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Abstract—Modeling intensity of facial action units from spontaneously displayed facial expressions is challenging mainly because of
high variability in subject-specific facial expressiveness, head-movements, illumination changes, etc. These factors make the target
problem highly context-sensitive. However, existing methods usually ignore this context-sensitivity of the target problem. We propose
a novel Conditional Ordinal Random Field (CORF) model for context-sensitive modeling of the facial action unit intensity, where the
W5+ (who, when, what, where, why and how) definition of the context is used. While the proposed model is general enough to handle
all six context questions, in this paper we focus on the context questions: who (the observed subject), how (the changes in facial
expressions), and when (the timing of facial expressions and their intensity). The context questions who and how are modeled by means
of the newly introduced context-dependent covariate effects, and the context question when is modeled in terms of temporal correlation
between the ordinal outputs, i.e., intensity levels of action units. We also introduce a weighted softmax-margin learning of CRFs from
data with skewed distribution of the intensity levels, which is commonly encountered in spontaneous facial data. The proposed model
is evaluated on intensity estimation of pain and facial action units using two recently published datasets (UNBC Shoulder Pain and
DISFA) of spontaneously displayed facial expressions. Our experiments show that the proposed model performs significantly better on
the target tasks compared to the state-of-the-art approaches. Furthermore, compared to traditional learning of CRFs, we show that the
proposed weighted learning results in more robust parameter estimation from the imbalanced intensity data.

Index Terms—FACS, action unit intensity, spontaneous facial behavior, facial expression analysis, ordinal regression, conditional
random fields, context modeling
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1 INTRODUCTION

F Aces hold valuable clues to people’s emotions and in-
tentions. Facial expressions are some of the most direct,

naturally preeminent means for human beings to regulate
interactions with each other [1]. They communicate emotions,
clarify and stress what is being said, and signal compre-
hension, disagreement and stances. Machine understanding
of facial expressions could revolutionize user interfaces for
artifacts such as robots, mobile devices, cars, and conver-
sational agents [2]. Other valuable applications are in the
domain of medicine and psychology, where it can be used to
improve medical assistance as well as develop automated tools
for behavioral research. Therefore, machine understanding of
facial expressions has recently become a hot research topic.

Facial expressions are usually described in terms of varia-
tion in configuration and strength of facial muscle actions. To
this aim, the Facial Action Coding System (FACS) [3] defines
a comprehensive set of atomic non-overlapping facial muscle
actions named Action Units (AUs) [4]. Each and every facial
expression can be described in terms of these AUs and their
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intensities. Specifically, FACS defines 9 different AUs in the
upper face, 18 in the lower face, and 5 AUs that cannot be
classified as belonging to either the upper or the lower face.
It also defines the so-called action descriptors (ADs), 11 for
head position, 9 for eye position, and 14 additional descriptors
for miscellaneous actions. FACS also provides the rules for
scoring the intensity of each AU in a range from absent to
maximal intensity on a six-point ordinal scale, denoted as
neutral<A<B<C<D<E. Thus, using FACS, human coders
can manually code nearly any anatomically possible facial
expression, decomposing it into specific ADs, AUs and their
intensity that produced the expression. However, this process
is tedious and error-prone due to the large number of AUs and
the difficulty in discerning their intensities.

To date, most of the work on automated analysis of AUs has
focused on detection of the presence/absence of AUs (e.g. [5],
[2], [6], [7], [8]) instead of their full range intensity estimation.
Yet, the meaning and function of spontaneous facial expres-
sions depends largely on intensity of AUs. For example, the
smiles of enjoyment are full-blown smiles, while the “fake
happiness smiles” (as in sarcasm) may be asymmetric and
are usually of lower intensity when observed in naturalistic
social settings. As noted in [9], “most of the smile genuineness
impression is created by the intensity [and the facial motion] of
the smile, not just the activation of AU6”. However, discerning
different intensities of AUs is a far more challenging task
than AU detection for several reasons. First and foremost,
the perceived intensities of AUs depend greatly on the facial
morphology and expressiveness of the observed subject. As
noted in studies on human anatomy (e.g., [10]) as well as
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in the FACS manual, “the intense muscular contractions are
combined with the individual’s physical characteristics to pro-
duce changes in appearance that then vary somewhat between
different subjects”. Also, each subject may have a different
aptitude for expressivity (e.g., extrovert vs. introvert people).
This, in turn, makes it difficult to grasp what constitutes the
maximal level of appearance change for each subject. For
example, different people gesticulate differently and while
some usually display very broad smiles, others display small,
less-wide smiles. This, in particular, may be due to the high
inter-personal variability in the morphology of the zygomatic
major muscle [10], the activity of which results in a smile.
Second, co-occurrences of AUs affect the criteria for scoring
their intensity. For example, the criteria for intensity scoring of
AU7 (lid tightener) are changed significantly if AU7 appears
with a maximal intensity of AU43 (eye closure), since this
combination changes the appearance as well as timing of
these AUs [3]. Third, a change in lighting, head position, and
transient shadows can all give the impression of a different AU
intensity. All these factors make the AU intensity estimation a
very challenging task, and, above all, highly context-sensitive.
Hence, to determine the intensity of AUs accurately, one must
also know the context in which they occur [11].

Fig. 1: Relationship between the scale of facial appearance change
and intensity levels when evidence of an AU is present [3].

To this end, we propose a Context-sensitive Conditional
Ordinal Random Field (cs-CORF) model for dynamic es-
timation of AU intensity levels. This model is based on
the linear-chain CRF model [12] for sequence classification.
To impose ordering constraints on AU intensity levels, we
define the node features in the model using the modeling
framework of (static) ordinal regression models [13], [14].
More importantly, we extend this framework by accounting for
the omnipresent impact of context on AU intensity estimation
via modeling of context-sensitive variability in data. To this
end, we adopt the widely accepted W5+ context model [11],
where the following six questions are used to summarize the
key aspects of the context in which the target action (in our
case, the AU intensity) occurs: who (the subject’s identity,
age and expressiveness), where (environmental characteristics
such as illumination), what (task-related cues of the facial
action such as head tilts, nods, etc.), how (the information
is passed on by means of facial expression intensity), when
(timing of facial expressions and their intensity) and why
(the context stimulus such as the humorous videos). Existing
approaches to AU intensity estimation (e.g., [4], [15], [16])
are context-free as they model the context question how only,
without taking into account the other context questions. By
contrast, the proposed cs-CORF model can be used to model
all six context questions. We demonstrate this on the context
questions who, how and when; however, the other context
questions can be modeled in a similar manner. The context
questions who and how are accounted for at the feature level by
newly introduced Context-related Covariate Effects (CRE) and

Context-free Covariate Effects (CFE), where the CFE coincide
with those modeled in the context-free models. These two
effects are efficiently embedded via ordinal node potentials of
the cs-CORF model. On the other hand, the context question
when is addressed at the model level by encoding temporal
dependence between the intensity labels via the edge potentials
of the model. We do this at the model level in order to avoid
the potential problem of temporal misalignment of raw image
features. The CRE component is considered constant along the
sequence, and is derived from the subjects’ characteristics such
as their facial shapes (when there is no AU activation present).
This component is of particular importance as it directly
accounts for the subject-specific bias in the model parameters.
We also account for heterogeneity of subjects by modeling
heteroscedasticity of both the CRE and CFE components. This
allows the model to further capture the expressiveness of each
subject. All these effects are summarized in the graphical
representation of the proposed cs-CORF model shown in Fig.
2. Lastly, to address the problem of label/level imbalance in
a principled manner, we introduce a weighted softmax-margin
learning approach for CRFs, based on a generalization of the
slack and margin rescaling modeling criteria in [17], [18].

Fig. 2: The proposed cs-CORF model. The input to the model
are the time-varying CFE covariates (xrij) and the constant (on the
sequence level) CRE covariates (xui ), used to model the context-
questions how and who, respectively. These effects are linearly related
to the latent variable zi, contaminated by Gaussian noise with zero
mean and variance defined as the sum of the CRE (σ2

u(x
u
i )) and

CFE (σ2
r(x

r
ii)) heteroscedastic variance, as well as σ2

o that accounts
for unexplained variance in the data. The latent variable zi is non-
linearly mapped to the ordinal labels yi via the probit link function,
used to define the node potentials of the cs-CORF model. The context
question when is modeled by encoding the first-order temporal
dependences between the intensity levels via the edge potentials of
the model.

