
 Stavros Petridis Machine Learning (course 395)

Course 395: Machine Learning - Lectures
 Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)



 Stavros Petridis Machine Learning (course 395)

Why squared error is not a good choice for

sigmoid output activation functions

• See http://neuralnetworksanddeeplearning.com/chap3.html

• For output units: Δ𝑤𝑘𝑖 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑥𝑘𝑖

•
𝜕𝐸

𝜕𝑜𝑘
= −(𝑡𝑘 − 𝑜𝑘) when the error function is the squared loss

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘 = 𝜊𝑘 1 − 𝜊𝑘

 when σ is sigmoid

 Stavros Petridis Machine Learning (course 395)

Why squared loss is not a good choice for

sigmoid output activation functions

• See http://neuralnetworksanddeeplearning.com/chap3.html

• For output units: Δ𝑤𝑘𝑖 = 𝜂 𝑡𝑘 − 𝑜𝑘 𝜊𝑘 1 − 𝜊𝑘 𝑥𝑘𝑖

• When the output is 0 or 1 then Δw is 0 as well

• If target is 1 and network‟s output is 1 then Δw = 0 (good)

• If target is 1 and network‟s output is 0 then Δw = 0 (bad!!!)

 Stavros Petridis Machine Learning (course 395)

Cross Entropy Error as Error Function

• A good error function when the output activation functions are

sigmoid is the binary cross entropy defined as follows:

 D = number of training examples

• For output units: Δ𝑤𝑘𝑖 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑥𝑘𝑖

•
𝜕𝐸

𝜕𝑜𝑘
=

𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘 = 𝜊𝑘 1 − 𝜊𝑘

  


D

d dddd otot
D

E
1

)1ln()1(ln
1

 Stavros Petridis Machine Learning (course 395)

Cross Entropy Error as Error Function

• For output units: Δ𝑤𝑘𝑖 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑥𝑘𝑖

• Δ𝑤𝑘𝑖 = −𝜂
𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)
𝜊𝑘 1 − 𝜊𝑘 𝑥𝑘𝑖= 𝜂(𝑡𝑘 − 𝑜𝑘) 𝑥𝑘𝑖

• The higher the error the higher the weight update

 Stavros Petridis Machine Learning (course 395)

Softmax output activation functions

• A popular output activation function for classification is

softmax 𝑜𝑘 =
𝑒𝑛𝑒𝑡𝑘

 𝑒
𝑛𝑒𝑡𝑘

𝑘

• The output can be interpreted as a discrete probability

distribution

• The right error function is the negative log likelihood cost

 E = − 𝑡𝑘𝑙𝑛𝑜𝑘𝑘

• Target vectors = [0 0 1 … 0]  E = −𝑙𝑛𝑜𝐿 where L is the

position of the active target, i.e., it is 1.

• It is equivalent to the binary cross entropy for 2 classes

 Stavros Petridis Machine Learning (course 395)

Output activation functions: Summary

• For each output activation function the right error function

should be selected

• Sigmoid  Cross entropy error (useful for classification)

• Softmax  negative log likelihood cost (useful for

classification)

• Both combinations work well for classification problems,

Softmax has the advantage of producing a discrete probability

distribution over the outputs

• Linear  MSE (useful for regression)

 Stavros Petridis Machine Learning (course 395)

Backpropagation with momentum

iii www 
i

i
w

E
w




 

• Standard backpropagation

• If the error surface is a long and narrow valley, gradient

 descent goes quickly down the valley walls, but very slowly

 along the valley floor.

From https://www.cs.toronto.edu/~hinton/csc2515/notes/lec6tutorial.pdf

 Stavros Petridis Machine Learning (course 395)

Backpropagation with momentum

• Backpropagation with momentum

iii www 
i

i
w

E
w




 

• Standard backpropagation

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + (1 − 𝜇) −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)
 OR

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)

• 𝜇 = momentum constant, usually 0.9, 0.95

• It is like giving momentum to the weights

• We do not take into account only the local gradient but

also recent trends in the error surface

• Matlab function: traingdm

 Stavros Petridis Machine Learning (course 395)

Backpropagation with adaptive learning rate

• Simple heuristic

• It is good that the learning rate is not fixed during training

• Typical values for 𝜂𝑖𝑛𝑐 = 1.05, 1.1

• Typical values for 𝜂𝑑𝑒𝑐 = 0.5, 0.7

• Matlab function: traingda

1. If error decreases, increase learning rate: 𝜂 = 𝜂 ∗ 𝜂𝑖𝑛𝑐
2. If error increases, decrease learning rate and don‟t update

 the weights: 𝜂 = 𝜂 ∗ 𝜂𝑑𝑒𝑐

iii www 
i

i
w

E
w




 

 Stavros Petridis Machine Learning (course 395)

Resilient Backpropagation

• The weight change depends on the learning rate and the value of

 the partial derivative. We have no control over the partial

 derivative.

