and methods that simplify the access and retrieval of relevant
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cases. As already noted in the preceding section, the knowledge about the actually
exploited cases can be used to choose the most appropriate case base organisation.

The fact that different facial expressions might be interpreted using the same
interpretation label was the reason to choose the clustered organisation as most
appropriate for modelling the case base of the Facial Expression Classifier. Hence,
the utilised dynamic memory of experiences comprises cases that are grouped in
clusters based on their mutual similarity with respect to the interpretation assigned to
them. Each cluster represents a specific interpretation category and contains all cases
that have been associated with the pertinent interpretation label. For instance, the
cluster forming the interpretation class “I don’t know”, used in the example (1) given
above, can be represented in a reader-oriented pseudo code as given in (2).

(*I don’t know”, AUl+AU2+AU15, .., AUl+AU2+AUS+AU15+AUL17+AU26) 2)

In order to enable easy and accurate case retrieval, each cluster of the dynamic
memory of experiences has been associated with certain indexes delimiting the AU
codes characteristic for that cluster and the cases of each cluster have been
hierarchically ordered according to their typicality. Let me explain these issues in
more detail.

As noted in section 3.6, the term “indexing” is a term for denoting the
accessibility problem (Kolodner 1996) — indexes in fact define the scheme for
retrieval of cases from the case base. In order to facilitate a retrieval that will return
cases most useful for solving the posed problem, the utilised indexes should be
predictive of the case relevance, purposeful in the sense that it should be obvious
why they are used, and discriminative but also abstract enough in the sense that they
should not be uniquely applicable to just one problem situation (i.e. case). To devise
the appropriate indexes with all those characteristics, the indexing vocabulary of the
Facial Expression Classifier was defined such that it is synonymous to the
parameters describing the problem (i.e. AU codes) and drawn from the concepts that
characterise the intended reasoning task. In other words, the employed indexing
method has been based upon the following:

e The main task of the Facial Expression Classifier is to interpret the input
expression in terms of the user-defined interpretation labels, that is, to classify
the input AU codes into the interpretation categories learned from the user.

e If each facial action (i.e. AU code) could be classified into any interpretation
class, this would mean that only a single (cross-culturally universal)
interpretation category would exist. However, this is not the case: as shown by
psychologist James Russell (Russell 1994), human observers associate various
interpretation labels (more than six basic emotion labels) with various facial
expressions. In turn, each user-defined interpretation class could be characterised
by some facial actions (i.e. facial expressions) that are unique to that
interpretation category.
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Hence, within the dynamic memory of experiences, the indexes associated with a
cluster representing a certain interpretation category comprise the AU codes (or a
combination of them) being characteristic for the pertinent interpretation category.

Once the retrieval method decides the interpretation class(s) useful for solving
the encountered problem by parsing the input AU codes with the indexes of various
clusters, it should choose the best matching case within this pre-selected cluster. In
general, a method to achieve this is to search the whole pre-selected cluster and to
match every case. Yet this is inefficient. To achieve efficient case retrieval, the cases
most probable to represent the solution for the encountered problem should be
matched first. In the case of the Facial Expression Classifier, efficient case retrieval
has been achieved by introducing a hierarchical organisation of the cases within the
clusters of the dynamic memory of experiences. The cases of each cluster are
hierarchically ordered according to their typicality: the larger the number of times a
certain case occurs, the higher its hierarchical position within the given cluster.

In summary, each cluster of the dynamic memory of experiences employed by
the Facial Expression Classifier of ISFER, is associated with a certain index(es) and
each case within a cluster is associated with a number representing the typicality of
that case. For instance, the cluster forming the interpretation class “I don’t know”
(see examples (1) and (2)) and the cluster forming an interpretation class "surprise"
can be represented in a reader-oriented pseudo code as given in (3).

(index (AULl+AU2+AU15), label(“I don’t know”),
cases ( (AU1+AU2+AU1S5, 8), .., (AUl+AU2+AUS+AU15+AU17+AU26, 3)))
3)
(index (AU1l+AU2, AUS, AU27), label (“surprise”),
cases ( (AUS, 7), (AUl+AU2, 5), .., (AU27, 1)))

Initial furnishing

In principle, the Facial Expression Classifier part of ISFER should capture and
emulate the user’s expertise in interpreting facial expressions. As with an expert
system, the first step towards enabling a CBR system to accomplish the intended
expert-like reasoning is to acquire and formalise the knowledge of the expert. Unlike
an expert system, whose core is formed by rules, the core of a CBR system is
formed by cases. Therefore, in the case of CBR systems, much of the classic
knowledge engineering typical for rule-based expert systems is replaced by case
engineering (Aha 1998), the main aim of which is to obtain the cases that will
constitute the case base. In general, CBR systems are more reliable and easier to
build and maintain when the number of cases is large since the adaptation rules can
be simpler and evaluation of the adapted case base can be facile and less frequent.
Another approach is to use a smaller number of carefully selected “golden” cases
having a wide problem coverage and extensive adaptation knowledge. In both cases,
the case engineer has to have records of previously solved problems in order to
obtain the cases that will constitute the case base.
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As explained in the preceding section, the aim in the development of the Facial
Expression Classifier part of ISFER was to realise an automated, adaptive (user-
profiled) interpreter of facial expressions. If a user-profiled interpretation of facial
expressions is to be achieved, records of previously solved problems which would
define cases to be stored in the dynamic memory of experiences to be utilised by the
Facial Expression Classifier should be available for each novel user of the system.
Of course, such records do not exist. Yet, even though records of problem solutions
are not available, data about the problems themselves are. That is, since within the
Facial Expression Classifier, the problem is the AU-coded description of the
currently examined expression, while the solution is the user-defined interpretation
of that expression, and since any displayed facial expression forming the input to the
ISFER will be coded by the Facial Action Encoder part of the system in terms of 32
AU codes, data about the problems that should be solved are available. This is a
classical case of the incomplete records problem (Mark et al. 1996). Two approaches
can solve this problem of incomplete records:

1. On-line generation from scratch: the available data on the problems to be solved
are neglected and the case base is generated from scratch through interaction
with the user.

2. Off-line initial furnishing followed by on-line adaptation:. the knowledge is
acquired — start with an initial training of the system (initial furnishing of the
case base) based upon the available data on the problems and then potentially
enlarge/enhance the case base by interacting with and learning from the user (on-
line).

As explained above, complex adaptation procedures make CBR systems more
difficult to build and maintain and may also significantly reduce user’s confidence in
the system if faulty adaptations are encountered due to incompleteness of the
adaptation knowledge, which is the most difficult kind of knowledge to acquire
(Mark et al. 1996). Therefore, an iterative case-base generation starting with an off-
line initial furnishing of the dynamic memory of experiences has been favoured in
the design and development of the Facial Expression Classifier.

The main aim of case-base initial furnishing in general, and of the dynamic
memory of experiences in particular, is to provide problem domain coverage that is
as wide as possible. Since the Facial Action Encoder part of ISFER encodes each
input facial expression in terms of 32 AU codes, providing the user with 32 pertinent
stimulus images (i.e. each of which represents the facial expression produced by an
individual facial action) and asking him/her to associate an interpretation label with
each of the given images will generate cases covering the whole problem domain.
Hereafter, AU-coded description of any observed facial expression forming the input
to the Facial Expression Classifier could be processed as a set of singular AU codes
and interpreted in terms of the interpretation labels associated with those singular
AU codes. Nevertheless, people seldom produce facial expressions by activating a
single AU; facial expressions are usually the result of several facial actions (Ekman
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and Friesen 1978). Furthermore, as suggested by Ortony and Turner (1990), some
components of facial expressions (e.g. squared mouth) might be hardwired to
emotional or non-emotional attitudinal states'. In other words, there are certain
combinations of facial actions that are typically displayed by people to express
attitudinal states though the meaning associated to those parts of facial expressions
might differ from person to person. The theory of Ortony and Turner as well as the
set of 32 AU codes that the Facial Action Encoder is actually able to encode have
both influenced the choice of facial expressions (Table 6.1) recorded as the stimulus
images stored in the database of training images and used for initial off-line training
of the system, that is, for initial furnishing of the dynamic memory of experiences.

The database of training images
The database of training (stimulus) images (Figures 2.25 and 6.4) has been created
with the help of eight certified FACS coders (three males and five females of five
different European and South American nationalities, ranged in age from 22 to 43;
none of the subjects had a moustache, a beard or wear glasses.). The subjects were
asked to display certain facial expressions, that is, particular combinations of facial
actions given in Table 6.1. The 720x576 pixels frontal-view facial images have been
acquired and then clipped to contain just the subject’s face. Then each subject has
been asked to assign an index of impression on the scale from 1 to 10 to each of 280
stimulus images displayed by the other seven subjects, reflecting his/her opinion
about the correctness and distinctiveness/ clarity of the judged facial expression
when compared to the expressionless face of the pertinent subject. The displays of
the 40 facial expressions listed in Table 6.1, having the highest average index of
impression, have been selected to constitute the database of training images. The
chosen images are of 6 different subjects (see Figure 6.3).

k. e

Figure 6.3: Sample stimulus images constituting the database of training
images. AU-coded description of the images (from left to right): AU1, AUS,
AUB+AU12(+AU26), AU9+AU17(+AU26), AUG+AU13, AU1S

4 Although Ortony and Turner (1990) indicate that some parts of facial expressions might be
basic and hardwired to emotional states (e.g. a frown to an expression of anger), they
emphasise that this does not entail that the emotions of which they are a (partial) expression
are basic emotions as claimed by Ekman and colleagues (Keltner and Ekman 2000).
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Table 6.1

The set of 40 facial expressions; displays of these constitute the database of

training images

Expression Description Expression Description

AUl Raised inner eyebrow AU6+AU13 From “happiness”

AU2 Raised outer eyebrow AU135 Depressed mouth corners
AU1+AU2 From “surprise” AU15+AU17 | From “sadness”

AU4 Furrowed eyebrows AU16+AU25 | From “anger”

AUS Raised upper eyelid(s) AU17 Raised chin

AU7 Raised lower eyelid(s) | AUIS8 Puckered lips
AU1+AU4+AUS5| From “fear” AUI19+AU26 | Showed tongue

+AU7

AU1+AU4+AUS5| From “fear” AU20 Horiz. stretched mouth
AU1+AU4+AU7| From “sadness” AU23 Tightened lips
AU1+AUS+AU7| From “fear” AU24 Pressed lips

AUI+AU4 From “sadness” AU24+AU17 | From “anger”
AU1+AUS From “fear” AU27 Vert. stretched mouth
AU1+AU7 From “sadness” AU28+AU26 | Sucked lips

AUS+AU7 From “fear” AU28t+AU26 | Sucked upper lip

AUS8 Lips towards each other | AU28b+AU26 | Sucked lower lip

AU9 Wrinkled nose AU29 Jaw forward
AU9+AU17 From “disgust” AU35+AU26 | Sucked cheeks

AU10 Raised upper lip AU36t+AU26 | Tongue under upper lip
AU10+AULT7 From “disgust” AU36b+AU26 | Tongue under lower lip
AU6+AU12 From “happiness™ AU41 Lowered upper eyelid(s)

Initial training of the system

To accomplish the initialisation of the dynamic memory of experiences, 40 facial
images are retrieved one by one from the database of training images and shown to
the user. With each of the retrieved images, an image of the neutral facial expression
of the pertinent subject is also shown to the user for the comparison. The user is
asked to assign an interpretation label to each of the facial expressions displayed on
the stimulus images. To associate the stimulus facial expressions with the
interpretation labels defined by the user, a temporary database is exploited (Figure
6.4). This database is initialised with the AU-coded descriptions of the stimulus
facial expressions systematised according to the order in which the related images
are shown to the user. When the user assigns an interpretation label to a particular
facial expression, the pertinent AU-coded description stored in the temporary
database is replaced with an appropriate 2-tuple vector representing the generated
case (for an example see (1)). Then, the whole procedure is repeated once more in
order to estimate the consistency of the performed labelling. If a certain expression
has been labelled in the second round differently than in the first, the user is asked to
label anew the pertinent facial expression.
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Once the temporary database is supplied with the generated cases, the training
phase of the system ends with indexing the generated cases and furnishing the
dynamic memory of the experiences. The Indexing function retrieves and classifies
the cases stored in the temporary database according to their attributed interpretation
labels (Figure 6.4). It generates an appropriate n-tuple vector for each interpretation
label defined by the user (for an example see (2)). This partitions the cases into the
interpretation categories. Finally, for each engendered interpretation category, the
Indexing function begets a 3-tuple vector (index(), label(), cases()) as
exemplified in (3), according to the following procedure:

1. Coarse indexing: For each previously generated n-tuple vector assign the 1%
element of it to the 2™ element of the new 3-tuple vector (i.e. assign the defined
interpretation label to 1abel()) and its last n-1 elements to the 1% and the 3™
element of the new 3-tuple vector (i.e. assign all of the pertinent cases to both,
index() and cases ()).

2. Fine indexing: For each 3-tuple vector engendered in step 1 associate a counter ¢
= @ with each AU code or combination of AU codes belonging to cases(),
reduce the set of combinations of AU codes belonging to index () by excluding
each combination whose component AU codes are already included in index ()
(e.g. if AU1 belongs to the currently evaluated index() then exclude from it all
combinations of AU codes that comprise AU1), repeat the process of index()
reduction by excluding each combination of AU codes whose component is a
combination of AU codes that already belongs to index() (e.g. if AUI+AUS
belongs to the reduced index () then exclude also from it all combinations of AU
codes that comprise AU1+AUS).

Further, to keep calculation of quantitative rating on each scored interpretation label
(performed by function F2 illustrated in Figure 6.2 and explained in detail in section
6.5) simple and accurate, the Indexing function augments the 3-tuple vectors begot
by the procedure outlined above with an additional full-expression() element.
For each interpretation category, the pertinent full-expression() is defined as a
collection of all distinct AU codes that occur by themselves or in a combination with
other AU codes within the pertinent cases(). Hence, a sample 4-tuple vector
forming the interpretation class “surprise” (see example (3)) can be represented as
given in (4).

(index (AU1+AU2, AUS5, .., AU27),

label (“surprise®),

cases ( (AUL+AU2, 0), (AU5, 0), .., (AU27, 0)) “)

full-expression (AUl, AU2, AUS, .., AU27))

Eventually, the Indexing function generates a supplementary “neutral” interpretation
class to account for the interpretation of an expressionless face. The pertinent 4-tuple
vector can be represented as given in (5). The reason for classifying AU25, AU26,
AU38, and AU39 within the “neutral” interpretation category is that these facial
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actions do accompany the activation of most lower-face AUs (e.g. see Table 6.1 for
the AU-coded descriptions of typical facial displays) but are too subtle to alter the
impression made by the facial action they accompany (e.g. a smile caused by AU12
activation remains a smile independently of the activation of AU25 or AU26 or
AU38 or AU39). In turn, since these AUs do not alter the impression made by the
activation of other AUs (i.e. do not affect the interpretation of the shown facial
expression), they do not form a part of another interpretation class generated by the
Indexing function; these AU codes do not belong in the index()-, cases()- and
full-expression() terms of any interpretation category other than the “neutral”
category. Furthermore, the full-expression() term associated with the “neutral”
category is empty since if an observed expression is interpreted as “neutral”, it will
always be interpreted as “700% neutral”. Yet this will only be the case if the set of
AU codes generated by the Facial Action Encoder part of the system is either empty
(indicated as () in (5)) or contains a combination of AU25, AU26, AU38 and AU39
exclusively. For a further discussion on the case matching and retrieval performed
by the Facial Expression Classifier, the reader is referred to section 6.5.

case

experiences

Figure 6.4: The training phase of the Facial Expression Classifier part of ISFER

234




(index((), AU25, AU26, AU38, AU39),

label (“*neutral”),

cases(((), 0), .., (AU39, 0)) (5)
full-expression())

Eventually, the dynamic memory of experiences is rendered with the 4-tuple
vectors begot by the Indexing function. In turn, the cases (facial expressions)
constituting the dynamic memory of experiences are organised into expression pools
according to their thematic similarity (i.e. interpretation) and into pool hierarchies
according to their typicality (i.e. occurring frequency).

6.5 Quantified user-profiled expression interpretation

This section elucidates the processing of the Facial Expression Classifier part of
ISFER. It performs both: (i) interpretation of the input quantified AU codes and the
certainty of that data in terms of multiple, quantified, user-defined interpretation
labels and the certainty of these conclusions, and (ii) adaptation of the utilised
dynamic memory of experiences according to user-provided feedback on the
meaning that he/she associates with various facial expressions. The section will first
explain the process of interpreting the input data (i.e. the interpret mode of the Facial
Expression Classifier) by examining how the first three functions of the Facial
Expression Classifier (F1, F2, F3; Figure 6.2) exploit the knowledge stored in the
dynamic memory of experiences and support the interpretation process. Then, the
process of altering and augmenting the dynamic memory of experiences (i.e. learn
mode of the Facial Expression Classifier) will be explained by exploring how
function F4 (Figure 6.2) supports this adaptation process.

F1: Retrieval

As already explained in section 3.6, retrieval is the primary process in a CBR
system. The goal of retrieval is, given the description of the current problem, to
retrieve the most similar case or cases from the existing case base. The simplest
form of retrieval consists of applying the first nearest-neighbour algorithm, that is,
of matching all cases of the case base and returning just one best match (e.g. as
proposed in (Pantic and Rothkrantz 2000c)). Yet, as already explained, this method
is usually too slow, especially in the case of a large case base. A pre-selection of
cases is therefore usually made based upon the indexing structure of the utilised case
base and/or some ranking method based upon retrieval statistics for cases
constituting the case base. As illustrated in Figure 6.5, if the retrieval function F1 of
the Facial Expression Classifier is used, a pre-selection of cases is based upon the
clustered organisation and indexing structure of the dynamic memory of experiences
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as well as upon the hierarchical organisation of cases within the clusters according to
their typicality.

Case-base

elevant clusters

nked relevant
cases

t matching
es

Solution(s)

Figure 6.5: Schematic representation of retrieval function F1

Once the supervisor of the Facial Expression Classifier receives the input
generated by the Facial Action Encoder part of ISFER (i.e. quantified AU codes and
the certainty of that data), it activates function F1 in order to retrieve the case(s)
constituting the dynamic memory of experiences that match best the input problem.
The processing of F1 executes, in fact, the following procedure (Figure 6.5):

1. Initialise five variables: a list of AU codes, the AU-list, which holds each and
every input AU code; a list of relevant clusters, the cluster-list, which will hold
1abel () terms of those clusters; a list of ranked relevant cases, the case-list,
which will hold cases () terms of the relevant clusters; a list of best matching
cases, the best-cases-list, which represents a reduced case-list; a list of solutions,
the solution-list, which will hold the final output of function F1. For a detailed
explanation of different terms defining an expression pool of the dynamic
memory of experiences, the reader is referred to the preceding section of this
chapter. Go to step 2.

2. Determine the relevant clusters by parsing the AU-coded description of the
currently examined facial expression (4U-lisf) with the AU codes belonging to
the index() terms of expression pools constituting the dynamic memory of
experiences. Match the AU codes of the AU-list with (i) the combinations of AU
codes belonging to the index () terms and then with (ii) the individual AU codes
belonging to the index() terms. Each time a match is established, exclude the
matched AU code(s) from the AU-list, add the label() term of the relevant
cluster to the cluster-list, add all cases belonging to the cases () term of the
relevant cluster to the case-list, and add a separator at the end of the case-list.
Terminate the matching procedure when, the AU-list is empty. Go to step 3.
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3. Determine the best matching cases by comparing each and every case of the
case-list with the AU codes belonging to the initial AU-list defined in step 1. If
the currently examined case of the case-list is composed of AU codes that belong
to the AU-list, add the pertinent case to the best-cases-list; otherwise, continue
by examining the next case of the case-list. Each time a separator is encountered,
copy it as it is to the best-cases-list. Terminate this step when there are no more
cases of the case-list to be examined. Go to step 4.

4. Specify a monolithic solution by contemplating the combination of all AU codes
forming the initial AU-list defined in step 1 as a monolithic problem and match it
with each and every case of the best-cases-list starting with the cases having the
highest rank. If the combination of all AU codes belonging to the AU-list
matches exactly a certain case of the best-cases-list, count backwards the number
n of the separators between the pertinent case and the beginning of the best-
cases-list, extract the n+I" 1avel() term from the cluster-list, add it to the
solution-list together with the matched case, and go to step 6. If no case in the
best-cases-list matches the combination of all AU codes belonging to the AU-list
exactly, go to step 5.

5. Specify a compound solution by contemplating the combination of all AU ¢odes
forming the initial AU-list defined in step 1 as a compound problem and match
its sub-problems to the cases of the best-cases-list starting with the case
representing the longest combination of k& different AU codes and having the
highest rank. Each time a match is found, exclude the matched AU codes from
the AU-list, count backwards the number n of the separators between the
pertinent case and the beginning of the best-cases-list, and extract the n+1™
label () term from the cluster-list. If this 1abel () term does not already belong
to the solution-list, add it to that list together with the matched case; otherwise,
associate the matched case with the pertinent 1abel () term already part of the
solution-list. Reduce k for 1 each time when there are no more cases in the best-
cases-list to be examined that represent a combination of & different AU codes.
When the A U-list is empty, go to step 6.

