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Course 395: Machine Learning - Lectures 
 Lecture 1-2: Concept Learning (M. Pantic) 

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) 

Lecture 5-6: Evaluating Hypotheses (S. Petridis) 

Lecture 7-8: Artificial Neural Networks I (S. Petridis) 

Lecture 9-10: Artificial Neural Networks II (S. Petridis)  

Lecture 11-12: Instance Based Learning (M. Pantic) 

Lecture 13-14: Genetic Algorithms (M. Pantic) 
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Why squared error is not a good choice for 

sigmoid output activation functions 

• See http://neuralnetworksanddeeplearning.com/chap3.html 

 

• For output units:  Δ𝑤𝑘𝑖 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑥𝑘𝑖 

 

•
𝜕𝐸

𝜕𝑜𝑘
= −(𝑡𝑘 − 𝑜𝑘) when the error function is the squared loss 

 

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘  = 𝜊𝑘 1 − 𝜊𝑘   

   when σ is sigmoid 
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Why squared loss is not a good choice for 

sigmoid output activation functions 

• See http://neuralnetworksanddeeplearning.com/chap3.html 

 

• For output units:  Δ𝑤𝑘𝑖 = 𝜂 𝑡𝑘 − 𝑜𝑘 𝜊𝑘 1 − 𝜊𝑘 𝑥𝑘𝑖 

 

• When the output is 0 or 1 then Δw is 0 as well 

 

• If target is 1 and network‟s output is 1 then Δw = 0 (good) 

 

• If target is 1 and network‟s output is 0 then Δw = 0 (bad!!!) 
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Cross Entropy Error as Error Function 

• A good error function when the output activation functions are 

sigmoid is the binary cross entropy defined as follows: 

 

 

   D = number of training examples 
 

• For output units:  Δ𝑤𝑘𝑖 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑥𝑘𝑖 

 

•
𝜕𝐸

𝜕𝑜𝑘
=

𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)
 

•
𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
= 𝜎 𝑛𝑒𝑡𝑘 1 − 𝜎 𝑛𝑒𝑡𝑘  = 𝜊𝑘 1 − 𝜊𝑘   
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Cross Entropy Error as Error Function 

 

• For output units:  Δ𝑤𝑘𝑖 = −𝜂
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑥𝑘𝑖 

 

• Δ𝑤𝑘𝑖 = −𝜂
𝑜𝑘−𝑡𝑘

𝑜𝑘(1−𝑜𝑘)
𝜊𝑘 1 − 𝜊𝑘 𝑥𝑘𝑖= 𝜂(𝑡𝑘 − 𝑜𝑘) 𝑥𝑘𝑖 

 
 

• The higher the error the higher the weight update  
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Softmax output activation functions 

• A popular output activation function for classification is 

softmax 𝑜𝑘 =
𝑒𝑛𝑒𝑡𝑘

 𝑒
𝑛𝑒𝑡𝑘

𝑘

 

 

• The output can be interpreted as a discrete probability 

distribution 
 

• The right error function is the negative log likelihood cost  

     E = − 𝑡𝑘𝑙𝑛𝑜𝑘𝑘  
 

• Target vectors = [0 0 1 … 0]  E = −𝑙𝑛𝑜𝐿  where L is the 

position of the active target, i.e., it is 1. 
 

• It is equivalent to the binary cross entropy for 2 classes 
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Output activation functions: Summary 

• For each output activation function the right error function 

should be selected 
 

• Sigmoid  Cross entropy error (useful for classification) 
 

• Softmax  negative log likelihood cost (useful for 

classification) 
 

• Both combinations work well for classification problems, 

Softmax has the advantage of producing a discrete probability 

distribution over the outputs 
 

• Linear  MSE (useful for regression) 
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Backpropagation with momentum 
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• Standard backpropagation 

• If the error surface is a long and narrow valley, gradient  

    descent goes quickly down the valley walls, but very slowly 

    along the valley floor. 

