
 Stavros Petridis Machine Learning (course 395)

Course 395: Machine Learning - Lectures
 Lecture 1-2: Concept Learning (M. Pantic)

Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)

Lecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Artificial Neural Networks I (S. Petridis)

Lecture 9-10: Artificial Neural Networks II (S. Petridis)

Lecture 11-12: Instance Based Learning (M. Pantic)

Lecture 13-14: Genetic Algorithms (M. Pantic)



 Stavros Petridis Machine Learning (course 395)

Neural Networks

Reading:

•Machine Learning (Tom Mitchel) Chapter 4

•Pattern Classification (Duda, Hart, Stork) Chapter 6

 (strongly to advised to read 6.1, 6.2, 6.3, 6.8)

Further Reading:

• http://neuralnetworksanddeeplearning.com/

 (great online book)

•Coursera classes

 - Machine Learning by Andrew Ng

 - Neural Networks by Hinton

 Stavros Petridis Machine Learning (course 395)

History

• 1st generation Networks: Perceptron 1957 – 1969

 - Perceptron is useful only for examples that are linearly separable

• 2nd generation Networks: Feedforward Networks and

 other variants, beginning of 1980s to middle/end of

 1990s

 - Difficult to train, many parameters, similar performance to SVMs

• 3rd generation Networks: Deep Networks 2006 - ?

 - New approach to train networks with multiple layers

 - State of the art in object recognition / speech recognition

 Stavros Petridis Machine Learning (course 395)

Hype Cycle

From Deep Learning: Methods and Applications,

Deng and Yu

 Stavros Petridis Machine Learning (course 395)

What are Neural Networks?

The real thing! Billions of neurons

Local computations on interconnected elements (neurons)

Parallel computation
• neuron switch time 0.001sec
• recognition tasks performed in 0.1 sec.

 Stavros Petridis Machine Learning (course 395)

Biological Neural Networks

A network of interconnected biological neurons.

Connections per neuron 104 - 105

 Stavros Petridis Machine Learning (course 395)

Biological vs Artificial Neural Networks

 Stavros Petridis Machine Learning (course 395)

Architecture

 How are the neurons connected

The Neuron

 How information is processed in each unit. output = f(input)

Learning algorithms

 How a Neural Network modifies its weights in order to solve a

 particular learning task in a set of training examples

The goal is to have a Neural Network that generalizes well, that is, that

it generates a ‘correct’ output on a set of test/new examples/inputs.

Artificial Neural Networks: the dimensions

 Stavros Petridis Machine Learning (course 395)

The Neuron

Σ
 

I

n

p

u

t

s

Output

 Bias

σ
o=σ(net)

 Neuron

Weights

• Main building block of any neural network

 Net Activation

 Transfer/Activation

Function

 Stavros Petridis Machine Learning (course 395)

Activation functions

)(,
1 0 netoYwxwnetX

n

i ii   

 Stavros Petridis Machine Learning (course 395)

Activation functions

From http://cs231n.github.io/neural-networks-1/

• Rectified Linear Unit (ReLu): max(0, x)

• Popular for deep networks

• Less computationally expensive than sigmoid

• Accelerates convergence during training

• Leaky ReLu: 𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑥 𝑖𝑓 𝑥 > 0

0.01𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Stavros Petridis Machine Learning (course 395)

Role of Bias

• The threshold where the neuron fires should be adjustable

• Instead of adjusting the threshold we add the bias term

• Defines how strong the neuron input should be before the neuron fires

𝑛𝑒𝑡 = 𝑤𝑖𝑥𝑖 +
𝑛

𝑖=1
𝑤0𝑥0(= 1)

 o = 𝜎(𝑛𝑒𝑡)

𝑜 =

1 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
≥ 𝜃

0 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
< 𝜃

𝑜 =

1 𝑖𝑓 𝑤𝑖𝑥𝑖 − 𝜃
𝑛

𝑖=1
≥ 0

0 𝑖𝑓 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
− 𝜃 < 0

𝑤0=-𝜃

 Stavros Petridis Machine Learning (course 395)

Perceptron

Σ
 

I

n

p

u

t

s

σ
o=σ(net)

• σ = sign/step/function

• Perceptron = a neuron that its input is the dot product of W and X

 and uses a step function as a transfer function

 Stavros Petridis Machine Learning (course 395)

• Generalization to single layer perceptrons with more neurons is

easy because:

 

• The output units are mutually independent

• Each weight only affects one of the outputs

Perceptron: Architecture

 Stavros Petridis Machine Learning (course 395)

• Perceptron was invented by Rosenblatt

• The Perceptron--a perceiving

 and recognizing automaton, 1957

Perceptron

 Stavros Petridis Machine Learning (course 395)