• The effect of the learning rate can be disturbed by the unforeseeable

 behaviour of the derivative.

• Resilient backpropagation uses only the sign of the derivative!!

• For each weight 𝑤𝑖 we define an individual update value Δ𝑖 which

 depends only on the sign of the derivative and ignores its

 actual value

 Stavros Petridis Machine Learning (course 395)

Resilient Backpropagation

Δ𝑖 𝑡 =

Δ𝑖𝑛𝑐 ∗ Δ𝑖 𝑡 − 1 𝑖𝑓
𝜕𝐸𝑡−1

𝜕𝑤𝑖
 ∗
𝜕𝐸𝑡

𝜕𝑤𝑖
> 0

Δ𝑑𝑒𝑐 ∗ Δ𝑖 𝑡 − 1 𝑖𝑓
𝜕𝐸𝑡−1

𝜕𝑤𝑖
 ∗
𝜕𝐸𝑡

𝜕𝑤𝑖
< 0

• Every time the partial derivative changes its sign, i.e., last update

 was too big, the update value is decreased.

• If the derivative retains its sign, the update value is increased in

 order to accelerate convergence.

 Stavros Petridis Machine Learning (course 395)

Resilient Backpropagation

Δ𝑤𝑖 𝑡 =

− Δ𝑖 𝑡 𝑖𝑓
𝜕𝐸𝑡

𝜕𝑤𝑖
> 0

Δ𝑖 𝑡 𝑖𝑓
𝜕𝐸𝑡

𝜕𝑤𝑖
< 0

• We also need to initialise the update values Δ𝑖

• We usually define an upper limit for Δ𝑖

• Typical values for Δ𝑖𝑛𝑐 = 1.2

• Typical values for Δ𝑑𝑒𝑐 = 0.5

• Matlab function: trainrp

E

Gradient direction

Positive Slope Negative Slope

 Stavros Petridis Machine Learning (course 395)

Other Training Algorithms

• Conjugate gradient

• Levenberg-Marquardt

• Hessian-free

• And many others…not covered in the lecture

 Stavros Petridis Machine Learning (course 395)

Batch/Mini-batch/Stochastic Gradient Descent

• Batch: All examples are fed to the network. Weights are updated

 only after all examples have been presented to the network

• For each weight the corresponding gradient (or Δw) is computed

 (for each example).

• The weights are updated based on the average gradient over

 all examples.

• Stochastic/Incremental/On-line: One example at a time is fed to

 the network.

• Weights are updated after each example is presented to the network

 Stavros Petridis Machine Learning (course 395)

Batch/Mini-batch/Stochastic Gradient Descent

• Mini-Batch: M (usually 100) randomly examples are fed to the

 network.

• For each weight the corresponding gradient (or Δw) is computed

 (for each example).

• The weights are updated based on the average gradient over

 all M examples.

• Set of M examples is called mini-batch.

• Popular approach in deep neural networks.

• Sometimes called stochastic gradient descent (NOT to be confused

 with online/incremental gradient descent).

 Stavros Petridis Machine Learning (course 395)

(Hyper)Parameters / Weights

• (Hyper)Parameters are what the user specifies, e.g.

number of hidden neurons, learning rate, number of

epochs etc

• They need to be optimised

• Weights are the weights of the network

• They are also parameters but they are optimised

automatically via gradient descent

 Stavros Petridis Machine Learning (course 395)

Ways to avoid overfitting

• Early stopping (see slide 52)

• L1 Regularisation

• L2 Regularisation

• Dropout

• Max-norm Constraint

• Data augmentation

 Stavros Petridis Machine Learning (course 395)

L2 Regularisation

• 𝐸 = 𝐸0 + 𝜆 𝑤2𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠

• 𝐸0 is the original error function, e.g., squared loss,

negative log-likelihood

• It is NOT applied to the bias

• We wish to minimise the original error function (𝐸0)

