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Abstract—Hidden Conditional Random Fields (HCRFs) are discriminative latent variable models which have been shown to
successfully learn the hidden structure of a given classification problem. An Infinite Hidden Conditional Random Field is a Hidden
Conditional Random Field with a countably infinite number of hidden states, which rids us not only of the necessity to specify a priori a
fixed number of hidden states available but also of the problem of overfitting. Markov chain Monte Carlo (MCMC) sampling algorithms
are often employed for inference in such models. However, convergence of such algorithms is rather difficult to verify, and as the
complexity of the task at hand increases the computational cost of such algorithms often becomes prohibitive. These limitations can
be overcome by variational techniques. In this paper, we present a generalized framework for infinite HCRF models, and a novel
variational inference approach on a model based on coupled Dirichlet Process Mixtures, the HCRF–DPM. We show that the variational
HCRF–DPM is able to converge to a correct number of represented hidden states, and performs as well as the best parametric HCRFs
—chosen via cross–validation— for the difficult tasks of recognizing instances of agreement, disagreement, and pain in audiovisual
sequences.

Index Terms—nonparametric models, discriminative models, hidden conditional random fields, dirichlet processes, variational
inference
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1 INTRODUCTION

H IDDEN Conditional Random Fields (HCRFs) [1] are
discriminative models that learn the joint distribution of

a class label and a sequence of latent variables conditioned
on a given observation sequence, with dependencies among
latent variables expressed by an undirected graph. HCRFs do
not only learn hidden states that discriminate one class label
from all the others, but also structure that is shared among
labels. A limitation of the HCRFs is that finding the optimal
number of hidden states for a given classification problem is
not always intuitive, and learning the correct number of states
is often a trial–and–error process involving cross–validation,
that can be very computationally expensive. Even then, one has
to be careful to avoid the trap of overfitting. These limitations
motivated our proposal of an infinite HCRF model that allows
its number of states to grow as necessary to fit the data.

Over the past decade, nonparametric methods have been
successfully applied to many existing graphical models, allow-
ing them to grow the number of latent states as necessary to fit
the data. A prominent and well–studied example is the Infinite
Hidden Markov Model (IHMM or HDP–HMM) [2], [3], [4],
a Hierarchical Dirichlet Process–driven HMM with an infinite
number of potential hidden states. Other notable examples
include the first such model, the Infinite Gaussian Mixture
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Model [5], but also the more recent Infinite Factorial Hidden
Markov Model [6], the Infinite Latent Conditional Random
Fields1 [8], the Mixture Dirichlet Process Markov Random
Field (MDP–MRF) [9] and the Infinite Hidden Markov Ran-
dom Field Model (IHMRF) [10]. Hidden Conditional Random
Fields (HCRFs) are related to Hidden Markov Random Fields,
in that both employ a layer of latent variables with an undi-
rected graph specifying dependencies between those variables.
However, there is the important difference that HMRFs model
a joint distribution over latent variables and observations,
whereas the HCRF is a discriminative sequential model with
latent variables.

Infinite HCRFs were first presented in [11] and since
exact inference for such a model with an infinite number of
parameters is intractable, inference was based on a Markov
chain Monte Carlo (MCMC) sampling algorithm. Although
MCMC algorithms have been successfully applied on numer-
ous applications, they have some significant drawbacks: they
are notoriously slow to converge, it is hard to verify their
convergence, and they often don’t scale well to larger datasets
and higher model complexity. Most importantly, the model
presented in [11] is better suited for handling solely discrete
features.

In this work, we consider a deterministic alternative to
MCMC sampling algorithm for infinite HCRFs with a vari-
ational inference [12] approach. Variational inference will
allow the model to converge faster, verify convergence and
scale without a prohibitive computational cost. The model we

1. To avoid confusion, note that these are not Latent-Dynamic Conditional
Random Fields [7] with countably infinite hidden states, but an infinite mixture
of latent Conditional Random Field models.
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present in this paper allows a countably infinite number of
hidden states, shared among labels, via the use of multiple
Dirichlet Process Mixtures (DPMs). Specifically, we present a
novel mean field variational approach that uses DPM construc-
tions in the model potentials to allow for the representation of
a potentially infinite number of hidden states. Furthermore, we
show that our model, the HCRF–DPM, is a generalization of
the model presented in [11] and is able to handle continuous
features naturally.

HCRF models are well–suited for a number of problems,
including object recognition, gesture recognition [1], speech
modeling [13] and multimodal cue modeling for human be-
havior recognition [14]. The latter problem of classifying
episodes of high–level emotional states based on nonverbal
cues in audiovisual sequences of spontaneous human behavior
is rather complex. Infinite models are particularly attractive
for modeling human behavior as we usually cannot have a
solid intuition regarding the number of hidden states in such
applications. Furthermore, it opens up the way of analyzing the
hidden states these models converge to, which might provide
social scientists with valuable information regarding the tem-
poral interaction of groups of behavioral cues that are different
or shared in these behaviors. We therefore decided to evaluate
our novel model on behavior analysis and specifically the
real–world problems of recognizing instances of agreement,
disagreement and pain in recordings of spontaneous human
behavior. We expected that our HCRF–DPM would converge
to a correct number of shared hidden states and perform at
least as well as the best cross–validated finite HCRF.

In summary, we propose in this paper:

• A novel discriminative probabilistic model that is able
to automatically determine its hidden structure without
losing the flexibility of an HCRF learning the appropriate
weights to fine-tune this structure. The proposed model
can be considered a generalization of the model proposed
in [11], in terms of scalability and ability to handle
continuous observations, and of the model proposed in [1]
in terms of automatically determining the hidden structure
of the model.

• A novel variational inference procedure to learn such a
model.

In the following section, we consicely present Dirichlet
Processes and finite HCRFs. We present in Section 3 our
variational HCRF–DPM model. Finally, we evaluate our model
performance in Section 4.2, and conclude in Section 5.

