Course 395: Machine Learning - Lectures
Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)
Lecture 5-6: Evaluating Hypotheses (S. Petridis)
Lecture 7-8: Artificial Neural Networks 1 (S. Petridis)
> Lecture 9-10: Artificial Neural Networks 11 (S. Petridis)
Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)
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Why squared error i1s not a good choice for
sigmoid output activation functions

* See http://neuralnetworksanddeeplearning.com/chap3.htmi

0E do(nety) X
naok dnet, ~ Kl

* Foroutput units: Awy; =

. aa:* = —(ty — 0y ) When the error function is the squared loss
k
do(nety)
. = o(net,)(1 — o(nety) ) = 0,(1 — 04)
dnety,

when ¢ 1s sigmoid
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Why squared loss Is not a good choice for
sigmoid output activation functions

See http://neuralnetworksanddeeplearning.com/chap3.html

For output units: Aw,,; = n(t, — 0,) 0, (1 — 0},) Xy

When the output is 0 or 1 then Aw is 0 as well

If target is 1 and network’s output is 1 then Aw = 0 (good)

If target is 1 and network’s output is O then Aw = 0 (bad!!!)
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Cross Entropy Error as Error Function

« Agood error function when the output activation functions are
sigmoid Is the binary cross entropy defined as follows:

E — _%ijl(td Ino, +(1—t,)In(l—0,))

D = number of training examples

0E do (nety) X
naok dnet, K

* For output units: Awy; =

. 0E O~y
dox  ox(1-ok)
° 9 (nety) = a(netk)(l — O-(netk) ) — Ok(l o Ok)

dnety,
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Cross Entropy Error as Error Function

0E 0o (nety)

« Foroutput units: Awy; = —n 9o dnety Xii

0 —t
e Awy; = —1 ok(k1—:k) 0 (1 — 0p ) xp;=N(ty — Ok) Xy

* The higher the error the higher the weight update
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Softmax output activation functions

A popular output activation function for classification Is
enetk

softmax o, = ST
k

« The output can be interpreted as a discrete probability
distribution

 The right error function is the negative log likelihood cost
E=—),tilno

e Target vectors=[001 ... 0] 2 E=—Ino; where L is the
position of the active target, i.e., itis 1.

* Itis equivalent to the binary cross entropy for 2 classes
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Output activation functions: Summary

 For each output activation function the right error function
should be selected

 Sigmoid -> Cross entropy error (useful for classification)

« Softmax —> negative log likelihood cost (useful for
classification)

« Both combinations work well for classification problems,
Softmax has the advantage of producing a discrete probability
distribution over the outputs

» Linear - MSE (useful for regression)
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Backpropagation with momentum

 Standard backpropagation

E
W, <— W, + AW, Aw, :—na—
oW

 |If the error surface is a long and narrow valley, gradient
descent goes quickly down the valley walls, but very slowly
along the valley floor.

From https://www.cs.toronto.edu/~hinton/csc2515/notes/lec6tutorial.pdf
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Backpropagation with momentum

Standard backpropagation
W, <— W, + AW, Aw. :—UE
oW

Backpropagation with momentum

OE
Aw;(t) = pdw(t = 1) + (1 =) (~n5,7 ) OR

OE
Awi(t) = pdwi(t = 1) + (-ngs )

e 4 = momentum constant, usually 0.9,0.95
* Itis like giving momentum to the weights

« \WWe do not take into account only the local gradient but
also recent trends in the error surface

« Matlab function: traingdm
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Backpropagation with adaptive learning rate

 |tis good that the learning rate is not fixed during training

E
W, <— W, + AW, Aw, :—778—
OW.

 Simple heuristic

1. If error decreases, increase learning rate: n = n * 1,
2. If error increases, decrease learning rate and don’t update
theweights: n =1 * 1,4,

* Typical values for n;,. = 1.05,1.1
« Typical values for n4,. = 0.5,0.7
« Matlab function: traingda
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Resilient Backpropagation

The weight change depends on the learning rate and the value of
the partial derivative. We have no control over the partial
derivative.

