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Locality preserving latent spaces 
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We want to find a latent space that preserves the local 
structure 

 

Locality preserving latent spaces 
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How can we define the local structure? 

 

 A 𝑘-neighbourhood (𝑘-closest points to 𝒙𝑖)  
 

𝒙𝑖  𝑐𝑖
𝑘 = {𝒙j: 𝒙j in 𝑘 closest according | 𝒙𝑖 − 𝒙𝑗 | 

2
} 

{𝑐1
𝑘 , … , 𝑐𝑁

𝑘} 

Locality preserving latent spaces 

min
1

2
  (𝑦𝑖 − 𝑦𝑗)

2

𝑥𝑗∊𝑐𝑖
𝑘

= min 
1

2
  𝑠𝑖𝑗(𝑦𝑖 − 𝑦𝑗)

2

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1

 

𝑺 is the connectivity matrix, i.e. 𝑠𝑖𝑗 = 1 iff 𝒙𝑗 ∊ 𝑐𝑖
𝑘 

and zero elsewhere 
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Making the graph 

 𝒙𝟏 

 𝒙𝟐  𝒙𝟑 

 𝒙𝟒 

 𝒙𝟓 

𝑐1 = {𝒙2, 𝒙3} 

𝒙1
𝒙2
𝒙3
𝒙4
𝒙5

0
1
1
1
0

   

1
0
0
0
0

   

1
1
0
0
1

   

0
0
0
0
1

   

0
0
1
1
0

 

𝒙1 𝒙2  𝒙3 𝒙4  𝒙5 

𝑺 

𝑠𝑖𝑗 = 1 iff 𝑥𝑗 ∊ 𝑐𝑖
𝑘 

𝒙1
𝒙2
𝒙3
𝒙4
𝒙5

0
1
1
1
0

   

1
0
1
0
0

   

1
1
0
0
1

   

1
0
0
0
1

   

0
0
1
1
0

 

𝒙1 𝒙2  𝒙3 𝒙4  𝒙5 

𝑠𝑖𝑗 = 1 iff 𝑥𝑗 ∊ 𝑐𝑖
𝑘or  𝑥𝑖 ∊ 𝑐𝑗

𝑘 

𝑺 

𝑐2 = {𝒙1, 𝒙3} 

𝑐3 = {𝒙1, 𝒙5} 

𝑐4 = {𝒙1, 𝒙5} 

𝑐5 = {𝒙4, 𝒙3} 
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 𝒙𝟏 

 𝒙𝟐  𝒙𝟑 

 𝒙𝟒 

 𝒙𝟓 

𝑠𝑖𝑗 = 𝑒
−
||𝒙𝑖−𝒙𝑗||

2

𝑡  iff 𝒙𝑖 ∊ 𝑐𝑗
𝑘or  𝒙𝑗 ∊ 𝑐𝑖

𝑘 

𝑠𝑖𝑗 = 𝑒
−
||𝒙𝑖−𝒙𝑗||

2

𝑡   

or 

Making the graph 
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1

2
  𝑠𝑖𝑗(𝑦𝑖 − 𝑦𝑗)

2

𝑁

𝑖=1

=
1

2
  𝑠𝑖𝑗

𝑁

𝑗=1

𝑦𝑖
2 −
1

2
  𝑠𝑖𝑗𝑦𝑖𝑦𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑖=1

𝑁

𝑗=1

 

𝑑𝑖𝑖 

𝐲𝑇𝑫𝐲 𝐲𝑇𝑺𝒚  

min 
1

2
  𝑠𝑖𝑗(𝑦𝑖 − 𝑦𝑗)

2 = min 𝐲𝑇(𝑫−𝐒)𝐲 

𝑁

𝑖=1

𝑁

𝑗=1

 

Formulating the problem 
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min𝐲 𝐲
𝑇(𝑫−𝐒)𝐲  

• Has a trivial solution with 𝒚 = 𝟎  

•   We need to constraint the solution and potentially regularize 

𝒙1
𝒙2
𝒙3
𝒙4
𝒙5

3
0
0
0
0

   

0
2
0
0
0

   

0
0
3
0
0

   

0
0
0
2
0

   

0
0
0
0
2

 

𝒙1 𝒙2  𝒙3 𝒙4  𝒙5 
 𝒙𝟏 

 𝒙𝟐  𝒙𝟑 

 𝒙𝟒 

 𝒙𝟓 
𝑫 

•   Let’s have a look at 𝑫 

Formulating the problem 

7 



 Stefanos Zafeiriou        Adv. Statistical Machine Learning (course 495) 

Matrix D provides a natural measure on the data points. The 

bigger the value 𝑑𝑖𝑖 (corresponding to point i) is, the more 

“important” the point i  is 

Let’s make all points y “equally” important in the latent space 

min 𝐲𝑇 𝐃 − 𝑺 𝐲  s.t. 𝒚𝑇𝐃𝐲=1   

y is the smallest non − zero eigenvector of 𝑫 −1(𝑫 − 𝑺) 

Laplacian eigenmaps 
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If we want more dimensions? 

min tr[𝒀 𝑫 − 𝑺 𝒀𝑻]  s.t. 𝒀𝑫𝒀𝑻 = 𝑰   

𝒀 has as rows the non − zero  eigenvectors that correspond to 

smallest 𝑑 eigenvalues of 𝑫 −1(𝑫 − 𝑺) 

Laplacian eigenmaps 
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𝑁 number of neighbours and 𝑡 
the variance of the heat kernel 
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Laplacian eigenmaps 
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The method is  non-linear (why)? 

 

It is quite difficult to embed new points in the latent space 

𝒚𝑖 = 𝑾
𝑇𝒙𝑖 𝒀 = 𝑾𝑇𝑿 

min tr[𝒀 𝑫 − 𝑺 𝒀𝑻]  s.t. 𝒀𝑫𝒀𝑻 = 𝑰   

𝒀=𝑾𝑇𝑿 
min tr[𝑾𝑇𝑿 𝑫− 𝑺 𝑿𝑻𝑾]  s.t. 𝑾𝑇𝐗𝑫𝑿𝑻𝑾 = 𝑰   

𝑾 has as colums the eigenvectors that correspond to  

smallest 𝑑 eigenvalues of 𝑿 𝑫 𝑿𝑻 −1𝑿(𝑫 − 𝑺)𝑿𝑻 

Locality preserving projections 
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We studied three component analysis algorithms 

PCA: Preserves global structure 

LDA: Preserves/enhances class structure 

LPP: Preserves/enhances local structure 

Lecture summary 
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