2 THEORETICAL BACKGROUND

Our HCRF–DPM model, like many other infinite models,
relies on Dirichlet Process Mixtures. We present in this section
a brief introduction to Dirichlet Processes and finite Hidden
Conditional Random Fields. Along with the introduction to
Dirichlet Processes we discuss the Chinese Restaurant Anal-
ogy, an analogy that has proved helpful in explaining Dirichlet
Processes and their generalizations. For a concise but complete
discussion of Dirichlet Processes the reader is advised to read
[15], [16]. use the formulation from [16].

2.1 Dirichlet Processes
A Dirichlet Process (DP) is a distribution of distributions, pa-
rameterized by a scale parameter α and a probability measure
Ξ, the basis around which the distributions G ∼ DP(α,Ξ) are
drawn, with variability governed by the α parameter. Sethura-
man [17] presented the so–called “stick–breaking” construc-
tion for DPs, which is based on random variables (β′k)∞k=1 and
(hk)∞k=1, where β′k|α,Ξ ∼ Beta(1, α) and hk|α,Ξ ∼ Ξ:

βk = β′k

k−1∏
l=1

(1− β′l) G =

∞∑
k=1

βkδhk
, (1)

where δ is the Dirac delta function. By letting β = (βk)∞k=1

we abbreviate this construction as β|α ∼ GEM(α) [17].
Successive draws from G are conditionally independent

given G. By integrating G out, the conditional distribution
of a draw ci given all past draws {c1, c2, . . . , ci−1} is:

ci|c1, c2, . . . , ci−1, α,Ξ ∼
K∑
k=1

nk
i− 1 + α

δhk
+

α

i− 1 + α
Ξ,

(2)
where nk is the number of times a draw was assigned hk.

A useful analogy for understanding equation 2, and its
explicit clustering effect, is the Chinese Restaurant Process.
According to the metaphor, the DP is a chinese restaurant with
an unlimited number of tables. ci is the ith customer, hk is a
table in the restaurant. A draw from a DP can then be described
as follows: The ith customer enters the restaurant, and sits at
a table hk with a probability proportionate to the number of
existing customers nk on the kth table. The customer will
refuse to sit on one of the K already occupied tables with
probability proportional to α, in which case the restaurant
provides a new table (a new state, drawn from Ξ) and the
number of occupied tables in the restaurant is incremented.

A Dirichlet Process Mixture model is a hierarchical
Bayesian model that uses a DP as a nonparametric prior:

G|α,Ξ ∼ DP(α,Ξ),

ct | G ∼ G
st ∼ p(st|ct) (3)

where (st)
T
t=1 is a dataset of size T , governed by a distribution

conditioned on (ct)
T
t=1, auxiliary index variables that get as-

signed each to one of the clusters (hk)∞k=1. As new datapoints
are drawn, the number of components in this mixture model
grows. In the model we present in this paper, as we explain
later, we employ a number of DP priors coupled together at the
data generation level, i.e. st above is a function of auxiliary
index variables drawn from all different DPs.

2.2 Finite Hidden Conditional Random Fields
Hidden Conditional Random Fields (HCRF) —discriminative
models that contain hidden states— are well–suited to a
number of problems. Quattoni et al. [1] presented and used
them to capture temporal dependencies across frames and
recognize different gesture classes. They did so successfully
by learning a state distribution among the different gesture
classes in a discriminative manner, allowing them to not only
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uncover the distinctive configurations that uniquely identify
each class, but also to learn a shared common structure among
the classes. Conditional Random Fields and HCRFs can be
defined in arbitrary graph structures but in our paper, driven
by our application field, we assume data to be sequences that
correspond to undirected chains. Our work, however, can be
readily applied to tree–structured models.

We represent T observations as X = [x1,x2, . . . ,xT ].
Each observation at time t ∈ {1, . . . , T} is represented by a
feature vector ft ∈ <d, where d is the number of features,
that can include any features of the observation sequence. We
wish to learn a mapping between observation sequence X and
class label y ∈ Y , where Y is the set of available labels. The
HCRF does so by estimating the conditional joint distribution
over a sequence of latent variables s = [s1, s2, . . . , sT ], each
of which is assigned to a hidden state hk ∈ H, and a label y,
given X. One of the main representational power of HCRFs
is that the latent variables can depend on arbitrary features of
the observation sequence. This allows us to model long range
contextual dependencies, i.e., st, the latent variable at time t,
can depend on observations that happened earlier or later than
t.

An HCRF models the conditional probability of a class label
given an observation sequence by:

p(y | X,θ) =
∑

s

p(y, s | X,θ) =

∑
s F(y, s,X,θ)∑

y′∈Y,s F(y′, s,X,θ)
.

(4)
The model is discriminative because it doesn’t model a joint
distribution that includes input X, but it only models the dis-
tribution of a label y conditioned on X. The potential function
F(y, s,X,θ) ∈ < is parameterized by θ, which measures the
compatibility between a label y, a sequence of observations
X and a configuration of the latent variables s. This potential
function in linear-chain finite HCRFs is defined as:

F(y, s,X,θ) = exp

{
T∑
t=1

∑
l∈L1

φ1,l(y, st,X)θ1,l+

T∑
t=2

∑
l∈L2

φ2,l(y, st, st−1,X)θ2,l

}
(5)

where L1 is the set of node features, L2 the set of edge
features, φ1,l, φ2,l are functions defining the features in the
model, and θ1,l , θ2,l are the components of θ, corresponding
to node and edge parameters. Each of the φ1 features depends
on a single latent variable in the model; the φ2 features depend
on pairs of latent variables/nodes.

The graph of a linear–chain HCRF is a chain where each
node corresponds to a latent variable st at time t. For such a
model, the potential function is usually defined as:

F(y, s,X,θ) = exp

{
T∑
t=1

d∑
i=1

θx(st, i)ft(i)+

θy(st, y) +

T∑
t=2

θe(st, st−1, y)

}
(6)

In this case, our parameter vector θ is made up of three

components: θ =
[
θx

T θy
T θe

T
]T

. Parameter vector θx

models the relationship between features of the observation
sequence ft and hidden states hk ∈ H and is typically of
length (d× |H|). It can be modeled as a table with each row
corresponding to one dimension of a single observation and
every column to one hidden state. If the HCRF model has 10
input features and 3 hidden states, then the θx parameter will
be of size 30 (10×3). θy models the relationship of the hidden
states hk ∈ H and labels y ∈ Y and is of length (|Y| × |H|).
It can be modeled as a table with each row corresponding to
one label and each column to a hidden state. If the model
contains 3 hidden states and 2 labels, then the θy will be of
size 6 (2×3). θe represents the links between hidden states.
It is equivalent to the transition matrix in a Hidden Markov
Model, but an important difference is that an HCRF keeps
a matrix of “transition” weights for each label and θe is of
length (|Y|×|H|×|H|). If the HCRF model contains 3 hidden
states and 2 labels, then the θe will be of size 18 (2×3×3).