We demonstrate performance of the proposed model on
the UNBC Shoulder Pain [19] and DISFA [20] datasets
of spontaneously displayed facial expressions. Compared to
existing approaches for the target task, we show that there
is a significant increase in the AU/facial expression intensity
estimation performance when the proposed cs-CORF model
is used. We also show that the proposed weighted softmax-
margin learning approach results in a more robust parameter
learning compared to the standard maximum a posteriori
(MAP) estimation of CRFs.
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2 RELATED WORK

The automated estimation of AU intensity is a relatively recent
problem within the field, and only a few works have ad-
dressed it so far. These can be divided into classification-based
methods [4], [20] and regression-based methods [16], [21],
[22]. The former use classifiers for nominal data, such as the
Support Vector Machine (SVM), to classify the intensity levels
of AUs. Specifically, Mahoor et al. [4] addressed the intensity
estimation of AU6 (cheek raiser) and AU12 (lip corner puller)
from facial images of infants. Input features were obtained
by concatenation of the facial shape (facial landmarks) and
appearance (gray-level intensity of each pixel), which were
pose-normalized using an Active Appearance Model (AAM)
[19]. Due to the excessive number of features, the Spectral
Regression (SR) [23] was applied to select the most relevant
for each AU. The intensity classification based on these
features was then performed by the SVM. Mavadati et al.
[20] proposed a new dataset of spontaneously displayed facial
expressions, named DISFA, and employed the same approach
as in [4] for intensity classification of 13 AUs. The evaluation
was carried out on different sets of features derived from
the facial appearance using Local Binary Patterns (LBPs),
histograms of oriented gradients (HOGs) and Localized Gabor
Filters (LGF).

The regression-based methods model the AU intensity on
a continuous scale using the logistic-regression-based models
[16], Relevance Vector Machine (RVM) regression [21], and
Support Vector Regression (SVR) [22]. For instance, Savran
et al. [16] proposed a model based on logistic regression for
AU intensity estimation. The model was evaluated on the
Bosphorus Database [24], which contains 3D facial images
of posed facial expressions coded in terms of 25 AUs and
their intensities. To select input features, the authors applied
an AdaBoost-based method to Gabor wavelet magnitudes of
2D luminance and 3D geometry extracted from the target
images. Kaltwang et al. [21] used the RVM model for intensity
estimation of spontaneously displayed facial expressions of
pain and 11 AUs from the Shoulder-pain dataset [19]. The
effectiveness of different image features such as Local Binary
Patterns (LBPs), Discrete Cosine Transform (DCT) and facial
landmarks, as well as their fusion, was evaluated for the target
task. Jeni et al. [22] proposed a sparse representation of the
facial appearance obtained by applying Non-negative Matrix
Factorization (NMF) filters to gray-scale image patches ex-
tracted around facial landmarks. The image patches were then
processed by applying personal mean texture normalization,
and used as input to the SVR. The model was evaluated on
intensity estimation of 14 AUs from the CK+ dataset [25]
of posed facial expressions, and AU12 and AU14 from the
Binghamton dataset [26] of spontaneously displayed facial
expressions. A qualitative analysis of AU intensities was
reported in the work by Bartlett et al. [27], where distances
to the SVM margins, learned for AU detection, were used to
obtain (continuous) intensity of AUs.

Overall, from the modeling perspective, the previous work
on AU intensity estimation has the following limitations.

1) Modeling the intensity levels on a nominal scale, as in

the first group of methods, is suboptimal because models
such as the standard SVM [4], [20] treat each intensity
level independently, thus, ignoring their total ordering.

2) Modeling the intensity levels on a continuous scale, as
in the second group of methods, does not fit the problem
well because of the range of each intensity. For example,
as shown in Fig. 1, C and D intensity levels cover
a larger range of appearance changes than the other
levels. Moreover, discrete rating of intensity levels is
often preferred and can be accomplished more easily
by human coders than the labeling of continuous-valued
intensities.

3) The learning/inference is static, i.e, per-frame/window.
However, for some AUs, temporal changes in facial
expressions carry more discriminative information about
the AU intensity than their spatial changes [28], [3].

4) These static methods are not context-sensitive since
they answer only the context-question how (in terms of
changes of facial expressions at the feature level) from
the W5+ model. To achieve context-sensitive modeling,
i.e., to allow context to influence intensity estimation
of AUs, target models need to account for two or more
context questions simultaneously. Only then, the models
are expected to better disambiguate between the intensity
levels of AUs in different contexts.

5) The frequency of occurrence of intensity levels of
AUs in spontaneous facial expressions is usually highly
skewed toward lower levels (see Fig.4). This data im-
balance makes it difficult for the existing models to
discriminate accurately between the minority classes
(i.e., the higher intensity levels).

The context-sensitive CORF model introduced in this paper
addresses the limitations mentioned above. Note also that
context modeling has been addressed in other domains such as
image annotation (e.g., [29], [30]) or activity recognition (e.g.,
[31], [32]). These approaches typically model context in terms
of co-occurrences of different classes (objects or activities)
using CRFs for nominal data. By contrast, in our ordinal
model we employ the more general W5+ context model. To
the best of our knowledge, this is the first work that exploits
the context in a principled manner, in addition to addressing
the other limitations of the existing approaches, in order to
improve AU intensity estimation from spontaneously displayed
facial expressions.

3 ORDINAL REGRESSION
To account for ordinal structure in labels y (i.e., the intensity
levels of AUs), different models for ordinal responses can
be employed (e.g., see [33]). We adopt the latent variable
approach introduced in [14]. In this approach, the ordinal
variable y is assumed to be a manifestation of some continuous
latent variable z. Then, the noiseless ordinal likelihood is
defined as

Pideal(y = k|z) =

{
1 if z ∈ (γk−1, γk]
0 otherwise, (1)

where k = 1, ...,K, with K being the number of ordinal
responses (in our case, the number of AU intensity levels),
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and γ0 = −∞ ≤ · · · ≤ γK = ∞ are the thresholds or
cut-off points that divide the real line into K contagious
intervals. These intervals map the continuous latent variable
z to the discrete variable y, which satisfies the monotonicity
constraints. The latent variable z is defined as:

z = βTx+ ε, ε ∼ N (0, σ2), (2)

where x ∈ <D is a D-dimensional covariate vector, β is
the ordinal projection vector, and ε is a Gaussian noise with
zero mean and variance σ2. Then, the ordinal likelihood is
constructed by contaminating the ideal model with noise:

P (y = k|z) =
∫
Pideal(y = k|z) · N (ε; 0, σ2) dε

= Φ(λk)− Φ(λk−1),
, (3)

where Φ(λ) =
∫ λ
−∞N (ξ; 0, 1)dξ is the normal cumulative dis-

tribution function (cdf), and λk = γk−βT x
σ are the cumulative

probits [13]. Usually, σ is set to one for identification purposes
[34]. Note that the most critical aspect that differentiates the
ordinal regression [13], [14], [35] from multi-class classifi-
cation [36], [12] is the modeling strategy: while the former
learns a single projection (β), which has the same effect on the
covariate values of different ordinal responses, the latter learns
a separate projection for each response (βk, k = 1, ...,K).
Therefore, the ordinal models are more parsimonious and often
more robust, if the responses are indeed of ordinal nature [34].

4 CONTEXT-SENSITIVE CONDITIONAL ORDI-
NAL RANDOM FIELDS (CS-CORF)
In this Section, we first introduce the concept of context-
sensitive modeling of ordinal variables (i.e., the intensity levels
of AUs) using the ordinal regression framework described
in Sec.3. We then generalize this model by allowing its
variance to be a function of the context-sensitive covariates.
The resulting model is then integrated into the framework
of CRFs to account for temporal dependences between the
ordinal variables. We also introduce a weighted softmax-
margin learning approach that enables the proposed model to
handle skewed distribution of the intensity levels. Lastly, we
describe the used regularizers and the inference procedure.

4.1 Latent Variable Approach to Context-sensitive
Modeling
The context-sensitive modeling of data is attained by allowing
the effects that correspond to different context questions to
influence the output responses via the latent variable z. To
this end, we define the latent variable model as

z = βT1 x
who + βT2 x

where + βT3 x
what

+βT4 x
how + βT5 x

when + βT6 x
why + ε,

(4)

where the noise term is defined as in (2). The covariates
(xwho, xwhere, xhow, xwhen, xwhy) aim to ‘answer’ each of
the corresponding context questions from the W5+ context
model [11]. Note that although z is linear1 in these covariates,

1. Non-linear mappings can be obtained as in [37] by applying Representer
Theorem to the regularized loss defined in 20. However, in this paper we focus
on linear models.

this is not the case with the response variable y as it is non-
linearly related to z via (3). Therefore, the estimated intensity
is the result of non-linear interactions of the context covariates
accounting for each context question in the model.

