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Abstract—We propose a method for head-pose invariant facial expression recognition that is based on a set of characteristic facial

points. To achieve head-pose invariance, we propose the Coupled Scaled Gaussian Process Regression (CSGPR) model for head-

pose normalization. In this model, we first learn independently the mappings between the facial points in each pair of (discrete)

nonfrontal poses and the frontal pose, and then perform their coupling in order to capture dependences between them. During

inference, the outputs of the coupled functions from different poses are combined using a gating function, devised based on the head-

pose estimation for the query points. The proposed model outperforms state-of-the-art regression-based approaches to head-pose

normalization, 2D and 3D Point Distribution Models (PDMs), and Active Appearance Models (AAMs), especially in cases of unknown

poses and imbalanced training data. To the best of our knowledge, the proposed method is the first one that is able to deal with

expressive faces in the range from �45� to þ45� pan rotation and �30� to þ30� tilt rotation, and with continuous changes in head pose,

despite the fact that training was conducted on a small set of discrete poses. We evaluate the proposed method on synthetic and real

images depicting acted and spontaneously displayed facial expressions.

Index Terms—Multiview/pose-invariant facial expression/emotion recognition, head-pose estimation, Gaussian process regression

Ç

1 INTRODUCTION

FACIAL expression recognition has attracted significant
attention because of its various applications in psychol-

ogy, medicine, security, and computing (human-computer
interaction, interactive games, computer-based learning,
entertainment, etc.) [1], [2]. Most of the existing methods
deal with images (or image sequences) in which people
depicted are relatively still and exhibit posed expressions in a
nearly frontal view [3]. However, many real-world applica-
tions relate to spontaneous human-to-human interactions
(e.g., meeting summarization, political debates analysis, etc.)
where the assumption of having immovable subjects is
unrealistic. This calls for a joint analysis of head-pose and
facial expressions. Nonetheless, this remains a significant
research challenge, mainly due to the large variation in
appearance of facial expressions in different poses and
difficulty in decoupling these two sources of variation.

Achieving accurate decoupling of rigid head motions
from nonrigid facial motions so that the latter can be
analyzed independently is the crux of any method for pose-
invariant facial expression recognition. Previous research on
pose-invariant facial expression recognition has addressed
this problem either by assuming that rigid motions are
independent of nonrigid facial motions (and therefore can be

estimated sequentially and separately) (e.g., [4], [5]), or by
simultaneously recovering these two sources of variation
(e.g., [6], [7], [8]). Furthermore, the existing methods can be
divided into face-shape-free methods (e.g., [9], [10], [11]) and
face-shape-based methods (e.g., [12], [7], [13]). Face-shape-
free methods achieve head-pose-invariance by using pose-
invariant expression-related facial features extracted from
2D images, or by training the facial expression recognition
method pose-wise. However, finding expression-related
facial features independent of head pose is by no means an
easy task because the changes in head-pose and facial
expressions are nonlinearly coupled in 2D [7]. On the other
hand, pose-wise facial expression recognition requires a
large amount of training data in terms of different expres-
sions and poses, which are often not readily available. In
addition, the performance of the latter approach is expected
to diminish when tested on facial images with continuous
change in head pose. Face-shape-based methods rely on 2D/
3D face-shape models that are used to decouple image
variations caused by changes in facial expressions and head
pose. However, since these methods are highly dependent
on how well the shape models are aligned with the image
data, which is not straightforward, the problem of facial
expression recognition is inevitably compounded by the
accuracy of the alignment [13].

In this work, we propose a probabilistic approach to
head-pose-invariant facial expression recognition that is
based on 2D geometric features, i.e., the locations of
39 characteristic facial points (see Fig. 1), extracted from
an image depicting a facial expression of a subject with an
arbitrary head pose. The output of the proposed method is
the classified image, where the classification is performed in
terms of six basic emotions (joy, anger, fear, disgust,
surprise, and sadness) and neutral, proposed by Ekman
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and Friesen [14]. The outline of the proposed method is
given in Fig. 1, and it contains the following three steps:
1) head-pose estimation, 2) head-pose normalization, and
3) facial expression classification.

To perform the head-pose estimation, we first project the
input facial points onto a low-dimensional manifold ob-
tained by multiclass Linear Discriminant Analysis (LDA)
[15]. We then use a Gaussian Mixture Model (GMM) [15],
trained on the manifold data, to estimate the likelihood of the
input being in a certain pose. In the second step, we perform
the head-pose normalization. This is achieved by learning
the mappings between a discrete set of nonfrontal poses and
the frontal pose by means of the proposed Coupled Scaled
Gaussian Process Regression (CSGPR) model. This model is
built upon the Scaled Gaussian Process Regression (SGPR)
model, used for learning the base mappings (with multiple
outputs) between target pairs of poses (i.e., nonfrontal poses
and the frontal pose). We propose the SGPR model for this
task since it provides not only point predictions but also their
uncertainty. The latter is explored in the CSGPR model to
induce correlations between the base mappings, which are
quantified in a form of a prior over the predictions of the base
mappings and then incorporated into the base model, giving
rise to a more robust regression model for head-pose
normalization. To enable accurate head-pose normalization
for continuous change in head pose (i.e., for poses that do not
belong to the discrete set of poses), we devise a gating
function that combines the point predictions made by the
CSGPR models trained in discrete poses, and which is based
on the head-pose estimation attained in the first step of the
proposed approach. In the final step, we perform facial
expression recognition by applying a multiclass Support
Vector Machine classifier to the pose-normalized facial
points.

The contribution of this work can be summarized as
follows:

1. We propose a novel approach to head-pose-invariant
facial expression recognition that can deal with
expressive faces with head poses within the range
from �45� to þ45� pan rotation and �30� to þ30� tilt
rotation. The proposed approach performs accurately
for continuous change in head pose, despite the fact
that the training is conducted only on a small set of
discrete poses.

2. We propose a novel probabilistic regression model
for head-pose normalization, called Coupled Scaled

Gaussian Process Regression. During inference, the
CSGPR model selectively employs knowledge avail-
able in different poses, which results in a more
accurate head-pose normalization than that achieved
by the base mappings learned using state-of-the-art
regression models and that achieved by the baseline
methods such as 2D/3D Point Distribution Models
(PDMs) and Active Appearance Models (AAMs).

3. The proposed approach to head-pose-invariant
facial expression recognition can perform recogni-
tion of facial expression categories that were not
present in certain nonfrontal poses during training.
The existing head-pose-invariant facial expression
recognition methods are trained pose-wise and
therefore cannot deal with this scenario.

The rest of the paper is organized as follows: Section 2
gives an overview of the related work. Section 3 describes
the proposed method for head-pose-invariant facial expres-
sion recognition. Section 4 describes the proposed CSGPR
model for head-pose normalization. Section 5 presents the
experimental results. Section 6 concludes the paper.