The effect of the learning rate can be disturbed by the unforeseeable
behaviour of the derivative.

Resilient backpropagation uses only the sign of the derivative!!
For each weight w; we define an individual update value A; which

depends only on the sign of the derivative and ignores Its
actual value

Stavros Petridis Machine Learning (course 395)



Resilient Backpropagation

A (t) = 4

\

rA“’w A(t—1) i A,
k . —
l lf an_
aEt—l
A%« A (E—1) i
* l( ) lf an

X

OE! -0
aWi

aEt j nopf <n<2no‘pt J n>2?70p1‘-

« Every time the partial derivative changes Its sign, 1.e., last updaté
was oo big, the update value Is decreased.

« |f the derivative retains its sign, the update value is increased In
order to accelerate convergence.
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Resilient Backpropagation

>0

,
— A () if

aWi

<0

A;(t) if

aWi
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direction
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We also need to initialise the update values A;
We usually define an upper limit for A;

Typical values for A, = 1.2
Typical values for Az, = 0.5
Matlab function: trainrp
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Other Training Algorithms

Conjugate gradient
Levenberg-Marquardt
Hessian-free

And many others...not covered in the lecture
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Batch/Mini-batch/Stochastic Gradient Descent

Batch: All examples are fed to the network. \Weights are updated
only after all examples have been presented to the network

For each weight the corresponding gradient (or Aw) is computed
(for each example).

The weights are updated based on the average gradient over
all examples.

Stochastic/Incremental/On-line: One example at a time is fed to
the network.

Weights are updated after each example iIs presented to the network
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Batch/Mini-batch/Stochastic Gradient Descent

Mini-Batch: M (usually 100) randomly examples are fed to the
network.

For each weight the corresponding gradient (or Aw) is computed
(for each example).

The weights are updated based on the average gradient over
all M examples.

Set of M examples is called mini-batch.

Popular approach in deep neural networks.

Sometimes called stochastic gradient descent (NOT to be confused
with online/incremental gradient descent).
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(Hyper)Parameters / Weights

* (Hyper)Parameters are what the user specifies, e.g.
number of hidden neurons, learning rate, number of
epochs etc

* They need to be optimised
« \\eights are the weights of the network

» They are also parameters but they are optimised
automatically via gradient descent
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Ways to avoid overfitting

Early stopping (see slide 52)

L1 Regularisation

* L2 Regularisation

* Dropout

e Max-norm Constraint

« Data augmentation
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L2 Reqgularisation

E=E,+ Azall Weights w?

E, is the original error function, e.g., squared loss,
negative log-likelihood

It is NOT applied to the bias
We wish to minimise the original error function (E,)

We also wish to penalise large weights, keep the weights
small (second term)

Small A = we prefer to minimise E,

Large A = we prefer small weights
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L1 Reqgularisation

E=Ey+ A2 Weights 4

E, is the original error function, e.g., squared loss,
negative log-likelihood

It is NOT applied to the bias
We wish to minimise the original error function (E,)

We also wish to penalise large weights, keep the weights
small (second term)

Small A = we prefer to minimise E,

Large A - we prefer small weights
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L1/L2 Regularisation

 So what’s the difference between L1 and L2
regularisation?

O0E _ OE, E

. 0K,
L2: = ot AW 2Aw = —n — - n}\w
e L1 g‘i aEO + Asign(w) 2Aw = —17 — nisign(w)

« L1: The weights shrink by a constant amount towards 0O
» L2: The weights shrink by an amount proportional to w

L1 drives small weights to zero
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L1/L2 Regularisation

« Why small weights prevent overfitting?

