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ABSTRACT* 

 
The recognition of facial action units (AUs) in image sequences is 
a challenging problem. AU detectors achieve good recognition 
rates, but virtually all of them deal only with frontal-view face 
images and cannot handle temporal dynamics of AUs. In this work 
we report on a system for automatic recognition of temporal 
models of AUs from long, profile-view face image sequences. We 
exploit particle filtering to track 15 facial points in an input face-
profile video sequence and we introduce facial-behavior temporal-
dynamics recognition from continuous video input using temporal 
rules. The utilized algorithm performs both automatic segmentation 
and recognition of temporal segments (i.e., onset, apex, offset) of 
23 AUs occurring alone or in a combination in an input face-profile 
video sequence. A recognition rate of 88% is achieved.  

 
1. INTRODUCTION 

 
Facial expression is one of the most cogent, naturally preeminent 
means for human beings to communicate emotions, to clarify and 
stress what is said, to signal comprehension, disagreement, and 
intentions, in brief, to regulate interactions with the environment 
and other persons in the vicinity [1, 2]. Automatic analysis of facial 
expression attracted, therefore, the interest of many AI researchers 
– automated systems will have numerous applications in behavioral 
science, medicine, security, and human-computer interaction.  

Most approaches to automatic facial expression analysis attempt 
to recognize a small set of prototypic emotional facial expressions, 
such as sad, angry, surprised and happy [3]. Yet such prototypic 
expressions occur relatively infrequently. Typically displayed facial 
expressions often convey signs of attitudinal states such as interest 
and boredom, conversational signals, and blends of two or more 
affective states [1]. Instead of classifying facial expressions into 
few basic emotion categories, this work attempts to measure a large 
range of facial behavior by recognizing facial actions (i.e., atomic 
facial signals) that produce expressions.  

The method proposed here is based on the Facial Action Coding 
System (FACS) [4]. It is a system designed for human observers to 
describe changes in facial expression in terms of observable facial 
muscle actions (i.e., facial action units, AUs). FACS provides the 
rules for visual detection of 44 different AUs and their temporal 
segments (onset, apex, offset) in a video of an observed face. Using 
these rules, a human coder decomposes a shown facial expression 
into the specific AUs that produced the expression. Hence, AUs 
can be seen as being analogous to phonemes for facial expression.  

Few methods were reported for automatic AU detection in face 
image sequences and none was reported for automatic recognition 
of temporal dynamics of AUs [5]. Although FACS is the leading 

                                                 
* The work of M. Pantic and I. Patras is supported by the Netherlands 
Organization for Scientific Research (NWO) Grant EW-639.021.202. 

method for measuring facial behavior in behavioral science, 
achieving AU recognition by computer remains difficult. A 
problem is that AUs can occur in more than 7000 combinations, 
causing various in- and out-of-image-plane movements of facial 
components (e.g., pursed lips, jaw dropped, jetted jaw) that are 
difficult to detect from a single 2D facial-view. The analysis of 
multiple views of the face has been identified as a promising 
approach to solving both this and the problem of pose variability 
that the inevitable presence of head movements imposes [6, 3]. 
Nevertheless, most of the existing AU detectors deal only with 
frontal-view face image sequences. For example, Cohn et al. [7] 
presented a method based on facial feature point tracking that can 
recognize 8 individual AUs and 7 combinations of AUs in frontal-
view face image sequences free of head motions. Tian et al. [8] 
presented a system based upon lip tracking and template matching 
that recognizes 16 AUs occurring alone or in a combination in a 
nearly frontal-view video of the face. Bartlett et al. [9] reported on 
automatic recognition of 3 AUs using Gabor filters, support vector 
machines, and hidden Markov models to analyze an input nearly 
frontal-view face image sequence. 

In contrast to this past work on automatic AU detection, which 
deals only with frontal-view face images and cannot recognize 
temporal dynamics of AUs, we introduce here automatic detection 
of AUs and their temporal dynamics from profile-view face image 
sequences. We carried out this research with three motivations:  
1. In a frontal view of the face, AUs such as puckering the lips 

(AU18) or pushing the jaw forwards (AU29) represent out-of-
image-plane non-rigid facial movements which are difficult to 
detect [8]. Such AUs are clearly observable in a profile-view of 
the face [10].  