2 HEAD-POSE-INVARIANT FACIAL EXPRESSION

RECOGNITION: RELATED WORK

Recent advances toward automatic head-pose-invariant
facial expression recognition can be classified into face-
shape-based approaches and face-shape-free approaches.
Face-shape-based approaches use either 2D or 3D face-shape
models to decouple rigid movements due to the change in
head pose and nonrigid movements due to the changes in
facial expressions. The methods proposed in [16], [17], and
[18], for example, use 3D facial geometry deformation to
recognize facial expressions in 3D images. These methods
require high-quality capture of the facial texture and 3D
geometrical data, and thus are not vastly applicable due to
extensive and complex hardware requirements.

The methods in [5] and [19], for example, have an
assumption that the 3D head pose is independent of the
nonrigid facial movements. They use DBNs to model the
unfolding of head-pose and nonrigid facial motions
separately. Specifically, these methods first apply facial
feature tracking and then estimate the 3D pose from the
tracked facial points. The facial expression recognition is
performed using pose-normalized facial features. The

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 1. The overview of the proposed approach. p� are the 2D locations of the facial points extracted from the input face image, P ðkijpLDA� Þ is the
likelihood of p� being in pose ki, where k0 is the frontal pose. The bidirectional lines in the pose normalization step connect the coupled poses, while
the directed lines connect the poses for which the base SGPR models are learned. p̂0

� is the prediction in the frontal pose for the query point p�,
obtained as a combination of the predictions obtained by the CSGPR models. The gating function is derived from the pose likelihoods P ðkijpLDA� Þ.
Facial expression recognition is performed by applying a multiclass Support Vector Machine (SVM) classifier in the frontal pose to p̂0

�.



methods proposed in [20], [7], [13], and [8] try to decouple
rigid head motions and nonrigid facial muscular motions
simultaneously, by using 3D face models. For example,
Kumano et al. [13] used a rigid 3D face-shape-model to
extract person-specific facial descriptors from the face-
shape model, which are then used in a particle filter
framework to simultaneously estimate the head-pose and
facial expressions. Several authors proposed Active Ap-
pearance Models for head-pose-invariant facial expression
recognition (e.g., [21], [22], [23]). For example, Dornaika and
Orozco [23] proposed an online AAM built upon a
hierarchy of three AAMs (for eyebrows, lips, and eyelids
and irises), which are used to estimate the 3D head pose
and locations of characteristic facial points.

Although the methods mentioned above can be used to
decouple the rigid and nonrigid facial motions, they require
accurate alignment of the face-shape with the image data,
which is challenging under varying facial expressions. Also,
large out-of-plane head rotations, accounting for highly
nonlinear changes in the appearance of an expression, are
difficult to handle [13]. All these factors can diminish the
performance of the facial expression recognition methods [8].
Some of the methods mentioned above, such as those based
on AAMs, have to be trained per person/facial expression/
head pose separately, which makes them difficult to apply in
real-world scenarios where unknown subjects/facial expres-
sions are expected. Person-independent AAMs are unable to
deal with large variations in facial shapes and expressions,
especially in the case of naturalistic data where variations in
pose, facial morphology, and expression are large [24].

In contrast to increasing interest in head-pose-invariant
facial expression recognition based on the 2D/3D face-
shape models, head-pose-invariant facial expression recog-
nition based on 2D face-shape-free models have seldom
been investigated. Most of the proposed 2D face-shape-free
head-pose-invariant methods address the problem of (ex-
pressionless) face recognition but not the problem of facial
expression recognition (e.g., [25]). To date, only a few works
have analyzed 2D-face-shape-free pose-invariant facial
expression recognition [9], [26], [27], [28], [10], [29]. These
approaches can be further divided into geometric- and
appearance-feature-based approaches. Geometric-feature-
based approaches rely on facial features such as shape of
the face components and/or locations of the facial salient
points (e.g., corners of the mouth). Appearance-feature-
based approaches rely on skin texture changes such as
wrinkles, bulges, and furrows. Both approaches have
advantages and disadvantages. Geometric facial features
cannot be used to describe textural changes like bulges and
furrows. Appearance-based methods, though, are sensitive
to changes in illumination and individual differences.

A typical appearance-based method is that by Zheng
et al. [10]. The authors divide a facial image into subregions,
and then extract SIFT descriptors from each subregion in the
image, which are used as the input to the facial expression
classifier based on k-Nearest Neighbors (k-NN). Moore and
Bowden [9] applied a two step approach to pose-invariant
facial expression recognition: head-pose classification, and
pose-wise facial expression recognition based on Local
Binary Patterns (LBPs) used as texture descriptors. Zheng
et al. [28] proposed a hybrid approach that combines an
appearance- and geometric-feature-based approach. Speci-
fically, they used sparse SIFT features, extracted around

83 facial points, as the input to the k-NN facial expression
classifier. Apart from our previous work in [29], the only
work based solely on geometric features is that proposed by
Hu et al. [27], who investigated facial expression recognition
in nonfrontal poses based on locations of 83 facial points.
This work is based on a set of facial images with five yaw
angles generated using the BU-3DFE dataset [18]. A short-
coming of this method and most of the aforementioned
methods is that they perform pose-wise facial expression
recognition. Consequently, the performance of these meth-
ods is expected to diminish when tested on data in the poses
not used to train the classifiers (i.e., nondiscrete poses) [13].
Furthermore, these methods require a large amount of
(annotated) facial data per pose in order to train the
classifiers. More importantly, they cannot perform recogni-
tion of facial expressions that were not available in certain
poses during training (in other words, they cannot deal with
novel facial expression categories). Our work aims at
addressing these limitations of the existing methods by
means of the Gaussian process regression framework.

3 HEAD-POSE-INVARIANT FACIAL EXPRESSION

RECOGNITION

In this section, we describe the proposed approach to head-
pose-invariant facial expression recognition. We use the
locations of 39 characteristic facial points as the input,
although a different number of the points can be used
instead. The locations of the facial points can be extracted
either manually or automatically. To date, several different
methods for automatic facial point localization have been
proposed (e.g., [30]). In this work, automatic localization of
the facial points is achieved using the online AAM proposed
in [23]. The pose-invariant facial expression recognition is
then performed in three steps: 1) head-pose estimation,
2) head-pose normalization, and 3) facial expression classi-
fication in the frontal pose. These steps are described in the
following sections and are summarized in Algorithm 1.

Algorithm 1. Head-pose-invariant Facial Expression

Recognition
Input: Positions of facial landmarks in an unknown pose

(p�)

Output: Facial expression label (l)

1. Apply the head-pose estimation (Section 3.1) to obtain

P ðkjplda� Þ, k ¼ 0; . . . ; P � 1.