Perceptron: Example 1 - AND

• x1 = 1, x2 = 1 net = 20+20-30=10 o = σ(10) = 1

• x1 = 0, x2 = 1 net = 0+20-30 =-10 o = σ(-10) = 0

• x1 = 1, x2 = 0 net = 20+0-30 =-10 o = σ(-10) = 0

• x1 = 0, x2 = 0 net = 0+0-30 =-30 o = σ(-10) = 0

Σ σ
o=σ(net)

 Stavros Petridis Machine Learning (course 395)

Perceptron: Example 2 - OR

• x1 = 1, x2 = 1 net = 20+20-10=30 o = σ(30) = 1

• x1 = 0, x2 = 1 net = 0+20-10 =10 o = σ(10) = 1

• x1 = 1, x2 = 0 net = 20+0-10 =10 o = σ(10) = 1

• x1 = 0, x2 = 0 net = 0+0-10 =-10 o = σ(-10) = 0

Σ σ
o=σ(net)

 Stavros Petridis Machine Learning (course 395)

Perceptron: Example 3 - NAND

• x1 = 1, x2 = 1 net = -20-20+30=-10  o = σ(-10) = 0

• x1 = 0, x2 = 1 net = 0-20+30 =10  o = σ(10) = 1

• x1 = 1, x2 = 0 net = -20+0+30 =10  o = σ(10) = 1

• x1 = 0, x2 = 0 net = 0+0+30 =30  o = σ(30) = 1

Σ σ
o=σ(net)

 Stavros Petridis Machine Learning (course 395)

• Given training examples of classes A1, A2 train the

perceptron in such a way that it classifies correctly the

 training examples:

– If the output of the perceptron is 1 then the input is

assigned to class A1 (i.e. if)

– If the output is 0 then the input is assigned to class A2

• Geometrically, we try to find a hyper-plane that separates the

examples of the two classes. The hyper-plane is defined by the

linear function

Perceptron for classification

 Stavros Petridis Machine Learning (course 395)

Perceptron: Geometric view

(Note that q  -w0)

20

10

02211

02211

AClassthenwxwxwif

AClassthenwxwxwif





definitionourondepends

AorAClassthenwxwxwif 21002211 

 Stavros Petridis Machine Learning (course 395)

Perceptron: The limitations of perceptron

• Perceptron can only classify examples that are linearly separable

• The XOR is not linearly separable.

• This was a terrible blow to the field

 Stavros Petridis Machine Learning (course 395)

• Marvin Minsky • Seymour Papert

• A famous book was published in 1969: Perceptrons

• Caused a significant decline in interest and funding of
neural network research

Perceptron

 Stavros Petridis Machine Learning (course 395)

Perceptron XOR Solution

• XOR can be expressed in terms of AND, OR, NAND

 Stavros Petridis Machine Learning (course 395)

Perceptron XOR Solution

• XOR can be expressed in terms of AND, OR, NAND

• XOR = NAND (AND) OR

AND

1 1  1

0 1  0

1 0  0

0 0  0

OR

1 1  1

0 1  1

1 0  1

0 0  0

NAND

1 1  0

0 1  1

1 0  1

0 0  1

OR

20

20

-10

NAND

-20

-20

30

20
AND

20

-30

y1

y2

o

• x1=1, x2 =1 y1=1 AND y2=0  o = 0

• x1=1, x2 =0 y1=1 AND y2=1  o = 1

• x1=0, x2 =1 y1=1 AND y2=1  o = 1

• x1=0, x2 =0 y1=0 AND y2=1 o = 0

 Stavros Petridis Machine Learning (course 395)

XOR

1

0
1

x2

x1

OR

NAND

1

1

0

0 20x1 + 20x2 = 10

-20x1 -20x2 = -30

20x1 + 20x2 < 10 20x1 + 20x2 > 10

-20x1 - 20x2 < -30 -20x1 - 20x2 > -30

 Stavros Petridis Machine Learning (course 395)

Input

layer

Output

layer

Hidden Layer

• We consider a more general network architecture: between the input and output

 layers there are hidden layers, as illustrated below.

• Hidden nodes do not directly receive inputs nor send outputs to the external

 environment.

Multilayer Feed Forward Neural Network

 Stavros Petridis Machine Learning (course 395)

NNs: Architecture

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Output

Layer

Input

Layer

Feedback

Connection

3-layer feed-forward network 4-layer feed-forward network

4-layer recurrent network – Difficult to train

• The input layer does

 not count as a layer

 Stavros Petridis Machine Learning (course 395)

NNs: Architecture

Input

Layer

Hidden

Layer 1

Hidden

Layer 2

Output

Layer

Hidden

Layer 1

Hidden

Layer 2

Hidden

Layer 3

Output

Layer

Input

Layer

3-layer feed-forward network 4-layer feed-forward network

• Deep networks are simply networks with many layers.