   

From https://www.cs.toronto.edu/~hinton/csc2515/notes/lec6tutorial.pdf 
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Backpropagation with momentum 

• Backpropagation with momentum 
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• Standard backpropagation 

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + (1 − 𝜇) −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)
  OR 

Δ𝑤𝑖(𝑡) = 𝜇 Δ𝑤𝑖(𝑡 − 1) + −𝜂
𝜕𝐸

𝜕𝑤𝑖(𝑡)
  

• 𝜇 = momentum constant, usually 0.9, 0.95 

• It is like giving momentum to the weights 

• We do not take into account only the local gradient but 

also recent trends in the error surface 

• Matlab function: traingdm 
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Backpropagation with adaptive learning rate 

• Simple heuristic 

• It is good that the learning rate is not fixed during training 

• Typical values for 𝜂𝑖𝑛𝑐 = 1.05, 1.1 

• Typical values for 𝜂𝑑𝑒𝑐 = 0.5, 0.7 

• Matlab function: traingda 

 

 

 

1. If error decreases, increase learning rate: 𝜂 = 𝜂 ∗ 𝜂𝑖𝑛𝑐 
2. If error increases, decrease learning rate and don‟t update 

       the weights: 𝜂 = 𝜂 ∗ 𝜂𝑑𝑒𝑐 
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Resilient Backpropagation 

• The weight change depends on the learning rate and the value of 

     the partial derivative. We have no control over the partial  

     derivative. 

 

• The effect of the learning rate can be disturbed by the unforeseeable 

     behaviour of the derivative. 

 

• Resilient backpropagation uses only the sign of the derivative!! 

 

• For each weight 𝑤𝑖 we define an individual update value Δ𝑖 which 

     depends only on the sign of the derivative and ignores its  

      actual value 
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Resilient Backpropagation 

Δ𝑖 𝑡 =

Δ𝑖𝑛𝑐 ∗ Δ𝑖 𝑡 − 1   𝑖𝑓  
𝜕𝐸𝑡−1

𝜕𝑤𝑖
  ∗
𝜕𝐸𝑡

𝜕𝑤𝑖
> 0

Δ𝑑𝑒𝑐 ∗ Δ𝑖 𝑡 − 1   𝑖𝑓  
𝜕𝐸𝑡−1

𝜕𝑤𝑖
  ∗
𝜕𝐸𝑡

𝜕𝑤𝑖
< 0

 

• Every time the partial derivative changes its sign, i.e., last update  

     was too big, the update value is decreased. 

 

• If the derivative retains its sign, the update value is increased in  

    order to accelerate convergence. 
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Resilient Backpropagation 

Δ𝑤𝑖 𝑡 =

− Δ𝑖 𝑡   𝑖𝑓  
𝜕𝐸𝑡

𝜕𝑤𝑖
> 0

Δ𝑖 𝑡   𝑖𝑓   
𝜕𝐸𝑡

𝜕𝑤𝑖
< 0

 

• We also need to initialise the update values Δ𝑖 

• We usually define an upper limit for Δ𝑖 

• Typical values for Δ𝑖𝑛𝑐 = 1.2 

• Typical values for Δ𝑑𝑒𝑐 = 0.5 

• Matlab function: trainrp 

 

 

 

E 

Gradient direction 

Positive Slope Negative Slope 
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Other Training Algorithms 

• Conjugate gradient 

 

• Levenberg-Marquardt 

 

• Hessian-free 

 

• And many others…not covered in the lecture 
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Batch/Mini-batch/Stochastic Gradient Descent 

• Batch: All examples are fed to the network. Weights are updated 

    only after all examples have been presented to the network 

 

• For each weight the corresponding gradient (or Δw) is computed 

     (for each example).  

 

• The weights are updated based on the average gradient over  

     all examples. 

 

• Stochastic/Incremental/On-line: One example at a time is fed to  

     the network.  

 

• Weights are updated after each example is presented to the network 

 

 

 



  Stavros Petridis                       Machine Learning (course 395) 

Batch/Mini-batch/Stochastic Gradient Descent 

• Mini-Batch: M (usually 100) randomly examples are fed to the  

     network.  
 

• For each weight the corresponding gradient (or Δw) is computed 

     (for each example).  
 

• The weights are updated based on the average gradient over  

     all M examples. 
 

• Set of M examples is called mini-batch. 
 

• Popular approach in deep neural networks. 