2. Register p� to poses k 2 K which satisfy P ðkjplda� Þ > Pmin
(Section 3.2), and predict the locations of the facial

landmarks points in the frontal pose (Section 4) as

p̂0
� ¼ 1P

k2K P ðkjp
lda
� Þ
P

k2K P ðkjplda� Þf
ðkÞ
C ðpk�Þ.

3. Facial expression classification in the frontal pose

(Section 3.3)

l arg maxzð
P

i:p0
i2Tz

�ziKðp0
i ; p̂

0
�Þ þ bzÞ.

In what follows, we first divide the head-pose space into
P ¼ 35 evenly distributed discrete poses ranging from �45�

to þ45� pan rotation and �30� to þ30� tilt rotation, with an
increment of 15�. The locations of d facial points extracted
from an expressive face in pose k, where k ¼ 0; . . . ; P � 1,
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are stored in a vector pk 2 R2d. The training dataset is then
denoted by D ¼ fD0; . . . ; Dk; . . . ; DP�1g, where Dk ¼
fpk1; . . . ; pkNg is comprised of N training examples in a
nonfrontal pose k, with D0 containing the corresponding
training data in the frontal pose.

3.1 Head-Pose Estimation

Different methods for head-pose estimation based on
appearance and/or geometric features have been proposed
(see [31] for an overview). In this work, we devise a simple
but efficient method for head-pose estimation that is based
on multiclass LDA [15]. To this end, we first align the facial
points in each discrete pose by using generalized Procrustes
analysis to remove the effects of scaling and translation.
Then, we learn a low-dimensional manifold of head poses
by means of multiclass LDA [15] using the aligned training
data in each discrete pose and the corresponding head-pose
labels. This manifold encodes head-pose variations while
ignoring other sources of variations such as facial expres-
sions and intersubject variation. We denote the vector of the
input facial points projected onto this manifold as plda. The
distribution of such vectors having the same head pose is
modeled using a single Gaussian. Consequently, the like-
lihood of a test input p�lda being in pose k is then given by
P ðp�ldajkÞ ¼ N ðp�ldaj�k;�kÞ, where �k and �k are the mean
and covariance of the training data in pose k after being
projected onto the pose manifold. By applying Bayes’ rule,
we obtain P ðkjpldaÞ / P ðpldajkÞP ðkÞ, where a uniform prior
over the poses is used.

3.2 Head Pose Normalization

The head-pose normalization is attained by mapping the
locations of the facial points from an arbitrary head pose to
the locations of the corresponding facial points in the frontal
pose. To this end, we apply the proposed CSGPR model,
which is explained in detail in Section 4.

3.3 Facial Expression Classification in Frontal Pose

The final step in the proposed approach is the facial
expression classification applied to the pose-normalized
facial points. To this end, different classification methods
can be employed (e.g., see [3], [32]). We adopt the multiclass
SVM classifier [33], with the one-versus-all approach, since
this classifier has commonly been used in the facial
expression recognition tasks (see [9]). Briefly, the SVM
classifier takes the locations of the facial points in the frontal
pose p̂0

� as the input and constructs a separating hyperplane
that maximizes the margin between the positive and
negative training examples for each class. Formally, the
labels l for each expression class take 0=1 value, and are
obtained as

l ¼ arg max
z

X
i:p0

i2Tz

�ziKðp0
i ; p̂

0
�Þ þ bz

0
@

1
A; z ¼ 1; . . . ; Z; ð1Þ

where �zi and bz are the weight and bias parameters,
Kðp0

i ; p̂
0
�Þ is a vector of the inner products between the

training points p0
i 2 D0 and the predicted points p̂0

�. The set
denoted by Tz contains training examples of the zth facial
expression class.

3.4 Head-Pose-Invariant Facial Expression
Recognition: Algorithm Summary

Algorithm 1 summarizes the proposed approach. Given a

query point (p�), we first compute the likelihood of its being

in a nonfrontal pose k (P ðkjplda� Þ), where k ¼ 1; . . . ; P � 1.

The facial points in the frontal pose (p̂0
�) are then obtained as

a weighted combination of the predictions of the coupled

functions f
ðkÞ
C ðp�Þ from nonfrontal poses. Note that before

f
ðkÞ
C ð�Þ is applied to the points p�, these points are first

registered to a reference face in the pose k, which is a

standard preprocessing step. This registration is performed

by applying an affine transformation learned using three

referential points: the nasal spine point and the inner corners

of the eyes. These are chosen since they are stable facial

points, and are not affected by facial expressions [32]. The

facial expression classification is then performed by apply-

ing the multiclass SVM classifier to the pose-normalized

facial points. Finally, note that the inference time for p� can

be significantly reduced by considering only the most likely

poses, i.e., P ðkjplda� Þ > Pmin, where Pmin is chosen so that

only the predictions from the poses being in the vicinity of

the test input p� are considered.

4 COUPLED SCALED GAUSSIAN PROCESS

REGRESSION

In this section, we describe the proposed CSGPR model for
head-pose normalization. For this, we first learn a set of base
functions ff ð1Þð�Þ; . . . ; f ðkÞð�Þ; . . . ; f ðP�1Þð�Þg for mapping the
facial points from nonfrontal poses to the corresponding
points in the frontal pose. An ensemble of coupled function

ff ð1ÞC ð�Þ; . . . ; f
ðkÞ
C ð�Þ; . . . ; f

ðP�1Þ
C ð�Þg is then inferred by model-

ing the correlations between the base functions. In this way,
we perform knowledge transfer across the poses. This is
important when different training data, in terms of variety in
facial expressions, are available in different poses because it
may improve the performance of the base mappings learned

per pose and independently from other poses.

4.1 Scaled Gaussian Process Regression

To learn the base mapping functions f ðkÞð�Þ, we propose
Scaled GPR. This model is based on the Scaled Gaussian
Process Latent Variable Model (SGPLVM) proposed in [34].
However, SGPLVM is designed for dimension reduction, a
different problem from supervised learning we consider

here. In contrast to standard GPR [35], which deals with a
single output only (i.e., each coordinate of each facial point),
SGPR is specifically designed for simultaneous prediction
of multiple outputs (i.e., all coordinates of all facial points).

