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Abstract

Recent results [18] have shown that sparse linear repre-

sentations of a query object with respect to an overcomplete

basis formed by the entire gallery of objects of interest can

result in powerful image-based object recognition schemes.

In this paper, we propose a framework for visual recogni-

tion and tracking based on sparse representations of image

gradient orientations. We show that minimal ℓ1 solutions to
problems formulated with gradient orientations can be used

for fast and robust object recognition even for probe objects

corrupted by outliers. These solutions are obtained with-

out the need for solving the extended problem considered

in [18]. We further show that low-dimensional embeddings

generated from gradient orientations perform equally well

even when probe objects are corrupted by outliers, which,

in turn, results in huge computational savings. We demon-

strate experimentally that, compared to the baseline method

in [18], our formulation results in better recognition rates

without the need for block processing and even with smaller

number of training samples. Finally, based on our results,

we also propose a robust and efficient ℓ1-based “tracking

by detection” algorithm. We show experimentally that our

tracker outperforms a recently proposed ℓ1-based tracking

algorithm in terms of robustness, accuracy and speed.

1. Introduction

A recent breakthrough in image-based object recogni-

tion [18] as well as subsequent work [17, 19, 20] have con-

clusively shown that this problem can be re-cast as one of

finding the sparsest representation of a probe object with

respect to an overcomplete dictionary whose elements are

the objects in the training set. Given that sufficient train-
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ing samples are available from each class, such an approach

has demonstrated excellent performance for the problem of

frontal view face recognition with illumination changes and

occlusions in the testing set, while follow-up paper success-

fully addressed the problems of joint alignment/recognition

[16] as well as visual tracking [12].

The basic principles and assumptions of the method for

the application of face recognition are as follows. We as-

sume that all images in the training and testing set are

aligned images of the same resolution m = d1 × d2 writ-

ten in lexicographic ordering. We form the data matrix

A = [a1| · · · |an] ∈ ℜm×n, where n is the total number

of training samples. We further assume that m ≪ n. To

classify a probe face y ∈ ℜm, we look for x ∈ ℜn which

solves the following ℓ1 minimization problem

min
x

‖x‖1 , subject to y = Ax. (1)

A number of now classical papers [2,3,5,6] have established

that, under a number of assumptions, among all x : y =
Ax, the minimal ℓ1 solution xo is also the sparsest one.

This can be used for classification as the largest non-zero

coefficients of xo indicate the subject’s identity.

To deal with small dense noise, the equality constraint in

(1) is typically replaced by the inequality ‖y −Ax‖2 ≤ ǫ.
For robust face recognition, however, we are particularly

interested in the case where a fraction of pixels in the test

image is arbitrarily corrupted. That is, we are interested

in solving y = Ax + e, where e ∈ ℜm is an unknown

vector whose nonzero entries correspond to the set of cor-

rupted pixels. To cope with this type of noise, we form

the extended data matrix [A I] ∈ ℜm×(n+m), where I

is the identity matrix and look for the sparsest solution

[xT
o eTo ]

T ∈ ℜm+n by minimizing

min
x,e

‖x‖1 + ‖e‖1 , subject to y = Ax+ e. (2)

The above outlier-robust formulation has been success-

fully applied for the problems of occlusion-robust face
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recognition [18] and visual tracking [12]. However, this for-

mulation is applicable only in the pixel domain and achieves

striking performance in the presence of real occlusions only

when it is applied in a block-based fashion. Both issues, in

turn, pose serious computational concerns since the method

cannot be combined with dimensionality reduction tech-

niques, while block processing inevitably increases the exe-

cution time. Thus, practical implementations of the method

are typically based on image down-sampling.

In this paper we show how to efficiently address the

above issues. While experimentation reported in [18] sug-

gests that, at least for the outlier-free case, the choice of fea-

tures (via dimensionality reduction) is of minor importance,

we show that the object representation used is highly criti-

cal. Motivated by some very recent results on image regis-

tration and subspace learning [14, 15], we propose a frame-

work for object recognition based on sparse representations

of image gradient orientations. The key idea is to replace

pixel intensities with gradient orientations and then define

a mapping from the space of gradient orientations into a

high-dimensional unit sphere. As illustrated in [14, 15], the

key observation is that, in contrast to pixel intensities, rep-

resentations of this type, when obtained from “visually un-

related” images, are highly incoherent. We show that

1. Minimal ℓ1 solutions to problems formulated with gra-

dient orientations can be used for fast and robust object

recognition even for probe objects corrupted by out-

liers. These solutions are obtained without the need

for solving the extended problem in (2).

