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Abstract—We introduce the notion of subspace learning from image gradient orientations for appearance-based object recognition. As
image data is typically noisy and noise is substantially different from Gaussian, traditional subspace learning from pixel intensities fails
very often to estimate reliably the low-dimensional subspace of a given data population. We show that replacing pixel intensities with
gradient orientations and the �2 norm with a cosine-based distance measure offers, to some extend, a remedy to this problem. Within
this framework, which we coin IGO (Image Gradient Orientations) subspace learning, we first formulate and study the properties of
Principal Component Analysis of image gradient orientations (IGO-PCA). We then show its connection to previously proposed robust
PCA techniques both theoretically and experimentally. Finally, we derive a number of other popular subspace learning techniques,
namely Linear Discriminant Analysis (LDA), Locally Linear Embedding (LLE) and Laplacian Eigenmaps (LE). Experimental results
show that our algorithms outperform significantly popular methods such as Gabor features and Local Binary Patterns and achieve
state-of-the-art performance for difficult problems such as illumination- and occlusion-robust face recognition. In addition to this,
the proposed IGO-methods require the eigen-decomposition of simple covariance matrices and are as computationally efficient as
their corresponding �2 norm intensity-based counterparts. Matlab code for the methods presented in this paper can be found at
http://ibug.doc.ic.ac.uk/resources.

Index Terms—image gradient orientations, robust principal component analysis, discriminant analysis, non-linear dimensionality
reduction, face recognition

✦

1 INTRODUCTION

SUBSPACE learning for computer vision applications
has recently attracted a lot of interest in the scientific

community [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. This research has been primarily
motivated by the development of a multitude of tech-
niques for the efficient analysis of high-dimensional data
via non-linear dimensionality reduction [3], [4], [5], [6],
[10], [13]. These techniques have provided valuable tools
for understanding and capturing the intrinsic non-linear
structure of visual data encountered in many important
machine vision problems. At the same time, there has
been a substantially increasing interest in related appli-
cations such as appearance-based object/face recognition
and image retrieval.

Scientific efforts in the field have mainly revolved
around two lines of research. Kernel-based methods
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extend linear subspace analysis, such as Principal Com-
ponent Analysis (PCA) and Linear Discriminant Analy-
sis (LDA), in arbitrary dimensional Hilbert spaces [16],
[5], [6], [17], [10], [18], [13]. These methods perform an
implicit mapping of input data into a high-dimensional
Hilbert space (also referred to as feature space) where
efficient representations are obtained through linear sub-
space analysis, while all computations are efficiently
performed via the inner product of the feature space
(the so-called kernel trick). Manifold learning algorithms
[1], [2], [3], [4], [19], [7], [11], [12] assume that input
data points are actually samples from a low-dimensional
manifold embedded in a high-dimensional space. This
assumption is not unreasonable in computer vision
where large amounts of collected data often result from
changes in very few degrees of freedom. This, in turn,
attributes input data with a well-defined and probably
predictable structure. Manifold learning methods per-
form dimensionality reduction with the goal of finding
this underlying structure. This is typically performed by
preserving local neighborhood information in a certain
sense. Typical examples include Isomap [2], Locally Lin-
ear Embedding (LLE) [1], [4] and Laplacian Eigenmaps
(LE) [3].

A fundamental problem of the majority of subspace
learning techniques (both linear and non-linear) for
appearance-based object recognition is that they are
not robust. Most methods are usually based on linear
correlation of pixel intensities (for example [20], [21],
[7]) which fails very often to model reliably visual sim-
ilarities/correlations. For example, Eigenfaces [20] uses
Principal Component Analysis (PCA) of pixel intensities
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to estimate the K−rank linear subspace of a set of
training face images by minimizing the �2 norm. The
solution, given by the eigen-analysis of the training
data covariance matrix, enjoys optimality properties only
when noise is i.i.d. Gaussian; for data corrupted by
outliers, such as occlusions, illumination changes and
cast shadows, the estimated subspace can be arbitrarily
biased.

In this paper, to remedy (at least to some extend) this
problem, we introduce a new framework for appearance-
based object recognition: subspace learning from image
gradient orientations (IGO subspace learning). We pro-
pose a class of IGO-algorithms which do not operate on
pixel intensities but use gradient orientations and replace
linear correlation of pixel intensities with the cosine
of gradient orientation differences. We formalize and
statistically verify the observation that local orientation
mismatches caused by outliers can be well-described by
a uniform distribution which, under a number of mild
assumptions, is cancelled out when the cosine kernel
is applied. This last observation has been noticed in
recently proposed schemes for image registration [22]
and provides the basis for a robust measure of visual
correlation.

Based on this line of research, we show that a cosine-
based distance measure has a functional form which en-
ables us to define an explicit mapping from the space of
gradient orientations into a subset of a high-dimensional
sphere where essentially linear or non-linear dimension-
ality reduction is performed. Then, we formulate and
study the properties of PCA of image gradient orien-
tations (IGO-PCA) and show its connection to previ-
ously proposed robust PCA techniques both theoretically
and experimentally. Next, we derive a number of other
popular subspace learning techniques, namely Linear
Discriminant Analysis (LDA), Locally Linear Embed-
ding (LLE) and Laplacian Eigenmaps (LE). Similarly to
previous work on dimensionality reduction, the basic
computational module of the IGO-algorithms requires
the eigen-decomposition of simple covariance matrices,
while high dimensional data can be efficiently analyzed
following the strategy suggested in [20].

Our work and contributions in this paper are summa-
rized as follows. In Section 2, we define and statistically
verify a notion of pixel-wise image dissimilarity by look-
ing at the distribution of gradient orientation differences.
This provides the intuition and the basis for measuring
image correlation using the cosine of gradient orientation
differences as explained in the first part of Section 3.
The remaining of this section describes the key points
for IGO subspace learning and introduces our IGO-PCA.
This section concludes with a theoretical analysis which
shows the connection of IGO-PCA to the general M-
estimation framework of [23] for robust PCA. In Section
4, we evaluate the robust properties of IGO-PCA for the
applications of face reconstruction and recognition and
present comparisons with previously proposed methods.
In Section 5, we study LDA, LLE and LE within the

proposed IGO-framework. In Section 6, we present face
recognition experiments on the extended Yale B, PIE,
FERET and AR databases. Our results show that our al-
gorithms outperform significantly popular methods such
as Gabor features and Local Binary Patterns and achieve
state-of-the-art performance for difficult problems such
as illumination- and occlusion-robust face recognition.
In Section 7, we propose an efficient and exact online
version of our IGO-PCA and show how this algorithm
can boost the performance of appearance-based tracking.
Section 8 concludes the paper. Finally, Matlab code for
the methods presented in this paper can be found at
http://ibug.doc.ic.ac.uk/resources.