Formally, given a collection of Nk training pairs of the
facial points in a nonfrontal pose k and the corresponding

points in the frontal pose, fDk;D0g, where each element pki
and p0

i (i ¼ 1; . . . ; Nk) in Dk and D0 is a 2d-dimensional
vector (d is the number of the facial points), the goal is to
learn the mapping

p0 ¼ f ðkÞðpkÞ þ 11�ð2dÞ"i; ð2Þ

where "i � Nð0; �2
nÞ and �2

n is the noise variance.
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For standard GPR with a single output dimension m, the
likelihood of the output given the inputs is

pðfp0
i;mgjfpki;mg; �Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞNk Kj j

q exp � 1

2
Dk
mK

�1
�
Dk
m

�T� �
:

ð3Þ

SGPR introduces a scaling parameter wm for each output
dimension m, which is equivalent to defining a separate
kernel function kðxi; xjÞ=w2

m for each output [34]. Plugging
this into the GPR likelihood for m ¼ 1; . . . ; 2d, the complete
joint likelihood of the SGPR model is

pðfp0
i gjfpki g; �;WÞ

¼
Y
m

w2
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�ÞNk Kj j
q exp � 1

2
w2
mD

k
mK

�1
�
Dk
m

�T� �
; ð4Þ

where � ¼ f�s; S; �l; �b; �ng are the kernel parameters and
W ¼ fw1; . . . ; w2dg. The covariance matrix K has the entries

kðpki ; pkj Þ ¼ �2
s exp � 1

2
ðpki � pkj Þ

TS�1ðpki � pkj Þ
� �

þ �lpki pkj þ �b; i; j ¼ 1; . . . ; Nk;

ð5Þ

where �2
s is the variance and S ¼ diagðs2

1; . . . ; s2
2dÞ are the

length-scales of each input dimension (i.e., each coordinate
of each landmark point) of the RBF kernel, �l is the scale of
the linear kernel, and �b is the model bias. We adopt this
composite kernel because it can handle both linear and
nonlinear data structures [35].

The model parameters � and W are found by minimizing
the negative log-likelihood

� ln pðDk; �;W jD0Þ ¼ d ln Kj j

þ 1

2

X2d
m¼1

w2
m

�
D0
m

�T ðK þ �2
nIÞ
�1D0

m þ const:
ð6Þ

This likelihood function is first minimized w.r.t. � using

Scaled Conjugate Gradient algorithm [35]. The scale

parameters W are then computed in the closed form as

wm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d=ððD0

mÞ
TK�1D0

mÞ
q

. These two steps are repeated

until convergence of the likelihood function.
During inference in SGPR, the mean f ðkÞðpk�Þ and

variance V ðkÞðpk�Þ of the predictive distribution for the query
point pk� are obtained as

f ðkÞðpk�Þ ¼ kT� ðK þ �2
nIÞ
�1D0; ð7Þ

V ðkÞ
�
pk�
�
¼ ðk

�
pk�; p

k
�
�
� kT� ðK þ �2

nIÞ
�1k�Þ diagðWÞ�2; ð8Þ

where k� ¼ kðDk; pk�Þ. The mean f ðkÞðpk�Þ provides point
predictions of the facial points in the frontal pose, and
V ðkÞðpk�Þ their uncertainty .

4.2 Learning Coupled Functions

So far, we have used SGPR to learn a set of the base
functions that map the facial points from nonfrontal poses
to the frontal pose. However, since these functions are
learned separately, there is no sharing of knowledge among
poses. This sharing may be valuable when different training

data are available across the poses. We accomplish this
sharing by learning a set of coupled functions which take
into account the correlations between the base mappings.
This is illustrated by an example of coupling a function
fðk2Þð�Þ, the base function for pose k2, to a function f ðk1Þð�Þ,
the base function for pose k1. We adopt a parametric
approach to learning the correlations between the mapping
functions, which are induced through a prior distribution
defined as

P ðf ðk1Þ; f ðk2Þjk1Þ / exp � 1

2�2
ðk1;k2Þ

ðfðk1Þ
�
pk1
�
�
� f ðk2Þ

�
pk1
� Þ
� !
;

ð9Þ

where �2
ðk1;k2Þ is the variance of coupling that is estimated

from training data Dk1 and Dk2 . Intuitively, it measures the
similarity of the predictions made by the function fðk2Þð�Þ
and predictions made by the function f ðk1Þð�Þ, when they are
evaluated on the training data in pose k1. It can also be seen
as an independent noise component in the predictions
obtained by f ðk2Þð�Þ, which is learned using training data in
pose k2, when evaluated on training data in pose k1.
Because we assume that this noise is Gaussian and
independent of the noise already modeled in f ðk2Þð�Þ, these
two sources of randomness simply add [35]. Consequently,
by including the coupling variance �2

ðk1;k2Þ into predictive
distribution of f ðk2Þð�Þ, we obtain the following expressions
for the mean and variance of the predictive distribution of
the coupled function f ðk1;k2Þð�Þ as

f ðk1;k2Þðpk1
� Þ ¼ kTk2�ðKk2

þ
�
�2
nk2
þ �2

ðk1;k2Þ
�
IÞ�1D0; ð10Þ

V ðk1;k2Þðpk1
� Þ ¼ ðkk2

�
pk1
� ; p

k1
�
�

� kTk2�ðKk2
þ
�
�2
nk2
þ �2

ðk1;k2Þ
�
IÞ�1kk2�Þ diagðWk2

Þ�2;
ð11Þ

where the subindex k2 refers to the model parameters of the
base function for pose k2, and kk2� ¼ kðDk2 ; pk1

� Þ. Here, the
sharing of knowledge between the poses k1 and k2 is
achieved through the coupled function f ðk1;k2Þð�Þ, which uses
training data from pose k2 when making predictions from
pose k1. Note also from (11) that the less fk2ð�Þ is coupled to
fk1ð�Þ, which is measured by the coupling variance �2

ðk1;k2Þ,
the higher the uncertainty in the outputs obtained by the
coupled function f ðk1;k2Þ. In other words, if the functions are
perfectly coupled (i.e., �2

ðk1;k2Þ ! 0), then f ðk1;k2Þð�Þ ! f ðk2Þð�Þ.
Conversely, if they are very different (i.e., �2

k1;k2
!1), then

fðk1;k2Þð�Þ converges to a GP prior with the zero mean and
constant variance. Last, the variance in (11) is guaranteed to
be positive definite since we add a positive term (i.e., the
coupling variance) to its diagonal.

4.3 CSGPR: Model

In the previous section, we introduced the concept of the
coupled functions. In this section, we explain how the
outputs of the base and coupled functions are combined,
resulting in the Coupled SGPR model for head-pose
normalization. Let us consider the base function fðk2Þð�Þ
and the coupled function f ðk1;k2Þð�Þ. During inference, these
two functions give their own predictions of the facial points
in the frontal pose. We now combine them in order to
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obtain a single prediction. A straightforward approach is to
apply either Density-Based (DB) weighting, using the pose
estimation explained in Algorithm 1, or the Variance-Based
(VB) weighting, where the weights are set to inversely
proportional values of the uncertainty in GP predictions. In
this work, we employ the Covariance Intersection (CI) [36]
rule for combining predictions, which is the optimal fusion
rule when correlation between the prediction errors of two
estimators are unknown [37]. For predictions obtained by
the base and coupled functions, this fusion rule yields the
mean and the variance of the CSGPR model, given by

f
ðk1Þ
C ðp�Þ ¼ V

k1

C ðp�Þð!V ðk1Þðp�Þ�1f ðk1Þðp�Þ
þ ð1� !ÞV ðk1;k2Þðp�Þ�1fðk1;k2Þðp�ÞÞ;

ð12Þ

V
ðk1Þ
C ðp�Þ

�1
¼ !V ðk1Þðp�Þ�1 þ ð1� !ÞV ðk1;k2Þðp�Þ�1: ð13Þ

The optimal ! 2 ½0; 1� is found during inference by mini-
mizing the trace of V

ðk1Þ
C ðp�Þ, used as the uncertainty

criterion, w.r.t. ! (see [36] for details).