2. Temporal dynamics of AUs (i.e., the timing and the duration of 
facial activity) is a critical factor for the interpretation of the 
observed facial behavior [1]. Nevertheless, no effort towards 
automating the detection of the temporal segments of AUs in 
face image sequences has been reported so far. 

3. A basic insight in how automatic AU detection from a profile-
view of the face can be achieved is necessary if a technological 
framework for automatic AU detection from multiple views of 
the face is to be established.  

Fig. 1 outlines our method, a preliminary version of which was 
reported in [10]. This previous version had several limitations: it 
did not use temporal cues, it did not handle recognition of temporal 
dynamics of AUs, and AU coding was based only upon changes in 
the contour of the face profile region (i.e., changes within the face 
profile region were disregarded). The current version of the method 
addresses these limitations. It operates under two assumptions: (1) 
the input video sequence is non-occluded nearly left profile view of 
the face with possible in-image-plane head rotations, and (2) the 
first frame of it shows a neutral expression and no head rotations. 
After the fiducial points are initialized in the first frame of the input 
face profile image sequence, we exploit particle filtering to track 
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these 15 points automatically for the rest of the sequence. Based 
upon the changes in the position of the fiducial points, we measure 
changes in facial expression. Changes in the position of the fiducial 
points are transformed first into a set of mid-level parameters for 
AU recognition. Based upon the temporal consistency of mid-level 
parameters, a rule-based method encodes temporal segments (onset, 
apex, offset) of 23 AUs occurring alone or in a combination in 
input nearly-left-profile-views of the face. The usage of temporal 
information allows us not only to code a video segment to the 
corresponding AUs, but also to automatically segment an arbitrary 
long video sequence to the segments that correspond to different 
expressions. Fiducial-point tracking, parametric representation, AU 
coding, automatic segmentation of the video sequence, and 
experimental evaluation are explained in sections 2, 3, 4, 5 and 6. 

 
2. FIDUCIAL-POINT TRACKING 

 
Facial muscle activity produces changes in the appearance of the 
facial features (eyes, nose, lips, etc.); their shape and location can 
alter immensely with facial expressions (e.g., pursed lips vs. jaw 
dropped). To reason about the shown facial expression and about 
the facial muscle actions that produced it, we track a set of 15 facial 
fiducial points (Fig. 2), the location of which alters during the 
facial expressions. At the first frame of the sequence, a number of 
windows that are interactively positioned around each of the facial 
fiducial points, define a number of color templates. Let us denote 
such a color template with o = {oi} where i is the pixel subscript. 
We subsequently track each color template for the rest of the image 
sequence with the auxiliary particle filter that was introduced by 
Pitt and Shepard [11]. Particle filtering has become the dominant 
tracking paradigm due to its ability to deal successfully with noise, 
occlusion and clutter. In order to adapt it for the problem of color-
based template tracking, we define an observation model that is 
based on a robust color-based distance between the color template 
o = {oi | i = 1…M} and a color template c = {ci | i = 1…M} at the 
current frame. We attempt to deal with shadows by compensating 
for the global intensity changes and with outliers by using robust 
error norms. The latter is particularly important because, when 
tracking profile facial points, a part of the template is bound to 

contain information from the background. We use the distance 
function d given in (1), where M is the number of pixels in each 
template, mc  (and mo) is the average intensity of template c = {ci} 
(and, respectively, of template o = {oi}), i is the pixel index and the 

robust function that we use is the absolute value. 
We proceed under 2 assumptions: (1) the input image sequence 

is non-occluded nearly left profile view of the face with possible 
in-image-plane head rotations, and (2) the first frame shows a 
neutral expression and no head rotations. To handle possible in-
image-plane head rotations and variations in scale of the observed 
face profile, we register each frame of the input image sequence 
with the first frame based on two referential points (Fig. 2): the tip 
of the nose (P4) and the top of the forehead (P1). We use these 
points as the referential points because of their stability with 
respect to non-rigid facial movements: facial muscle contractions 
do not cause physical displacements of these points. The current 
frame t is registered with the first frame t1 so that the line P1P4 
discerned for frame t is of the same length and orientation as the 
line P1P4 determined for the first frame t1. Except of P1 and P4, 
other facial fiducial points are tracked in the registered input image 
sequence. Typical results are illustrated in Fig. 1. 