2 RANDOM NUMBER GENERATION FROM IM-
AGE GRADIENT ORIENTATION DIFFERENCES

Before describing our contributions, we have to define
some useful notation. S, {.} denotes a set, examples
include � which is the set of reals and C is the set of
complex numbers. x, x and X denote a scalar or a com-
plex number, a column vector and a matrix, respectively.
Re[x] and Im[x] are the real and imaginary part of x,
respectively. x(k) is the k-th element of vector x, N(X )
is the cardinality of set X and Nx number of neighbors
of x. Im×m is the m×m identity matrix and 1 is vector or
matrix of ones. ||.|| and ||.||F denote the �2 and Frobenius
norm, respectively. X∗ and X

H are the conjugate and the
conjugate transpose of X, respectively. Finally, U [a, b] is
a uniform distribution in [a, b], E[.] is the mean value
operator and x ∼ U [a, b] means that x follows U [a, b].

Central to the IGO-methods is the distribution of im-
age gradient orientation differences and the cosine kernel
which provide us a consistent way to measure image
correlation/similarity when image data is corrupted by
outliers. In this section, we formalize an observation
for the distribution of gradient orientation differences
and describe an experiment which verifies the validity
of our argument. In the next section, we will assume
that, for data corrupted by outliers, the corresponding
distribution will also have this well-defined structure.

Consider a set of images {Ji}, Ji ∈ �m1×m2 . At each
pixel location, we estimate the image gradients and
the corresponding gradient orientation 1. We denote by
{Φi}, Φi ∈ [0, 2π)m1×m2 the set of orientation images
and compute the orientation difference image

ΔΦij = Φi −Φj . (1)

We denote by P the set of indices corresponding to
the image support and by φi and Δφij � φi − φj

the N(P)−dimensional vectors obtained by writing Φi

and ΔΦij in lexicographic ordering. We introduce the

1. More specifically, we compute Φi = arctanGi,y/Gi,x, where
Gi,x = hx�Ii, Gi,y = hy�Ii and hx, hy are filters used to approximate
the ideal differentiation operator along the image horizontal and ver-
tical direction respectively. Possible choices for hx, hy include central
difference estimators of various orders and discrete approximations to
the first derivative of the Gaussian.
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following definition.
Definition I. Images Ji and Jj are pixel-wise dissimilar
if ∀k ∈ P , Δφij(k) ∼ U [0, 2π).

Not surprisingly, nature is replete with images exem-
plifying Definition I. This, in turn, makes it possible to
set up a naive image-based random number generator.
To confirm this, we used more than 70, 000 pairs of image
patches of resolution 200× 200 randomly extracted from
natural images [24]. For each pair, we computed Δφij

and formulated the following null hypothesis
• H0: ∀k ∈ P Δφij(k) ∼ U [0, 2π)

which was tested using the Kolmogorov-Smirnov test
[25]. For a significance level equal to 0.01, the null hy-
pothesis was accepted for 94.05% of the image pairs with
mean p-value equal to 0.2848. In a similar setting, we
tested Matlab’s random generator. The null hypothesis
was accepted for 99.48% of the cases with mean p-
value equal to 0.501. Fig. 1 (a)-(b) show a typical pair of
image patches considered in our experiment. Fig. 1 (c)
and (d) plot the histograms of the gradient orientation
differences and 40,000 samples drawn from Matlab’s
random number generator respectively.
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Fig. 1. (a)-(b) An image pair used in our experiment,
(c) Image-based random number generator: histogram of
40,000 gradient orientation differences and (d) Histogram
of 40,000 samples drawn from Matlab’s random number
generator.

3 IGO-PCA
3.1 Cosine-based correlation of image gradient ori-
entations

Assume that we are given a set of n images {Ii}, Ii ∈
�m1×m2 with the goal of subspace learning for
appearance-based object recognition. We compute the
corresponding set of orientation images {Φi} and mea-
sure image correlation using the cosine kernel [22], [26]

s(φi,φj) �
∑
k∈P

cos[Δφij(k)] = cN(P) (2)

where c ∈ [−1, 1] and k is the pixel index. Notice that
for highly spatially correlated images Δφij(k) ≈ 0 and
c → 1.

Assume that there exists a subset P2 ⊂ P corre-
sponding to the set of pixels corrupted by outliers. For
P1 = P − P2, we have

s1(φi,φj) =
∑
k∈P1

cos[Δφij(k)] = c1N(P1) (3)

where c1 ∈ [−1, 1].
Not unreasonably, we assume that in P2 the images

are pixel-wise dissimilar according to Definition I. For
example, Fig. 2 (a)-(b) show an image pair where P2

is the part of the face occluded by the scarf. Fig. 2 (c)
plots the distribution of Δφ in P2. Before proceeding for
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Fig. 2. (a)-(b) An image pair used in our experiments. (c)
The distribution of Δφ for the part of the face occluded by
the scarf.

computing the value of s in P2, we need the following
theorem [22] (please refer to Section I of supplementary
material for a proof).
Theorem I Let u(.) be a random process and u(t) ∼
U [0, 2π) then:

• E[
∫
X
cosu(t)dt] = 0 for any non-empty interval X ∈

R.
• If u(.) is mean ergodic, then

∫
X
cosu(t)dt = 0.

We also make use of the following approximation∫
X

cos[Δφij(t)]dt ∝
∑
k∈P

cos[Δφij(k)] (4)

where with some abuse of notation, Δφij is defined
in the continuous domain on the left hand side of (4).
Analogously, the above hold for the case of the sine
kernel as well.

Based on the above results, for P2, we have

s2(φi,φj) =
∑
k∈P2

cos[Δφij(k)] 
 0. (5)

Overall, unlike �2-based correlation of image inten-
sities where the contribution of outliers can be arbi-
trarily large, s(.) measures correlation as s(φi,φj) =
s1(φi,φj)+s2(φi,φj) 
 c1N(P1), i.e. the effect of outliers
is approximately canceled out 2.