• We also wish to penalise large weights, keep the weights

small (second term)

• Small 𝜆  we prefer to minimise 𝐸0

• Large 𝜆  we prefer small weights

 Stavros Petridis Machine Learning (course 395)

L1 Regularisation

• 𝐸 = 𝐸0 + 𝜆 |𝑤|𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠

• 𝐸0 is the original error function, e.g., squared loss,

negative log-likelihood

• It is NOT applied to the bias

• We wish to minimise the original error function (𝐸0)

• We also wish to penalise large weights, keep the weights

small (second term)

• Small 𝜆  we prefer to minimise 𝐸0

• Large 𝜆  we prefer small weights

 Stavros Petridis Machine Learning (course 395)

L1/L2 Regularisation

• So what‟s the difference between L1 and L2

regularisation?

• L2:
𝜕𝐸

𝜕𝑤
=

𝜕𝐸0

𝜕𝑤
+ λ𝑤 Δ𝑤 = −𝜂

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑤

• L1:
𝜕𝐸

𝜕𝑤
=

𝜕𝐸0

𝜕𝑤
+ λ𝑠𝑖𝑔𝑛(𝑤) Δ𝑤 = −𝜂

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑠𝑖𝑔𝑛(𝑤)

• L1: The weights shrink by a constant amount towards 0

• L2: The weights shrink by an amount proportional to w

• L1 drives small weights to zero

 Stavros Petridis Machine Learning (course 395)

L1/L2 Regularisation

• Why small weights prevent overfitting?

• When weights are 0 or close to zero this equivalent to

removing the corresponding connection between the

neurons

• Simpler architecture  avoids overfitting

• Network has the right capacity

• It is like we start with a high capacity (complex) network

until we find a network with the right capacity for the

problem

 Stavros Petridis Machine Learning (course 395)

Dropout

• We don‟t modify the error function but the network itself

• During training neurons are randomly dropped out

• The probability that a neuron is present is p

From Dropout: A simple way to prevent neural networks from

 overfitting by Srivastava et al., JMLR 2014

 Stavros Petridis Machine Learning (course 395)

Dropout

• Dropout prevents overfitting because it provides a way

of approximately combining exponentially many

different neural network architectures.

• Typical values for p: 0.8/0.5 for input/hidden neurons

• At test time the outgoing weights of a neuron are

multiplied by p

From Dropout: A simple way to prevent neural networks from

 overfitting by Srivastava et al., JMLR 2014

 Stavros Petridis Machine Learning (course 395)

Max-Norm Regularisation

• Constrain the norm of the incoming weight vector at each

hidden unit to be upper bounded by a fixed constant c.

• Weight vector length: 𝐿 = 𝑤𝑗1
2 +𝑤𝑗2

2+. . .+𝑤𝑗𝑁
2

• 𝑤𝑗𝑖 corresponds to incoming weights to neuron j from the

N neurons of the previous layer

• If L > c then multiply all the incoming weights by c/L

• The new vector length is c

• Another approach to keep the weights small

• Usually used in combination with dropout

 Stavros Petridis Machine Learning (course 395)

Data Augmentation

• One of the best ways to avoid overfitting is more data

• So we can artificially generate more data, usually a bit

noisy, so we introduce more variation

• We should apply operations that correspond to real-world

variations.

• For images: flip left-right, rotate, translate, etc

 Stavros Petridis Machine Learning (course 395)

Vanishing/Exploding gradient

• As we backpropagate through many layers:

1. If the weights are small -> 𝛿𝑖 shrink exponentially

2. If the weights are big -> 𝛿𝑖 grow exponentially

• So either the network stops learning (case 1) or becomes

unstable (case 2)

• That is why it is not possible to train deep networks with

 backpropagation

jijji xw 

j

j

edTojonsConnectoutputNeurk

kjkj
net

net
w




 



)(


 Stavros Petridis Machine Learning (course 395)

Deep NNs

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Output

Layer

Input

Layer

3-layer feed-forward network 4-layer feed-forward network

• There is a pre-training phase where weights are initialised to a

 good starting point.

• Pre-training is performed per layer using Restricted Boltzmann Machines

or Stacked Denoising Autoencoders

• Then backpropagation is used to fine-tune the weights starting from a good

initialisation point.