6. Terminate the execution of this algorithm: (i) for each case (al+...+aN, j), which
forms a part of the solution-list, enlarge the retrieval statistics j for 1, and (ii)
redefine the solution-list by grouping together, per 1abel () term, the AU codes
of the cases that are associated with the pertinent l1abel () term (e.g. if the
solution-list is (“surprise”’, (AUI+AU2, 21), (AU27, 18), “happiness”,
(AU6+AUI12, 34)), then the redefined solution-list will be ((‘surprise”, AUI,
AU2,AU27), (“happiness”, AU6, AU12))).

A successful termination of this algorithm, resulting in an interpretation of the
currently examined facial expression in terms of user-defined interpretation labels, is
ensured. This is because the dynamic memory of experiences is initialised as
explained in the preceding section. Namely, the facial images stored in the database
of training images (Table 6.1) display each and every facial action that the Facial
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Action Encoder part of the system is able to encode from an input facial image
(except of AU25, AU26, AU38, and AU39 which are subsequently added to form
the “neutral® expression pool of the dynamic memory of experiences; see section
6.4). As a result, the dynamic memory of experiences is initially endowed (within
both, the index() and the cases () terms of the defined facial expression pools) with
each and every micro-event that can possibly be encountered either as a monolithic
problem or as a part of a compound problem. Hence, a successful execution of the
pre-selection procedure of function F1 (step 1 to step 3 of the algorithm given
above) is ensured. In turn, this yields a successful retrieval of the best matching
case(s) for solving the problem currently presented to the system (step 4 or step 5 of
the algorithm given above).

F2: Quantification
Once the supervisor of the Facial Expression Classifier (Figure 6.2) has achieved the
goal of interpreting the input AU-coded description of the currently examined facial
expression in terms of user-defined interpretation labels it will try to assign a
quantitative rating to each of the scored interpretation labels. In sections 6.2 and 6.3
the importance of facilitating a quantified expression classification into multiple
user-defined interpretation categories has been already emphasised. This issue is
elucidated here, once more, by means of an example (for a similar example the
reader is referred to section 2.2, Figure 2.6). Consider the blended facial-affect
displays shown in Figure 6.6. Each of the two facial expressions might be classified
in two basic emotion categories as defined by Ekman (1982): disgust and sadness in
the case of the left-hand-side image and disgust and happiness in the case of the
right-hand-side unage Nevertheless, according to the descriptions of these
prototypic expressions of emotion as given by Ekman, the left-hand-side facial
display belongs “more” to sadness than to disgust while the right-hand-side
expression “equally” belongs to disgust and happiness (in accordance with the
percentage of the displayed facial actions classified in one of the emotional
categories as given in Pantlc and Rothkrantz (2000b)). This gives us a hint that the
interpretation of facial expressmns
would be more accurate if given in terms
of quantified interpretation labels (even
though it is vague which computational
method would be the most appropriate
for achieving such an interpretation). As
discussed in sections 6.2 and 6.3, the
psychologist James Russell and
colleagues came to the same conclusion
(Russell and Fernandez-Dols 1997). In
Figure 6.6: Facial displays of order to quantitatively rate each user-

blended emotions: disgust-sadness  efined interpretation label scored
and disgust-happiness
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previously by means of function F1, the supervisor of the Facial Expression

Classifier activates function F2.

In general, function F2 assigns an intensity level to each of the scored
interpretation labels based upon the assumption that each AU code forming a
component of a case being classified in the pertinent interpretation category (i.e.
expression pool) has the same influence on quantitative rating (intensity) which is to
be associated with the label ensuing that interpretation category. Thus, the ratio of
the AU codes belonging to both the input AU-coded description and the fui1-
expression () term of the pertinent facial expression pool to the total number of AU
codes belonging to the full-expression() term might decide the quantification
issue. For instance, if the full-expression() term of a scored interpretation
category “x” contains five distinct AU codes and three of those, say al, a2, a3,
belong to the input set of AU codes and have been classified in the “x™ interpretation
category (i.e. the result of function F1 is solution-list((“x”, al, a2, a3), ...)), then a
quantitative rating 60% will be associated with the interpretation label “x”. Yet this
ratio-based quantification method has a number of drawbacks. Two major ones are:

o Co-occurrence rules implied by facial anatomy might be ignored. Suppose that
the facial displays of AU9 (wrinkled nose) and AU10 (raised upper lip) have
been both interpreted by the user as “disgust”. In that case the pertinent full-
expression() term will contain both AU9 and AU10. Suppose further that no
other facial-action display has been interpreted as “disgust” and that the AU-
coded description forming the input to the Facial Expression Classifier contains
just AU9. The ratio-based quantification method outlined above will then result
in “50% disgust”. Nevertheless, since the activation of AU9 obscures the
activation of AU10 (FACS, Ekman and Friesen 1978) the correct interpretation
should be “100% disgust”.

o The intensity of the activation of the facial actions is not taken into account.
Suppose that the user merely interpreted the facial display of AU12+AUG6 (raised
mouth corners and raised cheeks) as “happiness” and that the input AU-coded
description generated by the Facial Action Encoder part of the system contains
20% AU12 and 20% AUBG. Since the ratio-based quantification method outlined
above does not take into account the intensity of the activation of facial actions,
it will generate the result “100% happiness”. Yet this would only be correct if
the input were 100% AU12 and 100% AUS.

Function F2 applies therefore an adjusted ratio-based quantification method that
addresses the two problems explained above. For each (“x”, al, ..., aN) forming a
part of the solution-list representing the output of function F1, and each (g1, ..., ¢N)
holding the intensities associated to al, ..., aN by the Facial Action Encoder, the
processing of F2 executes the following procedure:

1. Initialise variables: a list of AU codes, the AU-list, which holds al, ..., alV; a list
of intensities, the Q-list, which holds ¢1, ..., gN associated with al, ..., alV; a list
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of AU codes, the full-list, which holds all AU codes belonging to the full-
expression() term of the “x” interpretation class; a real variable, the x-
intensity, which will hold the quantitative rating on the “x” interpretation label
and form the output of function F2. Go to step 2.

2. Reduce the full-list for each AU code belonging to the AU-list by applying the
co-occurrences rules defined in FACS and listed in Table 6.2. For example, since
the activation of AU7 cannot be encountered together with activation of AU,
AU9 and/ or AU41, if AU7 belongs to the AU-list and any of AU6, AU9, and/or
AU41 belongs to the full-list, AU6, AU9, and/or AU41 should be excluded from
the full-list. Go to step 3.

3. Calculate x-intensity as:

x-intensity = 1 ql+--+ L gN
m m

where m is the number of different AU codes belonging to the full-list reduced
in step 2 and ql, ..., N belong to the Q-list. Hence, for example, if AU12 and
AUG6 form the reduced full-list and the AU-list holds (AU6, AU12) while the Q-
list holds (20, 20), then the x-intensity = 20.

Table 6.2

Co-occurrences rules: if the facial action listed in the 1% / 3" column is
activated, none of the facial actions listed in the corresponding 214" column
can be scored. For details on various AUs and their model-based
representation within ISFER, see Tables 5.5 and 5.7.

Absent AUs Absent AUs
1 9 , 23 | 8, 16, 18, 19, 24, 25, 27, 28, 28b 28t, 35
41 24 | 8, 9+17, 10+17, 12+17, 13+17, 15, 16, 18,

19, 20, 23, 25, 27, 28, 28b, 28t, 35, 38, 39

7 25 | 19, 23, 24, 26, 27, 28, 28b, 28t, 35, 36b, 36t
6,41,9 26 | 25,27

8 9,10, 12, 13, 15, 17, 18, 20, 23} 27 | 23, 24, 25, 26, 28, 28b, 28, 29, 35,

24, 28, 28b, 28t, 35, 38, 39

1,7,8, 10, 38, 39 28 | 8, 10, 16, 17, 23, 24, 25, 27, 28b, 28t, 35,
36b, 36t, 38, 39

10 | 8,09, 12, 13, 28, 28b, 28t, 38, | 28b| 8, 10, 16, 17, 23, 24, 25, 27, 28, 28, 35,

=)}

~

9 » I3 O

39 36b, 36t, 38, 39
12 | 8,10, 13, 15, 20, 38,39 28t | 8, 10, 16, 17, 23, 24, 25, 27, 28, 28b, 35,
36b, 36t, 38, 39
13 1 8,10, 12, 15, 20, 38, 39 29 127
15 | 8,12, 13, 20, 24, 38, 39 35 | 8,16, 18, 23, 24, 25, 27, 28, 28b, 28t
16 | 18,23, 24, 28, 28b, 28t, 35 36b| 19, 25, 28, 28b, 28t
17 | 8,28, 28b, 28t 36t | 19, 25, 28, 28b, 28t
18 | 8, 16, 20, 23, 24, 35, 38, 39 38 | 8,9, 10, 12, 13, 15, 18, 24, 28, 28b, 28t, 39
19 | 23, 24, 25, 36b, 36t 39 | 8,9, 10, 12, 13, 15, 18, 24, 28, 28b, 28t, 38
20 | 8,12,13,15,18,24 41 15,7
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F3: Evaluating the certainty of the conclusions

The last goal that the supervisor will try to reach while the Facial Expression
Classifier is in the interpret mode is to calculate the certainty factors CF, and CFyg,
associated with each interpretation label “x” (output of function F1) and its intensity
I(x) (output of function F2). To this end, the supervisor activates function F3.

For each (“x”, cl, ..., cM) forming a part of the solution-list representing the
output of function Fi, where (cl, ..., cM) are the matched cases, which are
associated with the interpretation label “x” and contain AUs (al, ..., aN) (see the
processing of function F1 explained above), and for each (CF,, ..., CF,y) holding
the certainty factors associated by the Facial Action Encoder to al, ..., aN, function
F2 calculates the certainty factor CF, = C*100 according to the following formula:
P(cl A..ACM I" x")P( ”x") % * typicality(" x" )

P(clA...ncM) min(CF,,...,CF, )/100
where K is the total number of cases c; belonging to the cases() term associated
with the interpretation category “x” and typicality(“x”) = S(“x) / T, where S(“x”") =
%K rank(c; ), rank(c) is the retrieval statistic for the case c;, and T= ¥ .S(" x" )
for all expression pools “x” defined in the dynamic memory of experiences.

For each (g1, ..., g¢N) holding the intensities associated by the Facial Action
Encoder to a1, ..., aN, and for each (CF,,, ..., CF,y) holding the certainty factors
associated by the Facial Action Encoder to q1, ..., g, function F2 calculates the

certainty factor CFy) according to the following formula:
CFl(x) = min (CFql, “eey CFqN)

C =P("*x"[elA...AcM) =

F4: Adaptation
As noted in section 6.3, the processing of the Facial Expression Classifier can be
invoked in either an interpret mode or a learn mode. As long as the user does not
provide a novel interpretation label for the currently examined expression, the Facial
Expression Classifier runs in the interpret mode. By providing a novel interpretation
label for the currently examined facial expression (or a part of it), the user triggers
the learn mode of the system. In that case, the supervisor will receive the pertinent
user’s feedback (denoted with dotted lines in Figure 6.2) and will try to reconstruct
the dynamic memory of experiences to reflect the pertinent encountered novel case.
As already discussed in section 3.6, the utilised case base can be adapted to the
current user’s needs/wishes automatically (by the CBR system itself) or manually
(by the user). Adaptation makes the CBR systems more complex, but not necessarily
more powerful; adaptation may reduce system reliability, especially when mistakes
made by the system are expensive (Mark et al. 1996). Therefore, in many instances
no attempt is made towards automatic adaptation; the user carries out the adaptation
instead. Yet, even if no automatic adaptation takes place, there are always some
situations where the current problem is so similar to the retrieved case that the
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system can automatically use the old solution and modify it in the appropriate

direction (Maes 1994). In other words, generally the utilised case base can be

adapted in a hybrid way, combining automatic and manual adaptation. Although

Maes does not employ the term “hybrid adaptation”, he identifies three situations

that reflect incisively such an adaptation:

1. If the similarity between the retrieved case and the current problem can be
expressed using a single value § and if S is above a “do-it” threshold 71, the
system performs an automatic adaptation.

2. If the similarity value S is above a “tell-me” threshold 72 and S < T1, then based
on the retrieved case, the system suggests a possible appropriate adaptation to the
user who can accept it or adapt it further.

3. If§ < T2, then the system informs the user that it does not know the solution.
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Each time the user is not satisfied with the facial expression interpretation
provided by the system and renders his/her feedback on the issue, the supervisor of
the Facial Expression Classifier applies a hybrid adaptation procedure in order to
reconstruct the dynamic memory of experiences according to the wishes of the user.
This procedure is, in fact, a 3D action space from which the supervisor selects one of
the predefined plans in order to reach the active goal of adapting the dynamic
memory of experiences according to the currently provided user’s feedback (Figure
6.7). These plans are:

1. If the AU-coded description al+...+aN of the facial expression for which a
novel interpretation label has been introduced consists merely of AU25, AU26,
AU38 and AU39, belonging to the “neufral” interpretation category (see the
preceding section), the user is informed that he/she cannot introduce a novel
interpretation category for the pertinent facial expression. An explanation is
provided too, describing that these AUs accompany the activation of most lower-
face AUs (e.g. see Table 6.1 for the AU-coded descriptions of typical facial
displays) but are too subtle to alter the overall impression made by the facial
action they accompany.

2. If the AU-coded description al+...+aN (from which the AU codes belonging to
the “neutral” interpretation category have been excluded) of the expression for
which a novel interpretation label has been introduced matches exactly a specific
case stored in the dynamic memory of experiences, the supervisor changes the
content of the case base by removing the matching event and then activates
function F4 to augment the dynamic memory of experiences with the novel case.

3. Ifno case stored in the dynamic memory of experiences matches exactly the AU-
coded description al+...+aN (from which the AU codes belonging to the
“neutral” interpretation category have been excluded) of the currently examined
expression (or a part of it) for which a novel interpretation label has been
introduced, the supervisor activates function F4 to augment the memory of
experiences with the pertinent additional case.

To remove from the memory of experiences the case (al+...+aN, k) that
matches exactly the AU-coded description al+...+aN (from which the AU codes
belonging to the “neutral” interpretation category have been excluded) of the
expression for which a novel interpretation label has been introduced, the supervisor
executes the following procedure:

1. Initialise variables: the case, holding the case (al+...+aN, k); the label, holding
the 1abel() term of the cluster “c” to which the case belongs; the case-list,
holding the elements of the cases () term of the cluster “c”; the index-list, being
equal to the case-list; an empty full-list that will hold the AU codes which will
determine the full-expression() term of the redefined cluster “c”. Go to step
2.

2. Redefine cluster “c”: Remove the case from the case-list and the index-list and
define the cases () term with the elements of the reduced case-list. Define the
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label() term as the label. Reduce the index-list by excluding each combination
of AU codes whose component AU codes are already included in the index-list
(e.g. if AU1 belongs to the index-list, exclude from it all combinations of AU
codes that comprise AU1); repeat the process of the index-list reduction by
excluding each combination of AU codes whose component is a combination of
AU codes that already belongs to the index-list (e.g. if AU1+AUS belongs to the
already reduced index-list, exclude from it all combinations of AU codes that
comprise AU1+AUS). Define the index () term by the elements of the index-list.
Define the full-list as a collection of all distinct AU codes that occur
independently or in a combination with other AU codes in the case-list. Define
the full-expression() term by the elements of the full-list. Terminate the
execution of this procedure.

The supervisor activates function F4 as soon as it has ascertained that the

dynamic memory of experiences does not contain a case that matches exactly the
AU-coded description al+...+aN (from which the AU codes belonging to the
“neutral” interpretation category have been excluded) of the expression for which a
novel interpretation label has been introduced. For each input (“x”, al, ..., aN),
representing the interpretation label “x” associated by the user with the expression
coded in terms of al, ..., aN, the processing of F4 executes the following procedure:

1.

Coarse initialisation of variables. Define the following variables: a list of AU
codes, the AU-list, which holds al, ..., aN; a list of clusters, the cluster-list,
which holds 1abel() terms of all clusters existing in the dynamic memory of
experiences; a list of AU codes, the index-list, which holds all individual AU
codes and combinations of AU codes belonging to the index() terms of each
and every cluster (except the “neutral” cluster) belonging to the cluster-list; and
an empty list, the full-list, which will hold all AU codes forming a part of the
cases () term associated with the expression pool “x”. Go to step 2.

Fine initialisation of variables. Compare each element of the cluster-list with the
input label “x”. If the expression pool “x” already exists in the dynamic memory
of experiences: add the new case (@+...+aN, I) to the cases () term associated
with the expression pool “x”, supply the full-list with all individual AU codes
forming a part of the pertinent cases () term, adjust the full-expression()
term associated with the expression pool “x” so that it contains the generated
Sull-list, go to step 3. If the expression pool “x” does not exist in the dynamic
memory of experiences, generate a new expression pool “x”: define the index ()
term as an empty list, define the label() term as label(*x*), define the
cases () term as cases ((@l+...+aN, 1)), define the full-expression() term as
full-expression(al,...,aN), go to step 3.

. Redefine the index() term in an automatic way. Reduce the index-list so that it

contains either individual AU codes belonging to the AU-list or combinations of
those. Reorganise the index-list according to the complexity of its elements: the
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longer the combination of AU codes, the higher its rank in the index-list.
Represent the combination al+...+a/V of the AU codes belonging to the AU-list
as j+k+l, where j=[] v (j € index-list A j is of the highest possible rank within the
index-list), k=[] v (k € index-list A k is of the highest possible rank within the
index-list), I=[] v (I € index-list A | is of the highest possible rank within the
index-list). Merely one of three different situations can be encountered (for a
detailed explanation of this issue, the reader is referred to the discussion
following the description of this procedure): j=k=I=[], j € index-list A k €
index-list A I=[], or j € index-list A k € index-list A I = lI+...+IM where
(Vie[IM], li # [] A lie index-list). In the case that the first or the second
situation is encountered, extend the index() term with the combination
al+...+aN of the AU codes belonging to the AU-list, terminate the processing of
this procedure. If the third situation is encountered, go to step 4.

4. Redefine the index () term based on the user’s feedback. Provide the user with a
list of suggestions for possible appropriate adaptation of the index() term
associated with the interpretation category “x”. The list of suggestions should
contain all possible combinations of at least two from the three terms defined in
step 3: j = [1, k # [], I = U+...+IM where Vie[1,M], li # [] (i.e. j*k, jH, ...,
JHM, k+l1, ..., kM, 1112, ..., jrk+H, ..., jHEHIM, .., jE+D). The list of
suggestions is accompanied with the request to the user to select the one that best
characterises the introduced interpretation label “x”. Extend the index() term
with the user-selected combination al+...+aP, P < N of the AU codes belonging
to the AU-list, extend the cases() term with the case (al+...+aP, 0), and
terminate the processing of this procedure.

In order to understand why only one of the three situations defined in step 3 of
function F4 can be encountered, the reader should keep in mind the case-removal
procedure explained above and the initial furnishing process of the dynamic memory
of experiences (section 6.4). Namely, the dynamic memory of experiences is
initially endowed (within both the index() and the cases() terms of the defined
expression pools) with each and every micro-event that can possibly be encountered
either as a monolithic problem or as a part of a compound problem. In turn, a
situation j=k=F=({] will be encountered if and only if the case-removal procedure
explained above has been executed prior to the execution of function F4.
Encountering a situation j € index-list A k = [] A I =[] would mean that there is no
case j in the case base (otherwise it will be removed by the case-removal procedure
from the pertinent cases () term and the index() term) while, at the same time, j
forms a part of an index() term. This is contradictory to the Indexing function
defined for the initial furnishing of the dynamic memory (section 6.4) as well as
with step 4 of function F4 and, therefore, such a situation cannot be encountered. A
situation j € index-list A k € index-list A I=[] will be encountered if the AU-coded
description al+...+aN of the expression for which a novel interpretation label has
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been introduced can be represented as j+k = al+...+aN, where j and k are two
indexes belonging to the index() terms of the dynamic memory of experiences.
Finally, a situation j € index-list A k € index-list A | = lI+...+IM where (Vie[1,M],
li # [] A lic index-list) will be encountered if the AU-coded description al+...+aN
of the expression for which a novel interpretation label has been introduced cannot
be represented as a combination of two indexes belonging to the index() terms, but
as a combination of three or more indexes belonging to the index() terms.

As explained in section 6.4, in order to facilitate accurate retrieval, the indexes
that characterise an expression pool, should be uniquely defined for that pool. After
the dynamic memory of experiences is initialised, the indexes defined by an index ()
term of an existing interpretation category are unique for that category. The indexing
performed in step 2 of the case-removal procedure as well as that of step 3 and step
4 of function F4 keep the indexes uniquely defined across the existing interpretation
categories (i.e. each existing category is uniquely characterised by the indexes
defined in the pertinent index () term). In addition to being uniquely defined across
the expression pools partitioning the dynamic memory of experiences, the indexes
should be also kept simple; the “longer” the combination of AU codes forming an
index, the less facial expressions will be presented to the system of which it will
form a part. This issue can be best elucidated by means of an example. Suppose that
the AU-coded description of the facial expression for which a novel interpretation
label “x” has been introduced is al+...+a7 which, when decomposed in terms of
indexes, can be represented as j + k + I + m = (a2+a5+a7) + (al+a6) + a3 + a4.
Suppose further that function F4 has two versions: (i) step 4 does not exist and the
interpretation category “x” is automatically characterised by al+...+a7, and (ii) step
4 exists and the user selects a3+a4 to characterise the interpretation label “x”. If the
AU-coded description of the expression to be interpreted next by the Facial
Expression Classifier is a combination of a1, ..., a7, containing at least a3 and a4
and not more than six different AU codes, then: (i) in the case of the first version of
function F4, the system processing will result in a similar (incorrect) interpretation
as was the case with the expression al+...+a7, and (ii) in the case of the second
version of function F4, the processing of the system will result in the (correct) label
“x” combined further with some other interpretation label(s) begotten while
interpreting expression al+...+a7. In summary, step 4 of function F4 ensures that
the generated indexes are kept as simple as possible.