4.2 Modeling of context questions who and how
To demonstrate how the latent variable model in (4) can be
applied to the target task (i.e., AU intensity estimation), in
what follows we focus on the context questions who and how,
however, the other context questions can be modeled in a
similar manner. These two questions are of particular impor-
tance since the first directly accounts for the subject-specific
aspect of the context. The second accounts for relationships
between the observed facial changes and the corresponding
AU intensities, which are assumed to be common to all
subjects. To model these two context questions, we introduce
the context-related covariate effects (CRE) and the context-
free covariate effects (CFE), corresponding to the covariates
xwho and xhow in (4), respectively. The latter are called
context-free in this paper as these covariates coincide with
those used in the context-free models for the target task. We
derive the CRE and CFE components as follows. Given a
sequence of ordinal intensities, yi = {yi1, . . . , yiTi}, with
the corresponding covariate values xi = {xi1, . . . , xiTi}, we
decompose xij into CRE (xui = C−1

∑C
c=1 xic) and CFE

(xrij = xij − xui ) components. The CRE are considered
constant across the sequence but may vary between sequences
(e.g., the facial shapes of different subjects). Here, we estimate
it from the first C neutral intensity frames in a sequence2.
On the other hand, the CFE account for variability within the
sequence (i.e., the expression/AU intensity). With these newly
introduced effects, we write the latent variable model from (4)
as

zij = βTu x
u
i + βTr x

r
ij + εij . (5)

By following the same approach as in (3), we obtain the
context-sensitive cumulative probits as

λijk = γk − βTu xui − βTr xrij , k = 1, . . .K, (6)

where σ = 1. From (6), we can distinguish between (i)
an overall effect of the CRE component, as measured
by the association of the person-specific biases with the
responses, and (ii) the time-varying CFE component within
the sequence. Intuitively, the locations of the thresholds
γk, dividing the ordinal line into the bins corresponding to
different intensity levels, are adjusted to the target subject by
means of the CRE component (βTu x

u
i ). On the other hand,

the CFE component (βTr x
r
ij) ensures that the intensity-related

variation is placed correctly into such adjusted bins. This
simultaneous interaction of the CRE and CFE components
with the other parameters of the model is at the heart of our
approach. If the CRE component is removed from the model
(βu = 0, βr 6= 0), the context is lost and it may become
difficult for the model to adapt to different subjects. On the
other hand, assuming the common effects (βu = βr) can

2. We set C=5 to obtain a robust estimate of the target covariates. However,
a single frame should suffice.
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lead to very misleading association of covariates with the
responses, since they model neither CRE nor CFE covariate
effects.

Heteroscedastic noise model. The latent variable in (5) is
defined using the homoscedastic noise model, i.e., the variance
σ2 of the noise term is constant. However, since the CRE
component has an additive effect on the locations of the
model’s thresholds γk within a sequence, it accounts only
for the mean level of the subject’s expressiveness level. For
the model to be able to fully adapt to expressiveness levels
of different subjects, we also need to allow the scale of the
thresholds to change. This can be attained by relaxing the
assumption of constant σ, i.e., by allowing the noise level
to vary as a function of covariates. The ordinal models with
varying noise levels are usually termed heteroscedastic ordinal
models [34]. Thus, we further extend the latent variable model
in (5) by introducing separate noise terms

zij = βTu x
u
i + βTr x

r
ij + εui + εrij + εij , (7)

where N (εui ; 0, σu(xui )) and N (εrij ; 0, σr(x
r
ij)). We also keep

the constant noise term to account for sources of variation that
are not included in the model (e.g., the effects of the other
context questions). Because we assume that the three noise
terms are independent, the distribution of the overall noise in
the model is a zero-mean Gaussian with the variance

σ2(xij) = σ2
u(xui ) + σ2

r(xrij) + σ2
o . (8)

The first two terms on the right represent the CRE and
CFE variance, respectively, and are defined as the log-linear
function of their covariates, i.e., log σu = υTu x

u
i and log σr =

υTr x
r
ij . The parameters υu and υr indicate the importance of

the CRE and CFE variances, respectively, and log function
ensures that the standard deviation is positive. Using the latent
variable model in (8), and after the marginalization in (6),
we obtain the context-sensitive cumulative probits, which also
have the changing variance, as

λijk = γkσ
−1(xij)− (βTu x

u
i + βTr x

r
ij)σ

−1(xij), (9)

where the context-sensitive ordinal likelihood is P (yij =
k|zij) = Φ(λij,k)−Φ(λij,k−1). From (9), we see that both the
constant CRE and time-varying CFE covariates influence the
scale of the model’s thresholds as well as their location. Note
that since we use the same covariates in the location and scale
models, the identification may be fragile [34]. Nevertheless,
the model can still be identified due to the different functional
forms specified for the covariates, but it is necessary to
regularize the parameters. This is explained in Sec.4.5.

4.3 Modeling of context question when

The context-sensitive ordinal likelihood in Sec.4.2 models the
context questions at the feature level by allowing the proposed
covariate effects to simultaneously influence estimation of the
AU intensity via the latent variable z in (4). However, some
aspects of these questions can be handled more naturally at
the model level. We demonstrate this on the context question

when by modeling its temporal aspect, i.e., temporal correla-
tion between the AU intensity levels3. In this way, we also
avoid the potential problem of temporal misalignment of raw
image features. Specifically, we employ the modeling strategy
of the linear-chain Conditional Random Field (CRF) [12],
where the conditional distribution P (yi|xi; θ) of a sequence
{yi,xi} = {(yi1, xi1), . . . , (yiTi , xiTi)}, i = 1, . . . , N , is
represented as the Gibbs form clamped on observations xi:

P (yi|xi; θ) =
exp(

∑Ti
j=2 Ψ(yi,j−1, yij ,xi; θ))∑

ȳ∈Y|Ti|
exp(

∑Ti
j=2 Ψ(ȳi,j−1, ȳij ,xi; θ))

, (10)

and where Ti is duration of the i-th sequence, and Y |Ti| is
the set of all possible configurations of an output graph G =
(V,E). Furthermore, θ are the parameters of the score function
Ψ(yi,j−1, yij ,xi; θ) ≡ Ψij(y)4 defined on node cliques (r ∈
V ) and edge cliques (e = (s, r) ∈ E) of the graph as

Ψij(y) = fn(yij ,xi) + fe(yi,j−1, yij). (11)

The choice of the node fn(yij ,xi) and edge fe(yi,j−1, yij)
features depends on the target task, and plays a crucial role in
the definition of CRFs. We use the introduced context-sensitive
ordinal likelihood function to define the node features as

fn(yij ,xi) =

K∑
k=1

I(yij = k) · logP (yij = k|zij), (12)

where P (yij = k|zij) is defined in Sec.4.2, and I(·) is the
indicator function that returns 1 (0) if the argument is true
(false). On the other hand, the edge features model the first
order Markov dependence between the ordinal responses as

fe(yi,j−1, yij) =

K∑
m,k=1

I(yi,j−1 = m ∧ yij = k) · umk,

(13)
where umk measures the temporal association between the
ordinal responses. Note that the denominator in (10) guar-
antees that the probability sums to one, and is computed
using (12) and (13), but without the indicator function.
Now, given training data pairs {yi,xi}Ni=1, parameters θ =
{{γk}K−1

k=1 , σo, βu, βr, vu, vr, {umk}Km,k=1} are found by min-
imizing the penalized log-likelihood function:

min
θ
−
∑N

i=1
logP (yi|xi; θ) +R(θ), (14)

where R(θ) is the regularization term that prevents the model
overfitting. We name the model with the objective function in
(14) the context-sensitive Conditional Ordinal Random Field
(cs-CORF).

3. However, there are other aspects of this question such as when different
AUs co-occur, which can be accounted for more efficiently at the feature level
using the model in (4). For instance, this can be accomplished by using outputs
of S independently trained AU detectors to form xwhen = {AUi}Si=1, where
AUi = 1 if AUi is active, and AUi = 0 otherwise, and by plugging it into (4).
Although accounting for these co-occurrences at the model level is possible
(e.g., using factorial CRFs[38]), this would increase considerably the learning
and inference complexity of the model.

4. We drop dependence on j − 1, xi and θ for notational simplicity.
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Note that temporal models such as CORF [39] and linear-
chain CRF for nominal data [12], can also be considered as
context-sensitive since they answer the context questions how
and when simultaneously, via their node and edge potentials.
However, these models are not fully context-sensitive in the
W5+ sense as they do not provide explicit means for modeling
the other four context questions (who, where, what, and why).
On a more subtle level, these temporal models fail to account
for heteroscedastic variance in their node potentials. Yet, this
is important for capturing non-linear effects of the context
covariates on the AU intensity levels. All this is successfully
accounted for in the proposed cs-CORF model.