 
3. MID-LEVEL PARAMETRIC REPRESENTATION 

 
Contractions of facial muscles alter the shape and location of the 
facial features. Some of these changes in facial expression are 
observable from the changes in the position of the tracked points. 
To classify the tracked changes in terms of AUs, these changes are 
transformed first into a set of mid-level parameters.  

We defined three mid-level parameters in total: up/down(P), 
in/out(P), and inc/dec(PP’). Parameter up/down(P) = y(Pt1) – y(Pt) 
describes upward and downward movements of point P. If y(Pt1) – 
y(Pt) > ε, point P moves up. If y(Pt1) – y(Pt) < ε, point P moves 
down. Pt1 is point P localized in the first frame of the input image 
sequence. Pt is point P tracked in frame t. The value of y(P) is the 
y-coordinate of point P and the value of ε is 1 pixel. Parameter 
in/out(P) = x(Pt1) – x(Pt) describes inward and outward movements 
of point P. If x(Pt1) – x(Pt) < ε, point P moves inward. If x(Pt1) – 
x(Pt) > ε, point P moves outward. Parameter inc/dec(PP’) = PP’t1 – 
PP’t describes the increase or decrease of the distance between 
points P and P’. If PP’t1 – PP’t < ε, distance PP’ increases. If PP’t1 

Fig. 2: Facial fiducial points 
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Fig. 1: Recognition of AU temporal dynamics from profile-
view face image sequences 
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Fig. 3 illustrates the meaning of these rules. The horizontal axis 
represents the time dimension (i.e., the image sequence) and the 
vertical axis represents values that the parameter up/down(P2) can 
take. Since the upward motion of the skin surface of the eyebrow 
arcade is the principle cue for the activation of AU1, the upward 
movement of the fiducial point P2 (i.e., up/down(P2)) is used as the 
criterion for detecting the onset of the AU1 activation. Reversal of 
this motion parameter is used to detect the offset of this facial 
expression. Since Fig. 3 represents an abstraction to the typical 
progression of AU1, specific up/down(P2) parameter values are not 
provided. Fig. 3 indicates that P2 should be moving upward and it 
should be above its neutral-expression location to label a frame 
with an “AU1 onset”. The upward motion should terminate, 
resulting in a stable temporal location of P2, before a frame can be 
labeled as “AU1 apex”. Eventually, P2 should move downward 
toward its neutral-expression location to label a frame as an “AU1 
offset”. Generally, for each and every AU, it must be possible to 
detect a temporal segment (an onset, apex, or offset) continuously 
over at least 5 consecutive frames for the facial action in question 
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Table 1: Mid-level parameters for AU recognition 
Parameters  Parameters 

 up/down(P2) > ε AU2 up/down(P11) > ε 
 inc/dec(P2P12) > ε AU5 inc/dec(P13P14) < ε 
 t1 >inc/dec(P13P14) > ε 

up/down(P7) > ε 
AU7 t1 >inc/dec(P13P14) > ε 

|up/down(P7)| ≤ ε 
 inc/dec(P2P3) > ε AU10 inc/dec(P5P6) > ε 

in/out(P6) > ε 
2 up/down(P7) > ε 

inc/dec(P7P15) > ε 
AU13 up/down(P7) > ε 

|inc/dec(P7P15)| ≤ ε 
5 up/down(P7) < ε AU17 in/out(P10) < ε 
6 up/down(P8) < ε 

inc/dec(P8P10) > ε 
AU18 inc/dec(P7P15) < ε 

in/out(P8) > ε 
0 inc/dec(P7P15) > ε AU23 t2 > inc/dec(P6P8) > ε 
4 inc/dec(P6P8) > t2 AU25 inc/dec(P6P8) < ε 

|inc/dec(P4P10)| ≤ ε 
6 t3 > inc/dec(P4P10) > ε AU27 inc/dec(P4P10) > t3 
9 in/out(P10) > ε AU36b in/out(P9) > ε 
4 inc/dec(P13P14) > t1   
’t > ε, distance PP’ decreases. Distance PP’ is calculated as 
uclidian distance between points P and P’. These mid-level 
eters are calculated for various points, for each input frame. 