2. Low-dimensional embeddings generated from gradi-

ent orientations perform equally well even when probe

objects are corrupted by outliers. This results in huge

computational savings. For example, in a Core 2 Duo

machine with 8 GB RAM, for a dictionary of n = 400
training samples, our scheme requires less than 0.5
seconds to classify of a probe image with p = 100
features. For the same setting, the original formulation

of [18] with 64× 64 images requires about 1 minute.

3. Sparse representations of gradient orientations result in

better recognition rates without the need for block pro-

cessing and with smaller number of training samples.

Finally, we show how to capitalize on the above results

for robust and efficient visual tracking. We propose a track-

ing algorithm, which although it is also based on ℓ1 mini-

mization, it is conceptually very different compared to the

approach proposed in [12]. In contrast to [12], we use ℓ1
minimization as a discriminant classifier which separates

the object from the background and as such our algorithm

is closely related to methods which perform “tracking by

detection” [1, 4, 7]. Additionally, as opposed to [12], the

proposed tracker is based on sparse representations of im-

age gradient orientations and thus does not rely on the ex-

tended problem of (2) to achieve robustness to outliers.

This, in turn, results in huge computational savings as we

perform tracking in a low dimensional subspace. We show

experimentally that our tracking algorithm outperforms the

method of [12] in terms of robustness, accuracy and speed.

2. Image Gradient Orientations and Incoher-

ence

Assume that we are given the image-based representa-

tions of two objects Ii ∈ ℜd1×d2 , i = 1, 2. At each pixel lo-
cation, we estimate the image gradients and the correspond-

ing gradient orientation. More specifically, we compute

Φi = arctanGi,y/Gi,x, (3)

where Gi,x = Fx ⋆ Ii, Gi,y = Fy ⋆ Ii and Fx,Fy are

the filters used to obtain the image gradients along the hor-

izontal and vertical direction, respectively. Let us denote

by φi them−dimensional vector obtained by writingΦi in

lexicographic ordering.

We have difficulty using vectors φ ∈ [0, 2π)m directly

in optimization problem (1). Clearly, we can neither write

such a vector as a linear combination of a dictionary of an-

gle vectors nor use the ℓ2 norm for measuring the recon-

struction error. To use angular data, we use the following

mapping onto the ℜ2m sphere

z(φi) =
1√
m
[cos(φi)

T sin(φi)
T ]T , (4)

where cos(φi) = [cos(φi(1)), . . . , cos(φi(m))]T and

sin(φi) = [sin(φi(1)), . . . , sin(φi(m))]T . Using zi ≡
z(φi), we naturally measure correlation from

c(z1, z2) , zT1 z2 =
1

m

m
∑

k=1

cos[∆φ(k)], (5)

where ∆φ , φ1 − φ2. The distance between z1 and z2 is

d(z1, z2) ,
1

2
||z1 − z2||2

=
1

2
(zT1 z1 − 2zT1 z2 + zT2 z2)

= 1− 1

m

m
∑

k=1

cos[∆φ(k)], (6)

which is simply the chord between z1 and z2. From (5) and

(6), we observe that if I1 ≃ I2, then ∀k ∆φ(k) ≃ 0, and
therefore c → 1 and d → 0.

Let us assume now that the two images are “visually un-

related” (or dissimilar) so that locally do not match. Then,
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Figure 1. (a) An example of training samples considered in our

experiments. (b)-(d) Three examples of testing samples.

it is not unreasonable to assume that for any spatial loca-

tion k, the difference in gradient orientation ∆φ(k) can

take any value in the range [0, 2π) with equal probability.