4.4 Weighted Softmax-margin Learning
To deal with skewed distribution of ordinal responses, we
relate the large-margin learning approach for sequence classifi-
cation in [40] to the CRF model in (10). However, in contrast
to [40], we introduce scaling of the slack variables, which
induces a higher penalty when making errors on minority
classes during learning. We start from standard primal learning
approach for max-margin models [17], [18]:

min
ζij ,θ

R(θ) +
∑N
i=1

∑Ti
j=2 ζij

s.t.Ψij(y)−Ψij(ȳ) ≥ ∆ij(y, ȳ)− ζij
wij(y,ȳ) ,

∀ȳ ∈ Y, ζij > 0, i = 1 . . . N , j = 2 . . . Ti,

(15)

where the large-margin set of constraints are applied to the
score function defined in (11). These constraints enforce the
difference between the scores of the correctly labeled cliques
(Ψij(y)) and incorrectly labeled cliques (Ψij(ȳ), y 6= ȳ) to
be greater than the loss ∆ij(y, ȳ). This loss is defined on
the temporally neighboring pairs of labels as the weighted
Hamming loss, i.e., ∆ij(y, ȳ) = 1 − [αI(yij = ȳij) + (1 −
α)I(yi,j−1 = ȳi,j−1)], for j>1 and 0 ≤ α ≤ 1, where for j=1
we set α=1. The weighting of the slack variables ζij is done
using the weights derived based on the prior distribution of the
intensity levels as wij(y, ȳ) = wij(y) = 1/(p(yij)+ε), where
p(yij) = nyij/

∑K
k=1 nk. Here, nk is the number of training

examples with intensity level k ∈ {1 . . .K}, and ε is chosen
from the range [0, 1] to avoid minority classes dominating the
overall loss. The constraints in (15) can further be written as

wij(y)Ψij(y)− wij(y)(Ψij(ȳ) + ∆ij(y, ȳ)) ≥ −ζij . (16)

Note that when the weight wij(y) is set to one, the con-
straint in (16) is equivalent to that used in the conventional
n-Slack large-margin learning with margin-rescaling [17]. We
now re-write the optimization problem in (15) in the form
that folds the multiple constraints into a single constraint per
training sequence as

min
ζi,θ

R(θ) +
∑N
i=1 ζi

s.t.
∑Ti
j=2

[
Ψw
ij(y)− (Ψw

ij(ȳ) + ∆w
ij(y, ȳ))

]
≥ −ζi,

∀ȳi ∈ Y |Ti|, i = 1 . . . N , ζi > 0,

(17)

where we simplify the notation by defining Ψw
ij(y) ≡

wij(y)Ψij(y), Ψw
ij(ȳ) ≡ wij(y)Ψij(ȳ) and ∆w

ij(y, ȳ) ≡
wij(y)∆ij(y, ȳ). While the optimization problem (OP) in (17)
has N · Y |Ti|, i = 1...N , constraints, one for each possible

combination of labels ȳi = (ȳi1, ..., ȳiTi) ∈ Y |Ti|, it has only
one slack variable ζi per sequence. This is exactly what we
need for sequence learning since, in contrast to ζij in OP in
(15), each ζi in OP in (17) can now be optimized individually
for given θ. The smallest feasible ζi given θ is then

ζi = max
ȳi∈Y|Ti|

∑Ti

j=2
(Ψw

ij(ȳ) + ∆w
ij(y, ȳ))−

∑Ti

j=2
Ψw
ij(y).

(18)
We next obtain a more workable constraint by replacing the
max term with the softmax upper bound using the inequality
maxigi ≤ log

∑
i

egi , which leads to

ζi = log
∑

ȳi∈Y|Ti|

e
∑Ti
j=2 Ψwij(ȳ)+∆w

ij(y,ȳ) −
∑Ti

j=2
Ψw
ij(y) (19)

The constraint in (19) is more restricted than that in (18) since
it uses an upper bound on the gap between the scores of the
true and model labeling of the sequence. More importantly,
in contrast to the max constraint, the softmax large-margin
constraint is a differentiable function of the model parameters.
We use this to cast the OP in (17) as an unconstrained OP.
Specifically, since the constraint in (19) has a form similar
to that of the negative log of the conditional probability of
CRFs defined in (10), we can formulate the weighted softmax-
margin learning of the CRF/cs-CORF model as the following
(unconstrained) OP:

min
ζi,θ

R(θ) +
∑N

i=1
ζi ≡ min

θ
R(θ)−

∑N

i=1
logPw(yi|xi; θ),

(20)
where the conditional likelihood-like term Pw is defined as

Pw(yi|xi; θ) =
exp(

∑Ti
j=2 Ψw

ij(y))∑
ȳ∈Y|Ti|

exp(
∑Ti
j=2 Ψw

ij(ȳ) + ∆w
ij(y, ȳ))

(21)
Note that OP in (20) has a form similar to that of the re-

lated softmax-margin approaches (e.g., [40], [41], [17], [18]).
However, none of those approaches addresses the problem of
class imbalance. Note also that ‘slack-rescaling’ in [17], [18]
is defined as another way, in addition to ‘margin-rescaling’, of
large-margin structured learning, where the slack variables are
scaled using the inverse loss ∆(y, ȳ). This is different from our
approach where the slack variables are scaled with the inverse
weights w(y) in order to balance the contribution of the loss
on the minority and majority classes. Moreover, we include the
loss ∆(y, ȳ) using the ‘margin-rescaling’ approach because, in
contrast to ‘slack-rescaling’, it allows us to formulate the OP
as that of standard CRFs (with the likelihood-like term in 21).

4.5 Regulizers

To deal with the order constraints in threshold parameters
γ, we introduce the displacement variables ηk, where γj =

γ1 +
∑j−1
k=1 η

2
k for j = 2, . . . ,K − 1. So, γ is replaced

by the unconstrained parameters {γ1, η1, . . . , ηK−2}. Another
important issue is the regularization of the parameters of the
cs-CORF model. We use the L2 regularizer for standard CRF
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parameters, resulting in the regularization term R(θ) as:

R(θ) = ρ1(‖βu‖2 + ‖vu‖2) + ρ2(‖βr‖2 + ‖vr‖2) + ρ3‖u‖2,
(22)

where (ρ1, ρ2, ρ3) are the regularization parameters, which
help to avoid the model overfitting by controlling the impact
of the CRE and CFE effects as well as of the dynamics in
the model. The optimal parameters θ are then found by min-
imizing the objective in (20) with the quasi-Newton LBFGS
method. The regularization parameters are found using a cross
validation procedure, as explained in Sec.5. The inference of
test sequences is performed by Viterbi decoding, applied to
the ‘unweighted’ conditional likelihood in (10).

5 EXPERIMENTS

5.1 Datasets and Experimental Procedure
Datasets. Evaluation of the proposed model is performed
on the UNBC-MacMaster Shoulder Pain Expression Archive
(Shoulder-Pain) dataset [19] and the Denver Intensity of Spon-
taneous Facial Actions (DISFA) dataset [20]. To the best of our
knowledge, these are the only two sets of naturalistic data that
contain a large number of FACS coded AUs and their intensity.
We denote these intensity levels using ordinal scores: 0 (not
present) to 5 (maximal intensity).

The Shoulder-pain dataset contains video recordings of 25
patients suffering from chronic shoulder pain while performing
a range of arm motion tests. A total of 200 image sequences
were recorded. The coding of 11 AUs (4, 6, 7, 9, 10, 12, 20,
25, 26, 27 and 43) and their intensity is provided for each
frame. As there are only a few examples of higher intensities
of AU27, we do not include this AU in our experiments.
For similar reasons, we merge examples of levels 4 and 5
of AU12 and of AU20. We also use the intensity coding
of pain to evaluate the proposed model. Pain is regarded a
high level facial event, and its intensity is defined on a 0-15
ordinal scale using Prkachin and Solomon formulae (pain =
AU4 + max(AU6, AU7) + max(AU9, AU10) +AU43) [42].
As there are only few examples of high intensity of pain (see
[19] for details), we grouped the intensity levels as: 0(0), 1(1),
2(2), 3(3), 4-5(4), and 6-15(5).

Fig. 4: Distribution of intensity levels in the AU data used from the
Shoulder-pain (left) and DISFA (right) datasets.

The DISFA dataset contains video recordings of 27 subjects
watching YouTube videos. Each image frame was coded in
terms of 12 AUs (1, 2, 4, 5, 6, 9, 12, 15, 17, 20, 25 and
26) and their intensity. Since for AU15 and AU20, there
are no examples of the intensity level 5 and only a few
examples of level 4, we merged levels 3 and 4, resulting in

4 intensity levels for these AUs. For the same reason, we
merged examples of the intensity levels 4 and 5 for AU17.
Examples of AUs that are present in either the Shoulder-pain
or DISFA dataset, or both, are shown in Fig.3. Since the
recordings contain predominantly expressionless faces (i.e., 0
intensity level for all AUs), the sequences from both datasets
were pre-segmented per AU. Specifically, the segments
containing non-neutral AU intensity were marked first. Then,
the surrounding neutral-intensity frames were added at the
beginning and end of these segments. The number of ‘neutral’
frames was balanced with the second most frequent intensity
level of the target AU. Fig.4 shows the distribution of the
intensity levels after segmentation of the sequences. The
sequences made in this way were used to evaluate the models.