To exemplify the above concept, we considered the
following experiment. We calculated s from face image

2. Please see section I.A of our supplementary material for a qualita-
tive comparison between the correlation of image gradient orientation
and various versions of �2-based correlation of image intensities.
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pairs where the second image was directly obtained from
the first one after applying a synthetic occlusion with a
“Baboon” patch of increasing size. Fig. 3 (a) and (b) show
an example of image pairs considered. Note that, for all
image pairs, we are guaranteed that c1 = 1 and, given
that the above analysis holds, we also have s1 = N(P1)
(the image P1 is exactly the same in both images)
and hence s ≈ N(P1). Under the assumption that the
gradient orientation differences of dissimilar objects are
uniformly distributed, then s2 ≈ 0. If s2 was exactly 0
then s = N(P1) would be the number of pixels that
have not been occluded. If s is normalized by the total
number of pixels N(P) then the correlation coefficient
s/N(P) would be the percentage of the image that has
not been occluded. Fig. 3 (c) shows both the theoretical
value of s/N(P), which is N(P1)/N(P), as well as, its
value as estimated from the data as a function of the
percentage of the occlusion (the percentage of occlusion
is N(P2)/N(P)). As we may observe, the difference
between the theoretical and estimated values is almost
negligible.
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Fig. 3. Cosine-based correlation of image gradient orien-
tation for the case of synthetic occlusions. (a)-(b) A pair
of images considered for our experiment. (c) Theoretical
and expected values of s/N(P) as a function of the
percentage of occlusion N(P2)/N(P).

3.2 The principal components of image gradient ori-
entations

To show how (2) can be used as the basis for our IGO-
PCA, we first define the distance

d2(φi,φj) �
∑
k∈P

{
1− cos[Δφij(k)]

}
) (6)

We can write (6) as follows

d2(φi,φj) =
1

2

∑
k∈P

{
2− 2 cos[φi(k)− φj(k)]

}
=

1

2

∑
k∈P

{
(cos2 φi(k) + sin2 φi(k))

+(cos2 φj(k) + sin2 φj(k))

−2(cosφi(k) cosφj(k)

+ sinφi(k) sinφj(k))
}

=
1

2

∑
k∈P

{
(cosφi(k)− cosφj(k))

2

+(sinφi(k)− sinφj(k))
2
}

=
1

2

∣∣∣∣∣∣ejφi − ejφj

∣∣∣∣∣∣2 (7)

where ejφi = [ejφ1 , . . . , ejφN(P) ]T . The last equality
makes the basic computational module of our scheme
apparent. We define the mapping from [0, 2π)p onto a
subset of complex sphere with radius

√
N(P) 3

zi(φi) = ejφi (8)

and apply complex linear PCA to the transformed data
zi. That is, we look for a set of K < n orthonormal
bases U = [u1| · · · |uK ] ∈ CN(P)×K by minimizing the
error function

ε(U) = ||Z−UU
H
Z||2F (9)

where Z = [z1| · · · |zn] ∈ CN(P)×n and, without loss of
generality, we assume zero-mean data. Equivalently, we
can solve

Uo = argmaxU tr
[
U

H
ZZ

H
U
]

subject to (s.t.) U
H
U = I.

(10)

The solution is given by the K-th eigenvectors of ZZ
H

corresponding to the K-th largest eigenvalues. Finally,
the K−dimensional embedding C = [c1| · · · |cn] ∈ CK×n

of Z are given by C = U
H
Z.

Using the results of the previous subsection, we can
remark the following.
Remark I. If P = P1 ∪ P2 with Δφij(k) ∼ U [0, 2π) ∀k ∈
P2, then Re[zHi zj ] 
 c1N(P1)
Remark II. If P2 = P , then Re[zHi zj ] 
 0 and Im[zHi zj ] 

0.
Further geometric intuition about the mapping zi is
provided by the chord between vectors zi and zj

crd(zi, zj) =
√
(zi − zj)H(zi − zj) =

√
2d2(φi,φj) (11)

Using crd(.), the results of Remark I and II can be re-
formulated as crd(zi, zj) 


√
2((1− c1)N(P1) +N(P2))

and crd(zi, zj) 

√
2N(P) respectively.

Let us denote by Q = {1, . . . , n} the set of image
indices and Qi any subset of Q. Let us also denote by
Λ the positive eigen-spectrum of ZZH . We can conclude

3. In mathematical topology this subset is called Clifford Torus [27].
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the following
Remark III. If Q = Q1 ∪ Q2 with z

H
i zj 
 0 ∀i ∈ Q2,

∀j ∈ Q and i �= j, then, ∃ eigenvector ul of Un such
that ul 
 1

N(P)zi. In Remark III, we assume that the
data population Q can be written as a union of two
disjoint subsets. The samples belonging to subset Q1

are not orthogonal to each other. This subset could be
for example a collection of face images. Q2 denotes
the samples which are all (approximately) orthogonal to
each other and are all (approximately) orthogonal to each
of the samples of Q1. So j can either belong to Q1 or to
Q2, that is could be any sample of Q. The subset Q2

is supposed to contain samples which are all extra-class
outliers (to the samples of Q1).

A special case of Remark III is the following.
Remark IV. If Q = Q2, then 1

N(P)Λ 
 In×n and Un 

1

N(P)Z.
To exemplify Remark IV, we applied IGO-PCA to 100

natural image patches (please see Section 3 of our sup-
plementary material for the implementation details of
IGO-PCA). Since we have seen that such images are very
likely to be pixel-wise dissimilar according to Definition
I, we expect that z

H
i zj 
 0, ∀i, j which further implies

Q = Q2. Then according to Remark IV, the obtained
eigen-spectrum should be approximately equal to the
identity matrix. In a similar setting (using IGO-PCA), we
computed the eigen-spectrum of samples drawn from
Matlab’s random number generator. Fig. 4 plots the two
eigen-spectrums.
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Fig. 4. The eigen-spectrum of natural images and the
eigen-spectrum of samples drawn from Matlab’s random
number generator.