Thus, we assume that ∆φ is a realization of a stationary

random process u(t) which ∀t follows a uniform distribu-

tion U(0, 2π) [14, 15]. Given this, it is not difficult to show

that, under some rather mild assumptions, it holds [14, 15]

m
∑

k=1

cos[∆φ(k)] ≃ 0, (7)

and therefore c → 0 and d → 1. Thus, by using (5) as a

measure of coherence, “visually unrelated” images are ap-

proximately incoherent.

As an example, we consider three examples of “visually

unrelated” image patches. We assume that the face region in

Fig. 1 (a) and the “baboon” patch in Fig. 1 (b) are visually

dissimilar. Similarly, the face region in Fig. 1 (a) is “visu-

ally unrelated” with the image regions corresponding to the

scarf and the glasses in Fig. 1 (c) and (d) respectively. Fig.

2 (a) shows the distribution of ∆φ for the scarf case, while

Fig. 2 (b) shows the distribution of uniformly distributed

samples drawn fromMatlab’s random number generator. In

the following section, we show how to exploit this incoher-

ence property for fast and robust object recognition.
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Figure 2. (a) The distribution of ∆φ for the face region in Fig.

1 (a) and the region corresponding to the scarf in Fig. 1 (c). (b)

The distribution of samples (uniformly distributed) drawn from

Matlab’s random number generator.

3. Recognition with Sparse Representations of

Image Gradient Orientations

Given a set of n training samples of m pixels, we obtain

our dictionary as follows. We compute the orientation im-

ages Φi, i = 1, . . . , n from (3), obtain φi by writing Φi in

lexicographic ordering, compute zi from (4) and form the

matrix Z = [z1| · · · |zn] ∈ ℜ2m×n. Given a probe object y,

we follow the same procedure for q ∈ ℜ2m. Next, we solve

min
x

‖x‖1 , subject to ‖q− Zx‖2 ≤ ǫ. (8)

Within our framework of image gradient orientations, the

solution to typical ℓ1 minimization problems (such as the

one in (8)) for probe objects corrupted by outliers can be ef-

ficiently used for fast and robust object recognition, without

the need of formulating and solving the equivalent of the

extended problem of (2).

To show this, we start by noting that our aim is object

classification and not precise object reconstruction. We as-

sumeK object classes with Lk objects per class. As in [18],

given a probe object q and the solution x∗, we perform clas-

sification as follows. For any class k, we form ck ∈ ℜn,

where ck,l = x∗

l for all indices l corresponding to class k
and ck,l = 0 otherwise. We reconstruct from q̃k = Zck
and classify using the minimum of the reconstruction error

identity(q) = min
k

‖q− q̃k‖2 . (9)

Similarly to [18], we assume that the training samples of

each subject do span a subspace. Therefore, we can write

each probe object belonging to the kth class as

q =

Lk
∑

l=1

wk,lzk,l, (10)

where wk,l ∈ ℜ and zk,l ∈ ℜ2m, l = 1, . . . , Lk are the

weights and bases corresponding to the Lk samples of the

kth class. Without loss of generality, we assume that zk,l
are the eigenvectors obtained from the eigen-analysis of the

kth class’ covariance matrix, sorted in decreasing order ac-

cording to their eigenvalues. We retrieve wk,l from the non-

zero elements of the solution x∗ of the following problem

min
x

‖x‖1 , subject to q = Zx, (11)

that is x∗ = [0, . . . , 0, w1,1, . . . , w1,Lk
, 0, . . . , 0]T ∈ ℜn.

Let us now assume that a part of the probe object is cor-

rupted by outliers. We will assume that this part of the ob-

ject and the corresponding parts of all objects in our dic-

tionary are “visually unrelated”. According to the previous

section, for any object in our dictionary, we have

qT zi =
mu

m
qT
u zu,i +

m−mu

m
qT
o zo,i

≈ mu

m
qT
u zu,i, (12)

where qu, zu,i ∈ ℜ2mu and qo, zo,i ∈ ℜ2(m−mu) are

the object’s parts corresponding to the un-occluded and oc-

cluded regions respectively, mu is the number of pixels in
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the un-occluded region and qT
o zo,i ≈ 0 according to (7).