« When weights are 0 or close to zero this equivalent to

removing the corresponding connection between the
neurons

 Simpler architecture - avoids overfitting
» Network has the right capacity

« Itis like we start with a high capacity (complex) network
until we find a network with the right capacity for the
problem
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Dropout

* We don’t modify the error function but the network 1tself
 During training neurons are randomly dropped out

* The probability that a neuron 1s present 1S p
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(a) Standard Neural Net

From Dropout: A simple way to prevent neural networks from
overfitting by Srivastava et al., JIMLR 2014
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Dropout

 Dropout prevents overfitting because it provides a way
of approximately combining exponentially many
different neural network architectures.

- Typical values for p: 0.8/0.5 for input/hidden neurons

« At test time the outgoing weights of a neuron are
multiplied by p

Present with Always

probability p present

(a) At training time (b) At test time

From Dropout: A simple way to prevent neural networks from
overfitting by Srivastava et al., JMLR 2014
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Max-Norm Regularisation

 Constrain the norm of the incoming weight vector at each
hidden unit to be upper bounded by a fixed constant c.

« Weight vector length: L = \/lez + W%+ . w2

e w;; corresponds to incoming weights to neuron j from the
N neurons of the previous layer

 If L > c then multiply all the incoming weights by c/L

* The new vector length isc
 Another approach to keep the weights small
 Usually used in combination with dropout
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Data Augmentation

One of the best ways to avoid overfitting is more data

So we can artificially generate more data, usually a bit
noisy, so we introduce more variation

We should apply operations that correspond to real-world
variations.

For images: flip left-right, rotate, translate, etc
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Vanishing/Exploding gradient

AW, :7751.xji

0; = DSy

k=outputNeuonsConneatdToj anetj

oo (net;)

» As we backpropagate through many layers:

1. If the weights are small -> §; shrink exponentially

2. If the weights are big -> §; grow exponentially

S0 either the network stops learning (case 1) or becomes
unstable (case 2)

« That Is why It is not possible to train deep networks with
backpropagation
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Deep NNSs

Hidden Hidden

Output Output
Layer Layer
Hidden Hidden
Layer 1 Layerl  Layer3
3-layer feed-forward network 4-layer feed-forward network

« There is a pre-training phase where weights are initialised to a
good starting point.

* Pre-training is performed per layer using Restricted Boltzmann Machines
or Stacked Denoising Autoencoders

« Then backpropagation is used to fine-tune the weights starting from a good
Initialisation point.
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Stacked Denoising Autoencoder

Stacked AutoEncoder
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From https://mww.mql5.com/en/articles/1103#2_2
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Train a network to reproduce
Its input

This network Is called an
Autoencoder (AE)

The 1dea Is that the middle
layer represents the main
variations in the data

The problem is that the AE
may simply learn the identity
function
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Stacked Denoising Autoencoder

Stacked AutoEncoder
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From https://mww.mql5.com/en/articles/1103#2_2
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Denoising AE: we add noise
to the input so the network
learns to reconstruct (output)
the “denoised” input

We usually set as many as
half of the inputs to O

The network tries to
reconstruct the input and undo
the effect of noise

The hidden layer is “forced”
to learn the main variations in
the data
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Stacked Denoising Autoencoder

Stacked AutoEncoder

out (. )
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From https://mww.mql5.com/en/articles/1103#2_2
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The hidden layer weights of
the AE are copied to the feed-
forward NN

The output of the hidden layer
is used as input for the 2" AE

Noise Is added to this new
input and the 2" AE learns
to “denoise” its input
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Stacked Denoising Autoencoder

Stacked AutoEncoder Multilayer Perceptron
[ J
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The hidden layer weights of
the 2" AE are copied
to the feed-forward NN

The output of the hidden layer
is used as input for the 3" AE

Using this approach we can
add as many as layers as we
want
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Stacked Denoising Autoencoder

Multilayer Perceptron

Stacked AutoEncoder
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From https://mww.mql5.com/en/articles/1103#2_2
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This approach is used to
Initialise the NN

This is called pre-training

It results in good Initialisation
of the weights

Then we fine-tune the network
using stochastic gradient
descent
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Deep Networks for Time Series

» Deep feedforward NNs are good at various tasks but
not at handling time series data

e Recurrent Neural Networks are suitable for time series

« They also suffer from the vanishing gradient problem
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LSTMS