As noted in section 6.3, the adaptation knowledge also includes the knowledge
about how the correctness of a novel solution can be evaluated. Within the Facial
Expression Classifier, the correctness of a new solution introduced by the user is
automatically ensured. Step 3 and step 4 of function F4 ascertain this facet of the
Facial Expression Classifier. Namely, whenever the user triggers the learn mode of
the system, the dynamic memory of experiences is adjusted according to the user’s
feedback either (i) by executing step 3 of function F4, which keeps the case base
consistent, or (ii) by executing step 4 of function F4, which constrains the user to
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select one of the proposed solutions, each of which does not violate the consistency
of the case base. Hence, an additional evaluation of the correctness/consistency of a
novel solution introduced by the user is unnecessary in the case of the Facial
Expression Classifier.

6.6 Discussion and key challenges for future research

Darwin’s (1965/1872) pioneering studies started a more than a century-long debate
about whether observers can accurately judge the emotion shown in a facial
expression. This issue is related to the question of whether specific expressions
actually correspond to particular emotions. Over the decades, clearer
conceptualisation of this problem delimited numerous critical issues that are still
debated in basic psychological research. The most intriguing of these, forming the
core of the two disparate studies on the perception of human facial affect (i.e. Paul

Ekman and colleagues vs. James Russell and colleagues), can be summarised as

follows:

e Do rapid facial signals (i.e. facial expressions) convey messages about genuinely
felt emotions or are they merely a part of socially constructed communicative
behaviour (e.g. emblems: symbolic communicators such as the wink, illustrators:
communicators highlighting speech, regulators: conversational mediators such as
nods and smiles)?

e Are there a number of facial expressions that are prototypic for a number of
emotions; is each of those expressions universally associated with a single
emotional meaning and, given this emotional labelling, is the pertinent
expression universally produced? Are variations allowed? If so, are we still
talking about prototypical (basic) emotion expressions and what variations in a
prototypical expression are universally perceived as belonging to the same basic
emotion? How much of a known prototypical facial expression should be
displayed for observers to assign a basic emotional label? Is it then the
prototypical expression itself or its parts that are associated with certain (basic)
emotional label?

e How are blends of different emotion expressions within the same facial
expression perceived and judged?

o Are there differences among specific cultures in the perception and production of
basic emotion labels? If so, are prototypic emotion expressions prototypic at all;
in other words, is the claim that they are universally perceived and produced
valid?

e How do the observer’s personal characteristics affect the perception of emotional
facial expressions? Is the perception of emotion expressions universal,
independently of the observer’s sex, age, familiarity with the expresser,
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extroversion vs. introversion? If not, even for a single observer, can it be claimed
that the expressions postulated to be prototypical for a number of emotions are
universally perceived?

e How do the expresser’s personal characteristics affect the production of facial
affect expressions? Are there differences among people in production of
emotional facial expressions (e.g. due to expressiveness, extroversion, sex or
age)? Once more, if this is the case, even for a single expresser, are the
prototypic emotion expressions prototypic at all, that is, is the claim that they are
universally produced valid?

Unlike any other automated system for facial affect recognition presented in the
literature up to date (see chapter 2 and section 6.3), ISFER, due to its Facial
Expression Classifier part, is entirely independent on the debate amongst
psychologists on the perception of facial expressions of emotion. Instead of
favouring one of the relevant psychological studies of the opposed camps and
struggle to validate their findings, the design of the Facial Expression Classifier part
of ISFER is based upon the machine learning concept. Namely, rather than adopting
debated a priori rules for facial affect recognition from facial images, the system
learns the appropriate rules by interacting with the user on the meaning he/she
associates with facial expressions. Besides that it facilitates the user to freely define
at any time his/her own facial expression interpretation labels, ISFER achieves a
fully automatic and robust interpretation of an input facial expression in terms of:

1. multiple user-defined interpretation labels,

2. aquantitative rating associated with each scored interpretation label, and

3. a certainty measure which is associated with each scored interpretation label and
its quantitative rating separately based on the certainty of the input expression
data propagated through the system.

In comparison to the existing explicit attempts to automate facial affect
recognition (see chapter 2 and/or Pantic and Rothkrantz 200la), the Facial
Expression Classifier part of ISFER is fundamentally different by the use of the
CBR. While, throughout this chapter it was praven that CBR is a suitable method for
a user-profiled recognition of facial affect from static facial images, the reader might
be reluctant to consider it efficient as well. Namely, as already explained in section
3.6, CBR systems have a number of typical disadvantages implying reduced
efficiency of such systems. Let us consider each of those typical CBR drawbacks in
the scope of ISFER:

1. High storage requirements and long retrieval times due to a large case base.
The expansion of the dynamic memory of experiences utilised by the Facial
Expression Classifier is controlled, as explained in section 6.3. This and the case
retrieval utilised by the Facial Expression Classifier part of ISFER, which is
based upon the clustered organisation of the dynamic memory of experiences
(Figure 6.5), enable efficient case storage and retrieval.
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2.

Cumbersome to handle dynamic domains. CBR systems generally have
difficulties in handling dynamic problem domains since they are usuaily strongly
biased towards what already has worked. This may result in an outdated case
base. Yet, as noted in section 6.3 and explained in section 6.5, the knowledge of
the problem domain (i.e. the user-profiled interpretation of facial expressions)
implemented within the Facial Expression Classifier is good enough to allow the
usage of adaptation rules that can generate novel solutions from scratch: if the
user changes his/her mind about the interpretation that should be assigned to a
certain (previously encountered) facial expression, the old (incorrect) case will
be removed from the dynamic memory of experiences and the novel case will be
added (Figure 6.7). Thus, the Facial Expression Classifier handles effectively
and efficiently the dynamic problem domain of user-profiled interpretation of
observed facial expressions.

Difficulties in handling noise. Unsuccessful assessment of noise present in a
problem situation currently posed to a CBR system may result in the same
problem being unnecessarily stored numerous times in the case base because of
the differences due to the noise. In turn this implies inefficient storage and
retrieval of cases. In the case of ISFER, the Facial Action Encoder part of the
system deals with inaccurate, partial and redundant data generated by the Facial
Data Extractor part of the system (sections 5.4 and 5.6) and associates a certainty
measure to each of its conclusions based upon the noise encountered in the input
data. In turn, the data that the Facial Expression Classifier part of ISFER
employs for case storage and retrieval (i.e. AU codes describing the input facial
expression) may be considered noise-free since the noise present in a problem
situation currently posed to the Facial Expression Classifier is encoded
separately, within the certainty measures accompanying each of the input AU
codes. Hence, though noise is a typical problem of CBR systems, in the case of
ISFER, noisy input problems have no effect on the successfulness of case storage
and retrieval performed by the Facial Expression Classifier. At least, this is the
case as far as a repetitive storage of a case is concerned. Yet the adequateness of
the case-base adaptation can be affected by noisy input. Namely, the correctness
of the data generated by the Facial Data Extractor and the Facial Action Encoder
affects the correctness of the conclusions obtained by the Facial Expression
Classifier (function F3, described in section 6.5, addresses the issue of
propagating input data uncertainty through the system). In turn, if the user only
considers the affect-based interpretation of the input facial expression with which
he/she does not agree, and does not take into account that the pertinent
interpretation might be merely a result of inadequately handled noise present in
the input image, he/she may trigger the learn mode of the system and change the
system’s facial affect interpretation mechanism unnecessarily. Nevertheless, the
system does provide the user with information that can be used to decide whether
an unapproved interpretation of the input facial expression was generated due to
the noise present in the pertinent input image or due to an inadequately trained
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interpretation mechanism. The certainties associated with the quantified AU
codes and the quantified interpretation labels provide this information. Hence, if
the user takes this information into account prior to triggering the learn mode of
the system, the case base of the Facial Expression Classifier can be adapted
adequately.

4. Cumbersome to achieve fully automatic operation. In a typical CBR system, the
problem domain is usually not fully covered. As a result, some problem
situations can occur for which the system has no solution. In such cases, a typical
CBR system usually expects input from the user. However, this is not the case
with the Facial Expression Classifier part of ISFER. As explained in section 6.4,
the process of initial furnishing of the dynamic memory of experiences generates
cases covering the whole problem domain (Table 6.1, Figure 6.4). Once the
dynamic memory of experiences is initialised, the Facial Expression Classifier
could operate fully automatically. Of course, in that case, the system would not
enhance its expertise using user-profiled interpretation of facial expressions,
which forms its primary goal. Yet as far as fully automated operation of the
system is concerned as an issue on its own, the process of initial furnishing of the
dynamic memory of experiences facilitates fully autonomous processing of the
Facial Expression Classifier.

In summary, the Facial Expression Classifier part of ISFER is unique in the field
of machine perception of human facial affect because: (i) it is independent of the
related debate in basic psychological research, (ii) it allows the user complete
freedom in associating various meanings with various facial expressions, (iii) it
facilitates the interpretation of blends of differently interpreted sub-expressions
forming a single facial display, (iv) it incorporates the effect that the intensity of
facial-muscle actions has on the quantitative rating of the interpretation label
associated with the facial expression caused by those facial actions, (V) it provides a
measure of confidence for the obtained interpretation, and (vi) it exploits CBR rather
than eager learning methods typical for the existing automated systems for facial-
affect recognition from facial images (chapter 2). Though it greatly enhances the
state of the art in machine perception of human facial affect, the Facial Expression
Classifier has a number of drawbacks representing, in some way, a set of challenges
and opportunities facing the researchers in this area.

The Facial Expression Classifier classifies the expression data generated by the
Facial Action Encoder part of the system. Since the Facial Action Encoder codes an
input facial expression in terms of 29 AUs (i.e. 32 AU codes; Table 5.8), from 44
AUs defined in FACS (Ekman and Friesen 1978), it is not capable of encoding the
full range of human facial behaviour. Consequently, because it has inherited this
drawback from the Facial Action Encoder, the Facial Expression Classifier is not
capable of interpreting the full range of human facial behaviour. As a result, for two
facial expressions that differ in terms of displayed AUSs, the system may generate the
same AU-coded description and the same user-profiled interpretation. It is crucial,
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therefore, that the user is aware that the system automates only a part of FACS
scoring, yielding the user-profiled interpretation of just a limited range of human
facial behaviour. On the other hand, it should be emphasised that this is an inherited
limitation; if the Facial Action Encoder were to automate the entire FACS scoring,
the Facial Expression Classifier would yield user-profiled interpretations of the full
range of human facial behaviour,

As far as the applied methodology is concerned, the shortcoming concerns the
within-subject design of the process of initial furnishing of the dynamic memory of
experiences. Namely, during the training phase of the system (Figure 6.4, section
6.4), the user is asked to judge, within a relatively short period of time, the entire set
of stimulus posed facial images stored in the database of training images. As
explained in section 6.2, this method invites a more direct comparison between
various facial expressions than usual everyday encounters with facial expressions
allow. In turn, the subject might feel called upon to notice the difference between
two expressions and assign different labels to them. Yet, the decision to employ a
within-subject design of the process of initial furnishing of the dynamic memory of
experiences, which implies methodological criticisms outlined here, has been a
conscious one. Namely, to solve the problem of incomplete records that could be
used to define the cases to be stored in the dynamic memory of experiences, two
approaches have been distinguished (section 6.4): (i) on-line case-base generation
from scratch, which involves complex adaptation procedures and may make the
development and maintenance of the CBR system cumbersome, and (ii) iterative
case-base generation, which starts with an initial case-base furnishing which implies
always a within-subject design of this process. Since both outlined approaches have
drawbacks, the one involving less potential problems and less cumbersome
development of tiic intended CBR system has been chosen.

Another peculiarity of the design of the Facial Expression Classifier, which
might be thought of as an additional limitation of the system, concerns the process
of quantitative rating of a scored user-defined interpretation label. Namely, the
determination of the intensity level to be assigned to a particular interpretation label
is based upon the assumption that each AU code forming a component of a case
being classified in the pertinent interpretation category has the same influence on the
quantitative rating of that interpretation label. On the other hand, as reported by
Ekman (1982), the upper-face features might play a more important role in the
recognition of facial affect than the lower-face features (see also chapter 7). If this is
the case, then the upper-face AUs forming a part of a case being classified in a
certain interpretation category should have a grater influence on the quantitative
rating of the pertinent interpretation label than the lower-face AUs forming another
part of the case in question. Yet, thus far, no functional anatomical study has been
published that has shed any light on the specific neural mechanisms for interpreting
facial expressions. Hence, whether the changes in the upper-face features are more
important for the recognition of facial affect than those in the lower-face features,
and what exactly the impact is of these changes on the perception of facial affect
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must first be determined by basic research, before the pertinent findings can be

exploited within an automated system for facial-affect analysis.

A more important issue concerns the fact that the Facial Expression Classifier
does not take into account the situation in which the facial expression to be
interpreted occurs. On the other hand, as explained in section 6.3, the actual meaning
of someone's facial behaviour depends to a large extent on this contextual
information (Russell and Fernandez-Dols 1997). The problem of context sensing, as
applied to the problem of automating facial affect analysis, can be divided into three
sub-problems: (i) who the observed person is, (ii) where he is, and (iii) what he is
doing. In other words, in order to emulate the user's performance in interpreting
someone's facial expressions in terms of attitudinal/affective states, the computer
must know:

1. The identity of the currently monitored subject. Based on this information, the
system can compute in a person-dependent manner the intensity levels of the
displayed facial actions. In the current version of ISFER, presented in this thesis,
subject identification is achieved "manually”. Namely, each time before a session
with a new subject starts, the user executes an appropriate procedure that
generates the database of extreme face-model deformations (section 5.5). If the
current subject has not been analysed by the system before, the database of
extreme model deformations is generated from scratch. Conversely, if the subject
is known, his/her already existing database of extreme model deformations is
utilised again.

2. The overall situation in which the observed person acts. The interpretation of the
same facial behaviour could -be different for two differing subject's
environments. For instance, wide-open eyes can mean surprise if shown by a
student monitored while attending a lecture, or frustrated fear if shown by an
operator monitored in a nuclear power plant. The Facial Expression Classifier,
presented in this section, does not take into account the environment in which the
monitored subject acts while interpreting his/ her facial expressions.

3. The current task the monitored subject is involved with. At the finest level of
context-dependent interpretation of facial behaviour, the variations in meaning of
displayed facial expressions related to the specificity of the task that the
monitored person currently performs should be accounted for. For instance,
wide-open eyes can mean surprise if shown by an nuclear-power-plant operator
while checking his e-mail, or fear if shown by the same operator but while
checking for the reason of a just sounded alarm. The Facial Expression Classifier
does not take into account the task-related reactions of the observed subject
while interpreting his/her facial behaviour.

In summary, although automatic context sensing is crucial for an accurate automatic
facial affect analysis, the affect-sensitive monitoring of human facial behaviour that
ISFER performs is context-free. This is also the case for virtually all work done in
the field of machine perception of human facial affect. Although it was initially
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thought that this research topic would be the hardest to solve, machine-performed

context sensing has been proven remarkably tractable. For a discussion on advances

and challenges in general-purpose context-sensing research, the reader is referred to

(Pentland 2000). Yet, due to the complexity of this wide-ranging problem and the

general luck of researchers having expertise in all necessary purpose-oriented

computer vision techniques (such as person identification, facial expression analysis,
image segmentation aimed at detecting the environment, gaze tracking, multiple-
person tracking, etc.), the problem of context-dependent interpretation of human
facial behaviour forms probably the most significant challenge for researchers of
machine perception of human facial affect. Furthermore, if we take into
consideration that, on one hand, speech affects the mouth and in turn the displayed
facial expression (i.e. speech can be viewed as a kind of noise in machine perception
of human facial affect) and that, on the other hand, facial expressions may give
further meaning to the spoken words and that the spoken words may explain why an
expression is displayed, the problem of untangling context-dependent meanings of
human audio-visual communicative signals forms perhaps the most significant
challenge for researchers of ubiquitous computing in general. For a further

discussion on this topic, the reader is referred to chapter 8.

Finally, as already discussed in chapters 4 and 5, ISFER does not perform a
temporal analysis of facial expressions. It has been developed to classify an input
facial expression in terms of both multiple quantified facial action codes and
multiple quantified user-defined interpretation labels from a static facial image
rather than from a facial image sequence of the observed subject. The preceding
sections of this thesis have separately enumerated many potential benefits that could
accrue from efforts to account for the temporal aspect of facial expression analysis.
This section indicates two additional facets of system’s performance that could be
advanced by including the time dimension of facial expression analysis into the
automatic facial-affect-sensitive monitoring performed by ISFER. Those are:

1. Enhanced effectiveness: The inclusion of the temporal aspect of facial expression
analysis will potentially enable the (user-profiled) interpretation of a wider range
of facial affect behaviour. Let us consider the psycho-physiological states like
the hypertension, stress, pain and frustration. They are all characterised by
certain alterations of facial expressions (Schachter 1957, Vaughan and Lanzetta
1980, Prkachin and Mercer 1989). Yet temporal dynamics of the related facial
expressions (a certain pattern of facial expressions observed over a time scale)
rather than their configuration aspects encountered in a time instance make those
states recognisable. Besides, a currently growing body of psychological research
argues that timing of facial expressions is critical in the interpretation of any
facial display (Bassili 1978, Bruce 1986, [zard 1990). For researchers of machine
perception of human facial affect in general, and for future developers of ISFER
in particular, this suggests investigation towards the design and development of
an efficient machine-learning method which could enable the intended user-
profiled facial-affect-sensitive monitoring tool to continuously enhance its
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expestise through interaction with the user on the meaning that he/she associates
with different spatio-temporal patterns of facial expressions.

2. Enhanced efficiency: With the current state of the art in processing of signals
obtained by face-monitoring sensors (Pantic and Rothkrantz 2000d), noisy and
missing data should be expected. As explained in chapters 2 and 5, an automated
facial expression analyser (which is aimed at facial affect recognition or not)
should be able to deal with these imperfect data and to generate its conclusions
so that the certainty associated with them varies in accordance with the certainty
of the input data. In the case of an automated facial-affect-sensitive monitoring
tool such as ISFER, this can be achieved by considering the time-instance vs. the
time-scale dimension of facial affect analysis. Namely, there is a certain
grammar of facial affect behaviour, a pattern in the occurrence of affect
expressions. Hence, only a certain subclass of these affect expressions with
respect to the currently observed expression (time instance) and previously
encountered affect expressions (time scale) is plausible. If the current input data
reveal this statistically predicted facial affect behaviour, the certainty associated
with that data should be “high” and the certainty of the drawn conclusion is to be
computed accordingly. However, such a temporal analysis involves untangling
the grammar of human facial behaviour, which is a rather unexplored topic even
in the psychological and sociological research areas and certainly in the area of
Al research. The issues that make this problem extremely difficult to solve in a
general case concern the dependency of human behaviour upon personality,
cultural and social vicinity, current mood, and the context in which the observed
facial behaviour occurs. Yet, in an automated person-dependent face-monitoring
tool such as ISFER, which interprets the observed facial behaviour in terms of
interpretation labels defined by the current user, the grammar of the monitored
subject’s facial behaviour could be learned by “watching” that subject and
interacting with the current user on his/her interpretation of the observed spatio-
temporal patterns of the subject’s facial behaviour. In turn, based upon the
learned grammar of someone’s facial affect behaviour, statistical predictions
could be made about the facial expression of that person that is likely to be
displayed next and could be further utilised to enhance system performance (i.e.
to deal with noisy input data and partial occlusions of the subject’s face and to
enhance the process of computing the certainty measures to be associated with
the system’s results).

In summary, if automated facial expression analysis and facial affect recognition
were based upon context-dependent (i.e. person-dependent, application-dependent,
and task-sensitive) spatio-temporal analyses of facial image sequences, this would
greatly advance the performance of ISFER as well as the state of the art in the field
of machine perception of human facial expressions in general (see chapter 8 for a
further discussion on this topic).
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7 System evaluation

The more rigorously design and code inspection are performed, the better the
quality of the final system.
(Kan 19935)

The first step in evaluating the performance of an automated system is to obtain a set
of relevant test data. Because there are numerous areas where benefits could accrue
from the automation of facial expression analysis (sections 5.1 and 6.1, Golomb and
Sejnowski 1993), giving machines the ability to detect, track, and interpret human
facial expressions attracted the interest of many researchers and became one of the
hot topics in machine vision and Al research. Hence, it could seem that an accessible
test database of images of faces would be readily available. Nevertheless, as already
remarked by many researchers (e.g. Bowyer and Phillips 1998, Pentland 2000,
Pantic and Rothkrantz 2000d, Cowie et al. 2001), no database of images exists that
is shared by diverse computer-vision-research communities. In general, only isolated
pieces of such a facial database exist, each of which has been made and exploited by
a particular facial research community. An example is the FACS Dictionary (Friesen
and Ekman 1987), which has been developed and used by the Human Interaction
Lab of the San Francisco University of California (our group at the Delft University
of Technology was not given permission to use it). In consequence, similar to other
facial research communities, the students and research staff members working on the
automation of facial expression analysis at the Knowledge Based Systems
department of the Delft University of Technology collected their own database of
static facial images (e.g. De Bondt 1995, Profijt 1995, Pantic 1996, Rothkrantz et al.
1998, etc.). This rather large database of static facial images (see section 7.1) has
been used for evaluating the performance of ISFER.