3.3 Connection to robust PCA

In this section, we show how the proposed method
is related to previously proposed robust extensions to
PCA. Such extensions have been the focus of research
in statistics [28], [29] and computer vision [23], [30],
[31], [32], [33] for several decades. Here, we focus on
the general M-Estimation framework of [23] where the
problem is posed as the minimization of a robust en-
ergy function. This minimization is reformulated as a
weighted least-squares problem which can be solved
using iteratively re-weighted least-squares. For complex

data, this weighted least-squares energy function has the
following form

ε(Ũ, C̃,W̃) =

n∑
i=1

(zi − Ũc̃i)
H
W̃i(zi − Ũc̃i)

=

n∑
i=1

z
H
i W̃izi − 2zHi W̃iŨc̃i

+ c̃
H
i Ũ

H
W̃iŨc̃i (12)

where Ũ are the projection bases, c̃i ∈ CK is
the K−dimensional embedding of zi and W̃i ∈
RN(P)×N(P) = diag(w̃i) is the diagonal matrix contain-
ing the weighting coefficients used to down-weigh the
outliers in zi. Note that

• The embedding c̃i is not obtained from a least-
squares projection, i.e. c̃i �= Ũ

H
zi.

• All Ũ, c̃i,W̃i are unknown and have to be estimated
from the data.

• The minimization is performed iteratively (using it-
erative least-squares) and results in a local minimum
of the energy function in (12).

• At each iteration, we update ci from

c̃
new
i = ((Ũold)HW̃

old
i Ũ

old)−1(Ũold)HW̃
old
i zi. (13)

To show how robust weighted least-squares is related
to our method, we first assume that the projection bases
can be written as a linear combination of the data, i.e.
Ũ = ZÃ for problem (12) and similarly U = ZA for
problem (9). Note that this assumption is always true for
Small Size Problems (i.e. N(P) � n) which is the typical
case in subspace learning for appearance-based object
recognition. Based on this assumption, we can write

ε(Ũ, C̃,W̃) =

n∑
i=1

z
H
i W̃izi − 2zHi W̃iZÃc̃i

+ c̃
H
i Ã

H
Z
H
W̃iZÃc̃i, (14)

while at each iteration c̃i is updated from

c̃
new
i = ((Ãold)HZ

H
W̃

old
i ZÃ

old)−1(Ãold)HZW̃
old
i zi. (15)

Let us now consider the cost function of IGO-PCA in
(9). By plugging C = U

H
Z and U = ZA into (9) and

then expanding, we have

ε(U,C) =

n∑
i=1

z
H
i zi − 2zHi Uci + c

H
i U

H
Uci

=

n∑
i=1

z
H
i zi − 2zHi ZAci + c

H
i A

H
Z
H
ZAci,

(16)

where we can also write

ci = U
H
zi = IA

H
U

H
zi

= (AH
Z
H
ZA)−1

A
H
Z
H
zi. (17)
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A simple comparison between (14) and (16) as well
as (15) and (17) shows that the main difference is the
inclusion of the weights W̃i in (14) and (15). We now
outline the main result of this section

In IGO-PCA, the weights used to down-weigh the effects of
outliers are calculated implicitly.

More specifically, for any of the inner products, if
Remark I and II hold, then we can write

z
H
i zj = z

H
i Wijzj (18)

where Wij = diag(wij) is a diagonal matrix containing
weights according to

wij(k) =

{
1 if k ∈ P1

ε if k ∈ P2
(19)

where ε → 0 and Wii = I. Using Wij and the fact that
Z
H
Z = [zHl zk] = [zHl Wlkzk] (16) can be written as

ε(U,C) =

n∑
i=1

z
H
i Wiizi

− 2[zHi Wi1z1 . . . z
H
i Winzn]Aci (20)

+ c
H
i A

H [zHl Wlkzk]Aci

Similarly to standard weighted least-squares, Wij is
used to down-weigh the effect of outliers in either zi or
zj or both. Note however that Wij is never calculated
explicitly by our algorithm and is simply a direct by-
product of our analysis in the previous subsections.

A second difference is that there is no fixed Wi for
each zi, but weighting matrices Wij corresponding to
pairs (zi, zj ). We believe that this difference results in
a more natural way for defining the notion of outliers
at least for computer vision applications. Consider for
example the problem of subspace learning for face recog-
nition where one or more subjects wear glasses. In this
case, it is unclear if glasses should be considered as a part
of the appearance or not. In the weighted least-squares
of [23], the algorithm would attempt to down-weigh the
effect of glasses by assigning small values wi(kglasses) for
all subjects wearing glasses for the corresponding pixel
locations kglasses. However, it is unclear whether this is
correct or not when, for example, 50% of the subjects in
the database wear glasses. On the other hand, the notion
of outliers in our algorithm is defined more naturally in
a bilateral way. If one of zi and zj wears glasses, then
wij(kglasses) = ε. Note that if both zi and zj wear glasses,
then wij(kglasses) = 1.

Finally, compared to weighted least-squares, the pro-
posed IGO-PCA is non-iterative, requires the eigen-
decomposition of a covariance matrix and results in a
global optimum solution.

4 EVALUATION OF ROBUSTNESS OF IGO-
PCA
4.1 Face reconstruction

The estimation of a low-dimensional subspace from a
set of a highly-correlated images is a typical application
of PCA [34]. As an example, we considered a set of 50
aligned face images of image resolution 192× 168 taken
from the Yale B face database [35]. The images capture
the face of the same subject under different lighting
conditions. This setting usually induces cast shadows as
well as other specularities. Face reconstruction from the
principal subspace is a natural candidate for removing
these artifacts.

We initially considered two versions of this experi-
ment. The first version used the set of original images.
In the second version, 20% of the images was artifi-
cially occluded by a 70 × 70 “Baboon” patch placed
at random spatial locations. For both experiments, we
reconstructed pixel intensities and gradient orientations
with standard PCA and IGO-PCA respectively, using the
first 5 principal components (please see Section IV of the
supplementary material for the implementation details
of IGO-PCA).

Fig. 5 and Fig. 6 illustrate the quality of reconstruc-
tion for 2 examples of face images considered in our
experiments. While PCA-based reconstruction of pixel
intensities is visually appealing in the first experiment,
Fig. 5 (g)-(h) clearly illustrate that, in the second exper-
iment, the reconstruction results suffer from artifacts.
In contrary, Fig. 6 (e)-(f) and (g)-(h) show that IGO-
PCA not only reduces the effect of specularities but also
reconstructs the gradient orientations corresponding to
the “face” component only.

This performance improvement becomes more evident
by plotting the principal components for each method
and experiment. Fig. 7 shows the 5 dominant Eigenfaces
of PCA on image intensities. Observe that, in the second
experiment, the last two Eigenfaces (Fig. 7 (i) and (j))
contain “Baboon” ghosts which largely affect the quality
of reconstruction. On the contrary, a simple visual in-
spection of Fig. 8 reveals that, in the second experiment,
the principal subspace of gradient orientations (Fig. 8
(f)-(j)) appears to be artifact-free which in turn makes
dis-occlusion in the orientation domain feasible.