• They are trained in the same way as shallow networks but

 1) either weight initialisation is done in a different way.

 2) or we use a lot of data with strong regularisation

 Stavros Petridis Machine Learning (course 395)

Multilayer Feed Forward Neural Network

jiw
kjwix

jiw = weight associated with ith input

to hidden unit j

kjw = weight associated with jth input

to output unit k

jy

ko

= output of jth hidden unit

= output of kth output unit

( 


n

i jiij wxy
0



( 


nH

j kjjk wyo
1



n = number of inputs

nH = number of hidden neurons

((  


nH

j kj

n

i jiik wwxo
1 0


 Stavros Petridis Machine Learning (course 395)

Representational Power of

Feedforward Neural Networks

• Boolean functions: Every boolean function can be represented

exactly by some network with two layers

• Continuous functions: Every bounded continuous function can

be approximated with arbitrarily small error by a network with

2 layers

• Arbitrary functions: Any function can be approximated to

arbitrary accuracy by a network with 3 layers

• Catch: We do not know 1) what the appropriate number of

hidden neurons is, 2) the proper weight values

((  


nH

j kj

n

i jiik wwxo
1 0


 Stavros Petridis Machine Learning (course 395)

Classification / Regression with NNs

• You should think of neural networks as function

approximators

((  


nH

j kj

n

i jiik wwxo
1 0


Classification
-Decision boundary approximation

-Discrete output

-e.g., apple-VS-oranges classifier

Regression
- Function approximation

- Continuous output

- e.g., house price estimation

 Stavros Petridis Machine Learning (course 395)

022110  xwxww

022110  xwxww
x1

1

x2 w2

w1

w0

Convex

region

L1
L2

L3
L4 -3.5

Network

with a single

node

One-hidden layer network that

realizes the convex region: each

hidden node realizes one of the

lines bounding the convex region

P1
P2

P3

1

1

1

1

1

x1

x2

1

1.5

two-hidden layer network that

realizes the union of three convex

regions: each box represents a one

hidden layer network realizing

one convex region

1

1

1

1

x1

x2

1

Decision boundaries

 Stavros Petridis Machine Learning (course 395)

Output Representation

• Binary Classification

 Target Values (t): 0 or -1 (negative) and 1 (positive)

• Regression

 Target values (t): continuous values [-inf, +inf]

• Ideally o ≈ t

((  


nH

j kj

n

i jiik wwxo
1 0


 Stavros Petridis Machine Learning (course 395)

Multiclass Classification

Target Values: vector (length=no. Classes)

e.g. for 4 classes the targets are the following:



















0

0

0

1



















0

0

1

0



















0

1

0

0



















1

0

0

0

Class1 Class3 Class2 Class4

 Stavros Petridis Machine Learning (course 395)

Training

• We have assumed so far that we know the weight

values

• We are given a training set consisting of inputs and

targets (X, T)

• Training: Tuning of the weights (w) so that for each

input pattern (x) the output (o) of the network is close

to the target values (t).

((  


nH

j kj

n

i jii wwxo
1 0


o ≈ t

 Stavros Petridis Machine Learning (course 395)

Perceptron Training Rule

( 


n

i iiwxo
0



o = t

ix

iw

- Training Set: A set of input vectors

o

 - η: learning rate, controls the

 change rate of the weights

 • Begin with random weights

• Change the weights whenever an example is misclassified

nixi 1,  with the

corresponding targets

it

iii www 

iii xotw)(- 

• This rule works if the examples are linearly seperable

 - for every input vector x(i) the output is the desired target

 Stavros Petridis Machine Learning (course 395)

Training – Gradient Descent

• In most problems the training examples are NOT linearly

seperable. Therefore, we need a different approach to adjust the

weights  Gradient Descent

• Gradient Descent: A general, effective way for estimating

parameters (e.g. w) that minimise error functions

• We need to define an error function E(w)

• Update the weights in each iteration in a direction that reduces

the error the order in order to minimize E

 iii www 

i

i
w

E
w




- 

 Stavros Petridis Machine Learning (course 395)

Gradient descent method: take a step in the direction

that decreases the error E. This direction is the opposite

of the derivative of E.