Features. As input to our model, we used the facial
representation based on geometric features (i.e., the locations
of 66 facial landmarks depicted in Fig.8, and obtained using
a 2D Active Appearance Model (2D-AAM) [19]). We chose
these features as they have already shown good performance
in variety of AU recognition tasks (e.g.,[43], [5]). Note,
however, that in [43], [21] the authors showed that improved
recognition performance can be attained when both geometric
and appearance features (e.g., gray-scale intensity) are used.
Yet, registration of facial appearance is challenging because
of large head movements typically present in spontaneous
facial data. While this can partly be addressed as in [44]
by engineering pose-robust appearance-based features, here
we limit our consideration to the geometric features. To
register the features, we applied an affine transform that
maps the facial landmarks from faces in each dataset to those
of the corresponding reference face (we used the average
face from the target datasets). To reduce the number of the
features, we applied Principal Component Analysis (PCA)
to 132-D feature vectors obtained by concatenation of (x, y)
coordinates of the 66 facial landmarks. On average, this
resulted in 18-D features, preserving 97% of data variance.
These were then used to derive the CRE and CFE covariates,
as explained in Sec.4.1.

Models. We compare the performance of the cs-CORF
and CORF models, and their variants. Specifically, we
compare the maximum-likelihood and the proposed weighted
softmax-margin learning of the models, denoted by ‘ml’
and ‘w’, respectively. Next, we compare the CORFs with
the homoscedastic (σ=1) and heteroscedastic (σ(x)) noise
models, with the latter denoted by ‘h’. To compare the ordinal
with nominal modeling of the target tasks, we show the
performance of standard linear-chain CRF model [12], trained
using both ‘ml’ and ‘w’ learning. As the baseline model,
we use one-vs-all SVM. We also perform comparisons with
the state-of-the-art static ordinal regression models, Support
Vector Ordinal Regression (SVOR) with implicit constraints
[35], and Gaussian Process Ordinal Regression (GPOR)
with the Laplace approximation [14]. In the kernel methods
(SVM/SVOR/GPOR), we used linear kernel function, to have
a fair comparison with the linear CRF/CORF-based models.
Finally, we include the comparisons with the state-of-the-art
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AU1 (Inner Brow
Raiser)

AU2 (Outer Brow
Raiser)

AU4 (Brow
Lowerer)

AU5 (Upper Lid
Raiser)

AU6 (Cheek
Raiser)

AU7 (Lid
Tightener)

AU9 (Nose
Wrinkler)

AU10 (Upper Lip
Raiser)

AU12 (Lip Corner
Puller)

AU15 (Lip Corner
Depressor)

AU17 (Chin
Raiser)

AU20 (Lip
stretcher)

AU25 (Lips part) AU26 (Jaw Drop) AU27 (Mouth
Stretch)

AU43 (Eyes
Closed)

Fig. 3: Examples of AUs available in Shoulder-Pain and DISFA datasets. The images are obtained from http://www.cs.cmu.edu/∼face/facs.htm.

models for AU intensity estimation: the RVM approach [21],
where continuous estimation of AU intensity is performed,
and Spectral Regression [23] combined with one-vs-one
SVM (SR+SVM) [4], [20]. The continuous predictions
by the RVM-based approach were rounded to the nearest
intensity level. For the SR+SVM approach, AU-specific
subspaces were selected by running a validation procedure
on the training set. In both methods, we used the RBF
kernel, as used in the original works [21], [20]. The width
of the RBF kernel was set as the median of the (feature’s)
distance set, i.e., {‖xi − xj‖ , i, j = 1, ..., N, i < j} [33].
The hyper/regularization-parameters of all methods were
selected by a 5-fold cross validation on the training set using
a grid-search in a range ρ =

{
10−4, 10−3, ..., 1, 2, 5

}
. If not

stated otherwise, in all our experiments we applied a 5-fold
cross validation procedure, with each fold containing intensity
sequences of different subjects.

Evaluation Scores. We use the following scores:

F1. This is the standard score for nominal classification. We
report the average score computed as F1 = 1

K

∑K
j=1 F1(j),

where F1(j) is the score for class j = 1, . . .K, and K is the
number of classes (i.e., the AU intensity levels).

Mean Absolute Error (MAE). This score is commonly
used to measure regression and ordinal classification per-
formance [39], [14]. Because of the imbalanced data, we
use the weighted version of this score, defined as MAE =
1
K

∑K
j=1

1
Nk

∑
yi∈Nk |yi − ȳi| where Nk is the number of

examples from class k, and yi and ȳi are the true and predicted
class labels, respectively.

Intra-class Correlation (ICC). This is a measure of correlation
or conformity of data with multiple targets. It is commonly
used in behavioral research to quantify agreement/consistency
between different raters [45]. Depending on how the ratings
are obtained, different types of this score should be used (see
[45] for details). We use the ICC(3,1) model that is based
on a Mixed Model ANOVA, with J judges, treated as fixed
effects, and N targets, considered as random effects. In our
case, J = 2 (the true and predicted values), and N is the
total number of test examples. The ICC(3,1) is computed as
ICC = BMS−EMS

BMS+(J−1)EMS , where BMS = BSS
N−1 is between-

class mean squares and EMS = ESS
(J−1)(N−1) is residual mean

squares. BSS and ESS = WSS − RSS are defined as
between target sum squares and residual sum of squares, while

WSS and RSS are within-target and between raters sum
squares, respectively. This score ranges from 0 to 100 (in %),
but sometimes negative values can occur [45].

Ordinal Classification Index (OCI). This score is obtained
directly from a confusion matrix (CM). Given a normalized
CM, OCI [46] is defined as

OCI = min

1 −

∑
(r,c)∈path

nr,c

100 ·K +
∑
∀(r,c)

nr,c |r − c|
+ β

∑
(r,c)∈path

nr,c |r − c|


, where nr,c is the fraction (in %) of examples from the r-th
class predicted as being from the c-th class, and the path is
defined as a sequence of entries where two consecutive entries
in the path are 8-adjacent neighbors (see [46] for details). For
small values of β (we use 0.25), OCI focuses on measuring
ordinal performance from CMs. This score is a dissimilarity
measure ranging from 0 to 100 (in %).

We use these scores because they capture complementary
information about the models’ performance. Furthermore, all
the scores defined above, except ICC, are robust to class
imbalance, which makes them suitable for our data.

5.2 Experimental Results
In this section, we first show some qualitative results. We then
show the comparisons with the state-of-the-art models using
the context-related and context-free covariates. We continue
by showing the results for the intensity estimation of pain and
individual AUs from the two datasets, followed by analysis of
the models’ performance on two specific AUs (6&25). Lastly,
we show the results of the cross-dataset experiments.

Qualitative results. To get an insight into the role of the
different effects in the proposed model, we first focus on
comparisons between the cs-CORF model (CRE and CFE
effects) and the homoscedastic CORF model (CFE effects).
Both models were optimized using the introduced weighted
softmax-margin approach. The performance of the models is
demonstrated on the pain intensity estimation task using two
example sequences. As can be seen from Fig.5 (top row),
the predictions by the cs-CORF model are better aligned
with the ground truth than those by the CORF model, which
fails to correctly guess level 4 in the first sequence, and
level 1 in the second. The middle row of Fig. 5 shows the
values of the corresponding ordinal projections, along with
the model parameters. By looking at the ordinal thresholds
of the two models, we see that their scaling, due to the

http://www.cs.cmu.edu/~face/facs.htm
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Fig. 5: The intensity estimation of pain from two example sequences of facial expressions from the Shoulder-pain dataset, attained by
cs-CORF(w+h) and base CORF(w). The upper row shows true (dashed blue) and predicted (solid red) labels by the two models. The middle
row shows the ordinal projections of the inputs (solid black), with their standard deviation σ (grey), and the scaled thresholds (dashed red).
For cs-CORF(w+h), we also plot the context-induced ‘bias’ (solid blue). The bottom row shows the probability of each pain intensity level
per frame.