We also have qTZ ≈ mu

m
qT
uZu and write

ZTZ =
mu

m
ZT

uZu +
m−mu

m
ZT

o Zo, (13)

where Zu = [zu,1| . . . |zu,n] and Zo = [zo,1| . . . |zo,n].
Since a perfect probe object reconstruction is infeasible,

we consider the equivalent form of (8) given by [10]

min
x

||q− Zx||2 + λ||x||1. (14)

The question of interest now is the following: How well the

solution of (14) approximates the solution of (11)? Using

the above, we can write

||q− Zx||2 = qTq− 2qTZx+ xTZTZx

= 1− 2
mu

m
qT
uZux+

mu

m
xTZT

uZux

+
m−mu

m
xTZT

o Zox

=
mu

m
||qu − Zux||2 +

m−mu

m
||Zox||2

+
m−mu

m
(15)

Now, since qu =
∑Lk

l=1 wk,lzu,k,l, where zu,k,l are the un-

occluded parts of the bases zk,l, it is trivial to see that x∗ is

the only possible x such that ||qu−Zux||2 = 0. Therefore,
any other x can minimize (14) if and only if

mu

m
||qu−Zux||2+

m−mu

m
||Zox||2 <

m−mu

m
||Zox

∗||2.
(16)

While it is not unlikely that there exists x such that (16) is

satisfied, it is highly unlikely that the elements of x corre-

sponding to the most dominant eigenvectors zk,l are zero.

This is as in this case a large increase in the first term of the

right hand side of (16) will be incurred. Finally, this fur-

ther suggests that the reconstruction error of (9) for the cor-

rect class is very likely to be the minimum one. Therefore,

robust classification can be performed without formulating

and solving the equivalent of the extended problem of (2).

As an example, we considered a training set ofK = 100
subjects with one sample per class (Lk = 1, ∀k) taken

from the AR database. Fig. 1 (a) shows an example of the

training images. We then considered three different testing

sets. For the first set, we directly obtained the testing sam-

ples from the training samples after placing a baboon patch

which occluded approximately 60% of the original image.

Fig. 1 (b) shows an example of the testing samples. For the

second and third testing set, the testing samples are faces

occluded by a scarf and glasses respectively. Figs. 1 (c) and

(d) show examples of the testing images in these cases.

Note that, for this single-sample-per-class experiment,

we can assume that the single training sample of each class

does span a subspace only for artificially created testing sets

such as our first testing set prior to the corruption induced

by the baboon patch. Fig. 3 (a)-(c) show the minimal ℓ1
solutions of (14) (i.e. with a dictionary built from gradi-

ent orientations) for the training samples in Fig. 1 (b)-(d)

respectively. For all cases, the solution is sparse and corre-

sponds to the correct class. On the other hand, Fig. 4 (a)-(c)

shows the ℓ1 solution (more specifically, the first K = 100
elements of the solution) obtained by solving the extended

problem of (2) (i.e. with a dictionary built from pixel inten-

sities). As we may observe, the solution is sparse, never-

theless, for the case of Fig. 1 (b) and (c), this solution does

not indicate the subject’s identity. This suggests that spar-

sity for these cases are mainly due to the inclusion of the

identity matrix. This is further illustrated by measuring the

efficacy of the solution using the sparsity concentration in-

dex [18]. This index takes values in [0, 1] with large values

indicating that the probe object is represented by samples

of the correct subject only. Table 1 summarizes our results.

As we may observe, for pixel intensities, the sparsity con-

centration index is large only when the testing samples are

obtained directly from the training samples (Testing set 1).

Image Gradient Orientations Pixel Intensities

Testing set 1 0.160 0.495

Testing set 2 0.164 0.013

Testing set 3 0.158 0.117

Table 1. Average sparsity concentration index for the three testing

sets considered in our experiment.

We can derive similar results for low-dimensional em-

beddings generated from gradient orientations. Let us re-

formulate (14) in a low dimensional subspace as follows

min
x

||q̃− Z̃x||2 + λ||x||1, (17)

where q̃ = BTq ∈ ℜp and Z̃ = BTZ ∈ ℜp×n and B ∈
ℜ2m×p are the projection bases.

For most subspace learning methods of interest (etc.