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• Train a network to reproduce

 its input

• This network is called an

 Autoencoder (AE)

• The idea is that the middle

 layer represents the main

 variations in the data

• The problem is that the AE

 may simply learn the identity

 function

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• Denoising AE: we add noise

 to the input so the network

 learns to reconstruct (output)

 the “denoised” input

• We usually set as many as

 half of the inputs to 0

• The network tries to

 reconstruct the input and undo

 the effect of noise

• The hidden layer is “forced”

 to learn the main variations in

 the data

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• The hidden layer weights of

 the AE are copied to the feed-

 forward NN

• The output of the hidden layer

 is used as input for the 2nd AE

• Noise is added to this new

 input and the 2nd AE learns

 to “denoise” its input

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• The hidden layer weights of

 the 2nd AE are copied

 to the feed-forward NN

• The output of the hidden layer

 is used as input for the 3rd AE

• Using this approach we can

 add as many as layers as we

 want

 Stavros Petridis Machine Learning (course 395)

Stacked Denoising Autoencoder

From https://www.mql5.com/en/articles/1103#2_2

• This approach is used to

 initialise the NN

• This is called pre-training

• It results in good initialisation

 of the weights

• Then we fine-tune the network

 using stochastic gradient

 descent

 Stavros Petridis Machine Learning (course 395)

Deep Networks for Time Series

• Deep feedforward NNs are good at various tasks but

 not at handling time series data

• Recurrent Neural Networks are suitable for time series

• They also suffer from the vanishing gradient problem

 Stavros Petridis Machine Learning (course 395)

LSTMs

• A type of recurrent network that can be effectively trained is the

Long-Short Term Memory Recurrent Neural Network (LSTM-

RNN). Introduced in 1990s

• We replace the neuron with a memory cell

• There are input, output and forget gates which control when

information flows in / out of the cell and when to reset the state

of the cell

 Stavros Petridis Machine Learning (course 395)

LSTMs

From LSTM: A search space odyssey by Greff et al., arXiv Mar 2015

 Stavros Petridis Machine Learning (course 395)

Convolutional Neural Networks

• Convolutional Neural Networks (CNNs) have been very

successful in computer vision

• First version was introduced in 1980s (neocognitron)

• Improved in 1998 by LeCun et al., “Gradient-Based Learning

Applied to Document Recognition”, Proc. IEEE, 1998

 Stavros Petridis Machine Learning (course 395)

Convolutional Neural Networks

• Became popular in 2012 after winning the ImageNet competition

• “ImageNet Classification with Deep Convolutional Neural

Networks”, by Krizhevsky et al., NIPS 2012

• Tricks: Data augmentation, Dropout, ReLu + GPUs

 Stavros Petridis Machine Learning (course 395)

Convolutional Neural Networks

• It‟s a deep network = many layers

• Each layer is either a convolutional layer or subsampling layer

• Final layers are fully connected layers

 Stavros Petridis Machine Learning (course 395)

Convolutional Layers

• http://deeplearning.stanford.edu/wiki/index.php/Feature_extracti

on_using_convolution

• The kernel, i.e., weights, are fixed. After convolving the image

with the kernel we end up with a feature map

Source: http://en.wikipedia.org/wiki/File:Vd-Orig.png

 Stavros Petridis Machine Learning (course 395)

Convolutional Layers

• Different kernels, i.e., weights, are applied to the image and each

 of them produces a feature map (kernel is fixed for each feature

 map)

• The weights are learned during training

 Stavros Petridis Machine Learning (course 395)

Subsampling Layers

• Each feature map is downsampled using average pooling or max-

pooling

• Use non-overlapping patches of 2x2 and take the average or

maximum of the pixels as the output

 Stavros Petridis Machine Learning (course 395)

Deep NNs Applications

• Deep Face by Facebook – State of the art in Face

verification

 - DeepFace: Closing the Gap to Human-Level Performance in Face

 Verification, Taigman, Ming, Ranzato, Wolf

• State-of-the-art performance in Speech Recognition

 - Microsoft has done a lot of research on this topic

 Stavros Petridis Machine Learning (course 395)

ImageNet Competition – Object Classification

• Classification of 1000+ objects

• State-of-the-art before 2012: ~26%

• New state-of-the-art in 2012 with deep networks: ~15%

 Stavros Petridis Machine Learning (course 395)