In this paper, we use the notation θx(hk, φ) to refer to the
weight that measures the compatibility between the feature
indexed by φ and state hk ∈ H. Similarly, θy(hk, y) stand
for weights that correspond to class y and state hk, whereas
θe(hk, h

′, y) measure the compatibility of the label y with a
transition from h′ to hk.

3 HIDDEN CONDITIONAL RANDOM FIELDS
WITH COUPLED DIRICHLET PROCESS MIX-
TURES

For an infinite HCRF we allow an unbounded number of
potential hidden states in H. This means, that for a times-
tamp t, latent variable st could get assigned to one of
the infinitely many hk ∈ H. This becomes possible, by
introducing random variables {πx(hk|i)}∞k=1, {πy(hk|y)}∞k=1,
{πe(hk, y|ha)}∞,|Y|k=1,y=1 for an observation feature indexed by
i, label y, and an assignment st−1 = ha. These new random
variables are drawn by distinct processes that are able to
model such quantities and are subsequently incorporated in
the node and edge features of our HCRF. We present in this
paper a model that uses Dirichlet Process Mixtures, an HCRF–
DPM, to define these random quantities.2 These variables, even
though drawn by distinct processes, are coupled together by
a common latent variable assignment in our graphical model.
Figure 1 shows the graphical representations of our model. We
redefine our potential function F from (6) as follows:

F(y, s,X,θ) = exp

{
T∑
t=1

d∑
i=1

θx(st, i)ft(i) log πx(st|i)+

θy(st, y) log πy(st|y) +

T∑
t=2

θe(st, st−1, y) log πe(st, y|st−1)

}
(7)

We assume that random variables π =
{
{πx(hk|i)}∞k=1,

{πy(hk|y)}∞k=1, {πe(hk, y|ha)}∞,|Y|k=1,y=1

}
are between 0 and

1. These are in effect the quantities that will allow the model

2. We could however use others, like the Hierarchical Dirichlet Process and
the Pitman–Yor process.
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(a) HCRF–DPM Graphical Model
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(b) HCRF–DPM Factor Graph

Fig. 1: Graphical representation of our Variational IHCRF driven by a number of Dirichlet Processes incorporated in the model
potentials.

to ‘select’ an appropriate number of useful hidden states for
a given classification task. ft are positive features extracted
from the observation sequence X and, as before, they can
include arbitrary features of the input. We assume that θ are
positive parameters and, as in (6), they model the relationships
between hidden states and features (θx), labels (θy) and
transitions (θe). These positivity constraints for θ and f are
essential in this model, since the π-quantities are random
variables and influence the probabilities of the hidden states:
a negative parameter or feature would make an otherwise
improbable state very likely to be chosen. Moreover, these
constraints ensure compliance with the positivity constraints
of our variational parameter updates (29)-(34), as we shall see
later in this section. Finally, it is important to note that the
positivity of θ is not theoretically restrictive for our model
due to the HCRF normalization factor 1

Z(X) in (4) where
Z(X) =

∑
y′∈Y,s F(y′, s,X,θ).

The HCRF–DPM model is an IHCRF where the quantities
{πx(hk|i)}∞k=1, {πy(hk|y)}∞k=1, {πe(hk, y|ha)}∞,|Y|k=1,y=1 in (7)
are driven by coupled DPMs. It is important to understand that
for the DPMs driving the πe quantities in the IHCRF edge
features, hk and y are treated as a single random variable
–their product– ωµ = {hk, y} that effectively has a state–
space of size |Y| × |H|, still an infinite number. According
to the stick–breaking properties of DPs, we construct π =
{πx,πy,πe} conditioned on a new set of random variables
π′ = {π′x,π′y,π′e} that follow Beta distributions:

π′x(hk|i) ∼ Beta(1, αx),

πx(hk|i) = π′x(hk|i)
k−1∏
j=1

(1− π′x(hj |i)) (8)

π′y(hk|y) ∼ Beta(1, αy),

πy(hk|y) = π′y(hk|y)

k−1∏
j=1

(
1− π′y(hj |y)

)
(9)

π′e(ωµ|ha) ∼ Beta(1, αe),

πe(ωµ|ha) = π′e(ωµ|ha)

µ−1∏
j=1

(1− π′e(ωµ|ha)) (10)

This process can be made clearer by examining figure

2, where we visualize the stick breaking construction of an
HCRF–DPM model with 2 observation features, 3 labels, and
10 ‘important’ hidden states. The πe-sticks have an important
—for the implementation of our model— difference to the
πx and πy–sticks in that the hidden states are intertwined
with the labels, with each stick piece representing an ω–state.
This means there are |Y| such states corresponding to one h–
state. This becomes particularly important later on when we
calculate our variational updates.

By using (7) the sequence of latent variables s = {s1, ...sT }
can then be generated by the following process:

1) Draw π′x|αx ∼ Beta(1, αx), π′y|αy ∼ Beta(1, αy),
π′e|αe ∼ Beta(1, αe)

2) Calculate π from (8)-(10). Note that this will only need
to be calculated for a finite number of hidden states, due
to our variational approximation.