The second issue in evaluating the performance of an automated system is that of
validation. In general, validation studies address the question of whether the
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developed system does what it should do while complying with the pre-defined set
of requirements (Saborido 1992). Validation studies on ISFER have been aimed at
testing both the rules of the Facial Action Encoder part of the system and the
dynamic memory components of the Facial Expression Classifier part of the system.
More specifically, validation studies on ISFER addressed the question of whether its
interpretations were acceptable to human observers judging the same facial images.
Section 7.2 describes validation studies on the Facial Action Encoder part of ISFER.
Section 7.3 is concerned with both the recall and the learning function of the Facial
Expression Classifier part of ISFER. In both cases, the conclusions of ISFER were
compared with those of human experts belonging to college personnel. Both
qualitative and quantitative assessments using standard statistical techniques were
carried out. Section 7.4 summarises the results of these studies, which support the
claim that ISFER has an acceptable level of expertise.

Finally, this chapter focuses on the quality of ISFER in terms of user satisfaction
with the system. However, a pragmatic examination of ISFER’s usability cannot be
performed since ISFER has not been actually deployed yet. What can be done,
nevertheless, is to give an estimate of user satisfaction. Section 7.5 provides such an
assessment.

7.1 Facial database

As already mentioned above and in spite of repeated references to the need for a
readily accessible database of facial information that could be shared by diverse
facial research communities all over the world, no such a common database has been
established yet. The glaring lack of such a resource forms the major impediment to
comparing, resolving, and extending the issues concerned with automatic facial
expression analysis and understanding. This lack of a common testing resource
slowed down not only the progress in applying computers to analyse human facial
behaviour but also overall cooperation and collaboration among investigators of this
research topic. The benefits that could accrue from a commonly used database of
images of faces (both static and motion images) are numerous:

e Avoiding redundant collection of facial expression exemplars can reduce
research costs: investigators can use one another’s exemplars.

e Having a centralised repository for retrieval and exchange of imagery can
improve research efficiency.

e Maintaining various test results obtained for a reference set of images and hence
providing a basis for benchmarks of research efforts can increase research
quality. This would also reduce the currently existing abundance of reports
presenting rather insignificant achievements.

256




However, although it would be extremely beneficial to establish a common
database of facial research efforts, no universally accessible database supplied with
facial images and the related test results has been founded up to date. In
consequence, virtually all active facial research communities, including the
Knowledge Based Systems group at Delft University of Technology, have
developed their own imagery databases that are used as benchmarks for their
research efforts.

Since 1992, when the Knowledge Based Systems group started different projects
on the automation of facial expression analysis, numerous diverse images of faces
have been made and collected. As already mentioned in section 4.3, the full database
contains currently over 1600 frontal, profile, and dual views of 25 different faces
expressing hundreds of facial actions and their combinations. Since the images have
been made for multiple needs of students and scientific staff members working in
this research field, and without a clear idea to construct a common database of the
face, technical standards and considerations for database images were never
resolved. In other words, criteria for image resolution, colour, compression methods,
and distribution mechanisms were never defined. Hence, the images, having various
resolutions and colours, were scattered over various physical and virtual locations.
In 1998, an attempt was made to organise the existing repositories of facial imagery
and to create a centralised database of still images of faces (Schouwen 1998,
Vollering 1998).

As far as the technical considerations for the database of static facial images are
concerned, the following criteria have been defined:

o Resolution: the images should have standard PAL camera resolution, that is,
when digitised, images should measure approximately 720x576 pixels.

e Colour: the images should be true-colour (24-bit) images or, if converted to
grey-scale images, the colour depth of 24 bits should be reduced to 256 grey
levels.

e DB structure: the images were divided into one of the three database clusters:

> Portraits of faces that meet the above-given standards for resolution and
colour (no in-plane or out-plane head rotations are present; see Figure 7.1).
This part of the database contains approximately 400 images and includes
those scanned from the photographs used as behavioural science research
material.

> Dual-view facial images (i.e. combined portraits and profiles of faces) that
meet the above-given standards for resolution and colour and have been
obtained by the mounted camera device shown in Figure 4.2 (see Figure 7.2
for examples of dual-view images). There are approximately 600 of those
in the database.

» Miscellaneous images of faces that meet multiple needs of researchers
working on the topic but either do not meet the above-given standards for
resolution and colour or cannot be classified into one of the previous
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classes of images (e.g. “almost” frontal view images of faces where limited
in-plane and out-plane head rotations are present, see Figure 7.3). This part
of the database contains some 500 images and includes small clusters
containing the images used for a specific research purpose (¢.g. for testing a
particular facial feature detector; see section 4.3).

o Distribution: the database is installed on our group’s main server and can be
easily accessed. An easy access has been achieved by a relaxed level of security
that allows any student or group member, having a valid account on the group’s
server, a quick access to the database. This also frees the administrator of time-
consuming identity checks for the database itself.

e Security: while individual researchers may add their own images to the database,
the security status of such additions has not been determined. Though for all

additions, especially those to Portraits and Dual-Views partitions of the database,

it should be automatically checked (e.g. by case-based merging) whether they

match the specified technical formats, no provision has been made for such a

Figure 7.3: Examples of images belonging to the Miscellaneous DB partition
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secure extension of the database. However, providing novel investigators with
detailed instructions about the technical criteria for imagery inclusion in the
database seems to be sufficient for keeping the database well organised.

The database images represent a number of demographic variables including
ethnic background, gender, and age, and provide, in principle, a basis for generality
of research findings. Overall, the subjects were students and college personnel (in
total 25 different persons) of both sexes, young but still ranging in age from 20 to
45, and of either European, Asian, or South American ethnic background. In order to
avoid effects of the unique properties of particular people, each DB partition images
has been supplied with images of several individuals (e.g. the Dual-Views DB
partition contains images of 8 different subjects of both sexes who differ in age and
ethnicity).

Not only the issues of defining the technical requirements and ensuring
demographic variability of database images are relevant for establishing a readily
usable and malleable repository of research material: mefadata should be associated
with each image. Those data concern: the facial activity captured in an image (e.g.
given in terms of AUs scored by a human FACS coder), the distinction between
posed and spontaneous action (each may result in a different interpretation, see
section 8.3), the circumstances under which an image was obtained (important for
untangling the problem of context-dependency, see sections 6.6 and 8.3), etc.
Though some metadata associated with some images exist in written documents (e.g.
AU coding by human FACS coders), no effort has been made yet to determine,
associate, and compile metadata for each and every database image. This forms an
interesting playground for future facial researchers at the Knowledge Based Systems
group that could prove to be extremely useful (see also sections 6.6 and 8.3).

7.2 Validation studies on the Facial Action Encoder

The aim of the validation studies on the Facial Action Encoder was to establish
whether this part of the system is of good quality based on the correctness and
reliability of the results it generates. First, the correctness of the applied rules for
facial action coding was tested (qualitative validation of the rule base of the Facial
Action Encoder). Then, the reliability of the results generated by the Facial Action
Encoder part of ISFER was tested. The aim was to obtain an estimation of the
measure of agreement between the facial actions encoded by the Facial Action
Encoder and those encoded by human observers judging the same images
(quantitative validation of the rule base utilised by the Facial Action Encoder). Both
the interpretation and quantification of the displayed facial actions have been
considered.
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Qualitative validation of the rule base

As already explained in section 5.3, the Facial Action Encoder part of ISFER
employs three different sets of rules for facial action coding in input images. If a
portrait of the monitored face represents the input to the system, the rules describing
AU codes in terms of the utilised frontal-view face model are applied (Figure 5.2,
Table 5.5). In the case that a dual view of the monitored face forms the input to the
system, the rules describing AU codes in terms of the utilised dual-view face model
are applied (Figure 5.2, Table 5.8). Finally, in the case that merely the profile
contour is successfully detected in an input dual-view facial image, facial action
coding is performed based upon the rules describing AU codes in terms of the
utilised profile-view face model (Figure 5.2, Table 5.7). Since the set of rules
describing AU codes in terms of the utilised dual-view face model is a combination
of the other two sets of rules, qualitative validation of the rule base used by the
Facial Action Encoder considered testing of 22 rules listed in Table 5.5 and 24 rules
listed in Table 5.7. Both sets of rules were tested using five experts (i.e. certified
FACS coders) and 92 dual-view images. The aim was to estimate the correctness of
the employed rules based upon the measure of agreement between human observers
while judging facial expressions produced according to those rules.

First, two experts (say EI and E2) were asked to produce 46 facial expressions:
22 expressions of separate AU activations displayed according to 22 rules describing
AU codes in terms of the frontal-view face model (Table 5.5). and 24 expressions of
separate AU activations displayed according to 24 rules describing AU codes in
terms of the profile-view face model (Table 5.7). Both experts were asked to
produce per rule only the changes in facial expression described in the pertinent rule
and to “leave” the appearance of other facial features unchanged. Dual views were
recorded and the acquired 94 images (per subject: 46 facial expressions of separate
AU activations + a neutral expression) were given for evaluation to other two
experts (say A and B).

The employed questionnaires for scoring AUs have been made differently for
each AU. Overall, each questionnaire was divided into two sections corresponding
to the upper (eyebrows and eyes; 7 possible AU codes in total) and the lower facial
features (nose, mouth, and chin; 25 possible AU codes in total). Depending on the
AU (upper- or lower-face AU) for which the questionnaire was made, one of those
sections was blackened. Also, depending on the rule according to which the relevant
AU is produced, other parts of the pertinent questionnaire were blackened too. For
instance, in the questionnaires for AUS, places for scoring AU9, AU12, AUI3,
AU15, AU17, AU18, AU20, AU23, AU24, AU35 were blackened since the rules for
recognition of AU state that AU8 cannot be scored if any of these AUs is scored
(see Tables 5.5 and 5.7).
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Table 7.1

Comparison of human judgements of 44 stimulus images produced by experts
E1 and E2 according to 22 rules given in Table 5.5 to those that would be
produced by the utilised rule base. For 7 upper-face AUs displayed by either E7
or E2, there are 14 possible agreements / disagreements (aa / da). For 15 lower-
face AUs displayed by either ET or E2, there are 30 possible agreements /
disagreements (aa/ da).

Elup. AUs | EI low. AUs E2 up. AUs E2 low. AUs >

aa 13 28 14 30 85

da 1 2 0 0 3

> 14 30 14 30 88
Table 7.2

Comparison of human judgements of 48 stimulus images produced by experts
E1 and E2 according to 24 rules given in Table 5.7 to those that would be
produced by the utilised rule base. For 2 upper-face AUs displayed by either E1
or E2, there are 4 possible agreements / disagreements (aa / da). For 22 lower-
face AUs displayed by either E1 or E2, there are 44 possible agreements /
disagreements (aa/ da).

Elup. AUs | EI low. AUs E2up. AUs | E2low. AUs >
aa 41 4 43 92
da 3 1 4
T 44 4 44 9

For each stimulus image, experts 4 and B were asked to encode the displayed
facial action by comparing the stimulus image to the neutral facial expression of the
relevant subject and then to fill in the questionnaire provided for that image by
selecting one of the possible (not-blackened) AU codes. Per stimulus image, the
number of agreements and disagreements has been counted next. For example, if a
stimulus image representing activation of AU36b was judged by expert 4 to be
AU24 while expert B selected AU36b in the questionnaire, then for that image the
agreement was aq = 1 and the disagreement was da = 1. The number of agreements
and disagreements for the upper- and the lower-face AUs over 44 images, produced
by experts EI and E2 according to 22 rules given in Table 5.5, is summarised in
Table 7.1. A similar summarisation is provided in Table 7.2 for 48 images produced
by experts E1 and E2 according to 24 rules given in Table 5.7.

From Tables 7.1 and 7.2 it is apparent that in virtually all cases, the images
showing the activation of a certain AU produced by expert E2 according to the
tested rules were labelled with the same AU code by experts A and B. To confirm
this finding, another expert (say C, different from E1, E2, A, and B) was asked to
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evaluate 46 images of separate AU activation produced by expert E2 according to
the tested rules given in Tables 5.5 and 5.7. In the case of this novel human expert C,
testing the correctness of the rules utilised by the Facial Action Encoder proceeded
along the same lines as before: the judgments of expert C were compared to those
that would be produced by the utilised rule base. In this test, the agreement was
100%. In other words, expert C labelled each stimulus image, depicting a certain AU
produced according to the tested rules, with the prtinent AU code.

Quantitative validation of the rule base: Interpretation

In order to test the reliability of the results generated by the Facial Action Encoder
part of ISFER, a quantitative validation was carried out. The aim was to estimate the
measure of agreement between the human judgements and the interpretations
produced by ISFER as to the depicted facial actions (AU codes) in test images. In
this validation test, the reliability of the intensity level associated with each of the
scored AU codes has not been considered. With respect to the depicted level of
intensity assigned to a scored AU code, the reliability of the conclusions generated
by the Facial Action Encoder part of ISFER was tested separately (see the following
sub-section).

Table 7.3

Comparison of judgements given by two experts for five prominent features
over 560 stimulus images. For n AUs of a certain feature (n=3 for eyebrows,
nose; n=4 for eyes, chin; n=18 for mouth) there are 560xn possible agreements
I disagreements (aa / da).

eyebrows eyes nose mouth chin PR
aa 1631 2195 1546 9474 2150 16996
da 49 45 134 606 90 924
2 1680 2240 1680 10080 2240 17920

First, two experts (i.e. certified FACS coders, say EI and E2) were asked to
evaluate 560 dual-view images of faces constituting the Dual-Views part of the
facial database (section 7.1). The questionnaire for scoring AUs was divided into
five sections corresponding to five prominent facial features: eyebrows (3), eyes (4),
nose (3), mouth (18), and chin (4). The numbers in parentheses represent the number
of AU codes that the Facial Action Encoder part of ISFER is able to encode for the
given feature in an input dual-view facial image (see also Table 5.8). Per stimulus
image and per section of the questionnaire, the number of agreements and
disagreements was counted next. For example, if for a stimulus image expert EI
selected AU2 while expert E2 selected AU1 en AU2 in the eyebrows section of the
questionnaire, then for that image the agreement about AUs affecting the eyebrows
was aa = 2 (i.e. the experts agreed that AU2 is activated and AU4 is not activated)
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and the disagreement was da = 1 (i.e. the experts disagreed about the activation of
AU1). The number of agreements and disagreements of the two experts about the
depicted AU codes for each facial feature over 560 images of facial expressions
(representing various activations of one or more AUs) is given in Table 7.3. It was
found that for 454 images, the experts agreed about the displayed AUs. The original
set of 560 images has been reduced to a set of 454 test images accordingly.

Table 7.4

A comparison of ISFER conclusions and human judgements for five prominent
facial features in 454 test dual views. For n AUs of a certain feature (see in the
text or in Table 7.3 for value of n per facial feature) there are 454xn possible
agreements / disagreements (aa / da).

eyebrows cyes nose mouth chin 2
aa 1331 1795 1351 8122 1797 14396
da 31 21 11 50 19 132
pIN 1362 1816 1362 8172 1816 14528

The test of ISFER performance in facial action coding proceeded along the same
lines as explained before: the human judgements of 454 test images were compared
to those produced by the system. Overall results of this comparison are shown in
Table 7.4. Yet, Table 7.4 does not show the actual recognition rates achieved by the
system. The reason is that each of the test images could represent the activation of
one or more AUs, which the system could recognise correctly, partially, or
incorrectly. Table 7.5 summarises the system performance in facial action coding of
454 test dual-view images of faces given in the following terms:

e Correct denotes that the AU codes recognised by the system were completely
identical to the AU codes scored by human observers judging the same images.

e Partially correct denotes that AU-coded description obtained by the system is
similar but not identical to the one given by human observers when interpreting
the same image (e.g. some AU codes may be missing or may be recognised in
addition to those recognised by human observers).

o Incorrect denotes that none of the AU codes discerned by human observers in a
given image were recognised by the system.

e Recognition rate has been calculated as the ratio between the number of correctly
recognised test images and the total number of test images. If more than one AU
of a particular feature was misrecognised in a test image, the pertinent image was
counted once for the given feature. If several AUs of different features were
misrecognised in a test image, that image was counted for each of the pertinent
features. To calculate the percentage of agreement (i.e. the recognition rates),
human FACS coders typically use the ratio between the number of correctly
recognised AUs and the total number of AUs shown in the stimulus image being
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judged. However, it is more appropriate to calculate the recognition rates based
on the number of test images when one evaluates the performance of an
automated system. This is because the system may score AUs which were not
scored by human observers; such errors would not be taken into account if the
recognition rates were measured based upon the number of correctly scored AUs
and the total number of AUs shown in the analysed images.

As can be seen from Table 7.5, in 86% of 454 test cases ISFER coded the analysed
facial expression using the same AU codes as the human observers. If we consider
only the images in which the AUs were encoded with higher certainty factors CF
(say CF>30; there are in total 423 such images), agreement between the system
conclusions and human judgements of the same images is even 91%. When
compared to the performances of other automated systems for facial action coding,
similar recognition results are found but for much smaller sets of AUs to be
recognised in smaller sets of test images (Tian et al. 2001). From other AU-
recognition systems, the best performance has been achieved by the AFA system
(Tian et al. 2001), which achieves average recognition rate of 88% when encoding
16 AUs and their combinations over 226 test samples.

Table 7.5

ISFER performance in facial action coding of 454 test dual-view facial images
measured for AUs per facial feature, for upper- and lower-face AUs, and
overall.

upper-face AUs lower-face AUs

eyebrows eyes nose mouth chin
Correct 433 437 443 423 436
Partially correct 21 17 10 28 17
Incorrect 0 0 1 3 1
Recognition rate 95.4% 96.3% 97.6% 93.2% 96.0%
Correct 422 413
Partially correct 32 37
Incorrect 0 4
Recognition rate 93.0% 91.0%
Correct 392
Partially correct 58
Incorrect 4
Recognition rate 86.3%

As far as misidentifications produced by ISFER are concerned, most of them
arise from confusions between similar AUs (AU1 and AU2, AU6 and AU7, AU18
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and AU35) and from subtle activations that remained unnoticed by human observers
(e.g. AU26, AU38, and AU39). The reason for the confusion between AUl and
AU2 (i.e. recognising AUl in addition to AU2, which was detected by human
judges) is that activation of AU2, which raises the outer portion of the eyebrow(s),
tends to pull the inner portion of the brow (AU1) as well. Although human observers
also confuse AU6 and AU7 often (Tian et al. 2001), in the case of ISFER, the reason
for the confusion between AU6 and AU7 are the utilised rules for recognition of
these AUs. Namely, if AU12 is present, AU6 will be scored (see Table 5.5) although
this does not necessarily match the actually shown expression (Figure 7.4).
Similarly, the confusion between AU18 and AU35 is caused due to the utilised rules
for encoding these AUs in facial images. Since inward pull of the cheeks is not
detected by the system, only the width of the mouth distinguishes AUI8 from
AU35, causing misidentification of a weak AU35 (see Table 5.5). The reason for all
mistaken identifications of AU26 and most of the mistaken identifications of AU38
and AU39 are the subtle activations of these AUs, which remained unnoticed by the
human observers. Actually, in those cases, ISFER coded the input images correctly,
unlike the human observers. Yet such cases were addressed as misidentification.
Therefore, comparing an automated
system's performance to that of human
judges is not enough. Human observers
sometimes disagree in their judgements of
facial actions pictured in an analysed image
(e.g. Tables 7.1 and 7.2). They occasionally
make mistakes and if the tested automated
system does not produce the same mistakes,
its performance measure is reduced. To
estimate the performance of an automated
system precisely, it is necessary to compare it
to a validated standard. Behavioural scientists
as well as few researchers in the field of
automatic facial action coding use so-called Gold Standard Faces (GSF - Ekman
and Friesen 1984, Friesen and Ekman 1987) as a benchmark for comparison.
Nevertheless, though the photographed expressions of GSF are described in detail in
terms of displayed facial actions, judgements of these expressions were made by
human observers based merely upon the visual cues present in the judged
photographs. A more accurate means for recognising facial activity such as
measures of muscular electrical activity have not been used to double-check human
visual judgements of GSF. Though it is understandable why muscular electrical
activities were not measured for GSF (i.e. the subjects must be wired and that, in
turn, results in visual occlusions of photographed facial expressions), the lack of
such a double-check involves the risk that some subtle facial actions in GSF,
invisible to the naked eye, remained undetected (e.g. AU26 present due to slightly
parted teeth behind closed mouth). On the other hand (as in the case of ISFER and

Figure 7.4: Facial expression
of AU7+AU12 activation
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AFA systems), due to their sensitivity to small differences in spatial samples of
facial features, automated facial action coders may outperform human judges and
detect subtle facial changes that were invisible to them. However, any such
performance would be counted as a failure of the automated system evaluated
according to a standard such as GSF. Though it is apparent that a better, readily
accessible, standard set of facial images encoded in terms of displayed facial actions
is necessary for measuring performances of AU recognition systems, no effort in
establishing such a universally usable database of test images has yet been reported
(see section 7.1). In consequence, the accuracy of recognition results of automated
AU encoders cannot be measured or compared to each other. Therefore, the
performance of any automated system for AU recognition including ISFER can only
be estimated by comparing the system's conclusions about a set of non-validated
facial images to sometimes erroneous human judgements of the same images.