4.4 Pruning Scheme

Making inference with all coupled functions, i.e., P ðP�1Þ
2

coupled functions, would be computationally intensive.
Also, not all the coupled functions contribute to improving
the predictions obtained by the base functions. For this, we
propose a pruning criterion based on the number of
Effective Degrees of Freedom (EDoF) [38] of a GP to select
the coupled functions that will be used during inference.
EDoF of a GP measures how many degrees of freedom are
used by the given data, and can be a good indicator of the
variability in the training dataset (in terms of facial
expressions). Hence, in our pruning scheme we keep only
the coupled functions that have a similar or larger number
of EDoF than that of the base functions they are coupled to.
In this way, we significantly reduce the computational load
of the CSGPR model during inference. We define the
number of EDoF of a coupled function fðk1;k2Þð�Þ as

C
ðk1;k2Þ
eff ¼

XNk2

i¼1

�ik2

�ik2
þ �2

nk2
þ �2

ðk1;k2Þ
; ð14Þ

where �ik2
are the eigenvalues of the covariance matrix Kk2

and Nk2
is the number of training data used to learn the base

function fk2ð�Þ. The number of EDoF is approximately equal
to the number of eigenvalues of the kernel matrix Kk2

that
are greater than the noise variance. Thus, if �2

ðk1;k2Þ is high,
then C

ðk1;k2Þ
eff ! 0, and the predictions made by the coupled

function fðk1;k2Þð�Þ can be ignored. The coupled functions
used for inference are selected based on the ratio:
C
ðk1;k2Þ
eff =C

ðk1Þ
eff , where its minimum value (Cmin) is set using

a cross-validation procedure, as explained in the experi-
ments. The number of EDoF of the base functions is
computed using (14) without the coupling variance term.
Note that the coupling variance could also be used as a
criterion for pruning. However, the proposed measure is
more general since it also tells us how much we can “rely”
on the coupled function in the presence of novel data
(e.g., novel facial expression categories)—something that is
not encoded by the coupling variance. Finally, learning and
inference in CSGPR are summarized in Algorithm 2.

Algorithm 2. Learning and inference with CSGPR
OFFLINE: Learn the base SGPR models and coupling

variances

1. Learn P � 1 base SGPR models ffð1Þð�Þ; . . . ; f ðP�1Þð�Þg for

target pairs of poses (Section 4.1).

2. Perform coupling of the base SGPR models learned in

Step 1

for k1 ¼ 1 to P� 1 do

for k2 ¼ 1 to P� 1 and k1 6¼ k2 do

predict �ðk1;k2Þ (Section 4.2)

if C
ðk1;k2Þ
eff =C

ðk1;k1Þ
eff > Cmin then

�k1

C ¼ ½�
k1

C ; �ðk1;k2Þ�
end if

end for

store �k1

C

end for

ONLINE: Infer the facial points in the frontal pose from the

facial points pk1
� in pose k1

Bk1
: number of the base functions coupled to fðk1Þ

1. Evaluate the base function for pose k1 (Section 4.1):

Prð0Þ ¼ ffðk1Þðpk1
� Þ; V ðk1Þðpk1

� Þg.
2. Combine the functions coupled to pose k1 (Section 4.2)

for i ¼ 1 to Bk1
do

�ðk1;iÞ ¼ �
k1

C ðiÞ , Prði�Þ ¼ ff ðk1;iÞðpk1
� Þ; V ðk1;iÞðpk1

� Þg
PrðiþÞ ¼ CIðPrði� 1Þ; Prði�ÞÞ (Section 4.3)

end for

ffðk1Þ
C ðpk1

� Þ; V
ðk1Þ
C ðpk1

� Þg ¼ PrðiÞ.

4.5 Multi-Output GPR: Related Work

In this section, we give a brief overview of GPR models that
can also be used to learn the base mappings. Standard GPR
deals with a single output and cannot be used to jointly map
the locations of the facial points from nonfrontal poses to
the frontal pose. Modeling of each coordinate of each facial
point independently is possible, but the learned mappings
will be suboptimal because the interactions between the
points are ignored.

Recent research on GPR has focused on learning the
interactions between the output dimensions, e.g., [39], [40],
[41], [42], [43]. Boyle and Frean [39] induce correlations
between two outputs by deriving the output processes as
different convolutions of the same underlying white noise
process. A generalization to more than two outputs has
been proposed by Alvarez and Lawrence [42]. Yu et al. [40]
proposed to share models among the outputs by learning
separate GPs for each output, but assuming that their
parameters are drawn from the same prior. Bonilla et al.
[41] proposed a model that learns a shared covariance
function on input-dependent features and a “free-form”
covariance matrix over outputs. A different approach to
modeling multiple outputs is proposed by Bo and
Sminchisescu [43], where a GP prior is placed over the
outputs, and the inference is carried out by minimizing the
Kullback-Leibler (KL) divergence between the input and
the output GPs, modeled as normal distributions over
training and testing examples. These models have been
empirically shown to outperform the GPR models trained
independently for each output. However, this holds only if
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the sharing of knowledge among the outputs exists, i.e.,
when the outputs are correlated and some of them are
endowed with more training data than the others; other-
wise, there could be no benefit in using these models [41].

In the proposed SGPR for learning the base functions
with multiple outputs, the correlations among different
outputs are induced through the shared covariance function
and scaling parameters defined for each output. Note that
modeling the couplings between the base functions with
multiple outputs, which are learned per different pairs of
poses, is different from modeling dependences within the
outputs (i.e., facial points) of a single function with multiple
outputs, learned per pose. The latter task can be attained by
the models in [39], [42], [40], [42] and the SGPR model, in
which covariance can be seen as a scaled (per output)
covariance of the model in [40], and a block-diagonal
counterpart of the full covariance used in [41]. Nevertheless,
the inference time of the SGPR model is equal to that of the
GPR model with a single output, i.e., OðN2Þ, where N is the
number of training examples. This is considerably lower
compared to the inference time of most of the GPR models
mentioned above for multiple outputs (which scales as
OðMN2Þ, where M is the number of outputs)—especially
when M is large, as in our case M ¼ 78. More importantly,
these models are not directly applicable to the task of
modeling dependencies between the base functions with
multiple outputs learned per pose since they assume the
same input features for predicting a multidimensional
output. In other words, these methods use the same
covariance function for all outputs, which makes them
unfit for the target task. Finally, the Bayesian Co-training
[44] framework for GP multiview learning has recently been
proposed. However, this framework is not directly suited
for the target task since it cannot deal with problems where
the evidence from different views should be additive (or
enhanced), as in our case, rather than averaging [44].