SVM GPOR SVOR RVM SR+SVM CRF(ml) CRF(w) CORF(ml) CORF(w) CORF(ml+h) CORF(w+h)

F1 CRE+CFE 24.1 (18.1) 24.4 (17.6) 26.1 (14.2) 24.5 (17.2) 25.7 (15.8) 29.3 (11.9) 32.0 (8.1) 33.2 (6.8) 35.5 (3.9) 35.3 (3.9) 38.7 (1.4)
CFE 24.8 (15.7) 23.5 (20.4) 25.2 (15.1) 27.3 (14.8) 29.7 (11.0) 29.5 (12.1) 31.5 (9.1) 31.0 (10.4) 33.2 (7.2) 32.8 (7.7) 34.8 (4.9)

MAE CRE+CFE 1.13 (20.3) 0.96 (16.6) 0.88 (13.3) 0.94 (15.5) 0.94 (15.4) 0.87 (12.1) 0.84 (10.3) 0.77 (5.9) 0.73 (3.6) 0.74 (3.9) 0.69 (1.9)
CFE 1.02 (18.5) 1.06 (19.5) 0.91 (14.9) 0.93 (15.7) 0.82 (9.1) 0.86 (11.9) 0.83 (10.3) 0.79 (8.1) 0.78 (7.4) 0.78 (7.5) 0.76 (5.8)

ICC CRE+CFE 34.9 (17.9) 38.6 (14.9) 41.8 (13.8) 24.7 (20.4) 27.6 (18.7) 45.3 (11.7) 49.7 (7.9) 52.6 (5.9) 54.8 (3.9) 56.0 (2.9) 59.1 (1.1)
CFE 36.9 (16.2) 37.2 (15.5) 38.5 (15.2) 31.5 (17.9) 38.7 (15.0) 46.8 (11.2) 50.2 (7.7) 48.4 (9.9) 50.2 (8.6) 51.2 (7.6) 53.3 (5.5)

TABLE 1: Average performance of the models tested on 23 intensity estimation problems (pain + 10 AUs from Shoulder-pain dataset and
12 AUs from DISFA dataset). The numbers in brackets are the average ranks of the models, where the ranking is performed on 46 (=23×2)
tasks, as each model is tested using two sets of covariates: the context (CRE+CFE) and context-free (CFE) covariates. The models are ranked
for each task separately, the best performing model getting the rank of 1, the second best rank 2, etc. Note that for all three scores, the top
ranked model is the proposed context-sensitive CORF(w+h) model (i.e., CORF(w+h) with CRE+CFE).

modeling of the heteroscedastic noise in cs-CORF, results in a
better estimation of the intensity levels. However, this scaling
cannot fully account for the subject-specific biases. For this,
the context (subject) induced bias (CRE) acts in concert with
the scaling of the thresholds. Consequently, the partitioning
of the target signal into discrete intensity levels is context
(subject) dependent. On the other hand, the base CORF model
is far less flexible due to its limited parametrization (σ = 1
and there is no modeling of the context), resulting in poor
estimation of intermediate intensity levels. Fig.5 (bottom row)
shows that the probability of each intensity level, computed
using Eq.(3), is consistent with the models’ predictions. From
these probabilities, we also conclude that cs-CORF is more
discriminative than base CORF.

Comparisons with the state-of-the-art models. Table 1 shows
the average results of various models, obtained using 5-fold
cross-validation, for 23 intensity estimation tasks including
pain, 10 AUs from the Shoulder-pain dataset, and 12 AUs
from the DISFA dataset. The models were evaluated using
two sets of covariates: context (CRE+CFE) and context-free
(CFE). In the case of CRE+CFE, the resulting 36D feature
vector (obtained by concatenation of the CRE and CFE

covariates) was used as input to tested models. To ensure that
the performance of the models is consistent on all 46 tasks
(i.e., 23 tasks×2 sets of covariates), we performed ranking of
the models as in [47], cf. Sec.3.2.2. Specifically, the models
were first ranked per task, the best performing model getting
the rank of 1, the second best rank 2, etc. In the case of
ties, average ranks were assigned. The final ranking was then
obtained by averaging the ranks over all tasks. From Table
1, we observe that the base SVM model is outperformed by
the SR+SVM model when the context-free covariates are used.
This is attributed in part to the fact that the latter performs non-
linear feature selection by means of SR, and in part to the fact
that it uses a non-linear kernel function in the SVM classifier,
as well as one-vs-one learning strategy. This is in contrast to
the base SVM model that employs a liner kernel and one-vs-all
strategy. On the other hand, both models underperform when
the context covariates are used, possibly due to the overfitting
of the CRE covariates. The RVM method, although designed
for continuous estimation, shows the performance (in terms
of F1 and MAE) comparable to that of SVM. However, its
ICC scores are lower, which indicates that its estimation of
the intensity levels is not always consistent. The static ordinal
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The Shoulder-pain dataset The DISFA dataset
P AU4 AU6 AU7 AU9 AU10 AU12 AU20 AU25 AU26 AU43 AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26

F1

cs-CORF(w+h) 41.0 35.0 41.0 38.0 45.0 50.0 39.0 36.0 34.0 30.0 89.0 39.0 41.0 37.0 37.0 36.0 36.0 38.0 37.0 44.0 41.0 45.0 32.0
CORF(w+h) 35.0 32.0 36.0 30.0 41.0 49.0 35.0 34.0 33.0 27.0 78.0 35.0 38.0 34.0 33.0 31.0 33.0 34.0 33.0 40.0 37.0 39.0 27.0

CRF(w) 30.0 27.0 29.0 29.0 33.0 42.0 32.0 32.0 29.0 26.0 76.0 30.0 34.0 30.0 33.0 28.0 29.0 34.0 33.0 37.0 35.0 36.0 25.0
RVM 22.8 26.7 22.2 22.1 23.5 43.0 27.8 25.5 22.1 22.0 70.7 29.6 29.6 30.7 26.1 27.3 23.3 32.6 24.8 29.7 28.6 34.9 25.9

SR+SVM 29.4 24.3 23.9 22.3 32.6 43.4 26.7 29.6 36.0 32.4 78.3 30.7 27.0 28.0 27.1 25.3 30.6 26.5 29.0 29.3 34.3 40.4 24.9

MAE

cs-CORF(w+h) 0.82 0.79 0.71 0.76 0.70 0.36 0.68 0.74 0.81 1.19 0.05 0.80 0.70 0.82 0.58 0.60 0.78 0.61 0.50 0.51 0.72 0.57 0.53
CORF(w+h) 0.93 0.88 0.79 0.90 0.75 0.41 0.81 0.83 0.95 1.23 0.11 0.85 0.75 0.90 0.63 0.63 0.78 0.60 0.54 0.60 0.83 0.64 0.52

CRF(w) 1.16 0.99 0.98 1.00 0.82 0.53 0.94 0.93 0.99 1.23 0.13 0.92 0.95 1.02 0.62 0.70 0.91 0.57 0.50 0.60 0.74 0.68 0.56
RVM 1.00 1.05 1.16 1.25 1.30 0.64 0.98 0.99 1.16 1.50 0.18 0.94 0.82 1.07 0.77 0.72 1.02 0.63 0.64 0.72 0.84 0.68 0.70

SR+SVM 1.00 0.93 0.97 1.13 0.85 0.63 0.81 0.85 0.97 1.39 0.11 0.88 0.77 1.07 0.60 0.65 0.74 0.69 0.52 0.59 0.77 0.63 0.51

ICC

cs-CORF(w+h) 64.0 75.0 67.0 68.0 63.0 66.0 62.0 47.0 58.0 38.0 73.0 61.0 68.0 67.0 51.0 57.0 58.0 66.0 51.0 46.0 49.0 78.0 40.0
CORF(w+h) 59.0 72.0 60.0 59.0 61.0 65.0 57.0 39.0 50.0 25.0 61.0 56.0 63.0 63.0 47.0 49.0 55.0 63.0 49.0 38.0 41.0 72.0 30.0

CRF(w) 58.0 66.0 52.0 54.0 52.0 49.0 51.0 37.0 43.0 29.0 54.0 52.0 55.0 60.0 49.0 48.0 53.0 65.0 44.0 38.0 50.0 72.0 28.0
RVM 43.1 33.9 18.8 28.9 -0.5 39.1 27.7 16.3 21.7 16.8 46.0 33.9 53.7 44.7 9.8 33.1 35.1 57.3 25.1 26.7 30.9 66.4 31.0

SR+SVM 44.4 54.6 36.0 27.2 43.4 37.8 34.0 35.2 38.8 18.2 59.1 53.2 46.8 51.9 26.5 26.1 52.2 40.2 20.7 25.5 47.7 69.0 21.4

TABLE 2: The performance of the models on intensity estimation of pain (P) and 11 AUs from the Sholder-Pain dataset, and 12 AUs from
the DISFA dataset. The results are the averages of the 5-fold cross-validation procedure. We use bold face to indicate that the proposed
cs-CORF(w+h) performs significantly better than the rest of the models, based on the paired t-test with p = 0.05.

models, GPOR and SVOR, showed a small improvement
in their performance when the context covariates are used.
Furthermore, SVOR performed better than the base SVM
model across all three scores. The improvement in ICC scores
of GPOR and SVOR over nominal static models and RVM, in
contrast to the the other two scores, implies that there is a bias
in the estimated intensity levels by these ordinal models. Also,
the lower performance of GPOR in terms of F1 and MAE is as-
cribed to its learning being less robust to imbalanced data than
that of the max-margin models (i.e., SVOR and SVM). Next,
the standard CRF(ml) model performed marginally better than
the base SVM in terms of F1. However, its MAE and ICC
are much better mainly because of the temporal smoothing
of the predicted intensity. On the other hand, the proposed
weighted softmax-margin learning improved the performance
of the CRF compared to that with ’ml’ learning. Yet, there is
not much difference when using the context or context-free
covariates. However, inclusion of the context covariates in the
CORF(ml) model results in an improvement in all three scores.
CORF(ml) also outperformed the static ordinal models, GPOR
and SVOR, which, evidently, remained affected by temporal
variability of the data during learning/inference. Then again,
the weighted softmax-margin learning (CORF(w)) and the
heteroscedastic noise model (CORF(ml+h)) further enhanced
the performance of CORF(ml). Moreover, based on the three
scores and the ranking of the models, the combination of the
weighted learning and the heteroscedastic noise model in cs-
CORF(w+h) (i.e., CORF(w+h) with CFE+CRE) is, evidently,
the most effective for the target tasks.