Finally, to exemplify Remark III (from section 3.2),
we considered a third version of our experiment where
20% of the images were replaced by the same 192 × 168
“Baboon” image. Fig. 9 (a)-(e) and (f)-(j) illustrate the
principal subspace of pixel intensities and gradient ori-
entations respectively. Clearly, we can see that �2 PCA
was unable to handle the extra-class outlier. On the
contrary, IGO-PCA successfully separated the “face”
from the “Baboon” subspace, i.e. no eigenvectors were
corrupted by the “Baboon” image. Note that the “face”
principal subspace is not the same as the one obtained
in versions 1 and 2 of the experiment. This is because
only 80% of the images in our dataset was used in this
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experiment.

4.1.1 Quantitative evaluation

We used the second version of the above experiment
(i.e., 20% of the images were artificially occluded by a
“Baboon” patch placed at random spatial locations) to
evaluate the robust performance of IGO-PCA quantita-
tively and compare it with that of previously proposed
robust versions of PCA, namely the R1-PCA [36], the �1-
PCA[31], the very recently proposed HQ-PCA [37], the
state-of-the-art R-PCA? of [33] as well as the standard
�2-PCA. Because these methods operate in the intensity
domain, while IGO-PCA operates in the gradient orien-
tation domain, we used a performance measure which
does not depend on the specific domain. More specifi-
cally, for each of these methods, we computed a measure
of total similarity between the principal subspace for the
noise-free case Unoise-free and the principal subspace for
the noisy case Unoisy as follows

Q =
k∑

i=1

k∑
j=1

cosαij , (21)

where αij is the angle between each of the k eigen-
vectors defining the principal components of Unoise-free
and each one of Unoisy [38] 4. The value of Q lies
between k (coincident spaces) and 0 (orthogonal spaces)
[38]. Fig. 10 shows the mean values of Q obtained for
each method over 20 repetitions of the experiment for
generating Unoisy. As we may observe, IGO-PCA largely
outperforms R1-PCA, �1-PCA, HQ-PCA as well as �2-
PCA while up to k = 5 components the difference
from the ideal case (i.e. Unoise-free = Unoisy) is essentially
negligible.

Additionally, the performance of IGO-PCA is compa-
rable to that of the recent breakthrough of [33]. At this
point, we note that

• IGO-PCA is as efficient as standard �2 norm PCA
and thus orders of magnitude faster than [33] (for
example for the proposed method needs 0.05secs in
a machine running i7 1.7GHz with 8GB Ram and
Matlab 64 while the exact method by Candes et. al.
16secs ).

• In contrast to [33], IGO-PCA enables the straightfor-
ward embedding of new samples. This is necessary
for many computer vision applications such as face
recognition and tracking.

• In contrast to [33], our IGO-PCA can be imple-
mented incrementally. Please see section 7 of our
paper where we propose an efficient and exact
online version of our IGO-PCA and show how this
algorithm can boost the performance of appearance-
based tracking.

4. Note that Q is meaningful as a measure of robustness only
if the eigenvectors are orthogonal to each other. Therefore, in our
experiments, we have not considered the robust PCA of [23].

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. PCA-based reconstruction of pixel intensities. (a)-
(b) Original images used in version 1 of our experiment.
(c)-(d) Corrupted images used in version 2 of our ex-
periment. (e)-(f) Reconstruction of (a)-(b) with 5 principal
components. (g)-(h) Reconstruction of (c)-(d) with 5 prin-
cipal components.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. PCA-based reconstruction of gradient orienta-
tions. (a)-(b) Original orientations used in version 1 of our
experiment. (c)-(d) Corrupted orientations used in version
2 of our experiment. (e)-(f) Reconstruction of (a)-(b) with
5 principal components. (g)-(h) Reconstruction of (c)-(d)
with 5 principal components.

4.2 Face recognition

PCA-based feature extraction for face recognition goes
back to the classical work of eigenfaces [20] and still re-
mains a standard benchmark for performance evaluation
of new algorithms. We considered a single-sample-per-
class experiment using aligned frontal-view neutral face
images taken from the AR database [39]. Our training
test consisted of 100 face images of 100 different subjects,
taken from session 1. Our testing set consisted of 1 image
per subject taken from session 2.

4.2.1 Robustness to occlusion

We evaluated the performance of our algorithm for
the case of synthetic occlusions. All test images were
artificially occluded by a “Baboon” patch of increasing
size. Fig. 11 shows the best recognition rate (over 100
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. The 5 principal components of pixel intensities for
(a)-(e) version 1 and (f)-(j) version 2 of our experiment.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8. The 5 principal components of gradient orien-
tations for (a)-(e) version 1 and (f)-(j) version 2 of our
experiment.

features) achieved by IGO-PCA as a function of the
percentage of occlusion. The same figure also shows the
performance of complex Gabor features combined with
PCA, Gabor-Magnitude features combined with PCA,
and histograms of Local Binary Patterns (LBP) of cell size
8×8 and 16×16 (please see our experimental section for
more details on how these methods were implemented).
As we may observe, our method features by far the most
robust performance with a recognition rate over 80%
even when the percentage of occlusion is about 75%. LBP
features also perform well, but as further experiments
have shown, this performance significantly drops for the
case of real occlusions (please see experiment 3 of section
6.4).

4.2.2 Robustness to misalignment
We evaluated the effect of misalignment on the per-
formance of our algorithm. Each misaligned test image
was artificially generated as follows. We initially selected
three fixed canonical points and perturbed these points
using Gaussian noise of standard deviation σ. Using
the affine warp that the original and perturbed points
defined, we generated the affine distorted image. Fig.
12 shows the best recognition rate (over 100 features

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9. (a)-(e) The 5 principal components of pixel in-
tensities for version 3 of our experiment and (f)-(j) The
5 principal components of gradient orientations for the
same experiment.
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Fig. 11. Recognition rate as a function of the percentage
of occlusion.

produced by IGO-PCA) as a function σ. As before, we
also evaluated the performance of Gabor features with
PCA, Gabor magnitude features with PCA, and 8×8 and
16× 16 histograms of LBPs. Fig. 12 shows the obtained
results. As we may observe, IGO-PCA performs com-
parably to standard PCA on pixels intensities, complex
Gabor features and 8 × 8 LBPs. As expected, the most
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robust performance is achieved by Gabor-Magnitudes
and 16× 16 LBPs. We found however that these features
performed notably well only on the specific experiment.
For example, Gabor-Magnitudes do not perform well
for the case of illumination (please see section 6.1) or
occlusion (sections 4.2.1 and 6.4). Additionally, 8×8 LBPs
largely outperform the 16× 16 implementation for case
of illumination changes (section 6.1) and real occlusions
(section 6.4).