5 EXPERIMENTS

5.1 Datasets and Experimental Procedure

To evaluate the proposed method, we used facial images
from three publicly available datasets: the BU-3D Facial
Expression (BU3DFE) [18] dataset, the CMU Pose, Illumi-
nation and Expression (MultiPie) [45] dataset, and the
Semaine [46] dataset. We also used the Multipose Facial
Expression (MPFE) dataset that we recorded in our lab.
Table 1 summarizes the properties of each dataset, and
Figs. 2 and 7 show the sample images from the datasets.
The BU3DFE and the MPFE datasets contain images
depicting facial expressions of Anger (AN), Surprise (SU),
Disgust (DI), Joy (JO), Sadness (SA), Fear (FE), and Neutral

(NE). From the MultiPIE dataset, we used images of facial
expressions of SU, DI, JO, and NE, and from the Semaine
dataset we used 10 image sequences, coded per frame
either as Speech or Laughter. The facial expressions in the
BU3DFE dataset are acted at four different levels of
intensity, where the highest level corresponds to the apex
of the expression. The facial expressions in the MultiPIE
and the MPFE datasets are also acted and depict only the
apex of the expressions, while the images in the Semaine
dataset are spontaneously displayed. In the case of the
BU3DFE dataset, we rendered 2D facial images of 100 sub-
jects (58 percent female) at levels 3 and 4 of the expression,
and in 247 discrete poses (with 5 percent increment in pan
and tilt angles), using the 3D range data. Images from all
247 poses were used during testing, whereas images from a
subset of 35 poses (with 15 percent increment in pan and tilt
angles) were used for training. The images from the
MultiPie dataset depict 50 subjects (22 percent female)
captured at 4 pan angles (0�, �15�;�30�, and �45�). The
MPFE dataset contains expressive images of three subjects
(33 percent female) and the Semaine dataset contains
expressive images of 10 subjects (60 percent female), with
various head poses. All the images were annotated in terms
of 39 facial points (e.g., see Fig. 2). Specifically, the MultiPIE
dataset was annotated manually, while for the BU3DFE
dataset the locations of the facial points are provided by the
dataset creators. The facial images from the MPFE and the
Semaine dataset were annotated automatically using the
AAM tracker [23].

The training dataset contained the locations of the facial
points in 34 nonfrontal poses, and the corresponding facial
points in the frontal pose (thus, 35 poses in total). The
training points were registered per pose, as explained in
Section 3.4. For testing, we used the facial points from the
training poses (tp) and the nontraining poses (ntp). We
measured the performance of the head-pose normalization
using the Root Mean of the Squared Error (RMSE) computed
between the pose-normalized facial points and the ground
truth in the frontal pose. The performance of the facial
expression recognition was measured using the Recognition
Rate (RR) computed by applying the SVM classifier
(F-SVM), trained using training data in the frontal pose, to
the pose-normalized facial points. If not stated otherwise,
we applied fivefold cross validation in all our experiments,
with each fold containing images of different subjects.

We compared the performance of the proposed regres-
sion model for head-pose-normalization to Linear Regres-
sion (LR) and Support Vector Regression (SVR)[47]. We
performed further comparisons of the proposed model with
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Fig. 2. Example images from the BU3DFE dataset (top) and the
MultiPIE dataset (bottom) with synthetic and manually localized facial
points, respectively.

TABLE 1
Summary of the Used Data from the Employed Datasets

We use 1 for facial expression levels and poses that change
continuously.



recently proposed models for multi-output GPR: Twin GPR
(TWINGPR)[43] and Multitask GPR (MTGPR) [41]. As a
baseline for these methods, we used Independent GPRs
(IGPRs)[35] for each output (i.e., coordinate of each facial
point). Also, analogously to the coupling of the SGPR models,
we performed coupling of the IGPR models to obtain the
Coupled IGPR (CIGPR) models. We did so since IGPR has the
same covariance form as SGPR and thus the coupling of the
IGPR models using the proposed framework is straightfor-
ward. Apart from TWINGPR, the hyperparameters of all
other GPR-based models were optimized by minimizing the
negative log-likelihood of the models. In the case of
TWINGPR, SVR, and the pose-wise SVMs (PW-SVMs), we
cross-validated the model parameters. In all models, we used
a composite kernel function that is a sum of a linear term, an
isotropic Radial Basis Function (RBF), and a model bias. We
also include the results obtained by the 2D-PDM [48] and 3D-
PDM [7], and the AAM [23].

5.2 Experiments on Synthetic Data

In this section, we present the experiments conducted on the
BU3DFE dataset. Fig. 3 shows the error rate for head-pose
classification attained by taking the most likely discrete head
pose as the predicted class. The likelihood of each head pose
was obtained by the head-pose estimation approach
described in Section 3.2. As can be seen, the larger
misclassification occurs in near-frontal poses. This is to be
expected since the facial points in near-frontal poses are
more alike than those in nonfrontal poses that are far from
the frontal pose. Note also that the misclassification occurs
mostly among the neighboring poses, which is a tractable

problem for the CSGPR model due to the definition of its
weighting function (see Algorithm 1, step 2).

We next compare the performance of different models
w.r.t. the number of data used for training (when the head
pose is known). To train the models, we used N training
data-pairs per each pair of a nonfrontal pose and the frontal
pose, sampled uniformly from all the expression classes at
random and from four folds. The fifth fold was used to test
such trained models. This was repeated for all the folds, and
the average RMSE for head-pose normalization, attained by
different regression models, w.r.t. the number of training
data-pairs N is shown in Table 2. We also include the
recognition results attained by the PW-SVM classifiers.
Note that MTGPR, specifically designed for dealing with
multiple outputs, fails to outperform the other GP-based
regression models in the target task. We noticed from the
training and testing performance of this model that, for the
given range of N , it was prone to overfitting. This is
probably because of the large number of the model outputs,
resulting in the large number of MTGPR parameters to be
learned. On the other hand, TWINGPR performs better
pose-normalization (in terms of RMSE). However, this does
not translate into the RR attained by this model, compared
to that of IGPR and SGPR and their coupled counterparts,
which outperform the other tested models in the targets
task. Finally, note that the PW-SVM classifiers require more
training data to achieve the RR similar to that of the GPR-
based methods, yet it remains lower than that attained by
the coupled models. Fig. 4 shows the performance of
CSGPR-based head-pose normalization across different
discrete poses w.r.t. the number of training data N . It can
be noted that this model exhibits stable performance across
the poses. The experiments show evidence that the coupled
models generalize well (and better than the other tested
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Fig. 3. The error rate (ERR) per pose attained by the LDA-based head-
pose classification. The subspace of head poses was learned using
N ¼ 200 training data-pairs from each of the 35 training poses from the
BU3DFE dataset. The average ERR is 9 percent.