PCA, LDA), we can write the projection bases as a linear

combination of the data, B = ZV, where V ∈ ℜn×p. Us-

ing this last equation and based on (12) and (15), we have

||q̃− Z̃x||2 = (q− Zx)TZVVTZT (q− Zx)

=
(mu

m

)2

||VTZT
u (qu − Zux)||2

+

(

m−mu

m

)2

||VTZT
o Zox||2 + δ,

(18)

where

δ = 2
mu(m−mu)

m2
xTZT

o ZoVVTZT
u (qu − Zux)

= 2
mu(m−mu)

m2
[BTZox]

T [BT (qu − Zux)].(19)
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Figure 3. Sparse representations of image gradient orientations. (a)-(c) The minimal ℓ1 solutions obtained by solving (14) for the probe

images of Fig. 1 (b)-(d).
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Figure 4. a)-(c) The minimal ℓ1 solutions (more specifically, the first K = 100 elements of the solution) obtained by solving the extended

problem (2) for the probe images of Fig. 1 (b)-(d).

Clearly, δ represents the correlation between the embedding

of Zox and qu − Zux. Since these terms correspond to

different object parts, we can assume that this correlation

is negligible, so in a similar fashion to (16), x will be a

minimizer of (17) other than x∗ if and only if

(

mu

m−mu

)2

||VTZT
u (qu − Zux)||2 + ||VTZT

o Zox||2
< ||VTZT

o Zox
∗||2. (20)

Overall, the minimal ℓ1 solution of (17) can be efficiently
used for robust object recognition. Additionally, since this

solution is obtained without the need for solving the ex-

tended problem of (2) and, typically, p ≪ 2m our formula-

tion is far more computationally efficient. For example, in

a Core 2 Duo machine with 8 GB RAM, for a dictionary of

n = 400 training samples, classification of a probe image

with p = 100 features requires about 0.3 seconds. For the

same setting, the original formulation of [18] with 64 × 64
images requires about 1 minute.

4. Visual Tracking with Sparse Representa-

tions of Image Gradient Orientations

Visual tracking aims at finding the position of a prede-

fined target object at each frame of a given video sequence.

Most existing methods are capable of tracking an object in

well-controlled environments. However, tracking in uncon-

strained environments is still an unsolved problem. For

example, in real-word face analysis, appearance changes

caused by illumination changes, occlusions, non-rigid de-

formations, abrupt head movements, and pose variations

make most methods fail. In this section, we show how to

capitalize on the results of the previous section for robust

and efficient visual tracking.

4.1. Related Work

Our algorithm is somewhat related to the approach of

[12], where the authors proposed to reformulate visual

tracking as a sparse approximation problem. The basic prin-

ciples and assumptions of this method are as follows. At

time instance t, an affine motion model At and a particle

filter is used to generate a set of target candidates yi [8,13].

Let us assume that the columns of the data matrixA span a

linear subspace which models the appearance of the object

to be tracked. Then, it is assumed that a target candidate yi

models the appearance of the tracked object at time t suc-
cessfully, if it can be written as a linear combination of the

bases in A and few elements of the identity matrix I. This

leads to a sparse coefficient vector [12]. On the contrary, a

target candidate which models the object appearance poorly

will result in a dense representation. As in [18], the columns

of I are used to compensate for possible deviations from the

subspaceA, for example, due to possible occlusions. Let us

denote by [xT
o,i e

T
o,i]

T the solution to

min
xi,ei

‖xi‖1 + ‖ei‖1 , subject to yi = Axi + e. (21)

Then, in [12], the authors proposed to track from

min
i

‖yi −Axi‖2 . (22)
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4.2. The Proposed Tracker

We propose a visual tracking algorithm, also based on

ℓ1 minimization, however, conceptually very different com-

pared to the approach proposed in [12]. In particular, we

reformulate tracking as two-class recognition problem as

follows. We form our data matrix as the concatenation of

two linear subspaces Z = [Zpos Zneg] ∈ ℜ2m×(npos+nneg).

The subspace Zpos ∈ ℜ2m×npos models the appearance of

the object to be tracked. This is built from the eigen-space

of image gradient orientations of the object in previously

tracked frames. The matrix Zneg ∈ ℜ2m×nneg is the eigen-

space learned from the gradient orientations of misaligned

examples also obtained from previously examined frames.