Finally, it is unclear how to use Gabor-Magnitudes or
LBP features (or any kind of invariant features) for per-
forming joint alignment and recognition as for example
in [40], [41]. In contrast, this is feasible with IGO-PCA.
For instance, here, we have considered a combination of
IGO-PCA with the alignment framework of [40] which
we coin IGO-PCA-Align. Fig. 12 shows the performance
improvement using IGO-PCA-Align. We may observe
that for moderate misalignment (σ = 5), the improve-
ment over IGO-PCA is more than 15%.
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Fig. 12. Recognition rate as a function of the point
standard deviation.

5 DISCRIMINANT AND MANIFOLD LEARNING
FROM IMAGE GRADIENT ORIENTATIONS

Discriminant and manifold subspace analysis is a natural
extension to PCA for appearance-based object recogni-
tion. Perhaps, the most popular and well-established
discriminant and manifold learning methods include
Fisher’s Linear Discriminant Analysis (LDA) [21], Lo-
cally Linear Embedding (LLE) [1] and Laplacian Eigen-
maps (LE) [3]. In this section, we show how to formulate
the IGO-versions of these methods.

To do so in a principled way, we need the following
theorem (please, see Section II of supplementary material
for a proof).
Theorem II. Let A ∈ Cr×r and B ∈ Cr×r be two
Hermitian positive definite matrices. Then, the optimal
solution Uo to the following optimization problem

Uo = argmin(max)U∈Cr×K tr
[
U

H
AU

]
s.t. U

H
BU = I.

(22)

is given by the K eigenvectors of B
−1

A corresponding
to the K smallest (largest) eigenvalues.

Based on Theorem II, the derivation of many popular
subspace learning techniques within our framework of
image gradient orientations becomes straightforward. As
a first example, note that IGO-PCA solves (22) with A =
ZZ

H and B = I.
As a second example, we describe how to formulate

LDA. Let us assume that our training set consists of C
classes C1, · · · , CC . LDA aims at finding discriminant pro-
jection bases by exploiting this class-label information
[21], [18]. Let us also define the complex within-class
scatter matrix S

z
w

S
z
w �

C∑
c=1

∑
zi∈Cc

(zi −m
c)(zi −m

c)H , (23)

where m
c = 1

N(C)

∑N
zi∈Cc

zi and the complex between-
class scatter matrix S

z
b

S
z
b �

C∑
c=1

N(Cc)(m
c −m)(mc −m)H . (24)

Then, to find K optimal projections U = [u1| . . . |uk] ∈
CN(P)×K , we solve the following optimization problem

Uo = argmaxU tr
[
U

H
S
z
bU

]
s.t. U

H
S
z
wU = I

(25)

According to (22), the solution is given by the K eigen-
vectors of (Sz

w)
−1

S
z
b corresponding to the K largest

eigenvalues. Finally, in a similar fashion, we derive the
IGO-versions of LLE and LE as well as a number of
extensions in Sections III and IV of the supplementary
material of this paper.

6 FACE RECOGNITION EXPERIMENTS

We evaluated the performance of the proposed IGO-
methods for the application of face recognition, per-
haps the most representative example of appearance-
based object recognition. For our experiments we used
the widely used Extended Yale B [35], [42], PIE [43],
FERET [44], [45] and AR databases [39]. Our experiments
span a wide range of facial variability and moderately
controlled capturing conditions: facial expressions (PIE,
AR and FERET), illumination changes (Yale B, PIE, AR
and FERET), occlusions (AR), aging (FERET) and slight
changes in pose (PIE and FERET). We performed experi-
ments using a single sample per class (AR and FERET) as
well as more than one samples per class (Extended Yale
B, PIE and AR). For all experiments, we used manually
aligned cropped images of resolution 64× 64.

In all experiments, we encountered Small Sample Size
(SSS) problems (i.e. n � N(P)). This setting inevitably
imposes an upper bound to the number of extracted
features. Therefore, for all subspace-based algorithms
considered in this paper, we first applied an efficient
implementation of PCA for SSS problems [20] to reduce
the number of dimensions accordingly. As an example,
for IGO-LDA we used IGO-PCA to preserve n − C di-
mensions which results in the IGO-version of Fisherfaces
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[21]. Finally, given a test vector z, we extracted features
using c = U

H
z and performed classification using the

nearest-neighbor rule based on normalized correlation
[46], [47], [14]. More details on the implementation of
IGO-Methods can be found in Section IV of the accom-
panying supplementary material.

We also compared the performance of IGO-methods
with that of subspace methods based on pixel intensities
and Gabor features as well as with that of LBP methods.
For Gabor features, we used the popular approach of
[5], [46], [47]. In particular, we used a filter bank of 5
scales and 8 orientations and then down-sampled the
obtained features by a factor of 4 (so that the number
of features is reasonably large). We considered both
phase and magnitude (denoted as Gabor) as well as
magnitude information solely (denoted as GaborM). We
also produced standard (of radius 2 with 8-samples)
uniform LBP descriptors using the MATLAB source code
available from [48], [49]. We considered cells of size 8×8
(denoted as LBP-8) and 16 × 16 (denoted as LBP-16).
Finally, we found that LBP methods did not perform well
for image size 64× 64; therefore, for all experiments, we
used images of resolution 128× 128.

Our methods performed the best in three important as-
pects. First, with the exception of the expression experi-
ment on AR database, they achieved the best recognition
performance in all experiments. The gain in recognition
accuracy (in absolute terms) is approximately up to 18%
for Yale B, 8% for PIE, 25% for FERET and 20% for
AR. Second, there is no other method which performed
better than any of the proposed IGO-methods. Even
with IGO-PCA, we obtained performance improvement
which goes up to 20%. Third, there is no other method
which performed the second best consistently. In some
experiments, Gabor features outperform LBP features
and vice versa.