Quantitative validation of the rule base: Quantification

If no standard set of FACS coded facial images can be used as ground truth
(benchmark) for validating the performance of automated systems in AU
recognition, one cannot expect a standard image database coded in terms of
quantified AU codes that is readily accessible for validating automated tools for
quantification of encoded AUs. Establishing such a facial database that could be
used as benchmark for validating the performance of automated systems in
quantified AU encoding is by no means a trivial task. In addition to the problem of
detecting subtle facial actions that may be invisible to the naked eye of a human
observer, there are a number of related issues (see also section 5.5). Since FACS
only provides five different AUs which can be assigned an intensity on a 3-level
scale, there are no standardised rules for displaying and scoring various AUs on a
100-level scale. Moreover, some AUs such as the blink (AU45) are either
encountered or not, so they can only be scored on a 2-level scale (Table 5.9). But the
crucial issue is that each person displays a particular AU with a different maximal
intensity. In consequence, a standard facial-image database must contain not only
images of faces described in terms of quantified AU codes, but also records
containing maximal activation for each AU per subject. Because of the complexity
of this task and the general lack of automated systems for AU recognition (Table
2.7) that could benefit from a standard database of FACS-coded facial expressions,
no effort has been made to build such a standard resource for validating the
performance of automated facial action coders.

Hence, the validation of ISFER's performance in quantified facial action coding
from dual-view images of faces proceeded along the same lines as those explained
before, namely, by comparing human judgements of test images to those produced
by the system. Though this obtained merely an approximate estimation of the
system's performance, it addressed the question of whether ISFER's conclusions
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about the intensity levels of scored AUs were acceptable to human beings judging

the same images of faces.

Originally, the validation test for estimating ISFER's performance in
quantification of encoded AUs was envisioned as to provide several human experts
with the 454 FACS-coded images used in the previous validation test (see Table 7.5
in the preceding sub-section) and to compute the inter-observer agreement about the
level of intensity of each AU shown in the test images. Yet two difficulties were
encountered with this approach. First, for only 100 images, it took a single human
observer over 5 hours to assign levels of intensity to the depicted AUs. Second,
when this human observer was given the same images once again, the agreement
between the first and the second judgement of those images was rather low. A
possible reason for this is that the observer was only given the neutral expression
image of the currently analysed subject for comparison; images of that subject's
maximal displays of various AUs (i.e. his/her individual extreme displays set -
IEDS; see section 5.5) were not provided. Therefore, another test procedure was
defined:

o Test images: from the set of 454 FACS-coded dual-view images of faces used in
the previous validation test, 91 images, which the system coded correctly in that
test, were selected. The selection was made so that each of 24 AU codes, which
ISFER can encode and quantify on the 100-level scale (see Table 5.9), was
represented by at least 7 different images of this set. Overall, the set contained
images of 4 different faces.

e Questionnaire: the employed questionnaires for eliciting intensities of face
actions were made separately for each test image. The questionnaire for a given
test image was divided into sections corresponding to the AUs scored in that
image. For each section of the questionnaire, human judges were asked to
indicate an appropriate intensity level on a scale from 1 to 10 by comparing the
test image to the neutral facial expression and the IEDS set of the pertinent
subject.

o Procedure: seven experts (i.e. certified FACS coders) were asked to fill out the
questionnaires corresponding to 91 test images. The scores were averaged and
multiplied by 10 (in order to obtain values that are comparable to the intensity
levels that the system assigns to the encoded AU codes). The set of test images
was divided into 4 partitions corresponding to four subjects. For each partition of
the test set, the pertinent subject's IEDS was used to initialise the database of
extreme model deformations (see section 5.5) and the performance of the system
in quantifying encoded AUs was compared to the averaged human judgements of
the same images.

Table 7.6 summarises (for each of the five prominent facial features, for upper-

and lower-face features, and overall) the average disagreement between the
conclusions of the human observers and those produced by ISFER about the
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intensity levels of AUs depicted in 91 test dual-view facial images. It is interesting
to note that the smaller the size of the judged facial feature (in respect to the size of
the whole face), the greater the disagreement between the judgements of the human
experts and those of the system as to the depicted intensity level for AUs of that
feature. There are two possible reasons. Since this finding applies just to the eyes
and the eyebrows and not to the smallest of the facial features, the nostrils, one
reason may be that human beings assign a higher priority to the upper-face features
(as remarked by Ekman (1982) as well) while paying less attention to the actual
degree of facial changes apparent in those features. Another, simplistic reason is that
the human eye is rather insensitive to small changes in the upper-face features.

Table 7.6

ISFER performance in quantifying AU codes measured in terms of
disagreement between the scores of the human experts and those of the
system for 91 test dual-view facial images. Disagreement about the depicted
intensity level of each AU of the test set is given for AUs of the five facial
features, for the upper- and lower-face AUs, and overali.

upper-face AUs lower-face AUs
eyebrows eyes nose mouth chin

24.2% 27.7% 18.1% 17.0% 11.3%

Average disagreement 26.0% 15.5%

20.8%

Since ISFER is the only automated system for quantified AU recognition
reported up to date (chapter 2 and/or Pantic and Rothkrantz 2000d), its performance
in quantified facial-action coding could not be compared to the performance of some
other system. In addition to the general lack of a standard image database for the
face, this makes the evaluation of the generalisability of ISFER impossible.

7.3 Validation studies on the Facial Expression Classifier

The aim of the validation studies on the Facial Expression Classifier was to test the
components of the dynamic memory of experiences and the pertinent recall
(retrieval), learning (adaptation), and quantification functions (sections 6.4 and 6.5).
A qualitative study was performed to test if the dynamic-memory clusters are
accessed by their cases (i.e. the cases that were previously classified in the pertinent
clusters) correctly, when these are used as input to the system. Quantitative studies
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on Facial Expression Classifier were carried out to test if the interpretation labels
learned from the user and quantification of those, output by a trained ISFER, were
acceptable to the pertinent user.

Qualitative validation of learning and recall

In this test, the learning and recall capabilities of the Facial Expression Classifier
were investigated to ensure that input facial actions and the related interpretation
label were learned and retrieved in a subsequent processing correctly. In other
words, the aim was to ensure that the CBR architecture of the Facial Expression
Classifier part of ISFER was implemented correctly.

Table 7.7
The interpretation categories defined by a human lay expert for 40 facial
expressions of the database of training images

Expression Interpretation Expression Interpretation
AUl Disappointed AU6+AUIL3 Ironic

AU2 Angry AUIS “I don't know”
AUI+AU2 Surprised AUIS+AU17 [ “I don't know”
AU4 Angry AU16+AU25 | Angry

AUS “Please don't” AU17 “I don't know™
AU7 Thinking (problem) AU18 Thinking (problem)
AU1+AU4+AUS5+AU7| “Please don't” AU19+AU26 | Funny
AUI+AU4+AUS “Please don't” AU20 “I don't know”
AU1+AU4+AU7 Disappointed AU23 Thinking (problem)
AUI+AUS+AU7 “Please don't” AU24 Angry

AU1+AU4 Disappointed AU24+AU17 | Angry

AUI+AUS “Please don't” AU27 Surprised
AUI+AU7 Disappointed AU28+AU26 | Thinking (problem
AUS+AU7 “Please don't” AU28t+AU26 | Thinking (problem)
AUS8 Angry AU28b+AU26 | Thinking (problem)
AU9 “What a slimy thing” | AU29 Funny

AU9+AU17 “What a slimy thing” | AU35+AU26 [ Thinking (problem)
AU10 “What a slimy thing” | AU36t+AU26 | Funny
AUI0+AUL7 “What a slimy thing” | AU36b+AU26 | Thinking (problem)
AU6+AU12 Happy AU41 Sleepy

To validate these functions, that is, to determine whether the "correct" cluster is
selected for a known case, a "lay expert" (i.e. someone without formal training in
emotion signals recognition) drawn from college scientific staff was asked to train
the system by using the database of 40 training images (see Figure 6.3 and Table
6.1). Then, from the set of 454 FACS-coded dual-view facial images used to
validated ISFER's performance in AU recognition (section 7.2), 11 images, which
were correctly FACS-coded by the system in that test, were selected. The images
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corresponded to the 11 user-defined interpretation categories (Table 7.7): AU1+AU4
(Disappointed), AU4 (Angry), AU1+ AU2 (Surprised), AUI+AU4+AUS ("Please
don't"), AU7+AU23 (Thinking (problem)), AU9+AU26 ("What a slimy thing"),
AU6+AU12+AU26 (Happy), AU6+AU13 (Ironic), AU15+AU17 ("I don't know"),
AU19+AU26 (Funny), and AU41 (Sleepy). For all 11 test images, ISFER retrieved
the correct interpretations. Thus, the implemented learning and retrieval (of known
cases) appeared to be satisfactory.

Quantitative validation of recall

A more stringent validation test of recall capabilities of the Facial Expression
Classifier addressed the question of whether ISFER returns the same interpretation
labels learned from the user as the pertinent user when presented with an arbitrary
set of dual-view facial images. This test was carried out with the same lay expert
who trained the system in the previous test. In this test, we used the set of 392 dual-
view facial images that were correctly FACS-coded by the system in the validation
test used to measure ISFER's performance in AU recognition (section 7.2).

The questionnaire for eliciting affective/attitudinal states was divided into 12
sections corresponding to the neutral category and 11 categories defined by the lay
expert while training the system (Table 7.7). Per stimulus image, the expert was
asked to interpret the displayed facial expression by comparing it to the neutral
facial expression of the relevant subject and then to fill out the questionnaire by
selecting one of 12 affective/attitudinal categories. The lay expert labelled 27 images
inconsistently, using different labels than when training the system. Hence, the recall
function of the system was evaluated using the other (392 - 27 =) 365 dual-view
images of faces.

Table 7.8 provides a summary of the interpretation results achieved by the
system for 365 test images for each of the interpretation labels learned from the lay
expert. The Samples column denotes the number of test images that the expert
classified in the pertinent interpretation category. The numbers in parentheses
represent the number of test images that the expert labelled differently than when
training the system. Correct denotes that the interpretation produced by the system
was identical to that given by the lay expert. P(artially) Correct denotes that the
conclusion reached by the system contains one or more interpretation labels in
addition to the one given by the expert. Incorrect denotes that the system generated
none of the interpretation labels given by the expert for the pertinent sample image.
Recognition rate denotes the ratio between the number of correctly interpreted test
images and the total number of images used for testing.

On average for 74.2% of the test cases, ISFER correctly interpreted the input
facial expressions in terms of interpretation labels defined by the lay expert (Table
7.8). Given that human observers, having a formal training in emotion signals
recognition, detect six basic emotional facial expressions with an accuracy ranging
from 70% to 98% (Bassili 1978), it is significant that ISFER matched this accuracy
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when detecting 12 facial affects defined by a human expert and after being trained
on only 40 cases. Most of the system’s misidentifications are due to the utilised
testing procedure. Namely, the lay expert was asked to assign a single interpretation
label to each and every sample facial expression, while ISFER resulted in multiple
interpretation labels for some of the sample expressions (see the numbers in the
P(artially) Correct column of Table 7.8). Hence, a more precise estimation of
ISFER's recall capability evaluated in this test, that is, an indication whether the
"correct" cluster of the dynamic memory is selected for an unknown case, is the ratio
between Correct + P(artially) Correct interpreted images and the total number of
images used for testing. Per interpretation category defined by the lay expert this
ratio is 94.8% on average: Neutral (94.4%), Disappointed (86.2%), Angry (92.6%),
Surprised (100%), “Please don't” (90.9%), Thinking (problem) (97.6%), “What a
slimy thing” (100%), Happy (100%), Ironic (83.3%), “I don't know™ (90.9%), Funny
(94.7%), and Sleepy (100%). If we bear in mind that the lay expert interpreted
virtually each of the facial expressions that was incorrectly classified by the system
differently than she did for its component expressions in the training phase, it can be
concluded that ISFER's capability (in retrieving correct interpretations for known
cases) is satisfactory.

Table 7.8
ISFER's recall capability measured for 365 test images for each interpretation
category defined by the lay expert

Samples | Correct | P. Correct| Incorrect | Recognition Rate

Neutral 36 34 0 2 94.4%
Disappointed 29 (4) 16 9 4 55.2%
Angry 27 (7) 17 8 2 63.0%
Surprised 46 (1) 32 14 0 69.6%
Please don't 33 23 7 3 69.7%
Thinking (problem)| 41 (8) 33 7 1 80.5%
What a slimy thing 38 33 5 0 86.8%
Happy 40 31 9 0 77.5%
Ironic 18 (2) 11 4 3 61.1%
I don't know 33(5) 22 8 3 66.7%
Funny 19 14 4 1 73.7%
Sleepy 5 5 0 0 100%

Total{ 365 (27) 271 75 19 74.2%

Quantitative validation of learning and quantification

The learning (adaptation) function of the Facial Expression Classifier part of ISFER
was tackled next. The addressed question was: How acceptable are the
interpretations given by ISFER, after the system is trained on a larger number of
cases? The following procedure was designed to discover this.
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The same lay expert used to train the system in the previous tests was used for
this test as well. The same set of 392 dual-view facial images that the system FACS-
coded correctly in the test aimed at measuring the performance of the system in AU
recognition (section 7.2) was used once more. The set was divided into two sets of
images: a training set (196 images) and a test set (196 images). The 27 images that
were excluded from the previous test due to the expert's inconsistent labelling of
these (Table 7.8) were included in the training set of images. The images that were
interpreted by ISFER as Partially Correct and Incorrect in the previous test were
divided between the training and test set of images. For the training set of dual-view
images, the lay expert was asked to trigger the learn mode of the Facial Expression
Classifier whenever the interpretation produced by the system was not satisfactory.
In addition to the 11 categories defined when training the system on the database of
training images (Table 7.7), the lay expert defined another three interpretation
categories: bored, monkey face, and delighted. Then, the lay expert judged the
acceptability of the interpretations returned by the system over the test set of images
(Table 7.9). Agree denotes that the expert approved of the interpretations achieved
by the system. Partially Agree denotes that the expert approved of at least half of the
generated interpretation labels (e.g. Figure 7.5). Disagree denotes that the expert
disapproved of more than half of the interpretation labels scored by the system (e.g.
Figure 7.5). Recognition rate denotes the ratio between the number of test images
the generated interpretations of which were approved of in some measure (Agree
and Partially Agree) and the total number of images used for testing.

s

Figure 7.5: Examples of images for which the lay expert partially agreed
(left-hand-side image) and disagreed (right-hand-side image) with the
interpretation given by the system (i.e. for the left-hand-side image:
Surprised + Thinking (problem); for the right-hand-side image: Delighted).

As shown in Table 7.9, in 97% of 196 test cases the lay expert approved of the
interpretations (affective/attitudinal labels learned from that expert) generated by the
system to some degree. Similar recognition results were also reported for other
automated facial affect analysers (see Tables 2.8 and 2.9) but for much smaller sets
of affective states to be recognised (i.e. the set of six basic emotions or a subset of
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it). This finding and the fact that ISFER represents a user-adaptive system that
enhances its expertise with each presented case led to the conclusion that the
ISFER's performance in interpreting facial expressions in terms of user-defined
affective/attitudinal labels is acceptable and will become even more satisfactory as
the longer the system is used.

Table 7.9
Approbation of interpretation labels generated by the system for 196 test
images

Agree Partially Agree Disagree
# samples 163 27 6
Rate 83.2% 13.8% 3.1%
Recognition rate 96.9%

Finally, the quantification function of the Facial Expression Classifier part of
ISFER was tackled. This test addressed the question of whether the intensity levels
of the scored interpretation labels that ISFER had assigned were acceptable to the
lay expert (the same used for the previous tests) judging the same images of faces.
To this end, the lay expert was asked to evaluate the acceptability of the intensity
levels assigned to the interpretation labels returned by the system for 163 test images
which she approved of in the previous test (see Table 7.9). In summary, the lay
expert approved of 81% (i.e. 198) of the intensity levels assigned by ISFER to the
scored 244 interpretation labels. In other words, in 81% of the cases the expert
agreed for £20% with the intensity level assigned by the system to a scored
interpretation label. Since the quantification of interpretation labels relies on the
quantification of the scored AUs (section 6.5), this 20% were meant to account for
the average disagreement between human judgements and those produced by ISFER
about the shown AU-intensity level (Table 7.6).

Most of the disagreements concerned the interpretation of facial expressions
affecting the upper-face features (i.e. eyes and eyebrows). Namely, the lay expert
argued that the intensity levels of shown affective/attitudinal states should be higher
than those assigned by the system. Something similar applied to the quantification of
scored AU codes: the AU-intensity levels assigned by the human experts and those
assigned by the system disagreed more when these concerned the upper-face
features than the lower-face features (Table 7.6). These findings clearly indicate that
humans assign a higher priority to the upper-face features than to the lower-face
features when interpreting facial expressions (remarked by Ekman (1982) as well).
However, to confirm these findings and implement them into the ISFER's reasoning
process, more extensive field trials and more elaborate quantitative studies on the
issue are necessary.




7.4 Discussion on system validation

The basis of the validation studies on ISFER was a comparison between the facial
expression analyses carried out by the system and by humans of the same dual-view
images of faces. The criterion involved in this approach is the degree to which
human observers agree among themselves upon the AUs shown in an analysed
image. After all, one cannot expect that the results of ISFER, or those of any other
automated facial expression analyser, agree with those of humans to a greater extent.
The preceding sections proved this in an experimental way. The agreement among
human judges about the AU codes shown in 560 facial images was 81% (i.e. 454
images, Table 7.3, section 7.2). For 86% (392 images) of these cases ISFER
obtained AU-coded descriptions of analysed facial expressions that were identical
(Table 7.5). The average disagreement between the AU-intensity levels generated by
ISFER and those given by human judges, who evaluated 392 images that were
correctly FACS coded by the system, was 20% (Table 7.6). For 97% of test cases
(196 images correctly FACS coded by ISFER), the system generated the
interpretations (affective/attitudinal labels learned from one lay expert) that were
approved to a certain extent by the lay expert (Table 7.9). Finally, in 81% of the
cases, the lay expert agreed for £20% with the intensity levels assigned by the
system to the interpretation labels previously approved by that lay expert. Hence,
human experts are expected to agree for 20% with all of the conclusions produced
by ISFER in merely 67.8% of the test cases’.

Given that the validation is only as sound as the abilities of the human experts
involved and that it turned out that the consensus of the involved experts is only
moderate, assessing the performance of ISFER by comparing only the results of
ISFER to those of human judges is not enough. Two reasons may be given why the
involved experts varied somewhat in their interpretations of the facial actions
present in the judged images and why inconsistencies were observed in human
judgments of signalled affective states in the same images. Firstly, the recognition of
facial actions is maybe a task that commonly yields different results when executed
by humans (in spite of the fact that the originators of FACS theory (Ekman and
Friesen 1978) claim otherwise) while the facial affect analysis is perhaps a task that
always yields inconsistencies, even between the judgements made by a single human
observer. The other reason may be that the experts used for validating the
performance of ISFER happened to be a discordant group of persons who judged the
stimulus image while being insufficiently concentrated on that task. However,

! From 454 test images, 392 images (86.3% of 454 images) would be correctly FACS coded,
380 images (96.9% of 392 images) would be correctly FACS coded and interpreted in terms
of learned affective/ attitudinal states, and 308 images (81% of 380 images), that is, 67.8% of
original 454 images, would be correctly interpreted in terms of quantified AU codes and
multiple quantified user-defined interpretation labels.
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resolving the actual cause of the only moderate consensus of the used experts is
intractable since there is no normative test for examining the human capability in
analysing facial expressions. In consequence, it can be only concluded that human
observers may disagree in their interpretations of the facial actions shown in the
judged images (e.g. see Tables 7.1 and 7.2) and that they may be inconsistent when
judging facial expressions in terms of signalled affective/ attitudinal states (section
7.3). Hence, if human judges make mistakes occasionally and if the applied
approach to assessing the system’s performance is to compare ISFER’s results to
those of human judges then, if ISFER does not produce the same mistakes as
humans do, its measure of performance is reduced.

To obtain a more precise estimation of ISFER's performance, it is necessary to
compare it to a validated standard. However, as already explained in sections 7.1
and 7.2, there is no readily accessible standard set of facial images coded in terms of
displayed facial actions that could be exploited for measuring the performance of
AU recognition systems. Though many researchers in the field pointed out the need
for a standard database of facial information, no effort in establishing such a
universally usable benchmark for efforts in automating FACS coding has yet been
reported. Since ISFER is the only automated system that analyses facial expressions
in terms of multiple quantified AU codes and multiple quantified user-defined
interpretation labels reported up to date, one cannot expect a standard image
database readily accessible for validating automated systems for recognition of
quantified AU codes and multiple quantified user-defined interpretation labels. In
consequence, a precise estimation of ISFER's performance cannot be obtained. A
measure of its performance can be established only approximately by comparing its
conclusions generated for a set of non-validated facial images to sometimes
erroneous human judgements of these images. Exactly such an approximate
measurement of ISFER's performance was presented in this chapter.