 

• Sometimes called stochastic gradient descent (NOT to be confused 

    with online/incremental gradient descent).  
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(Hyper)Parameters / Weights 

• (Hyper)Parameters are what the user specifies, e.g. 

number of hidden neurons, learning rate, number of 

epochs etc 

 

• They need to be optimised 

 

• Weights are the weights of the network 

 

• They are also parameters but they are optimised 

automatically via gradient descent 
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Ways to avoid overfitting 

• Early stopping (see slide 52) 

 

• L1 Regularisation 

 

• L2 Regularisation 

 

• Dropout 

 

• Max-norm Constraint 

 

• Data augmentation    



  Stavros Petridis                       Machine Learning (course 395) 

L2 Regularisation 

• 𝐸 = 𝐸0 +  𝜆 𝑤2𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠  
 

• 𝐸0 is the original error function, e.g., squared loss, 

negative log-likelihood 
 

• It is NOT applied to the bias 
 

• We wish to minimise the original error function (𝐸0) 
 

• We also wish to penalise large weights, keep the weights 

small (second term) 
 

• Small 𝜆  we prefer to minimise 𝐸0 
 

• Large 𝜆  we prefer small weights 
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L1 Regularisation 

• 𝐸 = 𝐸0 +  𝜆 |𝑤|𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠  
 

• 𝐸0 is the original error function, e.g., squared loss, 

negative log-likelihood 
 

• It is NOT applied to the bias 
 

• We wish to minimise the original error function (𝐸0) 
 

• We also wish to penalise large weights, keep the weights 

small (second term) 
 

• Small 𝜆  we prefer to minimise 𝐸0 
 

• Large 𝜆  we prefer small weights 
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L1/L2 Regularisation 

• So what‟s the difference between L1 and L2 

regularisation? 
 

• L2: 
𝜕𝐸

𝜕𝑤
=

𝜕𝐸0

𝜕𝑤
+ λ𝑤  Δ𝑤 = −𝜂 

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑤  

• L1: 
𝜕𝐸

𝜕𝑤
=

𝜕𝐸0

𝜕𝑤
+ λ𝑠𝑖𝑔𝑛(𝑤) Δ𝑤 = −𝜂 

𝜕𝐸0

𝜕𝑤
− 𝜂λ𝑠𝑖𝑔𝑛(𝑤)  

 

• L1: The weights shrink by a constant amount towards 0 
 

• L2: The weights shrink by an amount proportional to w 
 

• L1 drives small weights to zero 
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L1/L2 Regularisation 

• Why small weights prevent overfitting? 
 

• When weights are 0 or close to zero this equivalent to 

removing the corresponding connection between the 

neurons 
 

• Simpler architecture  avoids overfitting 

 

• Network has the right capacity 

 

• It is like we start with a high capacity (complex) network 

until we find a network with the right capacity for the 

problem 
 

 



  Stavros Petridis                       Machine Learning (course 395) 

Dropout 

• We don‟t modify the error function but the network itself 
 

• During training neurons are randomly dropped out 
 

• The probability that a neuron is present is p  

 
 

 

From Dropout: A simple way to prevent neural networks from 

 overfitting by Srivastava et al., JMLR 2014  
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Dropout 

• Dropout prevents overfitting because it provides  a  way  

of  approximately  combining  exponentially  many 

different  neural  network architectures. 
 

• Typical values for p: 0.8/0.5 for input/hidden neurons 

• At test time the outgoing weights of a neuron are 

multiplied by p 
 

 

 
 

 

From Dropout: A simple way to prevent neural networks from 

 overfitting by Srivastava et al., JMLR 2014  
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Max-Norm Regularisation 

• Constrain the norm of the incoming weight vector at each 

hidden unit to be upper bounded by a fixed constant c. 
 

• Weight vector length: 𝐿 = 𝑤𝑗1
2 +𝑤𝑗2

2+. . .+𝑤𝑗𝑁
2 

• 𝑤𝑗𝑖     corresponds to incoming weights to neuron j from the 

N neurons of the previous layer 
 

• If L > c then multiply all the incoming weights by c/L 
 

• The new vector length is c 

• Another approach to keep the weights small 

• Usually used in combination with dropout 
 

 

 
 



  Stavros Petridis                       Machine Learning (course 395) 

Data Augmentation 

• One of the best ways to avoid overfitting is more data 
 

• So we can artificially generate more data, usually a bit 

noisy, so we introduce more variation 
 

• We should apply operations that correspond to real-world 

variations. 
 

• For images: flip left-right, rotate, translate, etc  
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Vanishing/Exploding gradient 

• As we backpropagate through many layers: 

1. If the weights are small -> 𝛿𝑖 shrink exponentially  

2. If the weights are big -> 𝛿𝑖  grow exponentially  

• So either the network stops learning (case 1) or becomes 

unstable (case 2) 

• That is why it is not possible to train deep networks with 

    backpropagation 
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Deep NNs 

Input 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Output 

Layer 

Hidden  

Layer 1 

Hidden  

Layer 2 

Hidden  

Layer 3 

Output 

Layer 

Input 

Layer 

3-layer feed-forward network 4-layer feed-forward network 

• There is a pre-training phase where weights are initialised to a 

     good starting point. 
 