« Atype of recurrent network that can be effectively trained Is the
Long-Short Term Memory Recurrent Neural Network (LSTM-

RNN). Introduced in 1990s

* \\e replace the neuron with a memory cell

 There are input, output and forget gates which control when

Information flows in / out of the cell and when to reset the state
of the cell
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LSTMS

output
recurrent
p "
block output q.& r:'f__'mem LEgElld
LR
LSTM block Y —— unweighted connection
m——  weighted connection
peepholes immm Connection with time-lag

input
branching point

mutliplication

sum over all inputs

gate activation function
(always sigmoid)

forget gate

input

input activation function

(usually tanh)
input

output activation function
(usually tanh)

block input

QIOIOLLE

input recurrent

From LSTM: A search space odyssey by Greff et al., arXiv Mar 2015
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Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been very
successful In computer vision

First version was introduced in 1980s (neocognitron)

Improved in 1998 by LeCun et al., “Gradient-Based Learning
Applied to Document Recognition”, Proc. IEEE, 1998

. C3: 1, maps 16@&10x10
C1: featurs maps S4 1. m 1665

INPUTY &GP 28x28 s
o . maps
BEIANIT | g

ING2

G5 oyt pg e  OUTPUT
20 Vel

Gaussian connectons
Conveiutions Subsampling Convolytions  Subsampling Full connecticn
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Convolutional Neural Networks

Became popular in 2012 after winning the ImageNet competition

“ImageNet Classification with Deep Convolutional Neural
Networks”, by Krizhevsky et al., NIPS 2012

Tricks: Data augmentation, Dropout, ReLu + GPUs

224 P e Ll 3]_ | EN L[ 3| . A
— 23 -t » »
\ = . Fy N ‘ 3‘ 135 13 dense dense
N f 3|\ 1000
i1 192 192 128 Max L] L
224\ Max 128 Max pooling 2048 2048
pooling pooling
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Convolutional Neural Networks

» [t’s a deep network = many layers
 Each layer Is either a convolutional layer or subsampling layer

 Final layers are fully connected layers

1000

192 192 128 Max
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Convolutional Layers

« http://deeplearning.stanford.edu/wiki/index.php/Feature_extracti
on_using_convolution

« The kernel, I.e., weights, are fixed. After convolving the image
with the kernel we end up with a feature map

Input image Convolution Feature map
Kernel
-1 -1 -1
-1 8 -1
-1 -1 -1

Source: http://en.wikipedia.org/wiki/File:\Vd-Orig.png
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Convolutional Layers

 Different kernels, i.e., weights, are applied to the image and each
of them produces a feature map (kernel is fixed for each feature
map)

» The weights are learned during training

: C3: 1, maps 16@10-19
INFUT C1: feature maps S4tm 164055
vl

o
10y Gh28x28 e T
5@10{1‘?

CS: et po ivee  OUTPUT
Lol -

Gaussian connections
GConveiytions Subsampling Convolytions  Subsampling Full connection

Stavros Petridis Machine Learning (course 395)



Subsampling Layers

« Each feature map is downsampled using average pooling or max-
pooling

« Use non-overlapping patches of 2x2 and take the average or
maximum of the pixels as the output

. C3: 1, maps 16&@ 1010
C1: feature maps S4tm 164055

el & 26x28
— G5 loy®f £ fayer  OUTPUT
Lol -

Full conrechon Gaussian connections
GConvelutions Subsampling Convolgtions  Subsampling Full connection
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Deep NNs Applications

» Deep Face by Facebook — State of the art in Face
verification

- DeepFace: Closing the Gap to Human-Level Performance in Face

\erification, Taigman, Ming, Ranzato, Wolf

» State-of-the-art performance In Speech Recognition
- Microsoft has done a lot of research on this topic
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ImageNet Competition