4. ACTION UNIT RECOGNITION 

de an input face-profile image sequence in terms of 23 AUs, 
ring alone or in a combination, we use a dynamic approach 

employs temporal information to discriminate different AUs. 
logic behind using the temporal information is that each AU 
 unique temporal pattern. To minimize the effects of noise and 
uracies in fiducial point tracking and to enable the recognition 
poral patterns of shown AUs, the utilized approach considers 

mporal consistency of the mid-level parameters. 
e divide activation of each AU into three temporal segments: 

nset (beginning), apex, and offset (ending). Each temporal rule 
ed for AU recognition is further defined in terms of the mid-
 parameters (for the full list of mid-level parameters utilized to 
iminate 23 different AUs, see Table 1) and each encodes a 
fic temporal segment of a single AU in a unique way. For 
ple, to recognize the temporal segments of AU1, which causes 
rd movement of the inner corners of the eyebrows, we exploit 
llowing temporal rules (ε is 1 pixel): 
 ([up/down(P2)]t > [up/down(P2)]t-1 + ε)  

AND up/down(P2) > ε THEN AU1-onset 
 | [up/down(P2)]t – [up/down(P2)]t-1 | ≤ ε  

AND up/down(P2) > ε THEN AU1-apex 
 ([up/down(P2)]t < [up/down(P2)]t-1 – ε)  

AND up/down(P2) > ε THEN AU1-offset 

to be scored. Incited by the research findings that suggested that 
temporal changes in neuromuscular facial activity last from ¼ of a 
second (e.g., a blink) to several minutes (e.g., a jaw clench) [4], the 
utilized temporal duration has been determined empirically based 
on a video frame rate of 24 frames/second (i.e., 5 frames have a 
duration of less than ¼ of a second). 

Both inaccuracies in facial point tracking and occurrences of 
non-prototypic facial activity may result in temporal segments that 
are unlabeled (i.e., neither the onset, nor the apex, nor the offset) or 
in frames and temporal segments that are labeled incorrectly. The 
latter may arise, for instance, when an apex frame or an apex 
temporal segment of an AU is detected either between two onset 
segments or between two offset segments of that AU. To handle 
such situations, we employ a memory-based process that takes into 
account the dynamics of facial expressions. More specifically, we 
examine the labels of both the previous and next frame / segment 
and re-label the current frame / segment according to the ruled-
based system summarized in Table 2. For instance, any unlabeled 
temporal segment and/or any apex segment of an AU that has been 
detected between two onset segments of that AU are re-labeled as 
“onset”. Finally, an AU should be recognized, in general, only 
when the full temporal model of that AU is observed (e.g., see Fig. 
3 for the case of AU1). Yet, in order to deal with fast transitions 
between onset and offset temporal segments, we score AUs even if 
the relevant apexes are missing. 

 
5. AUTOMATIC SEGMENTATION 

 
Virtually all the existing AU detectors perform well only on isolated 
or pre-segmented facial expression image sequences (i.e., picturing a 

Fig. 3: The temporal pattern of AU1 activation 
Table 2: Rules for resolving temporal conflicts/uncertainties. 
R3 is not used if a single frame is unlabeled. It is only used if a temporal 
segment (a sequence of at least 5 consecutive frames) of an AU is 
unlabeled. The rest of rules are used for both frames and temporal 
segments that are unlabeled or labeled incorrectly.  

 Previous 
labeling 

Current 
(old label) 

Subsequent 
labeling 

Current 
(new label) 

R1 Onset Unlabeled / Apex Onset Onset 
R2 Onset Unlabeled Apex Apex 
R3 Onset Unlabeled Offset Apex 
R4 Apex Unlabeled Apex Apex 
R5 Apex Unlabeled Offset Apex 
R6 Offset Unlabeled / Apex Offset Offset 



far as the recognition of temporal segments of AUs is concerned, 
the temporal segments indicated by 2 human experts were delayed 
for few frames in comparison to those detected by our method.   