Given a set of target candidates at time t, we assume that

a candidate qi models the appearance of the tracked object

successfully, if it can be written as a linear combination of

the bases in Zpos, while, possibly shifted and misaligned

candidates are efficiently represented as a linear combina-

tion of the bases in Zneg. Thus, we solve

min
xi

‖xi‖1 , subject to qi = Zxi, (23)

and track from

min
i

‖qi − Zposxi‖2 . (24)

Notice that, in contrast to [12], we use ℓ1 minimization as a

discriminant classifier which separates the object from the

background and as such our algorithm is closely related to

methods which perform “tracking by detection” [1, 4, 7].

As opposed to [12], the proposed tracker is based on

sparse representations of image gradient orientations and

does not rely on the extended problem of (21) to achieve

robustness to outliers. This results in huge computational

savings as (23) is solved in a low dimensional subspace.

We perform dimensionality reduction in a similar fash-

ion to “Randomfaces” [18]. Let us denote by Θ =
[θ1| · · · |θp] them×pmatrix whose columns θj are samples

from a uniform distribution U(0, 2π). We define the projec-

tion bases as the columns ofB ∈ ℜ2m×p which is obtained

by mapping Θ onto the ℜ2m sphere using (4). Notice that

BTB ≈ I [15]. Finally, using B we can solve (23) using

only p features.

5. Experimental Results

We evaluated the performance of the proposed frame-

work for the application of face recognition, facial expres-

sion recognition and face tracking.

5.1. Face Recognition

Similarly to [18], we used the popular AR database [11]

in order to compare the performance of our framework with

the original formulation described in [18]. For all exper-

iments, we used manually aligned cropped images of res-

olution 64 × 64. With the exception of the occlusion ex-

periments, we used Linear Discriminant Analysis (LDA)

for feature extraction and dimensionality reduction for both

formulations. For the occlusion experiments, we used LDA

only for feature extraction from image gradient orientations,

while for pixel intensities, we solved the extended prob-

lem in (2). Finally, compared to the experiments described

in [18], we considered a significantly smaller number of

training samples for each subject, thus making our exper-

imental setting noticeably more realistic.

The AR database [11] consists of more than 4,000 frontal

view face images of 126 subjects. Each subject has up to 26

images taken in two sessions. Both sessions contains 13 im-

ages, numbered from 1 to 13, including different facial ex-

pressions (1-4), illumination changes (5-7), and occlusions

under different illumination changes (8-13). We randomly

selected a subset with 100 subjects and investigated the ro-

bustness of our scheme for the case of facial expressions,

illumination variations and occlusions as follows

1. In experiment 1, we used images 1-4 of session 1 for

training and images 2-4 of session 2 for testing.

2. In experiment 2, we used images 1-4 of session 1 for

training and images 5-7 of session 2 for testing.

3. In experiment 3, we used images 1-4 of session 1 for

training and images 8-13 of session 2 for testing.

Table 2 and Fig. 5 summarize our results. Note that for

experiment 3, we did not apply feature extraction for the

case of pixel intensities and solved the extended problem in

(2). As we can see, sparse representations of gradient orien-

tations performed better than the original formulation based

on pixel intensities in all experiments. More specifically,

our formulation achieves 100% recognition rate for the case

of facial expressions and illumination changes (experiments

1 and 2), while the performance improvement over the orig-

inal intensity-based formulation for the case of occlusions

(experiment 3) goes up to 30%. Notice that this last result

is significantly better that the one reported in [18] which

was obtained with block processing and used twice as many

training samples taken from both sessions.

Image Gradient Orientations Pixel Intensities

Experiment 1 100.0 % 96.00 %
Experiment 2 100.0 % 92.30 %
Experiment 3 97.55 % 66.00 %

Table 2. Recognition rates on the AR database

5.2. Facial Expression Recognition

We carried out facial expression recognition experiments

on the CohnKanade database [9]. This database is anno-

tated with Facial Action Units (FAUs). The combinations of
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Figure 5. Face recognition experiments on the AR database. (a) Experiment 1 (facial expressions), (b) Experiment 2 (lighting conditions)

and (c) Experiment 3 (occlusions).