Finally, to evaluate the statistical significance of our
results, we used the McNemars test [50]. McNemars test
is a null hypothesis statistical test based on a Bernoulli
model. If the resulting p-value is below a desired sig-
nificance level (for example, 0.02), the null hypothesis is
rejected and the difference in performance between two
algorithms is considered to be statistically significant.
The McNemars test has been widely used to evaluate
the statistical significance of the performance improve-
ment between different recognition algorithms [51], [6].
With the exception of experiments 1 (expression) and 2
(illumination) on AR database, for all experiments, we
found that p � 0.02. Thus, we conclude that the perfor-
mance improvement obtained using the IGO-methods is
statistically significant.

6.1 Extended Yale B database

The extended Yale B database [52] contains 16128 images
of 38 subjects under 9 poses and 64 illumination condi-
tions. We used a subset which consists of 64 near frontal
images for each subject. For training, we randomly se-
lected a subset with 5 images per subject. For testing,

we used the remaining images. Finally, we performed
20 different random realizations of the training/test sets.
Table 1 and Fig. 4 of supplementary material show the
obtained results. As we may observe, the IGO-methods
outperform the second best method (8×8 LBPs) in terms
of recognition accuracy (in absolute terms) for approxi-
mately up to 18%. Additionally, Fig. 5 of supplementary
material summarizes the results of manifold embedding
IGO methods.

6.2 PIE database

The CMU PIE database [43] consists of more than 41,000
face images of 68 subjects. The database contains faces
under varying pose, illumination, and expression. We
used the five near frontal poses (C05, C07, C09, C27, C29)
and a total of 170 images for each subject. For training,
we randomly selected a subset with 5 images per sub-
ject. For testing, we used the remaining images. Finally,
we performed 20 different random realizations of the
training/test sets. Table 2 and Fig. 6 of supplementary
material summarize our results. As we can see, the IGO-
methods outperform the second best method (Gabor-
Magnitude PCA) in terms of recognition accuracy (in
absolute terms) for approximately up to 8%. Finally, Fig.
7 of supplementary material summarizes the results of
manifold embedding IGO methods.

6.3 FERET database

We carried out single-sample-per-class face recognition
experiments on the FERET database [44], [45]. The eval-
uation methodology requires that the training must be
performed using the FA set which contains one frontal
view per subject and in total 1196 subjects. No other data
set was used for training. The testing sets include the
FB, DupI and DupII data sets. Since current techniques
achieve almost 100% recognition performance on FB,
we used only Dup I and II in our experiments. DupI
and DupII probe sets contain 727 and 234 test images,
respectively, captured significantly later than FA. These
data sets are very challenging due to significant appear-
ance changes of the individual subjects caused by aging,
facial expressions, glasses, hair, moustache, non-uniform
illumination variations and slight changes in pose.

Table 3 summarizes our results. Previously published
results are summarized in Table III of supplementary
material. The proposed IGO-PCA achieved recognition
rates equal to 89.1% and 85.3% for DupI and DupII
respectively which are among the best reported results
according to the best of our knowledge.

6.4 AR database

The AR database [39] consists of more than 4,000 frontal
view face images of 126 subjects. Each subject has up
to 26 images taken in two sessions. The first session
contains 13 images, numbered from 1 to 13, including

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



11

IGO Methods Intensity Methods Gabor Methods LBP Methods
IGO-PCA IGO-LDA Intens-PCA Intens-LDA Gabor-PCA Gabor-LDA GaborM-PCA GaborM-LDA LBP-8 LBP-16

95.65% (188) 97.80% (37) 76.10% (161) 72.23% (37) 73.90% (74) 64.38% (12) 64.57% (174) 68.86% (22) 80.00% 60.35%

TABLE 1
Average recognition rates on the extended Yale B database. In parentheses the dimension that results in the best

performance for each method is given.

IGO Methods Intensity Methods Gabor Methods LBP Methods
IGO-PCA IGO-LDA Intens-PCA Intens-LDA Gabor-PCA Gabor-LDA GaborM-PCA GaborM-LDA LBP-8 LBP-16

84.56% (335) 88.36% (50) 32.35% (339) 77.53% (67) 68.75% (136) 67.19% (31) 72.17% (296) 80.35% (51) 68.60% 65.00%

TABLE 2
Average recognition rates on the PIE database. In parentheses the dimension that results in the best performance for

each method is given.

Methods Intens-PCA LBP-8 LBP-16 Gabor-PCA GaborM-PCA IGO-PCA
DupI 45 % 65% 58% 60% 57% 88.9%
DupII 29 % 62% 53% 55% 50% 85.4%

TABLE 3
Recognition rates for DupI and DupII.

IGO Methods Intensity Methods Gabor Methods LBP Methods
IGO-PCA IGO-LDA Intens-PCA Intens-LDA Gabor-PCA Gabor-LDA GaborM-PCA GaborM-LDA LBP-8 LBP-16

Exper. 1 97.33% (131) 97.67% (99) 91.67% (169) 94.33% (99) 96.67% (101) 89.33% (70) 98.00% (170) 98.67% (96) 89.67% 95.33%
Exper. 2 100.00% (30) 99.67% (30) 94.67% (358) 92.67% (99) 97.67% (145) 96.67% (99) 97.00% (307) 96.77% (99) 99.00% 98.67%
Exper. 3 94.50% (99) 95.20% (99) 37.72% (344) 45.58% (99) 28.33% (178) 30.00% (68) 40.00% (322) 47.66% (94) 73.33% 60.66%

TABLE 4
Recognition rates on the AR database for facial expressions (experiment 1), illumination variations (experiment 2),

and occlusions-illumination changes (experiment 3). In parentheses the dimension that results in the best
performance for each method is given.

IGO-PCA Intens-PCA Gabor-PCA GaborM-PCA LBP-8 LBP-16
Exper. 1 82.33% (97) 66.00% (99) 77.33% (52) 84.33% (85) 70.67% 81.00%
Exper. 2 99.67% (22) 74.00% (99) 90.33% (60) 92.67% (99) 99.00% 98.33%
Exper. 3 93.91% (99) 26.52% (87) 18.00% (71) 28.00% (91) 66.67% 51.67%

TABLE 5
Recognition rates for the single-sample-per-class experiment on the extended AR database facial expressions
(experiment 1), illumination variations (experiment 2), and occlusions-illumination changes (experiment 3). In

parentheses the dimension that results in the best performance for each method is given.

different facial expressions (1-4), illumination changes (5-
7), and different occlusions under different illumination
changes (8-13). The second session duplicates the first
session two weeks later. We randomly selected a subset
with 100 subjects. Fig. 13 shows a sample of images
used in our experiments. We investigated the robustness
of our scheme for the case of facial expressions (ex-
periment 1), illumination variations (experiment 2), and
occlusions-illumination changes (experiment 3). More
specifically, we carried out the following experiments.