 
7. CONCLUSIONS 

 
In this paper we presented a new method for automatic recognition 
of temporal models of AUs from long, profile-view face image 
sequences. The proposed method extends the state of the art in the 
field in several directions, including the facial view (profile), the 
segmentation of an arbitrary long video sequence to the segments 

 
 
 
 
 
 

Table 3: AU recognition results. Upper face AUs: AU1, AU2, AU4,
AU5-AU7, AU9, AU44. AUs affecting the mouth: AU10, AU12, AU13,
AU15, AU16, AU18, AU20, AU23-AU25. AUs affecting the jaw: AU17,
AU26, AU27, AU29, AU36. # denotes the number of samples. C denotes
correctly recognized samples. MA denotes the number of samples in
which some AUs were missed or they were scored in addition to those
depicted by human experts. IC denotes incorrectly recognized samples. 

 # C MA IC Rate 
upper face 61 55 6 0 90.1% 
mouth 44 39 3 2 88.6% 
jaw 23 21 2 0 91.3% 
all 23 AUs 68 60 6 2 88.2% 
single temporal activation pattern of either a single AU or an AU 
combination). In reality, such segmentation is not available and, 
hence, there is a need to find an automatic way of segmenting face 
image sequences into the different facial expressions pictured.  

To automatically segment an arbitrary long video sequence to 
the segments that correspond to different facial expressions, we use 
a sequential facial expression modeling that employs information on 
shown temporal patterns of AUs. The display of a certain expression 
in video corresponds to a temporal sequence of facial motions that 
we represent as a sequence of temporal patterns (onset-apex-offset) 
of one or more AUs. It seems natural to model this sequential event 
with a model that also starts from a fixed starting occurrence, always 
reaches an end occurrence, and has the probability of changing the 
occurrence sequence set to zero. Since the presence of facial activity 
determines the shown facial expression, its absence can be used to 
delimit the transition between different facial expressions. The term 
“neutral facial expression” is usually used to designate the absence 
of facial activity. So, to solve the segmentation problem, we use a 
neutral-expressive-neutral sequential facial expression model, where 
“expressive” segment contains temporal patterns (onset-apex-offset) 
of one or more AUs encoded by our AU recognition method. 
 

6. EXPERIMENTAL EVALUATION 
 
Though AU-coded facial expression image databases are available 
in general, these databases contain portraits or nearly frontal-views 
of human faces. Since these data are not suitable for testing our 
face-profile-based AU encoder, we generated our own test data.  

The test data set has been created in office environments (Fig. 
1). It includes 34 face-profile image sequences of 6 different faces 
of subjects of both sexes (50% female), ranging in age (20 to 42 
years), and ethnicity. The subjects were instructed to display series 
of expressions (2-5 expressions; 160-540 frames), each of which 
included a single AU or an AU combination as well as a neutral 
state at the beginning and at the end of it. The size of the face 
region in each frame was at least 300 pixels across the width of the 
face. Sequences began with a neutral state with no head rotation. 2 
expert FACS coders were asked to depict displayed AUs and their 
temporal segments in each of the 82 facial expressions constituting 
34 face-profile image sequences of our data set. They agreed on the 
AUs displayed in 68 facial expressions. The AU-coded descriptions 
of these 68 expressions given by the two human FACS coders were 
compared further to those produced by our method for the 
automatically segmented input image sequences. The results of this 
comparison are given in Table 3. Most of the misidentifications 
produced by our method arose from confusion between similar 
AUs (e.g., AU6 and AU7, AU12 and AU13, AU25 and AU26). As 

corresponding to different expressions, the temporal modeling of 
AU activation, and the number of AUs (i.e., 23) handled. Namely, 
the previously reported AU detectors do not deal with the profile 
view of the face, cannot handle continuous facial expression image 
sequences, cannot manage temporal dynamics of AUs, cannot 
detect out-of-image-plane non-rigid facial movements such as 
pushing the jaw forward (AU29) and, at the best, can recognize 16 
AUs (from in total 44 AUs) occurring alone or in a combination in 
a face image sequence [8].   

Nonetheless, the proposed algorithm has some limitations. For 
example, it cannot analyze face profile image sequences of subjects 
having facial hair (due to occlusion of feature points P5-P10, P15) 
or loose hair on the forehead (due to occlusion of referential point 
P1). Also, though the proposed method demonstrates an acceptable 
level of concurrent validity with manual FACS coding of test data 
(Table 3), additional field trials (i.e., a larger set of test images with 
more subjects) and more elaborate quantitative validation studies 
are necessary to confirm this finding.  
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