Fig. 4. RMSE of head-pose normalization attained by the CSGPR model
trained per pose and by using N data-pairs from the BU3DFE dataset.

TABLE 2
RMSE and RR Attained by the Base Models for Head-Pose Normalization and Facial Expression Recognition

The models were trained using N data-pairs per pose from the BU3DFE dataset. In the case of regression-based methods, the classification was
performed by applying F-SVM classifier to the pose-normalized facial points.



models), even when trained using a small number of
training data. This is because they are able to efficiently
explore training data from the neighboring poses, which
cannot be accomplished by the other models. In what
follows, we use N ¼ 200 and N ¼ 500 data-pairs to train the
regression models and PW-SVMs, respectively, in order to
keep them computationally tractable without a significant
decrease in the models’ performance.

So far, we evaluated the models using the noiseless data
from the 35 training poses. We next test the robustness of
the models to missing data and noisy data. To this end, we
trained the regression models using balanced and imbal-
anced data (as explained below) sampled from the
35 training poses, and tested on noiseless and noise-
corrupted data (with unknown head-pose) sampled from
all 247 poses. The balanced dataset contained examples
sampled (from four folds) per pose-pairs (nonfrontal poses
and the frontal pose) and uniformly at random from all
seven facial expressions. The imbalanced dataset was
prepared as follows: Examples of Neutral facial expression,
sampled (from four folds) at random, were used to train
50 percent of the pose-pairs, which were selected at
random. For the rest of the pose-pairs, training examples
were selected as in the balanced dataset. The fifth fold,
containing examples of all facial expressions, was used to
test such trained models, and this was repeated for all the
folds. Furthermore, the test data were corrupted by adding

noise to the locations of the facial landmarks, as explained
in Table 3. For the 2D- and 3D-PDM, we selected 13 and
17 shape bases, respectively. The shape bases were chosen
from the balanced dataset so that 95 percent of the energy
was retained. Moreover, in the case of the 3D-PDM, we
used the 3D facial points, and for the 2D-PDM we used the
corresponding 2D facial points in the frontal pose. The PW-
SVMs were trained using the balanced dataset, as in the
previous experiment. In the case of “noncoupled” regres-
sion models, the predictions from different nonfrontal poses
were combined using either DB or VB weighting, as
described in Section 4.3. The latter approach was used only
for MTGPR, IGPR, and SGPR since these models provide
uncertainty in their predictions. To reduce the computa-
tional load of the coupled models, the parameters Pmin (see
Algorithm 1) and Cmin (see Algorithm 2) were set to 0.1 and
0.8, respectively.1 Also, the number of the coupled functions
per pose was constrained to three.

Table 3 shows the comparative results. The performance
of the 2D- and 3D-PDM is inferior to that of the PW-SVMs
and the regression-based models. These results suggest that
the employed face-shape-based models are unable to
accurately recover facial motions caused by facial expres-
sions in the presence of large head movements. This, in
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TABLE 3
The Performance of Different Methods for Head-Pose-Invariant Facial Expression Recognition Trained Using Noiseless Data in
35 Training Poses (tp) from the BU3DFE Data Set, and Tested in a Subject-Independent Manner Using Data in 247 Test Poses
(tp and non-tp (ntp)) from the BU3DFE Dataset, and Corrupted by Different Levels of Noise UNIF � ½��; ��, with � ¼ 0; 2; 4 Pixels

(Where 10 Percent of Interocular Distance for the Average Registered Frontal-Pose Face in the BU3DFE Dataset
Is Approximately 5 Pixels)

1. We used a small validation set containing examples of five randomly
selected subjects to set Pmin and Cmin .



turn, results in high RMSE and low RR attained by these
two models. PW-SVM classifiers outperform the LR- and
SVR-based methods, and perform similarly to the GPR-
based methods when trained on the balanced data and
tested on the noiseless data in discrete poses. However, they
are less robust to noise and pose changes (i.e., test data from
nontraining poses). Note that the results for the noiseless
case and training poses differ from those shown in Table 2.
This is caused by inaccuracies of the head pose estimation
step. We also observe that TWINGPR is very sensitive to
high levels of noise, which is reflected in its RMSE and RR.
IGPR and SGPR show similar performance, with SGPR
performing better in most cases in the recognition task. The
performance of MTGPR in the target task is lower than that
of IGPR. This is caused by the model overfitting due to the
large number of the model parameters (due to the large
number of the model outputs). On the other hand, the
CIGPR- and CSGPR-based methods perform the best
among the tested methods. Note also that their performance
remains stable in the case of nontraining poses. It clearly
suggests that these models are able to generalize well in the
case of continuous change in head-pose despite the fact that
they were trained on a limited set of training data in
discrete poses. It also suggests that using only DB or VB
weighting of the GPR-based models results in inferior
performance compared to that attained by the proposed
coupling scheme, which uses the CI fusion rule for
combining the outputs of different mapping functions. We
can also observe that when the test data are corrupted by
the noise, there is an expected decline in performance of all
the models. However, this is less pronounced in the
CSGPR-based method than in the CIGPR-based method.
This is a consequence of the base SGPR model being able to
learn the structure in the model output, which is important
in the presence of high levels of noise. Finally, in the case of
the imbalanced dataset, the performance of the “non-
coupled” models is substantially lower compared to that

of the CIGPR and CSGPR models. This clearly shows the
benefit of using the proposed coupling scheme. Since these
two models exhibit similar performance, with CSGPR
performing better in the case of noisy data and being
computationally much less intense, in further experiments
we evaluate CSGPR and use SGPR (VB) as the baseline model.

Fig. 5 shows the confusion matrices for facial expression
recognition attained by the SGPR- and CSGPR-based
methods. In contrast to the CSGPR-based method, the RRs
of the SGPR-based method decrease considerably in the case
of the imbalanced dataset compared to when this model is
trained using the balanced dataset. However, the SGPR-
based method outperforms the CSGPR-based method on the
Neutral facial expression class (when trained using the
imbalanced dataset). This is because, for some pose-pairs,
the SGPR models are trained using data of Neutral facial
expression only, and thus there is no need for their coupling.
Still, the CSGPR-based method shows a better performance
on average. Fig. 6 depicts changes in the RMSE of different
models across the tested poses. As can be seen, the RMSE of
the 3D-PDM increases rapidly in poses that are far from
frontal, indicating that the used 3D-PDM model is unable to
accurately recover the 3D face shape from the 2D points in
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Fig. 5. Confusion matrices for head-pose-invariant facial expression recognition obtained by (a) SGPR (balanced) and F-SVM, (b) CSGPR
(balanced) and F-SVM, (c) SGPR (imbalanced) and F-SVM, and (d) CSGPR (imbalanced) and F-SVM. The methods were trained using noiseless
data in 35 training poses from the BU3DFE dataset.