Based upon the validation studies explained in section 7.2, it can be concluded
that ISFER's performance in quantified facial action encoding from dual-view
images of faces exemplifies an acceptable level of expertise. At least as far as
ISFER's performance in AU recognition is concerned, the achieved results are
similar to those reported for other automated FACS coders. ISFER achieved an
average recognition rate of 86.3% by encoding 32 AU codes and their combinations
in 446 test samples, while other automated FACS coders have (in the best case) an
average recognition rate of 88% by encoding 16 AU codes and their combinations in
226 test samples (Tian et al. 2001). Since ISFER is the only automated system that
quantifies the encoded AU codes reported up to date (Pantic and Rothkrantz 2000d),
its pertinent performance could not be compared to the performance of some other
system. As far as the human experts used to validate the performance of the system
are concerned, the performance of the ISFER in scoring AUs intensity levels with an
average error of 20% seemed acceptable to them.

Based upon the validation studies explained in section 7.3, it can be concluded
that ISFER is capable of mapping the scored AU codes to quantified interpretation
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labels learned from the user. Since ISFER is the only automated system that
analyses facial affect in terms of multiple quantified interpretation labels learned
from the user reported up to date (Pantic and Rothkrantz 2001a), ISFER is not
comparable with other automated facial affect analysers. If we make such a
comparison notwithstanding, then it can be concluded that ISFER performs at least
as good as any other facial affect analyser. ISFER achieved an acceptable
recognition of 15 user-defined affective/attitudinal states and their combinations in
96.9% of 196 test samples, while other automated facial affect analysers have (in the
best case) an average recognition rate of 98% for 4 basic emotions over 30 test
samples (Table 2.9). Since ISFER is a user-adaptive system that learns its expertise
incrementally from the user with whom it interacts during daily use, once ISFER is
actually deployed, it can be expected that its performance will also increase
incrementally to become satisfactory for the user.

Though rather acceptable, ISFER's performance can be improved in several
aspects. Most of these are discussed in detail in sections 4.4, 5.7, and 6.6, and then
summarised in section 8.4. Therefore, merely a brief discussion of those issues is
provided here:
¢ ISFER cannot handle distractions like occlusions (e.g. by a hand), glasses, and

facial hair. Hence, its analysis is limited to non-occluded faces without a beard,

moustache, and glasses. Also, ISFER cannot deal with rigid head movements;
the analysed images have to be scale and orientation invariant with respect to the
image of the expressionless face of the currently observed subject, as if they

were acquired by the head-mounted-camera device illustrated in Figure 4.2.

Otherwise, the performed reasoning will be erroneous as the evaluation of the

input data certainty done by the Facial Action Encoder is based on a comparison

of the immovable facial points to the pertinent points extracted from the
expressionless face of the observed subject (section 5.4). Finally, ISFER cannot
encode the full range of facial behaviour (i.e. of all 44 FACS AUs); it performs

facial action coding in static dual-view facial images in terms of 29 AUs (i.e. 32

AU codes, Table 5.8). These limitations can be handled, at least partially, by

accommodating the analysis of facial image sequences rather than the analysis of

static images of faces (see also section 8.5).

e From the validation studies on ISFER, it is apparent that humans assign a higher
priority to the upper-face features than to the lower-face features when
interpreting facial expressions (remarked by Ekman (1982) as well). However, to
confirm these findings and to implement them into the ISFER's reasoning
process, more extensive field trials and more elaborate quantitative studies on the
issue are necessary.

¢ ISFER adopts an event approach: facial expressions of affective states are treated
as context-free autobiographical events. This is a very constrained type of event
where the context is limited to the accompanying facial actions displayed by a
particular subject in a time instance. Nevertheless, the interpretation of a
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monitored subject's facial behaviour does not only depend on that subject as far
as his/her maximal displays of particular facial actions and his/her typical facial
expressions are concerned. It also depends on the subject's typical temporal
course of facial behaviour given the environmental constraints in which the
subject acts. Due to the complexity of this problem, handling ISFER's context
insensitivity is probably the most significant challenge facing future developers
of ISFER.

7.5 Discussion on system usability

Looking at software engineering from a historical perspective, in the 1960s,
information technology reached a level sufficient to meet institutional needs and
began to link software with daily operations of institutions. In the 1970s and 1980s,
hardware costs began and continued to decline so that information technology
became quite customary in a wide range of institutions and low-cost applications
became widely implemented. In the 1990s, the era of ubiquitous computing began
(Schneiderman 1995, Pentland 2000), casting a new light on the future of
information technology and setting new requirements for software products.
Nowadays, by the ever-increasing dependence of society on computing (computing
devices are already almost everywhere — in offices, homes, cars, and even clothes),
the main demand for software products is not high productivity but rather high
quality. In this era, quality is no longer merely an advantage in the market; it has
become a necessary condition.

Speaking of market terms, the users’ satisfaction plays a crucial role in the
evolution of information technology. A software product’s fitness for use, that is,
whether the product meets the users’ requirements in a satisfactory manner (Juran
and Gryna 1970), determines the product’s survival at the marketplace. In general,
nevertheless, computing technology has not reached the ultimate goal of being
satisfactorily usable and universally accessible. As reported by Schneiderman (2000,
2001), an average user wastes approximately 5.1 hours per week while trying to use
computers. In consequence, a common experience of computer users is
dissatisfaction. In order to change this and to achieve the goal of having
satisfactorily usable and universally accessible software products, multiple human-
computer interface design breakthroughs are necessary (chapter 8), but thorough
usability (user satisfaction) tests are essential.

Standards and guidelines for testing the usability of software products (i.e. to
measure user satisfaction) are varied and numerous (Kan 1995). For example, for
products developed by IBM, customer satisfaction is measured in terms of
CUPRIMDSO criteria (capability, usability, performance, reliability, installability,
maintainability, documentation, service, and overall), while for Hewlett-Packard
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products, FURPS criteria are used (functionality, usability, reliability, performance,
and service). Either of those two sets or any other similar set of criteria for
measuring user satisfaction can be used for the examination of user satisfaction with
ISFER. However, a precise estimation of users’ satisfaction with ISFER cannot be
obtained at this point since ISFER is not actually deployed yet. What can be done,
nevertheless, is to establish an approximate estimation of future user satisfaction
with ISFER. If that estimation indicates that future users of the system won’t be
satisfied, the system has to be improved before it is released.

The rest of this section deals with assessing future user satisfaction with ISFER
based upon the validation studies discussed in the preceding sections and the FURPS
criteria (except for serviceability, which cannot be assessed since the system has not
been actually deployed yet).

Functionality

Simply speaking, the functions of a system have to meet the expectations of users

and to be correct if users are to be satisfied about the functionality of the system.

The functional requirements imposed on ISFER are (section 2.6):

e Automatic quantified FACS coding in static facial images: the processing should
start with a generic (subject-independent) facial data extraction in input facial
images, proceed with a generic classification of extracted data into multiple AU
categories, and end with adapting to the currently monitored individual in order
to obtain subject-dependent quantification of the encoded AU codes.

e Automatic facial affect analysis from input images in terms of multiple
quantified facial expression interpretation labels learned from the user.

Since ISFER’s analysis of an input facial image results in multiple quantified AU
codes and multiple quantified user-defined interpretation labels describing the facial
expression captured in the input image, the system does what is expected. But the
question whether the generated description of the input facial expression is correct is
more difficult to answer. Namely, if “correct” denotes that the description of an
analysed facial expression generated by the system is identical to that given by the
user when analysing the same expression, then based on the validation studies on
ISFER (sections 7.2 and 7.3) one could conclude that the performance of ISFER is
not correct. In consequence (if “correct” means “identical”), one could expect that
future users of ISFER will not be satisfied with its functionality. However, if
“correct” denotes that the description of an analysed facial expression produced by
the system is acceptable to the user and most of the time identical to that obtained by
him/her when judging the same expression, then based upon the validations studies
on ISFER, it can be concluded that future users will be satisfied with the
functionality of ISFER. To improve future user satisfaction with the functionality of
ISFER, the aspects of the system performance listed above (section 7.4) should be
improved.
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Usability

If a system fits the intended user audience, their tasks, and their environment, the

users will be satisfied about the system usability. There are four fundamental

questions that can act as useful guides in usability testing (Schneiderman 1993):

1. Are the individual differences between users considered?

2. Are the social implications of the intended system on the user audience
considered?

3. Did users participate in the actual design process?

4. How does the intended system empower users?

The main goal for the development of ISFER was to achieve a fully automatic
facial expression analysis, which is applicable to automated FACS coding and
automated facial expression classification in observer-defined interpretation
categories, such that it serves the purposes of behavioural science investigations of
the face (sections 1.1 and 2.6). Hence, the intended user audience concerns
behavioural scientists who, in general, have little or no experience with computing
and may interpret the same facial expressions in terms of different affective labels.
Since in order to use ISFER, users need no specific knowledge of computing and
quite a simple training, it is expected that the system will be easy to use by users
having little or no computing skills (see also sections 4.2, 5.2, and 6.3). As explained
in chapter 6, the Facial Expression Classifier part of ISFER has been developed so
that it learns its expertise by interacting with the user and performs facial expression
interpretation in terms of the user-defined affective/attitudinal labels. Besides the
fact that ISFER is a Java-implemented tool (i.e. a portable, platform-independent
application), this makes ISFER fit for the intended user audience, their tasks, and
their environment.

Yet the system is not universally usable since its usage is constrained by the kind
of input images. One may think that the problem is that the system was not
developed for analysing facial image sequences. However, since each frame of a
video sequence can be analysed as a static image, ISFER is generally capable of
analysing facial expressions in image sequences of faces. The problem is that if
ISFER is to work correctly and achieve the peak performance, the input images must
be acquired under the same viewing conditions as the neutral facial expression of the
currently monitored person. In other words, a neutral facial expression of the
observed subject has to be available (see the reasoning of the Facial Action Encoder
explained in chapter 5) and the analysed images have to be scale and orientation
invariant with respect to the image of the expressionless face, as if they were
acquired by the mounted camera device illustrated in Figure 4.2.

As far as the social implications of ISFER for its users are considered, there are
two relevant issues: invasion of privacy and displacement of human experts. The
general goal of automating facial expression analysis is to redesign user interfaces to
computers so that the machines become aware of the people that interact with them
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and respond in a better way based upon the observed “mood”, which might be
caused by the experienced interaction with computers (see also chapter 8). Yet
computing technology is still perceived as threatening, anxiety-producing, and cold
by many people, who would be terrified by the vision of computers being able to
monitor their affective states. Especially if one bears in mind that such perceptually
aware machines could be tightly networked together, affect-sensitive monitoring
could be seen as the realisation of Orwell’s dark vision of a government that can
monitor and control your every move (Orwell 1949). This is a very serious issue that
can lead to the disuse of software like ISFER due to users’ unwillingness to use such
programs and even, at an extreme, to outlawing of computers using cameras for
monitoring human behaviour. Hence, privacy issues should be taken very seriously.
However, it is important to note that it is not the cameras and the reasoning about
human behaviour that are the problem here, but the networking that makes it
relatively easy for outsiders to monitor people’s behaviour. This suggests a method
for addressing the privacy problem in the case of ISFER: to avoid, simply,
concentration of the information. So, instead of collecting images of the observed
faces and the associated interpretations (which in a short time can exceed the limits
of the memory capacity as well), just the information that will improve the system’s
performance in the future can be kept: newly learned interpretation labels and
typical facial expressions and extreme displays of the observed subjects.

A potential displacement of the human experts due to the employment of ISFER
is not an issue actually. ISFER is developed as a tool that can help behavioural
scientists: it automates much of their tedious and time-consuming tasks involving
FACS scoring and stores their professional opinions about facial expressions of
human affective/attitudinal states in an easy to retrieve way. Hence, ISFER
empowers its users by performing a time-consuming and boring part of their jobs,
freeing their valuable time to make the most difficult judgements on complex
phenomena of human behaviour.

ISFER has not been developed in collaboration with actual (future) users. Hence,
it is not known how the users will react to the system and if its design will be
considered satisfactory. Nevertheless, since the system is very easy to use, it is
expected that there will be no major complains about its design. In addition, the
usability of the system can be improved by providing help files on the system’s
usage, which will also free the developers of ISFER from training the future users.

Reliability

Reliability, as defined in the discipline of quality engineering (Kan 1995), refers to
the consistency of the results acquired using the same input data on the same part of
software product or the product as a whole. Hence, the reliability of a system can be
expressed in terms of deviation between the results obtained in repeated trials. In
this sense, ISFER is reliable: for the same image, it will produce the same
conclusions (at least if it has not been trained further in between the repeated trials
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and the previous trial has not been counted for calculating the typicality of the
pertinent facial expression). However, if the reliability is measured in terms of
deviation between the results generated by the system and those given by human
observer judging the same image, then ISFER is not 100% reliable. Yet, as
explained in sections 7.2, 7.3 and 7.4, the performance of ISFER has been perceived
as satisfactory by human experts used in the validation studies on ISFER.

Performance

In quality engineering terms, the system’s performance is as good as it approximates
the performance of a system that provides the computational solution for the given
problem in the shortest time, using the least memory space, and requiring the
smallest number of processors (Kan 1995). Since ISFER is the only automated
system that performs facial expression analysis from dual-view static facial images
in terms of multiple quantified AU codes and multiple quantified interpretation
labels learned from the user proposed in the literature up to date, there is no system
with which ISFER can be compared. Hence, it is difficult to define ISFER’s
performance according to the definition given in the discipline of quality
engineering.

However, what is meant by the term “performance” by the majority of people in
information and computing technology is the processing speed of the system
(capability), the accuracy in performing the required tasks (functionality), and
whether its usage is satisfactory (usability). From this point of view and based on the
discussions provided in this section and the validation studies explained in sections
7.2 and 7.3, ISFER’s performance is satisfactory for the purposes of behavioural
science investigators. Yet to confirm this finding by measuring the performance of
ISFER in terms of methods and metrics commonly used by behavioural science
investigators (which differs from those used to evaluate the performance of an
automated system as explained in section 7.2), more extensive trials and more
elaborate quantitative validation studies on ISFER are required. These concern
mainly the evaluation of the performance of the Facial Action Encoder part of the
system according the validation studies used by psychologists (i.e. collecting /
acquiring stimulus images that are objectively FACS-coded?, computing the number
of agreements and disagreements about AUs displayed in these images for all
possible pairs involving human observers and ISFER, and calculating the
significance of these findings by taking into account chances for agreements at
random). On the other hand, the execution of the system code is rather time
consuming yet. This makes the system unsuitable for the purposes of perceptual
human-computer interfaces where real-time performance is necessary since the
delays make the interaction desynchronised and unnatural (see also section 2.2 and
the discussion in chapter 8). As mentioned above, an improvement of the aspects

% As explained in sections 7.1 and 7.2, acquiring the images that are objectively FACS-coded
is a difficult problem in its own right.
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discussed in section 7.4 will improve ISFER’s performance and, in turn, the
prospect of future user satisfaction with the system.
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8 HCI: The future

Multimedia is an art-world term, often credited to designers Charles and Ray
Eames, that describes the fusion of media such as painting, sculpture,
photography, music and video. Within the world of computers it is used
broadly to describe almost any combination of media, ranging from simple
text through to the Eames’ vision. This diversity raises questions about the
future of multimedia interfaces. In the natural world such diversity is
elegantly explained by Darwin’s theory of evolution through survival of the
fittest.
(Preece and Schneiderman 1995)

Predicting the future of human-computer interfaces (HCIs) is a difficult task, but one
important source of help is the accumulated information about the preferences and
limitations of humans interacting with computers. Principles can be drawn upon,
which may explain why some interfaces survive and others become extinct. Of
course, in the case of any technology, market forces determine eventually which
novel designs survive. Yet, since profit is the main drive behind all market
decisions, clients’ preferences have crucial relevance in the evolution of technology.
As far as the interfaces are concerned, rigid designs that do not allow users to undo
their actions, do not protect against errors, provide help at all times except at the
right moment, and all in all make users frustrated, are likely to become quickly
extinct due to their poor usability (Nielsen 1995). On the other hand, designs that
include adequate attention to individual differences among users, support for a wide
range of hardware/software and network access, design for reliability and safety,
provision of access to the elderly or handicapped, and appropriate user controlled
adaptation, are the kind of HCI designs that are likely to become the trend in
computing technology (Schneiderman 2000). To elaborate, as computers become
ever more ubiquitous in society (they organise our affairs, help us to work and

283



express our ideas, find information and services we need, help us drive a car,
entertain us), reliable multi-modal HClIs that are able to adjust to both individual and
environmental differences are the future of man-machine interfaces (Marsic et al.
2000, Pentland 2000).

The key idea behind pursuing such a fully adaptive multi-modal HCI is
facilitating natural, human-like, man-machine interaction. People communicate by
using a variety of modalities such as sight, sound, and (optionally) touch, and by
displaying a wide range of communicative signals such as spoken words, facial
expressions, gestures, and vocal intonations, which may (and usually do) vary from
situation to situation (environment) as well as from person to person. Therefore, the
HCI systems that can interpret and emulate this variety of human communicative
signals and account for contextual differences (i.e. who the user is, where he is, what
he is doing, and how he is feeling) promise flexibilities and functionalities that
transcend the traditional mouse and keyboard.

In general, this chapter deals with natural multi-modal HCI systems that are
widely thought to become the “fourth generation” of computing and information
technology (Waibel et al. 1995, Nakatsu 1998, Coen 1999, Marsic et al. 2000,
Pentland 2000, Clarkson et al. 2000, etc.). In particular, this chapter examines the
state of the art in the automation of multi-modal affect-sensitive monitoring, which
is a prerequisite for the development of a natural multi-modal HCI of the kind
described above. The first section of this chapter renders a brief history of human-
computer interfaces. It is meant to serve as a guide to determining recommendations
for the design and development of a new generation of HCI systems based upon the
preferences and limitations of humans interacting with computers. Section 8.2
summarises research directions that could lead to very exciting improvements of
man-machine interfaces. The rest of this chapter is concerned with the topic of
automatic, multi-modal, affect-sensitive monitoring, that is, with enabling computers
to detect, identify and understand how the user is feeling based upon his/her
communicative cues sensed by the computer. Section 8.3 provides the taxonomy of
the pertinent problem domain. The issues addressed in this section are: which
modalities should be accommodated by an automated affect-sensitive monitoring
tool to perceive which interactive signals, should the signals observed by various
modalities be analysed in an isolated way or integrated at a fundamental stage of the
tool’s processing, is the time scale of sensed data important and how can it be
employed in the intended tool’s processing, etc. The discussion will imply that the
sensing, detection and interpretation of facial and vocal non-verbal human
communicative signals is essential for the realisation of a sophisticated affect-
sensitive monitoring tool. Section 8.4 examines the state of the art in the automation
of human affect analysis. It enumerates the advantages and limitations of ISFER,
which is an automated system for human facial-affect analysis, and surveys the past
work done in affect-sensitive monitoring of human vocal reactions. Based upon this
overview of the current state of the art, section 8.5 summarises the challenges and
opportunities facing researchers in the field of automated affect-sensitive monitoring
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of human interactive cues. Finally, section 8.6 discusses the impact that the proposed
affect-sensitive monitoring tools (forming a front-end for future HCI systems
described above) could have on the potential users and the society in general. This is
a serious issue since it determines the uses, usefulness, and trustworthiness —
essentially, the survival — of the proposed affective HCI systems.

8.1 The evolution of human-computer interfaces

Around 1980, at the dawn of the personal computer age, many chaotic and rigid user
interfaces were produced that turned the users into frustrated victims of machines
they could not control. Typical examples of useless interfaces at that time could
display a five-minute video without a stop button and generate choice sequences that
could not be reversed or cancelled. As high-resolution displays and fast chips
emerged, video and audio processing as well as animations flourished (particularly
for video games), introducing increased interface complexity accompanied by the
users’ need of better and more direct ways for controlling the wide range of possible
operations. This gave rise to a new generation of user interfaces, in which direct
manipulation became the dominant form of interacting and WYSIWYG (what you
see is what you get) became a guiding principle. The aim was: (i) to make operations
visible, incremental, rapidly manageable by means of a keyboard, and reversible, as
well as (ii) to prevent user errors by effective designs. During the late 80s and early
90s, direct-manipulation interfaces were enhanced with embedded menus in text and
graphics, mice, and various joysticks as the devices of choice. The relatively recent
emergence of high-precision touch screens marked another enhancement of direct-
manipulation interfaces.

As remarked by Preece and Schneiderman (1995) and Pentland (2000), the mid
90s can be viewed as the dawn of ubiquitous computing that shed a new light on the
future of computing and gave rise to novel requirements that useful user-interfaces
should fulfil. The growing availability of World Wide Web access with embedded
menus providing links across the world led to an unusually rapid growth of Web
servers and applications. First, as the emphasis has been on surfing the Internet,
many WD (Web Development) firms emerged creating various Internet search
engines, Web browsers and applications for data mining and retrieval. Then, the
emphasis shifted to electronic text-based communication (such as e-mail and chat
facilities), to tools for the development of Web pages and, eventually, to e-
commerce. This produced novel possibilities for “doing business” and, as the
number of users having on-line access grew steadily, an exploding number of WD
firms competed for survival. The necessity of delivering new products in an ever-
decreasing time frame affected, consequently, the quality of the issued products and
interfaces. This Internet hype also blurred the essence of some paradigms, such as
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software agents since an increasing number of vaguely related applications needed
legitimacy and sought it under the umbrella of the “agents”(section 3.7).