• Pre-training is performed per layer using Restricted Boltzmann Machines 

or Stacked Denoising Autoencoders 
 

• Then backpropagation is used to fine-tune the weights starting from a good 

initialisation point. 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• Train a network to reproduce 

     its input  
 

• This network is called an 

     Autoencoder (AE) 
 

• The idea is that the middle 

     layer represents the main  

     variations in the data  
 

• The problem is that the AE 

     may simply learn the identity 

     function 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• Denoising AE: we add noise 

    to the input so the network 

    learns to reconstruct (output) 

    the “denoised” input 
 

• We usually set as many as  

     half of the inputs to 0 
 

• The network tries to  

     reconstruct the input and undo 

    the effect of noise 
 

• The hidden layer is “forced”  

     to learn the main variations in  

     the data 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• The hidden layer weights of 

     the AE are copied to the feed- 

    forward NN 
 

• The output of the hidden layer 

     is used as input for the 2nd AE 
 

• Noise is added to this new  

     input and the 2nd AE learns 

    to “denoise” its input 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• The hidden layer weights of 

     the 2nd AE are copied  

      to the feed-forward NN 
 

• The output of the hidden layer 

     is used as input for the 3rd AE 
 

• Using this approach we can 

     add as many as layers as we  

     want 
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Stacked Denoising Autoencoder 

From https://www.mql5.com/en/articles/1103#2_2 

• This approach is used to 

     initialise the NN 
 

• This is called pre-training 
 

• It results in good initialisation 

    of the weights 
 

• Then we fine-tune the network 

    using stochastic gradient  

    descent 
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Deep Networks for Time Series 

• Deep feedforward NNs are good at various tasks but 

   not at handling time series data 
 

• Recurrent Neural Networks are suitable for time series 
 

• They also suffer from the vanishing gradient problem 
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LSTMs 

• A type of recurrent network that can be effectively trained is the 

Long-Short Term Memory Recurrent Neural Network (LSTM-

RNN). Introduced in 1990s 

 

• We replace the neuron with a memory cell 

 

• There are input, output and forget gates which control when 

information flows in / out of the cell and when to reset the state 

of the cell 
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LSTMs 

 

 

From LSTM: A search space odyssey by Greff et al., arXiv Mar 2015 
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Convolutional Neural Networks 

• Convolutional Neural Networks (CNNs) have been very 

successful in computer vision 
 

• First version was introduced in 1980s (neocognitron) 
 

• Improved in 1998 by LeCun et al., “Gradient-Based Learning 

Applied to Document Recognition”, Proc. IEEE, 1998 
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Convolutional Neural Networks 

• Became popular in 2012 after winning the ImageNet competition 
 

• “ImageNet Classification with Deep Convolutional Neural 

Networks”, by Krizhevsky et al., NIPS 2012 
 

• Tricks: Data augmentation, Dropout, ReLu + GPUs 
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Convolutional Neural Networks 

• It‟s a deep network = many layers 
 

• Each layer is either a convolutional layer or subsampling layer  
 

• Final layers are fully connected layers 
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Convolutional Layers 

• http://deeplearning.stanford.edu/wiki/index.php/Feature_extracti

on_using_convolution 

 

• The kernel, i.e., weights, are fixed. After convolving the image 

with the kernel we end up with a feature map 

Source: http://en.wikipedia.org/wiki/File:Vd-Orig.png 
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Convolutional Layers 

• Different kernels, i.e., weights, are applied to the image and each 

   of them produces a feature map (kernel is fixed for each feature   

    map) 

 

• The weights are learned during training 
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Subsampling Layers 

• Each feature map is downsampled using average pooling or max-

pooling 

 

• Use non-overlapping patches of 2x2 and take the average or 

maximum of the pixels as the output 
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Deep NNs Applications 

• Deep Face by Facebook – State of the art in Face 

verification 

   - DeepFace: Closing the Gap to Human-Level Performance in Face        

       Verification, Taigman, Ming, Ranzato, Wolf  

 

• State-of-the-art performance in Speech Recognition   

     - Microsoft has done a lot of research on this topic 
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ImageNet Competition – Object Classification 