Fig. 6. RMSE of the head-pose normalization in 247 tested poses attained by the 3D-PDM, and the SGPR and CSGPR models trained using the
noiseless balanced/imbalanced data from the BU3DFE dataset.

Fig. 7. Example images from the MPFE dataset (top) and the Semaine
dataset (bottom) with the facial points automatically localized by the
AAM [23].



these poses. The 3D-PDM and the LR-based method show
similar performance on average. Also, their performance is
inferior to that obtained by the CSGPR-based method, which
generalizes well even in the nontraining poses.

Table 4 gives an overview of the results obtained on the
BU3DFE dataset by the proposed CSGPR-based method and
previously proposed methods for head-pose-invariant facial
expression recognition. When studying the results shown in
Table 4, the following should be considered. First, the
methods proposed in [49], [9], [27], and [28] were trained/
tested on a small set of discrete poses containing only pan
rotations. In other words, they do not deal with large head-
pose changes. Second, the methods proposed in [49], [9],
[27], [28], and [11] are person specific since they use the
neutral frame in the feature preprocessing step. Therefore,
they are inapplicable to real-world scenarios. The method
proposed in this paper and the methods proposed in [28]
and [11] are the only ones that consider the “full” range of
poses, including pan and tilt rotations with a significant part
of the face remaining visible. Yet, the methods in [28] and
[11] were evaluated on a set of discrete poses used for
training, so it is not clear how these methods would perform
in nontraining poses. On the other hand, the proposed
CSGPR method and the baseline SGPR method (C/SGPR
methods) were evaluated on both training and nontraining
poses, and using balanced and imbalanced datasets.
Furthermore, most of the methods in Table 4 were trained
pose-wise, and hence could not deal with missing facial
expressions (i.e., the imbalanced data), as opposed to the
C/SGPR-based methods. For the C/SGPR-based methods,
in Table 4, we report the results per expression levels 3 and 4
separately so that they can be compared with the results of
the other methods, which usually consider only expression
level 4. Note that Table 3 (the noiseless case) shows the
average of the results for the both levels.

5.3 Experiments on Real-Image Data

In the experiments on the real-image data from the
MultiPIE dataset, we prepared the imbalanced datasets as
follows: For pose ð0�;�30�Þ and for facial expression of, e.g.,
Surprise, we removed all examples of this facial expression
from the pose in question, and kept the examples of all four
facial expressions in the two remaining (nonfrontal) poses.
This was repeated for each facial expression and nonfrontal
pose. Such datasets were then used to train the SGPR
models for each pair of a nonfrontal and the frontal pose,
which, in the case of the CSGPR model, were then coupled.

Table 5 shows the performance of the C/SGPR-based
methods trained using the balanced and imbalanced data
from the MulitPIE dataset. In the former case, the testing
was done at once, i.e., by using the examples of all facial
expressions in all nonfrontal poses. The methods trained on
the imbalanced datasets were tested using only the
examples of the missing facial expression in the target pose.
As can be seen from Table 5, both methods perform
similarly when the balanced datasets are used. This is
especially the case for facial expressions of Neutral and
Disgust. We attribute this to the fact that, in the case of the
perfectly balanced dataset, some of the coupled functions in
the CSGPR model add noise to the final prediction in the
frontal pose as a consequence of the registration process. In
the case of the imbalanced dataset, the CSGPR-based
method outperforms the SGPR-based method. Again, this
is due to the SGPR-based method being unable to generalize
well beyond the training data per training pairs of poses.

We further compare the performance of the C/SGPR-
based methods using the MPFE dataset. We include here
the results attained by the AAM-based method for pose-
invariant facial expression recognition. For this, we used
the AAM [23], i.e., its Candide model (being the 3D Active
Shape Model part of the AAM), to perform the head-pose
normalization. The latter was attained by rotating the
Candide model to the frontal pose, where the 2D (pose-
normalized) facial points were obtained from the corre-
sponding 3D points. The manual initialization of the
Candide model in the frontal pose and the corresponding
2D points obtained from the initialization step were used as
the ground truth when computing the RMSE and to train
the F-SVM. Table 6 summarizes the average results per
expression. As can be seen, the CSGPR-based method
outperforms the AAM (Candide) in the task of head-pose
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TABLE 4
The Results of the State-of-the-Art Methods for Head-Pose Invariant Facial Expression Recognition on the BU3DFE Dataset

TABLE 5
RMSE and RR (per Expression) Attained by the SGPR- and

CSGPR-Based Methods, Trained/Tested Using Balanced (bal.)
and Imbalanced (imb.) Data from the MulitPIE Dataset



normalization. This is because the pose normalization based
on the Candide model is more susceptible to tracking errors
since, in contrast to the CSGPR-based method, no training
data are used to smooth out the noise in its output. Also, the
rotation matrix used to bring the Candide model to the
frontal pose is learned based on the pose-estimation
provided by the AAM [23]. So, the inaccuracy of the pose
estimation also degrades the performance of this model. In
the case of the imbalanced dataset, the CSGPR-based
method largely outperforms the AAM- and SGPR-based
methods. However, there is a decline in performance
attained by all the methods. In the case of C/SGPR this is
expected since they are trained using not only the
imbalanced data but also the data of only two subjects (a
threefold person-independent cross-validation procedure
was applied in this experiment).

We also evaluated the proposed method on sponta-
neously displayed facial expressions from the Semaine
data set [46]. Specifically, we performed cross-database
evaluation where the C/SGPR-based methods were trained
using the MultiPIE and the MPFE datasets, and tested using
the Semaine dataset. Table 7 shows that the C/SGPR-based
methods generalize well, with CSGPR outperforming the
base SGPR in all the tasks, despite the fact that they were
trained using a different dataset from the one used for
testing. Note also that the C/SGPR-based methods trained
on the MPFE dataset outperform those trained on the
MultiPIE dataset. This is due to the difference in facial point
localization, which, in the case of the MultiPIE dataset, was
done manually and, in the case of the MPFE and Semaine
datasets, was done automatically. Consequently, the
C/SGPR-based methods trained on the MultiPIE dataset
were more sensitive to noise in test data.

6 CONCLUSION

We have proposed a method for head-pose-invariant facial
expression recognition that is based on 2D geometric
features. We have shown that the proposed CSGPR model
for head-pose normalization outperforms the state-of-the-
art regression-based approaches to head-pose normaliza-
tion, the 2D- and 3D-PDMs and the online AAM. In contrast
to the existing pose-invariant facial expression recognition
methods, the proposed method can deal with missing data
(i.e., facial expression categories that were not available in
certain nonfrontal poses during training).
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