3) For the tth latent variable, using (7) we draw

st|{π′x,π′y,π′e, st−1, y,X} ∼

Mult

(
exp

{ d∑
i=1

θx(st, i)ft(i) log πx(st|i)+

θy(st, y) log πy(st|y)+

θe(st, st−1, y) log πe({st, y}|st−1)
})

(11)

Rather than expressing the model in terms of π, we use
π′ = {π′x,π′y,π′e} resulting in the folowing joint distribution
that describes the HCRF–DPM:

p(y, s,π′|X, θ) = p(y, s | π′,X, θ)p(π′x)p(π′y)p(π′e) (12)

with

p(y, s | π′,X, θ) =
1

Z(X)
F(y, s,π′,X,θ) (13)

where Z(X) =
∑
y′∈Y,s F(y′, s,π′,X,θ). We assume inde-

pendence of all π′ variables above, so for example p(π′x) =∏∞
k=1

∏d
i=1 π

′
x(hk|i). We avoid explicitly writing out such

expansions to make the paper easier to read.
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(c) Transition Features DPMs

Fig. 2: Visualization of the π-‘sticks’ used to construct the infinite states in our HCRF–DPM. The fictitious model presented
here has 2 observation features f(1), f(2), 3 labels y1, y2, y3 and fewer than 10 important hidden states h1, h2, h3 . . . . Each
‘stick’ sums up to 1, and the last piece always represents the sum of the lengths that correspond to all hidden states after the
10th state. Notice that for the πe-‘sticks’ this corresponds to 30 ω states. For example πe(h1, y3|h2) controls the probability
of transitioning from h2 to h1 in a sequence with label y3. See text for more details.



0162-8828 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2014.2388228, IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Comparison with previous work
It is important at this stage to compare our model described
by (7) with the MCMC model (IHCRF–MCMC) presented
in [11]. The latter work defined potentials for each of the
relationships between hidden states and features, labels and
transitions and the potential function F as their product along
the model chain:

F(y, s,X) = Fx(s,X)Fy(y, s)Fe(y, s) (14)

Fx(s,X) =

T∏
t=1

d∏
i=1

πx(st|i)ft(i) (15)

Fy(y, s) =

T∏
t=1

πy(st|y) (16)

Fe(y, s) =

T∏
t=2

πe(y, st|st−1) (17)

The quantities πx,πy,πe above are conceptually the same
as in our model, except for the fact that in [11] they have
Hierarchical Dirichlet Process (HDP) priors instead of DP
priors, as we do in this paper.3

The potential function (14) above can be rewritten as
follows:

F(y, s,X) = exp

{
T∑
t=1

d∑
i=1

ft(i) log πx(st|i)+

log πy(st|y) +

T∑
t=2

log πe(st, y|st−1)

}
(18)

A comparison between (18) and (7) makes it clear that our
model is a generalization of the IHCRF presented in [11],
which assumes, according to our framework, that θ-parameters
are set to 1. The introduction of these parameters is not
redundant, but allows for more powerful and flexible models.
Also, when dealing with classification problems involving
continuous observation features using (7) for the potential
function of an infinite HCRF is more suitable than (18), as we
show in the experimental section. In those cases it is known
that θ–parameters are of particular importance as they are able
to capture the scaling of each input feature. The former model
is not guaranteed to perform well unless some non–trivial
normalization is applied on the observation features.

3.1 Variational Inference for the HCRF–DPM
Since inference on our model (12) is intractable, we need to
approximate the marginal probabilities along the chain of our
graphical model, and the π–quantities in (7). We shall do so
with a mean–field variational inference approach. The basic
idea of such an approach is to restructure our quantities com-
putation into an optimization problem. We can then simplify

3. Using HDP priors allows separate DPMs to be linked together via
an identical base probabilistic measure, which is itself a DP. It would be
interesting to use such priors for our model, but we were able to obtain
satisfactory results without introducing higher complexity and additional
hyperparameters into the Variational IHCRF we experimented with. Notice
that our model allows for such flexibility: using HDP priors would simply
change the updates for our variational coordinate descent algorithm.

our optimization which depends only on a number of so–called
variational parameters. Solving for those will give us updates
for a coordinate descent algorithm which will converge to an
approximation of the quantities we wish to calculate. We use
the following approximation for the joint distribution of our
model:

q(y, s,π′|X) = q(y, s|X)q(π′x)q(π′y)q(π′e) (19)

where,

q(y, s|X) = q(y, s1|X)

T∏
t=2

q(y, st|st−1,X)

=

d∏
i=1

q(s1|i)
∏
y′∈Y

q(s1|y′)

T∏
t=2

d∏
i=1

q(st|i)
∏
y′∈Y

(
q(st|y′)

)
q(st, y|st−1) (20)

Each individual approximate q(π′x), q(π′y), q(π′e) follows a
Beta distribution with variational parameters τx, τ y, τ e re-
spectively. Explicitly, for features indexed by i, labels indexed
by y, and hidden states indexed by k, k′:

q(π′x(hk|i)) = Beta (τx,1(k, i), τx,2(k, i)) (21)
q(π′y(hk|y)) = Beta (τy,1(k, y), τy,2(k, y)) (22)

q(π′e(y, hk|hk′)) = Beta (τe,1(y, k, k′), τe,2(y, k, k′)) (23)

In order to make inference tractable we approximate all
π variables by employing a truncated stick–breaking repre-
sentation which approximates the infinite number of hidden
states with a finite number L [15]. This is the crux of our
variational approach, and it effectively means that we set
a truncation threshold L, above which the above quantities
are set to 0: ∀k > L, q(π′x(hk|i)) = 0, q(π′y(hk|y)) = 0,
q(π′e(y, hk|hk′)) = 0. Note that using this approximation is
statistically rather different from using a finite model: an
HCRF–DPM simply approximates the infinite number of states
and will still reduce the number of usefull hidden states to
something smaller than L. It will be easier to understand how
by examining figure 2 in our supplementary material, where
we show how a finite HCRF with 50 hidden states compares
to an HCRF–DPM with L = 50. It is finally important to
stress that by constraining our θ–parameters and observation
features to be positive, we effectively make the number of
the θ–parameters that matter finite: changing a θ–parameter
associated with a hidden state k > L will not change our
model, as one can see in (7). Note that the choice of L has to
be the same during training and inference.