FAUs were translated into six basic facial expression classes

(anger, disgust, fear, happiness, sadness, and surprise). We

considered all subjects in order to form the database for

our experiments. Our database consists of a total of 352

of manually aligned cropped faces (of resolution 64 × 64)
at the apex of each emotion. As in the previous subsection,

we used LDA for feature extraction and dimensionality re-

duction for the proposed method and the baseline method

of [18]. For each method, Tables 3 and 4 present the con-

fusion matrices obtained using the “one subject out” proce-

dure. Our algorithm resulted in a total recognition rate of

75% as opposed to a rate of 64% achieved in [18].

anger disgust fear happiness sadness surprise

anger 20 5 1 2 7 0

disgust 2 32 0 2 0 1

fear 4 1 21 19 5 4

happiness 2 0 6 78 2 1

sadness 3 0 2 5 50 6

surprise 2 0 3 1 2 63

Table 3. Confusion matrix for emotion recognition on the Cohn-

Kanade database using the proposed scheme.

anger disgust fear happiness sadness surprise

anger 24 2 5 3 1 0

disgust 9 20 5 1 2 0

fear 4 3 29 16 1 1

happiness 3 3 14 68 1 0

sadness 9 4 14 6 30 3

surprise 3 6 3 4 1 54

Table 4. Confusion matrix for emotion recognition on the Cohn-

Kanade database using the method in [18].

5.3. Face Tracking

We evaluated the performance of the proposed ℓ1-based
“tracking by detection” algorithm on two very popular

video sequences, “Dudek” and “Trellis”, available from

http://www.cs.toronto.edu/dross/ivt/. The target was to as-

sess the proposed algorithm’s performance for face track-

ing under pose variation, occlusions and non-uniform il-

lumination. ‘Dudek” is provided along with seven anno-

tated points which are used as ground truth. We also anno-

tated seven fiducial points for “Trellis”. As usual, quanti-

tative performance evaluation is based on the RMS errors

between the true and the estimated locations of these seven
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Figure 6. RMS error vs frame number for ‘Dudek” (left figure) and

“Trellis” (right figure) sequences.

points [13]. The performance of our tracker is compared

with that of [12]. No attempt to optimize the performance

of both methods was attempted. For both methods, we used

the same particle filter parameters (taken from [13]) and the

same number of particles (600). For our method, we used

p = 100 features after performing dimensionality reduction

on 32 × 32 orientation images as described in Section 4.

Finally, to make the method of [12] run in reasonable time,

the region of interest was down-sampled to size 16× 16.

Fig. 6 and Table 5 summarize our results. The pro-

posed tracker outperforms the method of [12] in three im-

portant aspects. First, it is more robust. This is illustrated

by the total number of frames successfully tracked before

the tracking algorithm goes completely off. For “Dudek”,

both trackers went off after the 285th frame. For “Trellis”

however, our tracker appeared to be significantly more ro-

bust. More specifically, the proposed tracker failed to track

after 280 frames, while the tracker of [12] after 200 frames.

Second, the proposed scheme is more accurate. This is il-

lustrated by the RMS error computed for frames where the

face region was successfully tracked. For both methods and

sequences, Fig. 6 plots the RMS error as a function of the

frame number, while Table 5 gives the mean and median

RMS error over the first 285 and 200 frames where the face

region was tracked by both methods. Third, as our method

does not rely on the extended problem of (21) to achieve ro-

bustness to outliers, it is significantly faster. Finally, Fig. 7

illustrates the performance of the proposed tracker for some

cumbersome tracking conditions.

32



Figure 7. Face tracking using the proposed tracker. First three examples from “Dudek” and last three from “Trellis”.

Proposed Tracker Tracker of [12]

‘Dudek” 4.65 (4.22) 5.76 (5.36)

“Trellis” 2.15 (1.69) 3.37 (2.77)

Table 5. Mean (Median) RMS error for ‘Dudek” and “Trellis” se-

quences. The errors are computed for the first 285 and 200 frames.

6. Conclusions

We presented a framework for appearance-based visual

recognition and tracking using sparse representations of

gradient orientations. Our framework can handle outliers

without the need for solving the extended problem consid-

ered in [18], can be combined with dimensionality reduc-

tion schemes and results in better recognition rates. Thus, it

is not only significantly faster but also more robust.
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