Performance on intensity estimation of pain and AUs.
Table 2 shows results of the cs-CORF(w+h), CORF(w+h)
and CRF(w) models. We also include the results obtained
by two state-of-the-art (context-free) models for AU intensity
estimation: SR+SVM [20] and RVM [21]. The numbers with
bold face in the table indicate that the differences in scores
by the proposed cs-CORF(w+h) and the rest of the models
are significant, based on the paired t-test (p = 0.05). The
proposed cs-CORf(w+h) model performs similarly or better
than rest of the models on most the tasks. Specifically, from
Table 2, in the case of AU12, cs-CORF(w+h) consistently
outperforms the other models. We ascribe this to the fact

that AU12 involves activation of an oblique muscle, which is
characterized by curved motion that is usually subject-specific.
Therefore, modeling the context through subject adaptation,
obviously results in a better performance than that attained by
the context-free models. By contrast, AU10 involves activation
of vertically set muscles above the upper lip. Similarly, AU9
involves a vertical pull of the muscles around the nose, which
wrinkles the nose and pulls the nostril wings straight up. Due
to the subtlety of these facial movements in naturalistic data
and the involvement of vertically set muscles (rather than
oblique ones), no strong personal characterization is expected
in these AUs. Hence, modeling the context does not much
improve the intensity estimation of AU9 and AU10. On the
other hand, although AU20 involves horizontal motion (elon-
gating the mouth), it often occurs in combination with other
AUs (e.g., 10+20+25 or 20+26). Since these combinations are
additive, cs-CORF(w+h) separates the facial deformation due
to the AU intensity changes, and due to the co-occurring AUs,
by means of the CRE effects, resulting in it achieving the better
performance on this AU.

Note also that the activation of AU6 wrinkles the skin
around the outer corners of the eyes and raises the cheeks.
When the facial landmarks are used as features, it becomes
impossible to perform detection/intensity estimation of this
AU in isolation from other AUs. However, because of the
co-occurring AUs, it is still possible to estimate intensity
of AU6 (e.g., AU6+AU12, representing genuine smile, fre-
quently co-occurred in the dataset used). Although we do not
explicitly model co-occurrences of different AUs, they are
implicitly accounted for by the CRE and CFE components.
It is also interesting to note that in the case of AU43, the
intensity estimation is still better attained by cs-CORF(w+h)
than CRF(w), even though this task is binary classification as
there only two levels (eyes open/closed). We attribute this to
modeling of the context and noise heteroscedasticity in the cs-
CORF(w+h). Similarly, in the case of the DISFA dataset (Table
2), the proposed cs-CORF(w+h) achieves the results that are
similar or better than those of the other models in most cases.
Nevertheless, compared to the Shoulder-pain dataset, some
of the differences (e.g., AU12 and AU20) are not significant
when p = 0.05 is used in the t-test. On the other hand, the
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intensity estimation of AU4 (brow lowerer) is much improved.
We attribute this to the fact that there are far fewer examples
of higher intensity levels of AU4 in the Shoulder-pain than in
DISFA dataset, mainly because of the difference in the context
stimulus (pain vs. ‘YouTube’ videos).

Analysis of the intensity estimation performance on AU6
and AU25. To further investigate performance of the models,
we choose these two AUs as examples. Note that intensity esti-
mation of AU6 is particularly challenging because it cannot be
detected from facial landmarks alone but its inference relies on
the feature variation due to the co-occurring AUs. On the other
hand, AU25 can be detected from facial landmarks alone (i.e.,
even when all other AUs are inactive) and is one of the most
common facial actions that occurs involuntary in spontaneous
facial expressions. Fig.6 shows confusion matrices (CMs) for
different models. Also, from each CM, we computed the OCI
score, the low values of which indicate good performance
(see Sec.5.1). In both cases, the cs-CORF(w+h) estimated
the highest intensity levels more accurately compared to the
CORF(w+h). By inspecting the CMs of the models, we note
that in both the ordinal models most confusion occurred
between the neighboring intensity levels. This is in contrast
to the rest of the models, which exhibit a more ‘dispersed’
confusion of the intensity levels, mainly due to the lack of the
ordering constraints.

Note, however, that in some cases the ordinal models also
confused higher intensity levels with the neutral level. This
usually occurs when input features are corrupted by errors
in facial landmark localization and/or their registration. To
remedy this, one would have to include a mechanism for
detecting the source of the problem, i.e., tracking/registration
errors. Another reason for confusion of the intensity levels is
the large difference in facial morphology of some test subjects
and training subjects. The facial features of such test subjects
are treated as outliers by the models. Consequently, they easily
confuse the intensity levels, sometimes also classifying the
whole sequence as having only the neutral intensity levels. The
cs-CORF model can deal better with this due to the modeling
of the context question who as well as heteroscedasticity in
the features. However, as we can see from Fig.6, sometimes it
also confuses higher intensity levels with the neutral. Again,
this occurs when difference between training and test subjects
is large. It is also important to mention that in the case of the
DISFA dataset, there is a small number of training examples
of the highest intensity level of AU25 (<30). From Fig.6,
the bottom row, we see that none of the models, including
cs-CORF, could generalize successfully to this intensity level
from the data used.

Fig.7 shows examples of the intensity estimation at the
sequence level for the same AUs (6&25). The scores shown
in the title of each graph are computed from the depicted
sequences. We note that the RVM model estimates correctly
the slope but not the scale of the true intensity, which is a
consequence of assuming an equal interval scale. On the other
hand, because of the classification bias toward the majority
classes in the learned subspace, SR+SVM underestimates the
intensity levels in most cases. These models are outperformed
by the temporal models, with CRF(w) achieving higher F1

compared to that of CORF(w+h). By contrast, CORF(w+h)
achieves better MAE and ICC, which are preferable indica-
tors of the intensity estimation performance. However, cs-
CORF(w+h) still outperforms these models.

Cross-dataset evaluation of the models. To test the robust-
ness of the models, we perform the cross-dataset evaluation.
The models were trained on data from one dataset and tested
on data from the other dataset. This is challenging mainly
due to: (i) the difficulty of aligning the features between the
datasets, (ii) the bias in annotations by different annotators of
two datasets, and (iii) the difference in the context stimulus
(the pain inducing exercises vs. YouTube videos), which
affects the frequency and co-occurrence of AUs, and thus the
features to be selected. For this experiment, we used examples
of 7 AUs (i.e., 4, 6, 9, 12, 20, 25 and 26) that are present in
both datasets. Registration of the facial landmarks between
datasets was performed as explained in Fig.8.

From Table 3, we see that the performance of all models
is lower for most of AUs compared to that attained on the
datasets used to train the models (see Table 2). This is expected
because of the reasons (i)-(iii) mentioned above. From Fig.8
we also see that there is a different level of variation in the
registered training/test points from the two datasets. This, in
turn, negatively affects the models’ performance. Furthermore,
we note that cs-CORF(w+h) performs similarly to the other
models in the case of AU6. Since the context stimulus in the
two datasets is quite different, so are the AU co-occurrences,
which is important when inferring the intensity of AU6 from
the facial points. Therefore, such behavior of the cs-CORF
in this particular task is not surprising because this model
accounts for the context question who (i.e., the subject), and
not why (i.e., the context stimulus). Also, as we saw before,
the estimation of AU20 was not improved significantly with
the context modeling, so here it is similar. In the case of AU9
(nose wrinkler), modeling the context helps when training is
conducted on DISFA and testing on the Shoulder-pain dataset,
but not the other way round. This is caused by inaccuracies
in the registration of the facial points around the nose in the
latter case (see Fig. 8 on the left), which adversely affected the
generalization performance of the model. Nevertheless, in the
case of AUs 4, 12, 25 and 26, cs-CORF(w+h) consistently out-
performs the other temporal, and static, context-free models.
This is also reflected in the average results.