Though it was unfortunate at one hand and accompanied by numerous shoddy
Web-oriented applications, on the other hand this Internet hype initiated rapidly
accelerating progress in facilitating accessibility, speed, and reduction of error and
failure rates. Moreover, it changed our view on computing and commerce {(Shoham
1999). Above all, it clearly forecasted the type of working environments and
information-communication spaces we are about to use in our everyday activities.
Even nowadays a steadily growing minority of people exploits computers for work
and use the Internet to communicate with each other, to shop, to seek out new
information, and to entertain themselves (e.g. role-playing games allow people to
become part of an interesting story as heroes in virtual worlds). This clearly
indicates that in the future, with the aid of computers, we will carry out our daily
tasks (think about the abundance of computers and intranets in offices and the
popularity of video conferences, cars’ on-board computers, remote education, e-
commerce, etc.), we’ll communicate and entertain ourselves in cyberspace across
distance, cultures and time. Of course, the specifics of such virtual cyber worlds and
of pertinent interfaces, which should facilitate easy and natural communication
within those worlds and with the variety of embedded computing devices, are far
from settled. Yet, it is clear that before this new generation of ubiquitous computing
can be widely deployed, the users should experience it as being universally usable
(i.e. having satisfactory performance and being universally accessible).

8.2 Rethinking human-computer interaction

The designers of older technologies such as postal services, telephones, and
television, have reached the ultimate goal of having products and services that are
universally usable, but developers of computing technology cannot claim the same.
Schneiderman (2000, 2001) reports an average of 5.1 hours per week wasted by the
users while trying to use computers. Consequently, despite visible progress in
accessibility, increase of speed, and reduction of the error and failure rates, the
primary experience of many computer users is dissatisfaction or even frustration.
Common problems include incompatibility (e.g. of file formats, applications’
versions, screen sizes) and low speed (e.g. due to varying network bandwidths and
processor speeds). Although these issues are not of the least importance, the crucial
problem, which is primarily responsible for the users’ dissatisfaction, is
incomprehensibility of many currently available software packages and Internet
services. Confusing menu choices, disorganised structures of windows, shoddy
engines for information mining and retrieval, incomprehensible error massages, and
usually unnatural rigid (non-adaptive) interaction, are troubling to novices as well as
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to more experienced users and impose a significant barrier to elderly users and users
with disabilities. Obviously, interface design breakthroughs are necessary if
computing technology is to achieve the ultimate goal of being universally usable.

If we take into account the above state of the art in human-computer interfaces as
well as the prediction that embedded computing devices will be ubiquitously present
in society in near future (Nakatsu 1998, Pentland 2000, etc.), the key challenges
facing researchers in the area of HCIs and related fields can be summarised as
follows:

» supporting the technological variety,

enhancing comprehensiveness of the graphical design,
allowing natural multi-modal interaction,

developing context-sensitive HCI systems, and
facilitating (optionally) anthropomorphic response.

Although this list may not be complete, it summarises important issues that are
rather insufficiently addressed by the current initiatives. Research devoted to these
challenges will have a broad range of benefits for novel, intermittent, and frequent
users by enhancing the usability of HCI systems. Hence, at the very least, these
issues (explained in more detail in the rest of this section) are among the most
exiting and economically important topics in HCl-systems research and in
information technology in general (Sharma et al 1998, Pentland 2000, Schneiderman
2001).

Support of technology variety

In order to address the problem of incompatibility, the designers of HCI should deal
with the change in pace of technology and the variety of equipment that users
employ. According to Moore’s Law, processor speeds double every 18 months.
Since many users do not change the configuration of their computers at the same
pace, this means that there are at least hundreds of different processor speeds
currently in use. In turn, HCI designers who wish to take advantage of new
technologies risk excluding users with older machines. Improvements of other
hardware components such as RAM, hard disk space, and screen size, threaten to
limit access as well. Network access variety (some users still use 14K dialup
modems while others use 10M cable modems) imposes similar problems. Finally,
continually changing software represents an additional concern. As application
programs and operating systems evolve, users of current software may find their
programs become obsolete because newer versions fail to preserve file format
compatibility. As far as the problem of evolving software is concerned, the recent
spread of Java applications is a promising step since Java supports platform
independence. Yet, the execution of Java programs is time consuming, potentially
limiting users’ satisfaction.
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Undoubtedly, it is necessary to accommodate varying processor speeds,
hardware components, input devices, and network access speeds, and to design
software platforms that promote evolution while ensuring compatibility and bi-
directional file conversion, in order to deal with the currently nagging problem of
incompatibility (Schneiderman 2000). Since limiting the technological progress is
usually an unsatisfactory solution (if possible at all), a strategy that could lead to
very exciting results and systems is to make user interfaces malleable by making
them adaptable.

Comprehensiveness of graphical design

A second challenge to enhancing the usability of human-computer interfaces is to
make them easily comprehensible. As far as the fundamental goals of GUI design
are concerned, the aim is to omit (or at least minimise) extensive technical
terminology, irreversible actions, user-uncontrollable actions, unstructured screen
layouts, confusing menu choices, incomprehensible error massages and unexpected
crashes.

A more sophisticated and appealing challenge is to account for differences in
computing skills and experience of potential users. As reported by Schneiderman
(2000), some users need only a few minutes of orientation to understand the
novelties and begin to use new tools successfully, others need more time since they
are not familiar with the application domain or not accustomed to the specifics of the
encountered interface or, simply, not familiar with computing anyway. In turn, it is
necessary to provide HCI systems with lucid instructions for use and error-
prevention mechanisms, in general, as well as with effective tutorials for novices,
constructive help files for intermittent users, and compact presentations for experts.

A similar challenge in making HCI systems universally usable is to
accommodate users having some impairment or disability. To reach this goal it is
necessary to accommodate a user-controlled font size and contrast (crucial for
partially sighted and elderly users), alternative access for physically disabled users
(e.g. plug-ins for a disability-customised interface), and easily comprehensible
layouts (preferably fully graphical) specially developed for users with mild
learning/memory disabilities.

Allowing natural multi-modal communication

A third challenge in making HCI systems universally usable is to establish human/
computer interaction that captures attributes of human/human communication and
approaches its naturalness. As already mentioned above, people favour the sensory
dimensions of sight, sound, and touch as primary channels of communication
because they are elementary constituents of usual face-to-face interpersonal
interaction. This is why one long-term goal in human/computer interaction research
concerns the integration of these “natural” modalities that humans employ to interact
with each other into HCI systems (Sharma et al. 1998).
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As remarked by Schneiderman (2000, 2001), many HCI systems available today
assume users’ proficiency in computing; they are, for a casual user, often
cumbersome and obtrusive, lacking the adaptability necessary to accommodate users
with various levels of computing skill and experience. Furthermore, virtually all
“classic” HCI systems tend to confine the user to a less natural, uni-modal means of
interaction (e.g. a mouse movement, pressing of a key, speech input, or hand
motion). For example, to manipulate a virtual object with a typical HCI system, the
user is usually required to select the object by employing mouse motion, then point
with the mouse at a control panel to change the object’s colour. On the other hand,
in a more natural setup, the user would point at the object with his finger and say:
“Make it red”. Integration of more than one “natural” modality into an interface
would potentially overcome the current limitations of HCI systems: it would ease
the need for specialised training and ease the information- and command-flow
bottleneck between the user and the computer. Besides, recent data shows that a
multi-modal HCI can be an effective means for reducing uncertainty of uni-modally
sensed data (such as speech or hand motion), thereby improving robustness (Oviatt
2000). Although the incorporation of all features of human/ human interaction (i.e.
an intricate interplay of thoughts, language, and non-verbal communicative displays)
into human/computer interaction may be very complex and difficult to achieve,
equipping HCI systems with a multi-modal setup so that they can approach
naturalness, flexibility and robustness of human/human communication will give
them the potential to:

e transcend the traditional, cumbersome and rigid mouse/keyboard interaction, and

e yield a more effective and efficient information- and command-flow between the
user and the computer system and, by that,

e approach universal usability.

With this motivation, automatic speech recognition and spoken-language
processing have been topics of research for decades (Juang and Furui 2000). Some
other techniques like automatic gesture recognition, analysis of facial and vocal
expressions, eye tracking, and analysis of physiological reactions have only recently
matured enough to be used more effectively in freeing computer users from the
classic keyboards and mice (Roy and Pentland 1997, Yang et al. 1998, Marsic et al.
2000). However, most of the available relevant studies address merely the issues of
sensing and interpreting a single human communicative channel (either facial
expressions, or vocal intonations, or hand gestures etc.); the role of these modalities
in a multi-modal HCI system is still being explored. The basic questions relevant for
multi-modal HCI that should be answered are:
¢ which modalities should be integrated, and
¢ when and how should these multiple modalities be integrated.
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Modalities for more natural HCI

Natural face-to-face interpersonal interaction is perceived through five basic senses
and expressed through the production of various communicative signals. We speak
about, point at, and look at objects all at the same time. We also listen to the
intonation of the spoken words and look at facial expressions and body movements
of the speaker to find clues about the discussed subject, the importance the speaker
assigns to the discussed notions, his/her feelings about those notions, etc. Based on a
person’s respiration and clamminess we judge the nervousness and even the
personality and health state of the speaker. Yet, when it comes to human/computer
interaction, HCI systems tend to confine us to less natural means of communication
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Figure 8.1: Sensing of different human communicative signals (carried
by various interaction media) by multiple modalities for HCI
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by allowing usage of only one interface device at a time (typing, clicking a mouse
button, speaking, touching the touch screen, etc.). To make human/computer
interaction as natural as possible, it is necessary to enable computers to interpret all
natural human communicative signals (Sharma et al. 1998, Marsic et al. 2000).
Hence, computers should interpret human speech and lip movements, hand and body
gestures, eye gaze, facial expressions, vocal intonations, and various physiological
reactions (Figure 8.1).

Speech is the most natural form of communication among humans and, as
machines become ever more widespread, the need to allow natural-speech-based
communication between a human and a machine gains significant interest from the
computer scientists. The field of automatic speech recognition has witnessed a
number of substantial advances in the past two decades, spurred on by advances in
signal processing, software and hardware (Juang and Furui 2000). Nevertheless, the
current automatic speech recognition technology is still not robust, especially
outside controlled environments, under noisy conditions and with multiple speakers
(Pentland 2000). One possible solution to this problem involves using microphone
arrays and noise-cancellation techniques. However these tend to work only for the
environments for which they are designed (Sharma et al. 1998). The human
capability to “hear” in noisy environments by means of lip reading initiated research
on whether combined audio and video sensing and processing can provide a better
solution (Stork and Hennecke 1996). Except of supplementing acoustic speech
signals, lip movements as visible speech signals can also provide cues to whether a
person is speaking or not (Wojdel and Rothkrantz 2000). This is of particular
importance to HCI systems placed in noisy environments as well as to affect-
sensitive HCI systems, for which it is crucial to distinguish the movements of the
lips due to speech articulation from those representing signs of affective/attitudinal
states (section 6.6). However, a number of impediments make robust and widely
applicable joint audio-visual speech reading difficult to achieve (Chen 2001): (i) the
speech-required lip movements vary for different languages; (ii) optical features to
be tracked may be speaker dependent; (iii) though number of solutions have been
proposed for the problem of co-articulation within words and between words (i.e.
acoustic and optical perceiving of a single phone varies with adjacent phones), the
issue is still considered hindering; and (iv) there is a lack of consensus on how to
combine audio and visual input (see the discussion below). Due to the complexity of
the problem and general lack of researchers having expertise in both domains,
accomplishing robust automatic audio-visual speech reading still forms a significant
research challenge.

Historically, hand movements have been exploited most for HCI (Myers 1996).
This is largely due to the dexterity of the human hand, which allows highly accurate
selection and manipulation of objects and devices with the help of visual feedback.
Numerous interface devices have been based upon hand movement: the keyboard,
mouse, joystick, trackball, magnetic wand, touch screen, glove-based device. Also,
in the last decade, tremendous progress has been made in the field of visual sensing,
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detection, tracking and interpretation of human hand gestures (from simple pointing
through manipulative gestures to more complex symbolic gestures such as those in
sign languages). Several exhaustive surveys on this topic have been published
recently: glove-based gestural HCI (Sturman and Zeltzer 1994), hand gesture visual
recognition and interpretation (Pavlovic et al. 1997), human modelling techniques
(Cerezo et al. 1999), and tracking of human body and hand (Gavrila 1999, Pentland
2000). The current progress in automatic visual analysis of hand gestures opened up
possibilities for enhancing the state of the art in HCI — devices like the mouse and
the joystick could be replaced by allowing a more natural interaction based on
finger-pointing-based commands. However, visual sensing of hand gestures for HCI
suffers difficulties from both a theoretical and a practical standpoint. Which
interpretation should be assigned to which visually detected hand gestures is still a
subject of debate, particularly when it is desirable not to put restrictions on the
complexity of the hand movements to be monitored for more natural HCI. The main
problem here is that the interpretation of body gestures is context dependent, that is,
culture, person, situation, and task dependent (Efron 1941, Russell and Fernandez-
Dols 1997). One source of help for this problem is machine learning: instead of
having a priori generic rules for human body gesture interpretation, we can
potentially learn appropriate context-sensitive rules by watching the user in the
environment in which the intended gesture analyser is to be deployed (see also the
discussion about context-sensitive HCI systems given in the subsequent section).
From a practical standpoint, visual sensing involves the processing of huge amounts
of data in real time, which might put undue demands on the required processing
speed. Yet this problem becomes less and less significant as the computer hardware
gets faster and computer memory prices drop (Hassler 2001). A more critical
practical issue, common for all visual sensing including gaze, lip-movement, and
facial-gesture tracking, concerns: scale, pose and occlusion. Namely, in most real-
life situations it cannot be assumed that the subject will remain immovable; rigid
head and body motions can be expected causing changes in the viewing angle and in
the visibility and illumination of the tracked facial and body features. Though
interesting progress in addressing these issues has been made in machine vision
research (for a more detailed discussion, the reader is referred to section 8.5), these
problems in general and context-sensitive understanding of human body gestures in
particular pose significant research challenges (Pavlovic et al 1997, Pentland 2000).
Except lip movements and hand gestures, the sight modality also includes visual
sensing of gaze and facial expressions. Where the user is looking can provide a clue
to the intended meaning of a particular action (i.e. task discovery). For example, if
several windows are currently open and the user issues a spoken command “zoom
in”, the direction of the user’s gaze can be employed to detect the right window on
which to zoom in. Also, gaze tracking can be employed for controlling a display, for
instance, to scroll by looking to the left, right, up or down (Stiefelhagen and Yang
1997). Numerous eye-tracking systems have been proposed in the literature up to
date (Morimoto et al 2000). Though the presence of pupil-brightness-response
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variations for different subjects imposes a problematic phenomenon, real-time gaze
tracking may be considered, in principle, a solved issue that can be effectively used
to free computer users from the classic keyboard and mouse (Morimoto et al 2000).
Yet the same cannot be said for the techniques available for automatic face
detection, tracking and interpretation. Similarly to the case of visual sensing and
interpretation of hand gestures, automatic visual analysis of facial expressions
suffers difficulties from both a theoretical and a practical standpoint. From a
theoretical standpoint, the main impediment to accomplishing universally usable
automatic facial expression analysis is the lack of consensus on the human
perception of facial gestures (section 6.2). In other words, which interpretation
should be assigned to which visually detected facial expression is still an issue of
debate, particularly when it is desirable not to put restrictions on the variety of facial
expressions (attitudinal/emotional, emblematic, manipulative, illustrative, or
interaction-regulative) to be monitored for more natural HCI. The crucial issue here
is that of context dependency: it is very difficult to anticipate someone’s facial
expression due to the fact that facial expression interpretation is generally situation
and person dependent (chapter 6). From a practical standpoint, to accomplish robust
visual sensing of facial expressions, the intended monitoring tool should be able to
detect faces and facial features in arbitrary scenes under various lighting and
viewing conditions and independently of distractions like glasses and facial hair. If
we take into consideration the current state of the art in automatic facial expression
analysis (chapter 2 and/or Pantic and Rothkrantz 2000d, section 8.4), the
accomplishment of robust, automatic, context-sensitive facial expression analysis in
real time still lies in a relatively distant future (section 8.5).

Finally, except sound and sight modalities, a tactile computer-sensing modality
for more natural HCI has been explored recently with increasing interest. Especially
since haptic devices are now commercially available (e.g. Rutgers force-feedback
tactile glove designed for interaction with virtual environments; Burdea 1996), the
sensory dimension of touch has become a potentially realistic solution to a variety of
interaction design challenges (Marsic et al. 2000, Oakley et al. 2000). Computer
sensing of touch and force is particularly important for building a proper feel of
“realism™ in virtual reality: force-feedback capability is essential for grasping,
moving, and placing virtual objects (Engel et al. 1994). Not only force sensing
(Bergamasco 1995, Oakley et al 2000) has been used to enhance HCI; also sensing
of brain electrical activity (Putnam and Knapp 1993, Nasman et al. 1997), muscular
electrical activity (Suryanarayanan and Reddy 1997, Picard 1997), and other
physiological human reactions like respiration, temperature, and heart rate (Picard
and Healey 1997). The key idea behind this recent interest in introducing tactile
modality in HCI is threefold: it might form a means of making HCI accessible for
physically disabled users (Lusted and Knapp 1996), a means for reducing visual
overload in the conventional desktop (Oakley et al. 2000), and a means for sensing
affective states of the user (Healey and Picard 1998, Vyzas and Picard 1999). Yet
many theoretical and practical open problems are still to be addressed. For instance,
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the application of haptic technology might have a profound impact on the users’
fatigue if done improperly (Oakley et al. 2000), currently available wearable
physiological sensors imply wiring the subject, which is usually experienced as
uncomfortable, skin-sensors are very fragile (Djurica 2001) and the accuracy of
measurements is commonly affected by hand washing and the amount of gel used
(Cacioppo et al. 2000).

Integrating multiple modalities for more natural HCI

The performance of the intended multi-modal HCI is not only greatly influenced by

the different types of modalities to be integrated; the abstraction level at which the

pertinent multiple modalities are to be integrated/fused and the technique which is to

be applied to carry out multi-sensory data fusion are clearly of the utmost

importance as well. In general, there is a lack of consensus within the multi-modal-

HCI research community as to how exactly multi-sensory data fusion is to be carried

out (Figure 8.2). Yet, if the goal is to ensure that HCI approaches the naturalness of

human/human communication, three pragmatic issues can be considered when

making the decision about how to integrate data from individual computer-sensing

modalities into more complex multi-modal decisions:

1. How are the modalities combined in natural human/human interaction?

2. Does this hold in HCI?

3. Are there any existing data-fusion techniques that support the desired coupling of
multiple modalities?

Insight into how the modalities of sight, sound and touch are combined in natural
human/human interaction can be gained from neurological studies on fusion of
sensory neurons (Bower 1974, Stein and Meredith 1993). Three concepts relevant to
multi-modal fusion can be distinguished:

1, 1+1 > 2: The response of multi-sensory neurons is stronger for multiple weak
input sensory signals than for a single strong signal.

2. Context dependency: The fusion of sensory neurons is modulated according to
the signals received from the cerebral cortex: depending on the sensed context,
different combinations of sensory signals are made.

3. Handling of discordances: Based upon the sensed context, sensory discordances
(i.e. sensor malfunctioning) are either handled by fusing the sensory observations
without any regard for individual discordances (e.g. when a fast response is
necessary), or by attempting to recalibrate discordant sensors (e.g. by taking a
second look), or by suppressing discordant sensors (e.g. when one sensory
observation is contradictory to another).

Hence, humans simultaneously employ the tightly coupled modalities of sight,

sound and touch (McNeill 1992). As a result, analysis of the perceived information
is highly robust and flexible; undetected or noisy information from one channel is
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recovered or explained by the information available from other channels (e.g. in
noisy environments we “hear” what has been said by means of lip reading). Several
studies confirmed that this tight coupling of different modalities persists when the
modalities are used for HCI (e.g. Oviatt et al. 1997, Nakatsu 1998, Chen et al. 1998,
Chen 2001).
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Figure 8.2: Fusion of multiple sensing modalities: (a) data-level fusion
integrates raw sensory data; (b) feature-level fusion combines features
from individual modalities; (c) decision-level fusion combines data from
different modalities at the end of the analysis

A question remains, nevertheless, as to whether such a tight coupling of multiple
modalities can be achieved using the theoretical and computational apparatus
developed in the field of sensory data fusion (Hall and Llinas 1997, Dasarathy
1997). As illustrated in Figure 8.2, fusion of multi-sensory information can be
accomplished at the three levels: data, feature, and decision level. Data-level fusion
involves integration of raw sensory observations and can be accomplished only
when the observations are of the same type. Since the monitored human interactive
signals are of different nature and are observed using different types of sensors
(Figure 8.1), data-level fusion is, in principle, not applicable to multi-modal HCI.
Feature-level fusion assumes that each stream of sensory information is first
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analysed for features and then the detected features are fused. Feature-level fusion
retains less detailed information than data-level fusion, but it is also less prone to
noise and sensor failures, and, most importantly, it is the most appropriate type of
fusion for tightly coupled and synchronised modalities. Though many feature-level
techniques like Kalman fusion, ANN-based fusion, and HMM-based fusion have
been proposed (Stork and Hennecke 1996, Dasarathy 1997), decision-level (i.e.
interpretation-level) fusion is the most frequently applied approach to multi-modal
integration (Sharma et al. 1998, Marsic et al. 2000, Pentland 2000). Yet, it is almost
certainly incorrect to use a decision-level fusion since people display audio, visual,
and tactile communicative signals in a complementary and redundant manner.