3.2 Model Training
A trained variational HCRF–DPM model is defined as the set
of optimal parameters θ∗ and optimal variational parameters
τ ∗. In this work we obtain these with a training algorithm
(see Alg. 1 for a summary) that can be divided in two distinct
phases: (i) the optimization of our variational paramaters
through a coordinate descent algorithm using the updates de-
rived below and (ii) the optimization of parameters θ through
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a gradient ascent method. Although it would be possible to
have a fully Bayesian model with θ being random variables in
our model, inference would become more difficult. Moreover,
having a single value for our θ parameters is good for model
interpretability and makes the application of a trained model
to test data much easier.

Algorithm 1 Model Training for Variational HCRF–DPM

Initialize sx,1, sx,2, sy,1, sy,2, se,1, se,2
Randomly initialize αx, αy, αe,θ, τ
Initialize nbItrs, nbV arItrs
itr = 0
converged = FALSE

while (not converged) and (itr < nbItrs) do
varItr = 0
varConverged = FALSE
while (not varConverged) and
(varItr < nbV arItrs) do
{Phase 1: Optimize variational parameters τ}
Calculate ∀t q(st|X, y, st−1) by using (35)–(41)

Compute approximate marginals q(st = hk|i),
q(st = hk|y), and q(st = hk, y, st−1 = hk′) by using
a forward–backward algorithm.

Hyperparameter posterior sampling for αx, αy, αe by
using (45)

Calculate Kullback-Liebler divergence KL(varItr) by
using (27)

Update τ by using (29)-(34)

varConverged = KL(varItr)−KL(varItr−1)
KL(varItr) < ε

varItr = varItr + 1
end while
{Phase 2: Optimize parameters θ}
Gradient ascent to find θ(iteration) by using a quasi–
Newton method with (46)–(48) and an Armijo backtrack-
ing line search with projected gradients to keep θ non–
negative
converged =

∑
(|θ(itr)− θ(itr − 1)|) < ε′

itr = itr + 1
end while

Although it is possible to have a fully Bayesian model
with θ being random variables in our model, inference would
become more difficult. Moreover, having a single value for
our parameters is good for interpretability of our model, and
makes the application of a trained model to test data much
easier.

Phase 1: Optimization of variational parameters τ

Now that we have defined an approximate model distri-
bution in (20), we can approximate the necessary quan-

tities q(st), q(st, y), q(st, st−1), q(st, st−1, y), log q(πx),
log q(πy), log q(πe) for our inference. These approximations,
as one can see later in this section, depend solely on our
variational parameters τ . We calculate those by minimizing
the reverse Kullback-Liebler divergence (KL) between approx-
imate and actual joint distributions of our model, (12) and (20),
using a coordinate descent algorithm:

KL [q(y, s,π′|X, ) || p(y, s,π′|X,θ)] = (24)∫
π′

∑
y,s

q(y, s|X)q(π′) log
q(y, s|X)q(π′)

p(y, s|X,θ,π′)p(π′)
dπ′ =

(25)∫
π′

∑
y,s

q(y, s|X)q(π′) log
Z(X)q(y, s|X)q(π′)

F(y, s,π′,X)p(π′)
dπ′ (26)

Since the normalization factor Z(X) =
∑
y,s F(y, s,X)

is a constant for a given observation sequence, the reverse
Kullback–Liebler divergence becomes:

KL[q||p] = logZ(X)− 〈logF(y, s,π′,X)p(π′)〉q(y,s,π′|X) +

〈log q(y, s|X)q(π′)〉q(y,s,π′|X) (27)

where 〈·〉q is the expectation of · with respect to q. Thus,
the energy of the configuration of our random variables y, s,
and π′ is logF(y, s,π′,X)p(π′) and the free energy of the
variational distribution:

L(q) =− 〈logF(y, s,π′,X)p(π′)〉q(y,s,π′|X) +

〈log q(y, s|X)q(π′)〉q(y,s,π′|X) (28)

Since logZ(X) is constant for a given observation sequence,
minimizing the free energy L(q) minimizes the KL di-
vergence. And since KL[q||p] is positive, the free energy
L(q) ≥ − logZ(X). Therefore KL is minimized at 0 when
L(q) = logZ(X).

We will obtain the variational updates for the two groups
of latent variables q(y, s|X) and q(π′) by setting the partial
derivative with respect to each group of L(q) to 0 and
solving for the approximate distribution of each group of latent
variables. The updates for the Beta parameters of q(π′) from
(21)-(23) are:
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τx,1(k, i) = 1 +
∑
t

ft[i]θx(k, i)q(st = hk) (29)

τx,2(k, i) = αx +
∑
t

ft[i]
∑
b>k

θx(b, i)q(st = hb) (30)

τy,1(k, y) = 1 +
∑
t

θy(k, y)q(st = hk) (31)

τy,2(k, y) = αy +
∑
t

∑
b>k

θy(b, i)q(st = hb) (32)

τe,1(y, k, k′) = 1 +
∑
t

θe(k, k
′, y)q(st = hk, st−1 = hk′ , y)

(33)
τe,2(y, k, k′) =

αe+
∑
t

∑
yl>y

θe(k, k
′, yl)q(st = hk, st−1 = hk′ , yl)+∑

b>k,yl

θe(b, k
′, yl)q(st = hb, st−1 = hk′ , yl)

(34)

Quantities q(st = hk), q(st = hk), and
q(st = hk, y, st−1 = hk′) can be obtained by the forward–
backward algorithm. The latter requires only conditional
approximate likelihoods q(st = hk|i, y, hk′), which can be be
calculated by setting the derivative of L(q) with respect to
q(y, s|X) to zero:

q(st = hk|i, y, hk′) ∝

exp
{
ft(i)θx(k, i)

(
〈log π′x(st = hk|i)〉q(π′) +

k−1∑
j=1

〈log(1− π′x(st = hj |i))〉q(π′)

)
θy(k, y)

(
〈log π′x(st = hk|y)〉q(π′) +

k−1∑
j=1

〈
log(1− π′y(st = hj |y))

〉
q(π′)

)
θe(k, k

′, y)
(
〈log π′e(st = hk, y|st−1 = hk′)〉q(π′) +

k−1∑
j=1

〈log(1− π′e(st = hj , y|st−1 = hk′))〉q(π′)

)}
(35)

Since all π′ follow a Beta distribution, the expectations above
are known:

〈log π′x(st = hk|i)〉 = Ψ(τx,1(k, i))−Ψ(τx,1(k, i) + τx,2(k, i))
(36)

〈log (1− π′x(st = hk|i))〉 =

Ψ(τx,2(k, i))−Ψ(τx,1(k, i) + τx,2(k, i)) (37)

〈log π′y(st = hk|y)〉 =

Ψ(τy,1(k, y))−Ψ(τy,1(k, y) + τy,2(k, y)) (38)〈
log
(
1− π′y(st = hk|y)

)〉
=

Ψ(τy,2(k, y))−Ψ(τy,1(k, y) + τy,2(k, y)) (39)

〈log π′e(st = hk, y|hk′)〉 =

Ψ(τe,1(y, k, k′))−Ψ(τe,1(y, k, k′) + τe,2(y, k, k′)) (40)
〈log (1− π′e(st = hk, y|hk′))〉 =

Ψ(τe,2(k, y))−Ψ(τe,1(k, y) + τe,2(k, y)) (41)

where Ψ(·) is the digamma function.
The scaling parameters αx, αy, αe can have a significant

effect on our HCRF–DPM model, as they control the growth
of the used hidden states. It is suggested in [15] that for
DPMs one should place a Gamma(s1, s2) prior on these
parameters and integrate over them. Since our model uses
a number of DPMs, we include posterior updates for these
scaling parameters as part of our variational coordinate descent
algorithm. In this work, we use a different scaling parameter
for each DPM, but with a common prior. The variational
distribution for the scaling parameter αx,i corresponding to
the DPM for feature i is

q(αx,i) = Gamma (w1,x, w2,x,i) (42)

where

w1,x = s1,x + L− 1 (43)

w2,x,i = s2,x −
L−1∑
k=1

〈log(1− π′x(k, i))〉q (44)

and we replace the αx values in (30) with the respective
expectation:

〈αx,i〉q =
w1,x

w2,x,i
(45)

The posterior updates for the rest of the scaling parameters
are obtained in a similar fashion and so they are omitted for
brevity.

Phase 2: Optimization of parameters θ

We find our optimal parameters θ∗ = arg max log p(y|X,θ)
based on a training set by using a common HCRF quasi–
Newton gradient ascent method (LBFGS), which requires the
gradient of the log–likelihood with respect to each parameter.
These gradients for our IHCRF are:
∂ log p(y|X,θ)

∂θx(k, i)
=
∑
t

p(st = hk|y,X,θ)ft(i) log πx(hk|i)−∑
y′∈Y,t

p(st = hk, y
′|X,θ)ft(i) log πx(hk|i)

(46)

∂ log p(y|X,θ)

∂θy(k, y)
=
∑
t

p(st = hk|y,X,θ) log πy(hk|y)−∑
y′∈Y,t

p(st = hk, y
′|X,θ) log πy(hk|y) (47)

∂ log p(y|X,θ)

∂θe(k, k′, y)
=∑

t

p(st = hk, st−1 = hk′ |y,X,θ) log πe(hk, y|hk′)

−
∑
y′∈Y,t

p(st = hk, st−1 = hk′ , y
′|X,θ) log πe(hk, y|hk′)

(48)
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TABLE 1: Transition Matrix of the HMM producing se-
quences for Label 1 with states S1, S2, S3 and S4

HMM-1 S1 S2 S3 S4
S1 0.4 0.4 0.1 0.1
S2 0.1 0.4 0.4 0.1
S3 0.1 0.1 0.4 0.4
S4 0.4 0.1 0.1 0.4

We make this gradient ascent tractable by using the variational
approximations for the intractable quantities in the above
equations. However, there is a significant difference with other
CRF and HCRF models that use such techniques to find
optimal parameters: we are constrained to only positive θ-
parameters, as this is an assumption we have to make for
our truncated stick–breaking process. Since we are using a
quasi–Newton method with Armijo backtracking line search,
we can use the gradient projection method of [18], [19] to
enforce this constrain. Finally, it is important to stress here
that, although our model includes parameters that are not
treated probabilistically, we have not seen signs of overfitting
in our experiments (see Fig. 4).

Computational Complexity
The computational complexity of one iteration for the IHCRF–
MCMC model that is used by [11] is in fact O(TL2), where
T is the length of the sequence and L is the number of
represented states, as it is a forward filtering-backwards sam-
pling algorithm. In our variational method an inference step
is O(TL2), where T is the length of the sequence and L the
the number of available states. In an optimal implementation
this could be a lot lower in practice by choosing to ignore the
use of hidden states that have a probability of being chosen
close to 0. In fact, a big advantage of our variational method
is that it is a lot faster during inference. This is because the
IHCRF–MCMC needs to aggregate a large number of samples
during inference: after training only the hyperparameters for
that model are fixed, and the parameters are sampled anew
every time. In contrast, the method we present here learns fixed
parameters that are used for the forward-backward algorithm.

4 EXPERIMENTAL RESULTS

4.1 Performance on a Synthetic Dataset with Contin-
uous Features
In an effort to demonstrate the ability of our HCRF–DPM
to model sequences with continuous features correctly, we
created a synthetic dataset, on which we compared its per-
formance to that of the IHCRF–MCMC model [11]. The
simple dataset was generated by two HMMs, with 4 Gaussian
hidden states initialized with the transition matrices, means
and standard deviations as shown in Tables 1–3. Two of the
states were shared between the two HMMs, resulting in a total
of 6 unique hidden states, out of a total of 8 for the two labels.