Gradient direction E

Gradient Descent

- derivative: direction of steepest increase

- learning rate: determines the step size in

 the direction of steepest decrease

 Stavros Petridis Machine Learning (course 395)

Gradient Descent – Learning Rate

- Derivative: direction of steepest increase

- Learning rate: determines the step size in the direction of steepest

decrease. It usually takes small values, e.g. 0.01, 0.1

- If it takes large values then the weights change a lot -> network unstable

∆𝑤𝑖 = −𝜂
𝜕𝐸

𝜕𝑤𝑖
>0 ∆𝑤𝑖 = −𝜂

𝜕𝐸

𝜕𝑤𝑖
<0

E

Gradient direction

Positive Slope Negative Slope

 Stavros Petridis Machine Learning (course 395)

Gradient Descent –Learning Rate

 Stavros Petridis Machine Learning (course 395)

Gradient Descent – One neuron only

( 


n

i iiwxo
0



ix

iw

- Training Set: A set of input vectors

o

 - η: learning rate, controls the

 change rate of the weights

 • Begin with random weights

• We define our error function as follows (D = number of training examples)

nixi 1,  with the

corresponding targets

it

• E depends on the weights because

( 
-

D

d dd otE
1

2

2

1

 


n

i i

d

id wxo
0

 Stavros Petridis Machine Learning (course 395)

Gradient Descent – One neuron only

( 


n

i iiwxo
0



ix

iw

- Training Set: A set of input vectors

o

 - η: learning rate, controls the

 change rate of the weights

• For simplicity we assume linear activation transfer

nixi 1,  with the

corresponding targets

it

• We wish to find the weight values that minimise E, i.e.

the desired target t is very close to the actual output o.

( 
-

D

d dd otE
1

2

2

1
 


n

i i

d

id wxo
0

 Stavros Petridis Machine Learning (course 395)

• The partial derivative can be computed as follows:

• Therefore Δw is ( id

D

d ddi xotw  
-

1


Gradient Descent

( 
-

D

d dd otE
1

2

2

1

 Stavros Petridis Machine Learning (course 395)

1. Initialise weights randomly

2. Compute the output o for all the training examples

3. Compute the weight update for each weight

4. Update the weights

( id

D

d ddi xotw  
-

1


Gradient Descent –One Neuron Only –

Summary

iii www 

• Repeat steps 2-4 until a termination condition is met

• The algorithm will converge to a weight vector with

 minimum error, given that the learning rate is sufficiently small

 Stavros Petridis Machine Learning (course 395)

• The Backprop algorithm searches for weight values that

minimize the total squared error of the network (K outputs)

over the set of D training examples (training set).

• Based on gradient descent algorithm

Input

layer

Output

layer

Learning: The backpropagation algorithm

iii www 
i

i
w

E
w




- 

(  
-

K

k

D

d kdkd otE
1 1

2

2

1

 Stavros Petridis Machine Learning (course 395)

• Backpropagation consists of the repeated application of the

following two passes:

– Forward pass: in this step the network is activated on

one example and the error of (each neuron of) the output

layer is computed.

– Backward pass: in this step the network error is used for

updating the weights (credit assignment problem). This

process is complex because hidden nodes are linked to

the error not directly but by means of the nodes of the

next layer. Therefore, starting at the output layer, the

error is propagated backwards through the network, layer

by layer.

Learning: The backpropagation algorithm

 Stavros Petridis Machine Learning (course 395)

• Consider the error of one pattern d: ( 
-

K

k kkd otE
1

2

2

1

(
  

jid wE

j

j

jijjji
net

net
xotw

-




-

/

)(


( 


nH

i jijij wxo
0


jix

jiw

output unit j subscript ji: ith input to unit j,

i.e., input from hidden neuron i

( id

d

i ddi xotw  
-

1


• Using exactly the same approach as in the perceptron

perceptron Δw

• The only difference is the partial derivative of the sigmoid

 activation function (we assumed linear activation  derivative =1)

Learning: Output Layer Weights

 Stavros Petridis Machine Learning (course 395)

(
k

k
kjkkkj

net

net
xotw




-

)(


(
k

k
kkk

net

net
ot




-

)(
• We define the error term for the output k:

•Reminder:

1

2

3

4

j

j

edTojonsConnectoutputNeurk

kjkj
net

net
w




 



)(


Note that jk, ij, i.e.

j: hidden unit

k: output unit

• The error term for hidden

 unit j is:

Learning: Hidden Layer Weights

 Stavros Petridis Machine Learning (course 395)

( kik

k

k
kikkki x

net

net
xotw 


 




-

)(

(
k

k
kkk

net

net
ot




-

)(
• We define the error term for the output k:

• Reminder:

j

j

edTojonsConnectoutputNeurk

kjkj
net

net
w




 