Practical Suggestions: Activation Functions

• Continuous, smooth (essential for backpropagation)

• Nonlinear

• Saturates, i.e. has a min and max value

• Monotonic (if not then additional local minima can be

introduced)

• Sigmoids are good candidate (log-sig, tan-sig) or ReLu

 Stavros Petridis Machine Learning (course 395)

Practical Suggestions: Activation Functions

• In case of regression then output layer should have

linear activation functions

 Stavros Petridis Machine Learning (course 395)

Practical Suggestions: Scaling Inputs

• It is not desirable that some inputs are orders of

magnitude larger than other inputs

• Map each input x(i) to [-1, +1] using this formula

 y = 2
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1

• Matlab function: mapminmax

 - Rows: features, columns: examples

 - Normalises each row

 - Useful for continuous inputs/targets

 Stavros Petridis Machine Learning (course 395)

Practical Suggestions: Scaling Inputs

• Standardize inputs to mean=0 and 1 std. dev.=1

 y =
𝑥−𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑

• Useful for continuous inputs/targets

• Matlab function: mapstd

• Scaling is needed if inputs take very different values. If e.g.,

they are in the range [-3, 3] then scaling is probably not needed

 Stavros Petridis Machine Learning (course 395)

Practical Suggestions: Scaling Inputs

• The scaling values, 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑒𝑎𝑛, 𝑥𝑠𝑡𝑑 are

computed on the training set and then applied to the

validation and test sets.

• It is not correct to scale each set separately.

 Stavros Petridis Machine Learning (course 395)

Practical Suggestions: Scaling Inputs

• Matlab automatically scales the inputs to [-1, 1] and

 removes the inputs/outputs that are constant.

• Think if you wish to scale the inputs, if not you

should disable the automatic scaling

• Check http://www.mathworks.co.uk/help/nnet/ug/choose-

neural-network-input-output-processing-functions.html

 Stavros Petridis Machine Learning (course 395)

Practical Suggestions: Target Values

• Binary Classification

 - Target Values : -1/0 (negative) and 1 (positive)

 - 0 for log-sigmoid, -1 for tan-sigmoid

• Multiclass Classification

 - [0,0,1,0] or [-1, -1, 1, -1]

 - 0 for log-sigmoid, -1 for tan-sigmoid

• Regression

 Target values: continuous values [-inf, +inf]

 Stavros Petridis Machine Learning (course 395)

Practical Suggestions:

Number of Hidden Layers

• Networks with many hidden layers are prone to

overfitting and they are also harder to train

• For most problems one hidden layer should be

enough

• 2 hidden layers can sometimes lead to improvement

• If you want to use more layers then you should follow

the deep learning methodology to initialise the

weights and use strong regularisation (dropout etc)

 Stavros Petridis Machine Learning (course 395)

Division of data

• Matlab automatically divides the dataset into

training/validation/test sets.

• You should force matlab to use an empty test set (you

have your own) and use the same validation set as

yours.

• You can provide the indices of your validation set

and your test set (=empty array)

• Check http://www.mathworks.co.uk/help/nnet/ug/divide-data-

for-optimal-neural-network-training.html

 Stavros Petridis Machine Learning (course 395)

Matlab Examples

• Create feedforward network

 - net = feedforwardnet(hiddenSizes,trainFcn)

 - hiddenSizes = [10, 10, 10] – 3 layer network with 10 hidden

 neurons in each layer

 - trainFcn = „trainlm‟, „traingdm‟, „trainrp‟ etc

• Configure (set number of input/output neurons)

 - net = configure(net,x,t)

 - x: input data, noFeatures x noExamples

 - t: target data, noClasses x noEx

 Stavros Petridis Machine Learning (course 395)

Matlab Examples

• Train network

 - [net,tr] = train(net,P,T)

 - P: input data

 - T: target data

• Simulate network

 - [Y,Pf,Af,E,perf] = sim(net,P)

 Stavros Petridis Machine Learning (course 395)

Matlab Examples

• Batch training: Train

• Incremental Training: Adapt

• Use Train for the CBC

 Stavros Petridis Machine Learning (course 395)

Questions

• Questions from book: 4..1, 4.2, 4.5, 4.8, 4.10

• You should read chapter 4

• Examinable material: Slides, Manual (part 3A),

Chapter 4