We trained 10 randomly initialized models of the finite
HCRF, IHCRF–MCMC and HCRF–DPM on 100 training
sequences and chose in each case the best one based on their
performance on an evaluation set of 100 different sequences.
The performance of the models was finally evaluated by

TABLE 2: Transition Matrix of the HMM producing se-
quences for Label 2 with states S1, S2, S3 and S4

HMM-2 S1 S2 S3 S4
S1 0.1 0.7 0.1 0.1
S2 0.1 0.1 0.7 0.1
S3 0.1 0.1 0.1 0.7
S4 0.7 0.1 0.1 0.1

TABLE 3: Mean and variance for the Gaussian states of each
HMM

S1 S2 S3 S4
HMM-1µ 0.1 2 5 15
HMM-1σ 0.4 0.8 0.12 0.56
HMM-2µ 0.1 2 -10 -13
HMM-2σ 0.4 0.8 0.8 0.8

comparing the F1 measure achieved on a test set of 100 other
sequences. All sets had an equal number of samples from
each label. The IHCRF–MCMC model was unable to solve
this simple two–label sequence classification problem with
continuous-only input features: it consistently selected Label
1. On the other hand, the finite HCRF and the new HCRF–
DPM model were successful in achieving a perfect F1 score
of 100% on the test set (see Table 4).

4.2 Application to the Audiovisual Analysis of Hu-
man Behavior

The problem of automatically classifying episodes of high–
level emotional states, such as pain, agreement and disagree-
ment, based on nonverbal cues in audiovisual sequences of
spontaneous human behavior is rather complex [20]. Although
humans are particularly good at interpreting such states, auto-
mated systems perform rather poorly. Infinite models are par-
ticularly attractive for modeling human behavior as we usually
cannot have a solid intuition regarding the number of hidden
states in such applications. Furthermore, it opens up the way
of analyzing the hidden states these models converge to, which
might provide social scientists with valuable information re-
garding the temporal interaction of groups of behavioral cues
that are different or shared in these behaviors. We therefore
decided to evaluate our novel approach on behavior analysis

TABLE 4: F1 measure achieved by our HCRF-DPM vs. the
best, in each fold of each problem, finite HCRF and IHCRF-
MCMC. Synthetic: Two–label classification for an HMM–
generated dataset with continuous–only features ADA2: Two–
label classification for the Canal9 Dataset of agreement and
disagreement; ADA3: Three-label classification for the Canal9
Dataset; PAIN2: Two–label classification for the UNBC
dataset of shoulder pain; PAIN3: Three–label classification
for the UNBC dataset

Dataset Finite HCRF IHCRF–MCMC Our HCRF–DPMs
Synthetic 100.0% 33.3% 100.0%

ADA2 58.4% 61.2% 76.1%
ADA3 50.7% 60.3% 49.8%
PAIN2 83.9% 88.4% 89.2%
PAIN3 53.9% 57.7% 59.0%
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(a) πx (green) and πy (black)—L = 10 (b) πe, Label 1—L = 10 (c) πe, Label 2—L = 10

(d) πx (green) and πy (black)—L = 20 (e) πe, Label 1—L = 20 (f) πe, Label 2—L = 20

(g) πx (green) and πy (black)—L = 30 (h) πe, Label 1—L = 30 (i) πe, Label 2—L = 30

(j) πx (green) and πy (black)—L = 40 (k) πe, Label 1—L = 40 (l) πe, Label 2—L = 40

Fig. 3: Hinton Diagrams of π-quantities in node and edge features of variational HCRF-DPM models with L = 10 on the
first row (a-c), L = 20 on the second (d-f), L = 30 on the third (g-i), L = 40 on the fourth (j-l) for ADA2. The first column
presents the π-quantities for node features: πx for observation features in green, πy for labels in black. The second and third
columns present the πe-quantities for labels 1 and 2 respectively. See text for additional details
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and specifically the recognition of agreement, disagreement
and pain in recordings of spontaneous human behavior. We
expected that our HCRF–DPM models would find a good
number of shared hidden states and perform at least as well
as the best cross–validated finite HCRF.

In this work we used an audiovisual dataset of spontaneous
agreement and disagreement and a visual dataset of pain to
evaluate the performance of the proposed model on four clas-
sification problems: (1) ADA2, agreement and disagreement
recognition with two labels (agreement vs. disagreement); (2)
ADA3, agreement and disagreement recognition with three
labels (agreement vs. disagreement vs. neutral); (3) PAIN2,
pain recognition with two labels (strong pain vs. no pain); and
(4) PAIN3, pain recognition with three labels (strong pain vs.
moderate pain vs. no pain). We show that (1) our model is
capable of finding a good number of useful states; and (2)
HCRF–DPMs perform better than the best performing finite
HCRF and HCRF–MCMC models in all of these problems
with the exception of ADA3, where the performance of the
HCRF–DPM is similar to that of the finite model.

The audiovisual dataset of spontaneous agreement and dis-
agreement comprises of 53 episodes of agreement, 94 episodes
of disagreement, and 130 neutral episodes of neither agreement
or disagreement. These episodes feature 28 participants and
they occur over a total of 11 real political debates from The
Canal9 Database of Political Debates4 [21]. As the debates
were filmed with multiple cameras, and edited live to one
feed, the episodes selected for the dataset were only the
ones that were contained within one personal, close–up shot
of the speaker. We used automatically extracted prosodic
features (continuous), based on previous work on agreement
and disagreement classification, and manually annotated visual
features, the hand and head gestures hypothesized relevant
according to literature [22] (binary). The 2 prosodic features
used were F0 and Energy, and the 9 gestures used in our
experiments are the ‘Head Nod’, ‘Head Shake’, ‘Forefin-
ger Raise’, ‘Forefinger Raise–Like’, ‘Forefinger Wag’, ‘Hand
Wag’, ‘Hand Chop’, ‘Hands Scissor’, and ‘Shoulder Shrug’
(see [22] for details). We encoded each gesture in a binary
manner, based on its presence at each of the 5,700 total
number of video frames, with each sequence ranging from
30 to 120 frames. The prosodic features were extracted with
the publicly available software package OpenEar [23]. We
compared the finite HCRFs and the IHCRF–MCMC to our
HCRF–DPM based on the F1 measure they achieved. In each
case, we evaluated their performance on a test set consisting of
sequences from 3 debates. We ran all models with 60 random
initializations, selecting the best trained model each time by
examining the F1 achieved on a validation set consisting
of sequences from 3 debates. It is important to stress that
each sequence belonged uniquely to either the training, the
validation, or the testing set.