1) In experiment 1, we used images 1-4 of session 1
for training and images 2-4 of session 2 for testing.

2) In experiment 2, we used images 1-4 of session 1
for training and images 5-7 of session 2 for testing.

3) In experiment 3, we used images 1-4 of session 1
for training and images 8-13 of session 2 for testing.

Fig. 13. Face images of the same subject taken from the
AR database.

Table 4 and Fig. 8 of our supplementary material sum-
marize our results. As we can see, for the facial expres-
sion experiment (experiment 1), Gabor-Magnitude meth-
ods performs marginally better than the IGO-methods.
For experiment 2, IGO-methods performed the best but
only marginally better than LBPs. Finally, for experiment
3, which is the most difficult experiment on the AR
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database, IGO-methods largely outperformed all other
methods. More specifically the gain in recognition accu-
racy goes up to 20%. In contrast to experiments 1 and
2, these results are statistically significant. Additionally,
Fig. 9 of supplementary material summarizes the results
of manifold embedding IGO methods.

Furthermore, Table 5 and Fig. 10 of supplementary
material summarize the results for our single sample per
class experiments. For this setting, we used only image 1
of session 1 for training. As our results show, IGO-PCA
achieves almost 100% recognition rate for the case of
illumination changes (experiment 2) and approximately
94% recognition rate for the case of occlusions (exper-
iment 3). The latter result is approximately 20% better
than the best reported recognition rate [53], which was
obtained on a subset of the occluded images with no
illumination variations and more than 25% better than
the rate achieved by 8 × 8 LBP. Finally, for the case of
facial expressions (experiment 1) Gabor-Magnitude PCA
performs better than IGO-PCA. A further analysis of this
result has shown that all of the misclassified face images
were faces having the expression of scream. This result
is somewhat expected, since, as Fig. 13 (c) illustrates,
screaming results in severe non-rigid facial deformations
which, in turn, cause significant local orientation mis-
matches. These mismatches inevitably render the values
of within and between-class similarity comparable.

Finally, we carried out perhaps one of the most dif-
ficult experiments in face recognition: single sample
per class recognition of misaligned frontal faces with
occlusions and illumination changes in the testing set.
More specifically, our experimental setting combined the
single sample per class experiment 3 on AR database
with the misalignment experiment of Section 4.2.2. Fig.
14 shows the recognition rates achieved by all methods
as a function of misalignment. We may observe that
the proposed methods and especially IGO-PCA-Align
largely outperform all other methods.
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Fig. 14. Recognition rate as a function of the point
standard deviation.

7 APPLICATION TO TRACKING

Subspace learning for appearance-based tracking has
been one of the de facto choices for tracking objects
in image sequences [54], [55], [56]. Here, we propose a

subspace-based tracking algorithm closely related to the
incremental visual tracker of [56]. As such, our tracker
can deal with drastic appearance changes, does not
require offline training, continually updates a compact
object representation and uses the Condensation algo-
rithm to robustly estimate the object’s location.

Similarly to [56], the proposed tracker is essentially
an eigen-tracker [54], where the eigen-space is adap-
tively learned and updated online. The key element
which makes our approach equally fast but significantly
more robust, is how the eigen-space is generated. The
method in [56] uses the incremental version of stan-
dard intensity-based PCA [57]. On the contrary, the
proposed tracker is based on the eigenspace gener-
ated by IGO-PCA. Let us assume that, given n images
{I1, . . . , In}, we have already computed the principal
subspace U

n
p and Σ

n
p = Λ

1/2
p . Then, given a new image

set {In+1, . . . , In+m}, our target is to obtain U
n+m and

Σ
n+m
p corresponding to {I1, . . . , In+m} efficiently. Algo-

rithm 3 of our supplementary material summarizes the
steps of incremental IGO-PCA. Finally, similarly to [56],
the proposed tracker combines our incremental IGO-
PCA with a variant of the Condensation algorithm for
the dynamical estimation of the object’s location.

We evaluated the performance of the
proposed tracker on two very popular video
sequences, “Dudek” and “Trellis”, available from
http://www.cs.toronto.edu/dross/ivt/. The goal was
to assess the proposed algorithm’s performance for
face tracking under pose variation, occlusions and
non-uniform illumination. “Dudek” is provided along
with seven annotated points which are used as ground
truth. We also annotated seven fiducial points for
“Trellis”. As usual, quantitative performance evaluation
is based on the RMS errors between the true and
the estimated locations of these seven points. The
performance of our tracker is compared with that of
[56]. No attempt to optimize the performance of our
method was attempted. For both methods, we used the
same particle filter parameters (taken from [56]).

For both methods and sequences, Fig. 12 of supple-
mentary material plots the RMS error as a function of
the frame number, while Table 6 gives the mean and
median RMS error. The proposed tracker outperforms
the method of [56] in two important aspects. First, it
is more robust. Only the proposed tracker successfully
tracked the face for the whole video sequence for both
“Dudek” and “Trellis”. Second, the proposed scheme is
more accurate. This is illustrated by the RMS error com-
puted for frames where the face region was successfully
tracked. Finally, Fig. 13 of supplementary material illus-
trates the performance of the proposed tracker, as well
as the performance of IVT tracker, for some cumbersome
tracking conditions.

8 CONCLUSIONS

We introduced a class of novel machine learning algo-
rithms: subspace learning from image gradient orienta-
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IGO-PCA Intensity-based PCA
“Dudek” 6.79 (5.70) 8.24 (7.28)
“Trellis” 2.59 (2.42) 3.83 (3.73)

TABLE 6
Mean (Median) RMS error for “Dudek” and “Trellis”

sequences.

tions. Our IGO-based learning framework is as simple as
standard intensity-based learning, yet much more pow-
erful for efficient subspace-based data representation.
Central to the proposed methodology is the distribution
of gradient orientation differences and the cosine kernel
which provide us a powerful and consistent way to
measure image correlation/similarity. We showed that
this measure can be naturally used to provide the basis
for robust subspace learning. We demonstrated some of
the favorable properties of IGO subspace learning for the
application of face recognition and tracking.
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