6 DISCUSSION

The results obtained indicate the benefits of the introduced
effects in the cs-CORF model for AU intensity estimation.
Specifically, the ordinal probit function accounts for the
spatial structure in the data, while their temporal structure
is accounted for by the edge features. However, when the
homoscedastic probit function is used, the model is unable to
fully adapt to the varying expressiveness of different subjects.
Thus, introducing the context and heteroscedastic effects in
the probit model is critical for the model’s performance. As
evidenced by the results, answering the context question who
by the inclusion of the CRE component substantially raises
the performance of traditional CORF across all three scoring
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Fig. 6: The (normalized) confusion matrices (CMs) computed from the true and predicted intensity labels, the latter being obtained by the
denoted models, for AU6 and AU25 from the DISFA dataset. Note that the lower the OCI score, the better performance.
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Fig. 7: The true (dashed blue) and predicted (solid red) intensity of AU6 and AU25 from the DISFA dataset. The sequences shown are
obtained by concatenation of several exemplary sequences corresponding to different test subjects. The scores shown at the top of each figure
are computed from the depicted sequences. For RVM, we also include the continuous estimation of AU intensity (dashed black).

(a) (b)

Fig. 8: Cross-dataset registration: (a) DISFA to Shoulder-pain, and
(b) Shoulder-pain to DISFA. The reference face is calculated as the
average of the points registered within the datasets (red) that are used
to train the models. The registered points of the test dataset (black)
are obtained by using an affine transform that maps the test points
to the reference face of the training set.

measures. This is because the CFE component alone is unable
to account for the presence of the context but also cannot
result in its full removal. This is also true because of the het-
eroscedastic nature of the data, encoded both in variance and
the offset. On the other hand, we conclude that inclusion of the
CRE covariates in the non-ordinal models does not improve
their overall performance. The main reason for this lies in the
lack of parameter tying, i.e., the influence of the CRE and CFE
component on each intensity level is modeled independently.
By contrast, the CRE- and CFE-related parameters, and the
ordinal thresholds in cs-CORF(w+h) act in concert, with the
CRE and CFE helping to adjust the location and scale of the
thresholds, depending on the input. This allows the model
to adapt to the varying expressivity of the subjects, which is
reflected by distinct motion patterns (usually oblique) of AUs.
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Cross-dataset evaluation AU4 AU6 AU9 AU12 AU20 AU25 AU26 Av.

F1

cs-CORF(w+h) 28.0 29.0 25.0 36.0 27.0 37.0 19.0 28.7
CORF(w+h) 25.0 30.0 28.0 31.0 31.0 35.0 14.0 27.7

CRF(w) SP-D 22.0 22.0 28.0 34.0 29.0 28.0 16.0 25.5
RVM 20.0 20.0 21.0 28.0 21.0 33.0 13.0 22.3

SR+SVM 27.0 19.0 24.0 19.0 16.0 30.0 14.0 21.3
cs-CORF(w+h) 26.0 24.0 39.0 27.0 38.0 43.0 29.0 32.3

CORF(w+h) 24.0 24.0 36.0 26.0 41.0 38.0 21.0 30.0
CRF(w) D-SP 23.0 22.0 30.0 27.0 33.0 29.0 16.0 25.7

RVM 22.0 17.0 0.09 24.0 17.0 19.0 16.0 16.4
SR+SVM 21.0 26.0 33.0 29.0 31.0 30.0 20.0 27.1

MAE

cs-CORF(w+h) 1.24 1.25 1.14 0.72 0.92 0.80 1.34 1.05
CORF(w+h) 1.41 1.24 1.40 0.79 1.08 0.86 1.39 1.17

CRF(w) SP-D 1.59 1.21 1.30 0.97 1.06 0.84 1.47 1.21
RVM 1.57 1.44 1.47 1.05 1.07 0.81 1.62 1.29

SR+SVM 1.53 1.78 1.54 1.12 1.36 1.13 1.38 1.41
cs-CORF(w+h) 1.11 1.16 0.77 1.18 1.04 0.75 1.16 1.02

CORF(w+h) 1.26 1.25 0.87 1.33 0.95 0.82 1.40 1.13
CRF(w) D-SP 1.20 1.44 1.06 1.34 1.03 1.02 1.40 1.21

RVM 1.24 2.11 2.50 1.38 1.20 1.73 1.42 1.65
SR+SVM 1.41 1.31 0.99 1.29 1.03 1.31 1.39 1.25

ICC

cs-CORF(w+h) 52.0 47.0 49.0 66.0 46.0 69.0 27.0 50.9
CORF(w+h) 48.0 48.0 53.0 62.0 38.0 65.0 28.0 48.8

CRF(w) SP-D 37.0 37.0 44.0 58.0 40.0 57.0 28.0 43.0
RVM 32.0 34.0 27.0 56.0 25.0 51.0 22.0 35.3

SR+SVM 41.0 13.0 34.0 44.0 12.0 44.0 30.0 31.1
cs-CORF(w+h) 42.0 45.0 74.0 55.0 36.0 62.0 27.0 48.7

CORF(w+h) 37.0 41.0 68.0 50.0 37.0 55.0 17.0 43.6
CRF(w) D-SP 37.0 37.0 62.0 41.0 35.0 51.0 15.0 39.7

RVM 37.0 0.07 0.00 39.0 15.0 25.0 -0.03 16.6
SR+SVM 25.0 33.0 60.0 39.0 34.0 37.0 26.0 36.3

TABLE 3: Cross-datasets evaluation of the models on 7 AUs present
in both datasets. The models are trained using data of target AUs from
the Shoulder-pain dataset, and tested on data from the DISFA dataset
(denoted as SP-D), and the other way round (denoted as D-SP).

Also, in situations where the facial landmark registration is not
well attained and/or a small amount of training data is available
(as in the Shoulder-pain dataset), the inclusion of the CRE
component increases the robustness of the CORF models. On
the other hand, while the CRF nominal model performs rather
well (with the inclusion of CRE and CFE covariates), it fails
to reach the full performance level of cs-CORF. This is in part
due to the lack of ordering constraints on the intensity levels
and due to the increased parameter dimensionality. Also, in the
ordinal models, the misclassification away from the true ‘level’
incurs higher cost compared to the level-distance agnostic
classification setting (i.e., nominal models). This all leads to
more accurate predictions by the proposed cs-CORF. Similar
reasoning can be applied to analysis of the performance of
other nominal models in the static setting, such as multi-class
SVM. Likewise, we showed that the regression model such as
RVM is less fit for modeling ordinal data as it assumes the
same variability in covariates of different ordinal levels [48].

Also, the traditional methods for sequence classification and
AU intensity estimation are designed for balanced data. Yet,
because of the imbalanced nature of our data, proper scaling
during training is necessary. The most frequent low intensity
levels that would otherwise dominate performance scores
are properly balanced using the proposed weighted softmax-
margin learning for CRFs. This is reflected in improvements
of the weighted models (w) over their unweighted counterparts
(ml). Lastly, while the standard ordinal models such as GPOR
and SVOR provide a solid framework for modeling ordinal
data, the class imbalance and the lack of temporal constraints
adversely affect their learning and inference. Consequently,
they cannot take the full advantage of the context information

encoded by the CRE component. This all is successfully
accounted for in the proposed cs-CORF model.

7 CONCLUSIONS AND FUTURE WORK

We have proposed a novel approach for context-sensitive
modeling of the facial AU intensity levels from spontaneously
displayed facial expressions. We addressed limitations of ex-
isting approaches that do not leverage the ordinal constraints,
and also fail to account for the influence of context on the
AU intensity estimation, as well as to account for heteroge-
neous and imbalanced nature of the data. We showed in our
experiments that by accounting for these effects, the proposed
context-sensitive model achieves substantially better intensity
estimation of AUs and facial expressions of pain.

While in this work we have focused on modeling of the
context questions who, how and when, in future it would be
interesting to investigate the influence of the other context
questions (where, why and what) on the intensity estimation of
AUs. There are various ways in which these can be explored
within our approach. For instance, the context question where
can be ‘answered’ by encoding the subject’s head pose via
covariates xwhere = [$a$b$c], representing pan, tilt and
roll angles of the head rotation. These can be obtained using
existing methods for pose estimation (e.g., [49]). Likewise,
xwhat can be derived by determining the subject’s current
focus of attention by means of gaze tracking [50]. Lastly, the
context question why can be modeled by encoding the subject’s
emotional states as xwhy = {happy=1, sad=2, . . . }, which can
be obtained from target images by applying existing (context-
free) classifiers, like in [44]. Studying these and other aspects
of target context questions would help to better understand
the influence of different contexts on the intensity of facial
expressions, and, thus, improve its automated estimation.
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