The database of pain we used was the UNBC-McMaster
Shoulder Pain Expression Database5 [24], which features 25
subjects–patients spontaneously expressing various levels of

4. Publicly available at http://canal9-db.sspnet.eu/
5. Publicly available at http://www.pitt.edu/∼jeffcohn/PainArchive/

elicited pain in a total of 200 video sequences. The database
was coded for, among others, pain level per sequence by expert
observers on a 6–point scale from 0 (no pain) to 5 (extreme
pain). Furthermore, each of the 48,398 video frames in the
database was coded for each of the observable facial muscle
movements–Action Units (AUs) according to the Facial Action
Coding System (FACS) [25] by expert FACS coders. In our
experiments we encoded each of the possible 45 AUs in a
binary manner, based on their presence. We labeled sequences
coded with 0 as ‘no pain’, sequences coded with 1–2 as
‘moderate pain’, and those coded as 3–5 as ‘strong pain’.
For our experiments, we compared the finite HCRFs and the
IHCRF–MCMC to our HCRF–DPM based on the F1 measure
they achieved. We evaluated the performance of the models on
25 different folds (leave–7–subjects–out for testing). In each
case we concatenated the predictions for every test sequence
of each fold and calculated the F1 measure for each label.
The measure we used was the average F1 over all labels.
We ran both HCRF and HCRF-DPM experiments with 10
random initializations, selecting the best model each time by
examining the F1 achieved on a validation set consisting of
the sequences from 7 subjects. In every fold our training,
validation and testing sets comprised not only of unique
sequences but also of unique subjects.

For all four tasks, in addition to the random initializations
the best HCRF model was also selected by experimenting
with different number of hidden states and different values
for the HCRF L2 regularization coefficient. Specifically, for
each random initialization we considered models with 2, 3,
4, and 5 hidden states and an L2 coefficient of 1, 10, and
100. This set of values for the hidden states was selected
after preliminary results deemed a larger number of hidden
states only resulted in severe overfitting for all problems. We
did not use regularization for our HCRF-DPM models and
all of them had their truncation level set to L = 10 and
their hyperparameters to s1 = 1000 and s2 = 10. Finally,
our finite HCRF models were trained with a maximum of 300
iterations for the gradient ascent method used [1], whereas our
HCRF-DPM models were trained with a maximum of 1200
variational coordinate descent iterations and a maximum of
600 iterations of gradient ascent. All IHCRF–MCMC models
were trained according to the experimental protocol of [11].
They had their initial number of represented hidden states set
to K = 10, they were trained with 100 sampling iterations,
and were tested by considering 100 samples.

In an attempt to clearly show how a variational HCRF-
DPM functions differently from a finite HCRF, we compared
the learned potentials of an HCRF with 50 hidden states for
the 2–label (dis)agreement recognition problem to the learned
equivalent potentials of an HCRF–DPM with an upper bound
of hidden states set to L = 50. An HCRF uses all 50 states
roughly equally, whereas the learned potentials for HCRF–
DPM are a lot more sparse with only a few number of hidden
states used, due to the nonparametric prior on the π-quantities
(see relevant figure in the supplementary material provided
with this paper).

In figures 3 we show the learned nonparametric π parts
of the features of the best HCRF–DPM ADA2 model, based
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Fig. 4: HCRF–DPM F1 measure (higher F1 means higher
perfomance) achieved on the validation set of ADA2. Our
model does not show signs of overfitting: the F1 achieved
on the validation set does not decrease as the truncation level
L, and thus the number of θ–parameters, increases.

on F1 achieved on our validation set, for L = 10, 20, 30
and 40. Each row is a separate DPM, with the DPMs for
the edge potentials spanning across labels. Recall from figure
2 that these quantities have to sum to 1 across each row.
As one can see in these figures, paying particular attention
to the first column (node features), the number of hidden
states essentially utilized seems to be less than 10 in all
cases. Figure 5 visualizes the learned nonparametric quantities
of our HCRF–DPM features for PAIN2 with L = 10. As
one can clearly see, the model uses only a small number of
shared hidden states. An increase to L increases the number of
quantities we need to estimate, and we also need to increase
our number of random initializations to find a suitable one for
our model. L = 10 therefore seems to be a reasonable value
that allows the proper balance between computation time and
accuracy.

Since we have introduced parameters θ it is sensible to test
our methodology for signs of overfitting. The only value linked
with the number of our parameters is our truncation level L:
their number increases as we increase L. In figure 4 we show
the F1 measure achieved on the validation set of ADA2 for
HCRF–DPMs with L=10, 20, 30, 40. This graph is a strong
indication that HCRF–DPMs do not show signs of overfitting.
We would see such signs if by increasing L the performance
(F1 measure) for our validation set would decrease. However,
as we see here, performance on the validation set remains
roughly the same as we increase L.

Table 4 shows the average over all labels of the F1 measure
on the test sets for all four of our problems. Since the
nonparametric model structure is not specified a priori but is
instead determined from our data, the HCRF–DPM model is
more flexible than the finite HCRF and is able to achieve better
performance in all cases with the exception of the 3–label clas-
sification problem of agreement/disagreement (ADA3), where
the HCRF–DPM seems to perform almost equally well with
the finite model. The HCRF–DPM performed better than the
IHCRF–MCMC in all problems with the exception of ADA3.
An analysis of an IHCRF–MCMC model trained for ADA3
shows that the model ignored the two continuous dimensions
and used only the binary features to model the dataset, which
evidently resulted in slightly better performance.

5 CONCLUSION

In this paper we have presented a variational approach to learn-
ing an infinite Hidden Conditional Random Field, the HCRF–
DPM, a discriminative sequential model with a countably
infinite number of hidden states. This deterministic approach
overcomes the limitations of sampling techniques, like the one
presented in [11]. We have also shown that our model is in
fact a generalization of the one presented in [11] and is able
to handle sequence classification problems with continuous
features naturally. In support of the latter claim, we conducted
an experiment with a Gaussian HMM–generated synthetic
dataset of continuous–only features which showed that HCRF–
DPMs are able to perform well on classification problems
where the IHCRF–MCMC fails. Furthermore, we conducted
experiments with four challenging tasks of classification of
naturalistic human behavior. HCRF–DPMs were able to find
a good number of shared hidden states, and to perform well
in all problems, without showing signs of overfitting.
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