)(


• x is the input to output unit k from hidden unit i

• Similarly the update rule for weights in the input layer is

jijji xw 

• x is the input to hidden unit j from input unit i

Learning: Hidden Layer Weights

 Stavros Petridis Machine Learning (course 395)

Example

• http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

 Stavros Petridis Machine Learning (course 395)

• Finally for all training examples D

• This is called batch training because the weights are

updated after all training examples have been

presented to the network (=epoch)

• Matlab function: traingd

• Incremental training: weights are updated after each

training example is presented

Learning: Backpropagation Algorithm

 


D

d i

examplesallfor

i ww
1

 Stavros Petridis Machine Learning (course 395)

• So far we have considered the MSE as our error function

• What if we wish to use another error function?

• We simply compute the derivatives again

• For output units:
𝜕𝐸

𝜕𝑤𝑘𝑖
=

𝜕𝐸

𝜕𝑜𝑘

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑛𝑒𝑡𝑘

𝜕𝑤𝑘𝑖
=

𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘
𝑥𝑘𝑖

• We can redefine 𝛿𝑘 =
𝜕𝐸

𝜕𝑜𝑘

𝜕𝜎(𝑛𝑒𝑡𝑘)

𝜕𝑛𝑒𝑡𝑘

Backpropagation: Fundamental Equations

( 
-

D

d dd otE
1

2

2

1

 Stavros Petridis Machine Learning (course 395)

• For output units: ∆𝒘𝒌𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒌𝒊
= −𝜼𝜹𝒌𝒙𝒌𝒊

• 𝜹𝒌 =
𝝏𝑬

𝝏𝒐𝒌

𝝏𝝈(𝒏𝒆𝒕𝒌)

𝝏𝒏𝒆𝒕𝒌

• x is the input to output unit k from hidden unit I

• For hidden units: ∆𝒘𝒋𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒋𝒊
= −𝜼𝜹𝒋𝒙𝒋𝒊

•

• x is the input to hidden unit j from hidden unit i from the

previous hidden layer (or input layer if it’s the first hidden

layer)

Backpropagation: Fundamental Equations

j

j

edTojonsConnectoutputNeurk

kjkj
net

)σ(net
wδδ




 



 Stavros Petridis Machine Learning (course 395)

• When the gradient magnitude (or ∆𝑤𝑖) is small, i.e.

• When the maximum number of epochs has been

reached

• When the error on the validation set increases for n

consecutive times (this implies that we monitor the

error on the validation set). This is called early

stopping.

Backpropagation Stopping Criteria

𝜕𝐸

𝜕𝑤𝑖
< 𝛿 𝑜𝑟 ∆𝑤𝑖 < 𝛿

 Stavros Petridis Machine Learning (course 395)

Early stopping

• Stop when the error in the validation set increases (but

not too soon!)

• Error might decrease in the training set but increase in the

‘validation’ set (overfitting!)

• It is also a way to avoid overfitting.

 Stavros Petridis Machine Learning (course 395)

1. Initialise weights randomly

2. For each input training example x compute the outputs

(forward pass)

3. Compute the output neurons errors and then compute the

update rule for output layer weights (backward pass)

Backpropagation Summary

4. Compute hidden neurons errors and then compute the

update rule for hidden layer weights (backward pass)

∆𝒘𝒌𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒌𝒊
= −𝜼𝜹𝒌𝒙𝒌𝒊 𝑤ℎ𝑒𝑟𝑒 𝜹𝒌=

𝝏𝑬

𝝏𝒐𝒌

𝝏𝝈(𝒏𝒆𝒕𝒌)

𝝏𝒏𝒆𝒕𝒌

∆𝒘𝒋𝒊= −𝜼
𝝏𝑬

𝝏𝒘𝒋𝒊
= −𝜼𝜹𝒋𝒙𝒋𝒊 𝑤ℎ𝑒𝑟𝑒

j

j

edTojonsConnectoutputNeurk

kjkj
net

)σ(net
wδδ




 



 Stavros Petridis Machine Learning (course 395)

5. Compute the sum of all Δw, once all training

examples have been presented to the network

6. Update weights

7. Repeat steps 2-6 until the stopping criterion is met

Backpropagation Summary

iii www 

 Stavros Petridis Machine Learning (course 395)

Backpropagation: Convergence

• Converges to a local minimum of the error function

• … can be retrained a number of times

• Minimises the error over the training examples

• …will it generalise well over unknown examples?

• Training requires thousands of iterations (slow)

• … but once trained it can rapidly evaluate output

 Stavros Petridis Machine Learning (course 395)

Backpropagation: Error Surface