• Classification of 1000+ objects 

• State-of-the-art before 2012: ~26% 

• New state-of-the-art in 2012 with deep networks: ~15% 
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Practical Suggestions: Activation Functions 

• Continuous, smooth (essential for backpropagation) 

• Nonlinear 

• Saturates, i.e. has a min and max value 

• Monotonic (if not then additional local minima can be 

introduced) 

• Sigmoids are good candidate (log-sig, tan-sig) or ReLu 
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Practical Suggestions: Activation Functions 

• In  case of regression then output layer should have 

linear activation functions 
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Practical Suggestions: Scaling Inputs 

• It is not desirable that some inputs are orders of 

magnitude larger than other inputs 

 

• Map each input x(i) to [-1, +1] using this formula 

     y =  2
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1 

 

• Matlab function: mapminmax    

    - Rows: features, columns: examples 

    - Normalises each row 

    - Useful for continuous inputs/targets 
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Practical Suggestions: Scaling Inputs 

• Standardize inputs to mean=0 and 1 std. dev.=1 

    y = 
𝑥−𝑥𝑚𝑒𝑎𝑛

𝑥𝑠𝑡𝑑
 

 

• Useful for continuous inputs/targets 
 

• Matlab function: mapstd 
 

• Scaling is needed if inputs take very different values. If e.g.,  

they are in the range [-3, 3] then scaling is probably not needed 
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Practical Suggestions: Scaling Inputs 

• The scaling values, 𝑥𝑚𝑖𝑛 ,  𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑒𝑎𝑛, 𝑥𝑠𝑡𝑑 are 

computed on the training set and then applied to the 

validation and test sets.  

 

• It is not correct to scale each set separately. 
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Practical Suggestions: Scaling Inputs 

• Matlab automatically scales the inputs to [-1, 1] and 

    removes the inputs/outputs that are constant. 

 

• Think if you wish to scale the inputs, if not you 

should disable the automatic scaling 

 

• Check http://www.mathworks.co.uk/help/nnet/ug/choose-

neural-network-input-output-processing-functions.html 
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Practical Suggestions: Target Values 

• Binary Classification 

    - Target Values : -1/0 (negative) and 1 (positive) 

    - 0 for log-sigmoid, -1 for tan-sigmoid 

 

• Multiclass Classification 

    - [0,0,1,0] or [-1, -1, 1, -1]  

    - 0 for log-sigmoid, -1 for tan-sigmoid 
 

• Regression 

    Target values: continuous values [-inf, +inf] 
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Practical Suggestions:  

Number of Hidden Layers 

• Networks with many hidden layers are prone to 

overfitting and they are also harder to train 
 

• For most problems one hidden layer should be 

enough 
 

• 2 hidden layers can sometimes lead to improvement 
 

• If you want to use more layers then you should follow 

the deep learning methodology to initialise the 

weights and use strong regularisation (dropout etc) 
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Division of data 

• Matlab automatically divides the dataset into 

training/validation/test sets. 
 

• You should force matlab to use an empty test set (you 

have your own) and use the same validation set as 

yours. 

• You can provide the indices of your validation set 

and your test set (=empty array) 
 

• Check http://www.mathworks.co.uk/help/nnet/ug/divide-data-

for-optimal-neural-network-training.html 
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Matlab Examples 

• Create feedforward network 

   - net = feedforwardnet(hiddenSizes,trainFcn) 

    - hiddenSizes = [10, 10, 10] – 3 layer network with 10 hidden   

      neurons in each layer 

    - trainFcn = „trainlm‟, „traingdm‟, „trainrp‟ etc 
 

• Configure (set number of input/output neurons) 

    - net = configure(net,x,t) 

    - x: input data, noFeatures x noExamples 

    - t: target data, noClasses x noEx 

    

 

 



  Stavros Petridis                       Machine Learning (course 395) 

Matlab Examples 

• Train network 

   - [net,tr] = train(net,P,T) 

    - P: input data 

    - T: target data 
 

• Simulate network 

    - [Y,Pf,Af,E,perf] = sim(net,P) 
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Matlab Examples 

• Batch training: Train 

• Incremental Training: Adapt 

• Use Train for the CBC 
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Questions 

• Questions from book: 4..1, 4.2, 4.5, 4.8, 4.10 

 

• You should read chapter 4 

 

• Examinable material: Slides, Manual (part 3A), 

Chapter 4 

 