— Object Classification

Candle

Oy \Tel
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Eheiich ) 8
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 Classification of 1000+ objects
 State-of-the-art before 2012: ~26%
* New state-of-the-art in 2012 with deep networks: ~15%
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Practical Suggestions: Activation Functions

Continuous, smooth (essential for backpropagation)
Nonlinear
Saturates, 1.e. has a min and max value

Monotonic (if not then additional local minima can be
Introduced)

Sigmoids are good candidate (log-sig, tan-sig) or RelLu

_---"'"'.‘ g M ‘£

_ a = tansigin)
a = logsig(n) . _ .
_ . ] Tan-Sigmoid Transfer Function
Log-Sigmoid Transfer Function
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Practical Suggestions: Activation Functions

* In case of regression then output layer should have
linear activation functions

Linear Transfer Function
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Practical Suggestions: Scaling Inputs

* [t is not desirable that some inputs are orders of
magnitude larger than other inputs

« Map each input x(i) to [-1, +1] using this formula

X~Xmin 1

= 2

y Xmax ~Xmin
« Matlab function: mapminmax
- Rows: features, columns: examples

- Normalises each row
- Useful for continuous inputs/targets
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Practical Suggestions: Scaling Inputs

Standardize inputs to mean=0 and 1 std. dev.=1
y - Xstd

Useful for continuous inputs/targets

Matlab function: mapstd

Scaling is needed if inputs take very different values. If e.g.,
they are in the range [-3, 3] then scaling is probably not needed
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Practical Suggestions: Scaling Inputs

» The scaling values, x,,in, Xmax, Xmean, Xstq are
computed on the training set and then applied to the
validation and test sets.

* [t IS not correct to scale each set separately.
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Practical Suggestions: Scaling Inputs

« Matlab automatically scales the inputs to [-1, 1] and
removes the inputs/outputs that are constant.

« Think If you wish to scale the inputs, If not you
should disable the automatic scaling

« Check http://mmww.mathworks.co.uk/help/nnet/ug/choose-
neural-network-input-output-processing-functions.htmil
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Practical Suggestions: Target Values

 Binary Classification
- Target Values : -1/0 (negative) and 1 (positive)
- 0 for log-sigmoid, -1 for tan-sigmoid

« Multiclass Classification
-10,0,1,0] or [-1, -1, 1, -1]
- 0 for log-sigmoid, -1 for tan-sigmoid

* Regression
Target values: continuous values [-Inf, +Inf]
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Practical Suggestions:
Number of Hidden Layers

Networks with many hidden layers are prone to
overfitting and they are also harder to train

For most problems one hidden layer should be
enough

2 hidden layers can sometimes lead to improvement

If you want to use more layers then you should follow
the deep learning methodology to initialise the
welights and use strong regularisation (dropout etc)
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Division of data

Matlab automatically divides the dataset into
training/validation/test sets.

You should force matlab to use an empty test set (you
have your own) and use the same validation set as

yours.

You can provide the indices of your validation set
and your test set (=empty array)

Check http://mmw.mathworks.co.uk/help/nnet/ug/divide-data-
for-optimal-neural-network-training.html
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Matlab Examples

e Create feedforward network

- net = feedforwardnet(hiddenSizes,trainFcn)

- hiddenSizes = [10, 10, 10] — 3 layer network with 10 hidden
neurons in each layer

- trainFen = ‘trainlm’, ‘traingdm’, ‘trainrp’ etc

 Configure (set number of input/output neurons)
- net = configure(net,x,t)
- X: Input data, noFeatures x noExamples
- 1: target data, noClasses x noEx
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Matlab Examples

e Train network

- [net,tr] = train(net,P,T)
- P: input data
- T: target data

 Simulate network
- [Y,Pf,Af E,perf] = sim(net,P)
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Matlab Examples

 Batch training: Train
 Incremental Training: Adapt
« Use Train for the CBC
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Questions

* Questions from book: 4..1,4.2,4.5,4.8,4.10

 You should read chapter 4

« Examinable material: Slides, Manual (part 3A),
Chapter 4
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