In order to accomplish a multi-modal analysis of human interactive signals
acquired by multiple sensors, which will resemble human processing of such
information, the input signals cannot be considered mutually independent and cannot
be combined only at the end of the intended analysis. In turn, the input data should
be processed in the joint feature space. In practice, however, there are two major
difficulties: a huge joint feature space (resulting in a heavy computational burden)
and different feature formats and timing. A way to deal with these problems and to
achieve a tightly coupled multi-sensory fusion is to apply a Bayesian inference
method, as presented in (Pan et al. 1999). However, due to the complexity of the
phenomena and general lack of researchers having expertise in all domains (audio,
visual, and tactile processing), untangling the problem of joint audio-visual-tactile
analysis of human interactive displays is still a significant challenge facing
researchers of multi-modal HCI systems.

Context-sensitive HCI systems

Another challenge in fashioning universally usable HCI systems is to make them
context sensitive. The key idea is to account for individual differences of the users
and for the overall situation in which the user acts. To achieve this, HCI systems
should be able to specify in an automatic way:

1. Who the user is?

2. Where the user is?

3. What the user’s current task is (what he is doing and what he intends to do)?

4. How the user is feeling?

Based upon the user’s identity and the knowledge about his/her environment and

current task, it would be possible to retrieve information about the importance of

that task in the given environment, the user’s skills in performing that task, and the

user’s overall preferences. Together with the sensed user’s affective state, this

information could be employed to define the following:

o  What form should the instruction manual have? For example, for a novel user a
lucid tutorial could be provided, to an average user constructive help files could
be offered, for an expert user compact notes could prove to be sufficient. Yet the
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kind of help files provided to the user should not be rigid; it should be
determined based upon the overall user’s preferences and his/her current
affective state. Namely, users might prefer compact help files even if they are
novices and especially if they are in a hurry.

e When should the user be interrupted? This is of particular importance for the
systems that are designed such that they rely on the user’s feedback at all times
or offer assistance each time a certain task is to be performed or particular
conditions are encountered. The user’s current affective state and the importance
of his/her current task given his/her environment could be exploited to time the
interrupts conveniently. For example, if the user is hurriedly writing e-mails,
interrupting him to correct a syntax mistake can be postponed till the moment he
tries to send the e-mail.

o When, in which part, and in what way should the system be adjusted? The sensed
user’s affective state could be exploited to time the adjustment of the system, the
information about the user’s current task might form the target of the adjustment,
and the complete information about the sensed context could be used to
determine the adjustment properly. For instance, suppose that the user always
browses through a particular application in the same way in order to come to a
specific window and displays irritation each time the system starts the pertinent
application by displaying its very first window. In that case, a proper adjustment
might be to mark the window where the user commonly stops browsing and to
start the pertinent application with that specific window (browsing through the
preceding windows of the application does not have to be apparent to the user).
Yet, suppose that the user always becomes frustrated if a certain person enters
the office. In that case, no adjustment should be made since the user’s affective
state is not caused by HCI but by an external (and for HCI) irrelevant event.

As embedded computing devices become ever more omnipresent in society,
sophisticated HCI systems that can adjust to individual differences of potential users
and adapt to an overall situation delimited by the task and by environmental
constraints promise flexibilities and functionalities necessary for the coming era of
ubiquitous computing. Though the specifics of these user-centred context-sensitive
HCI systems are still far from delineated, it is clear that before this new HCI systems
can be deployed, they should be equipped with context-sensing technology and
machine-learning techniques that would allow them to adapt to both the overall
situation and the individual user. Although it was initially thought that visual context
sensing would be the research problem that would be the hardest to solve,
tremendous progress has been made in the last decade. Several exhaustive surveys
on various related topics have been published recently:

e Person identification (Samal and lyengar 1992, Adini et al. 1997) and bi-modal

speaker verification (Chen and Rao 1998),
e Person detection and tracking (Gavrila 1999, Collins et al. 2000),

297



e Detecting environmental cues (Collins et al. 2000, Strobel et al. 2001, Patras

2001),
e Affect-sensitive monitoring (Pantic and Rothkrantz 2000d, 2001a, Cowie et al.
2001).
Table 8.1
Multi-modal HCI research vs. Context-sensitive HCI research: similarities and
differences
DIMENSION | MULTI-MODAL HCI CONTEXT-SENSITIVE HCI
Purpose Allowing a more natural HCI | Allowing adaptive HCI that, similarly
according to the human/ to the human adaptation capability, can
human interaction model adjust to both the overall situation and
the individual user
Ultimate research goal: Ultimate research goal: Achieving
Achieving universally usable | universally usable and accessible HCI
and accessible HCI systems systems
Goal Introducing computer-sensing | Context sensing:
modalities of sight, sound and | person identification, task detection,
touch into HCI environment recognition, person’s
affective state interpretation
Phenomena Speech recognition, Face detection / identification, hand and
measured lip reading, gaze detection, body gestures detection / interpretation,
(techniques) hand and body gestures speech recognition, gaze detection,
detection / interpretation, environment monitoring (object
facial expressions detection/ | tracking / detection), facial expression
interpretation, detection / interpretation, vocal
physiological reactions expression detection / interpretation,
detection / interpretation physiological reactions detection /
interpretation
Main Audio input: noisy environments with multiple speakers are difficult to
problem handle
areas

Visual input: occlusions and variations in scale, pose, and illumination

are difficult to handle

Tactile input: inaccurate measurements due to fragile skin sensors are

difficult to handle

Multi-modal input: processing of multi-sensory data in joint feature

spaces is difficult to achieve

Interpretation: Context dependency (user, task, and environment
dependency) of human behaviour is difficult to handle in a general case
since there are no generic rules of human behaviour; machine-learning
techniques should be employed to make HCI context adaptable, but the
specifics of this adaptation process are difficult to delimit due to the
complexity of the relevant socio-technical issues
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However, many theoretical and practical open problems are still to be addressed
in the research field of context-sensitive HCI. Since the research on context-
sensitive HCI deals with similar issues as the research on multi-modal HCI systems,
the theoretical and practical challenges facing researchers in these fields are very
much alike (Table 8.1). Both research fields aim at accomplishing a form of
human/computer interaction that approaches the flexibility of human/human
interaction. Moreover, both seek to achieve robust multi-modal sensing and
processing of human behavioural cues. Finally, perhaps the most significant
challenge facing researchers in both fields is to achieve a joint audio-visual-tactile
context-sensitive interpretation of human behaviour.

While we may agree that an automated context-sensitive multi-modal
interpretation of human behavioural cues would be enormously beneficial for the
development of universally usable HCI systems, we also should recognise the
likelihood that such a goal still lies in the relatively distant future due to the state of
the art in sensing technology and signal-processing techniques (see the preceding
section) as well as due to numerous untangled socio-psychological aspects of human
behaviour (see section 8.3). Still, at the very least, multi-modal context-sensitive
HCI systems are among the most exiting and economically important research areas
in computer science (Pentland 2000).

Anthropomorphic response
Anthropomorphically designed HCI systems (AD-HCI) attempt to make computers
more accessible to the non-technical user by endowing them with looks and
behaviours that are, at least superficially, human-like. Typical AD-HCI systems deal
with engendering and incorporating animated and virtual characters within man-
machine virtual interactive environments (e.g. Figure 8.3). A virtual environment
(e.g. an internet-based virtual insurance agency) is typically inhabited by a clone
(avatar), representing a real person, and by virtual autonomous actors (e.g. an
animated insurance broker) (Kshirsagar and Thalmann 2000). In order to accomplish
a multi-modal natural interaction between these entities, mimicking of the avatar and
autonomy of the actors have to be considered. The mimicked features are usually
speech (spoken words and intonation), facial expressions and body gestures
(Thalmann et al. 1998). The autonomy of an actor might be achieved by enabling it
to manipulate its own goals and to generate its responses (displayed in terms of both
verbal and non-verbal human-like interactive signals) based upon intentions and
affective states displayed by the avatar. Thus, except for the animation issue, the
research field of AD-HCI is concerned with the very same topics (i.e. gesture,
speech, affect, and context) as the research fields of multi-modal and context-
sensitive HCI systems.

As remarked by Shoham (1999), Coen (1999), and Pentland (2000),
breakthroughs in AD-oriented HCI systems could bring about the most radical
change in the computing world. They could change not only how professionals
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practice computing, but also how mass consumers conceive of and interact with the
technology. However, while the technology in animation has advanced to a level of
commercial relevance (Thalmann et al. 1998), other aspects of AD-HCI, in
particular ones concerned with the interpretation and emulation of human behaviour
at a deeper level, are less mature and need many improvements (preceding section,
Tekalp 1998, Pentland 2000, Pantic and Rothkrantz 2001a). Critical issues and great
challenges in the design and development of the AD-oriented HCI systems are the
problems related to untangling the context in which the user acts, deciding the
proper context-dependent question to ask, choosing a suitable moment to pose a
question, determining whether to interrupt the user at all, and eliciting a proper
response (e.g. which words, facial expression, and intonation to use).

MIC fluile?

MUSFE. Thllo!

MUSE anger MUSE surprise

Figure 8.3: Virtual characters: (a) A dancer and his avatar;
(b) Cyber-dance of virtual actors; (c) A virtual real-estate agent;
(d) Virtual emotion-sensing characters MIC and MUSE.
(a)-(c): Thalmann and Moccozet 1998. (d): Tosa and Nakatsu 1996.
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In addition, another issue should be considered while discussing AD-oriented
HCI. As remarked by Turkle (1984) and Schneiderman (1993), if the boundary
between computers and people blurs, this may undermine a child’s emerging sense
of self. Attributing intelligence, independent activity, or free will to computers may
lead children to believe that they are autonomous, undercutting their responsibility
for mistakes and for poor treatment of friends, teachers, or parents. Therefore it is
important to make AD-types of HCI systems to be transparent, to emphasize the fact
that machines do what we design/program them to do and that any emerging result is
the product of our own effort. The key idea here is to design virtual characters which
portray computers as tools and not as invisible persons. Well-chosen words, for
instance, can make a great difference (e.g. “Would you like some help?” instead of
“Can I help you?”). For more detailed guidelines on design of “transparent” HCI, the
reader is referred to Schneiderman (1993).

When should we expect the “fourth generation” HCI?

Obviously, as remarked in the preceding sections, HCI design breakthroughs are

necessary if the computing technology is to achieve the ultimate goal of being

universally usable. Yet, during the last decade, many research problems initially
thought to be intractable (e.g. sensing and detecting of human communicative
displays, affect-sensitive interpretation of those, and context sensing in general),
have been proven manageable and have even spawned several thriving commercial
enterprises (Pentland 2000). Still, when this new generation of universally usable

and accessible HCI systems will actually be deployed remains an open question. A

way of answering this question is to consider two pragmatic issues:

o To what extent does the development of more advanced technology constrain the
actual deployment of a certain HCI design? For example, while the
technological means are now in hand to develop comprehensive GUI systems
which accommodate the variety of commonly used equipment and ensure
compatibility and bi-directional file conversion, the same is not the case for
multi-modal, context-sensitive, and anthropomorphically designed HCI systems.
As mentioned above, before these novel HCI systems can be widely deployed,
they must be equipped with sensing technology that allows robust and accurate
sensing and detection of multi-modal human interactive signals and their
context-dependent interpretation and emulation.

o To what extent does the realisation of certain HCI systems constrain the
realisation of other HCI systems? As explained above, multi-modal HCI systems
and context-sensitive HCI systems are mutually dependent (Table 8.1): while
robust and accurate sensing and detection of human verbal and non-verbal
interactive displays must be achieved to realise context-sensitive HCI, context-

~ dependent interpretation of sensed human behavioural cues must be achieved to
realise the integration of human natural modalities of sight, sound, and touch,
into HCI systems. Further, the realisation of multi-modal context-sensitive HCI
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constrains the actual deployment of AD-HCI: context-sensitive monitoring and
interpretation of human verbal and non-verbal communicative signals is a
prerequisite for achieving proper, context-dependent responses by virtual actors.
Finally, multi-modal HCI, context-sensitive HCI, and anthropomorphic HCI
must be comprehensive while ensuring compatibility, bi-directional file
conversion, and support for the variety of equipment.

Based on these observations, the coming of the next generation of universally usable
HCI systems, might be represented in terms of the time-scale and the required
advanced technology by Figure 8.4.

>

* multi-modal
: . 'coptext- P
s'énlsiﬁve HCI - .,

advanced technology development

HCI supportinga
technological variety:

time

Figure 8.4: The coming of the new generation HCI is constrained by the
technological development and by the mutual dependencies between
different kinds of HCI systems

8.3 Affect-sensitive HCI: The problem domain

One of the key challenges in enhancing the usability of human-computer interfaces
is to devise human/computer interaction that retains attributes of human/human
interaction and approaches its naturalness. Hence, one long-term goal in HCI
research is (section 8.2):
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s to integrate human natural modalities of sight, sound and touch into HCI systems
(Sharma et al. 1998, Marsic et al. 2000), and

* to make HCI systems sensitive and adaptable to the context (i.e. to the current
user, his preferences, affective state, task, and to the overall environmental
constraints) in which they operate (Pentland 2000).

While the preceding section discussed the problem of fashioning multi-modal

context-sensitive HCI in general, the rest of this chapter is concerned with only one

aspect of this problem, namely, with providing machines with the ability to detect
and interpret user’s affective states.

Because there are numerous areas where benefits could accrue from the
automation of affect-sensitive monitoring of human communicative displays,
tackling this problem has attracted the interest of many Al researchers. Besides
enhancing the usability of HCI systems by enabling them to sense and respond
appropriately to users’ affective feedback (Picard 1997), automatic affect-sensitive
monitoring tools could simplify and improve the research in areas as diverse as
behavioural science, anthropology, medicine, psycho-physiology and political
sciences (section 6.1). The automatic assessment of attitudinal states like boredom,
inattention, and stress would be valuable for preventing critical situations in
hazardous working environments like aircraft cockpits, nuclear power plant
surveillance rooms, air traffic control towers, or simply in the vehicles like trucks,
trains, and cars. An advantage of affect-sensitive monitoring done by computer is
that it compromises people’s privacy less than monitoring by human observers; an
automated tool could provide prompts for better performance based on the sensed
user’s affective state. Besides, a computer-based monitoring can be more accurate
than that carried out by human observers since computers can be equipped with
sensory modalities that humans lack (e.g. the EEG and EMG).

However, while there is a general agreement that the automation of multi-modal
affect-sensitive monitoring of human interactive cues would be enormously
beneficial, tackling this problem is not an easy task. The main problem areas
concern the following;

1. What is an affective state? This question is related to psychological, linguistic,
and physiological issues pertaining to the nature of affective states and the way
affective states are to be described by automated human-affect analysers.

2. What kinds of evidence warrant conclusions about affective states? In other
words, which human communicative signals convey messages about an affective
arousal? This issue shapes the choice of different modalities to be integrated into
automated affect-sensitive monitoring tools.

3. How can various kinds of evidence be combined to generate conclusions about
affective states? This question is related to neurological issues of human sensory-
information fusion, which shapes the way multi-sensory data is to be combined
within automated affect-sensitive monitoring tools.
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This section examines basic issues in these problem areas and provides a taxonomy
of the pertinent problem domain. The section will begin by examining the body of
research literature on the human perception of affective states, which is large, but
disunited. This lack of consensus among basic researchers on a set of basic emotions
that can be universally recognised implies that the selection of a list of affective
states to be recognised by an intended automated affect-sensitive monitoring tool
requires pragmatic choices. The section will then explain the capability of the human
sensory system in the detection and understanding of the other party’s affective
state. It is meant to serve as an ultimate goal in the development of automated multi-
modal affect-sensitive monitoring tools and as a basis for addressing two main
issues relevant to such HCI tools: which modalities should be integrated and how
should those modalities be combined.

Psychological issues

Since an automated analyser of human affective states would be extremely
beneficial, the question of how the human perception of affective states can be
characterised best has become an important concern for many researchers in
affective computing. Ironically, as already remarked in section 6.2, the growing
interest in affective computing comes at a time when the established wisdom on
human affective states is being strongly challenged in the basic research literature
(for detailed summaries on issues debated in the basic research on emotion, readers
are referred to Cornelius (1996) and Cowie et al. (2001)).

On the one hand, classic psychological research claims the existence of six basic
expressions of emotions that are universally displayed and recognized: anger,
happiness, sadness, surprise, disgust, fear (Darwin 1965/1872, Bezooijen 1984,
Keltner and Ekman 2000). This implies that, apart from verbal communicative
signals (spoken words), which are person dependant (Furnas et al. 1987), non-verbal
communicative signals (i.e. facial expression, vocal intonations, body gestures, and
physiological reactions) involved in these basic emotions are displayed and
recognized cross-culturally.

On the other hand, there is now a growing body of psychological research that
strongly challenges the classical theory on emotion. The psychologist James Russell
argues that emotion in general can best be characterized in terms of a multi-
dimensional affect space, rather than in terms of a small number of emotion
categories (Russell 1994, Russell and Fernandez-Dols 1997). He also criticises
experimental design flaws applied in classic studies (e.g. using a single corpus of
unnatural stimuli and within-subject designs; see section 6.2). Besides Russell
(1991), other social constructivists like Averill (1986) argue that emotions are
socially constructed ways of interpreting and responding to particular classes of
situations and that they do not explain the genuine feeling (affect). In addition, some
psychologists imply that attitude is a kind of affect (Fishbein and Ajazen 1975),
while others consider affect as a component of attitude (Pratakanis et al. 1989).
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Further, while classic studies claim that the basic emotions (whatever that may
mean) are hardwired in the sense that there are some specific neural structures
corresponding to different emotions, alternative studies like the study of Ortony and
Turner (1990) suggest that it is not emotions but some components of emotions
which are universally linked with certain communicative displays like facial
expressions. Except for this lack of consensus on the nature of emotion, there is no
agreement on how affective states should be labelled/named. The key issue here,
which stands in contradiction to the classic studies’ emphasis on emotions as a
product of evolution, is that of culture dependency: the comprehension of a given
emotion label and the expression of the related emotion are culture dependent
(Matsumoto 1990, Wierzbicka 1993, Shigeno 1998, Cacioppo et al. 2000).

In summary, the available body of basic research literature is excessively
fragmented and does not provide firm conclusions that could be safely assumed and
employed in studies on affective computing. Due to this unresolved debate
concerning the standard emphasis on emotions as a product of evolution and
evidence that they are culture dependent, there is no agreement on a set of basic
emotions that are displayed and recognised uniformly across different cultures. In
other words, it is not certain that each of us will express a particular affective state
by modulating the same communicative signals in the same way, nor is it certain that
a particular modulation of interactive cues will be interpreted always in the same
way independently the observer. The immediate implication is that pragmatic
choices (e.g. application- and user-dependent choices) must be made regarding the
selection of affective states to be recognised and the appropriate recognition
mechanism to be employed by an automated human-affect analyser.

As already suggested in chapter 6 for the case of the automated human facial
affect analyser, a way in which this problem can be handled is to apply machine
learning: rather than using a priori generic rules for affective state recognition, we
can potentially learn the rules by interacting with the user about his/her
interpretations of the observed affective displays in the given
environment/application domain. In other words, a promising strategy is to build a
personalised, context-sensitive analyser of human affective states capable of
adapting the employed communicative-signal classification mechanism according to
the sensed context and the user’s wishes.

Human performance

Affective arousal modulates all verbal and non-verbal communicative signals. As
shown by Furnas et al. (1987), it is very difficult to anticipate a person’s word
choice and the associated intent: even in highly constrained situations, different
people choose different words to mean exactly the same thing. On the other hand, in
usual interpersonal face-to-face interaction, people detect and interpret non-verbal
communicative signals in terms of affective states expressed by their communicator
with little or no effort (Ekman and Friesen 1969). Although the correct recognition
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of someone’s affective state depends on many factors (the attention given to the
speaker and the familiarity with the speaker’s personality, face, vocal intonation,
etc.), humans recognise affect with apparent ease.

The human sensory system does not only use multi-modal analysis of multiple
communication channels to interpret face-to-face communication, but also to
recognise another party’s affective states. A channel is a communication medium
(e.g. the auditory channel that carries vocal intonations and the visual channel that
carries facial expressions) while a modality is a sense used to perceive signals from
the outside world (e.g. the senses of sight and hearing). The interpretation of another
party’s affective states in usual face-to-face interaction involves simultaneous usage
of many channels and combined activation of various modalities. Hence, the
analysis of the communicator’s attitudinal states becomes highly flexible and robust.
Failure of one channel is recovered by another channel and a message in one
channel can be explained by that in another channel (e.g. a mouth expression that
might be interpreted as a smile will be seen as a display of sadness if at the same
time we can see tears and hear sobbing).

The abilities of the human sensory system define, in some way, the expectations
for automated affect-sensitive HCI tools. Although it may not be possible to
incorporate all features of the human sensory syst