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ABSTRACT

Emotions play an important role in how we select and con-

sume multimedia. Recent advances on affect detection are

focused on detecting emotions continuously. In this paper,

for the first time, we continuously detect valence from elec-

troencephalogram (EEG) signals and facial expressions in re-

sponse to videos. Multiple annotators provided valence levels

continuously by watching the frontal facial videos of partic-

ipants who watched short emotional videos. Power spectral

features from EEG signals as well as facial fiducial points are

used as features to detect valence levels for each frame contin-

uously. We study the correlation between features from EEG

and facial expressions with continuous valence. We have also

verified our model’s performance for the emotional highlight

detection using emotion recognition from EEG signals. Fi-

nally the results of multimodal fusion between facial expres-

sion and EEG signals are presented. Having such models

we will be able to detect spontaneous and subtle affective re-

sponses over time and use them for video highlight detection.

Index Terms— Affect, EEG, facial expressions, video

highlight detection, implicit tagging

1. INTRODUCTION

Multimedia content is made to induce emotions and be emo-

tionally expressive. From drama to comedy, different genres

of multimedia induce different emotions and are appealing to

their audience in different mood and context. Affective fea-

tures of multimedia are therefore an invaluable source of in-

formation for multimedia indexing and recommendation [1].

Given the difficulty of collecting emotional self-report to mul-

timedia from users, emotion recognition is an effective way

of collecting users’ emotional feedback in response to mul-

timedia for the purpose of multimedia indexing. In this pa-

per, we focus on continuous emotion recognition in response

to videos. The continuous emotion detection in response to
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videos will enable us to detect the emotional highlights of a

video. The highlights and emotional moments can be used

for video summarization [2], movie rating estimation [3] and

affective indexing. For example, a user wants to retrieve the

funny moments in a movie will be able to do so based on the

continuous profile provided by this technique from the spon-

taneous responses of other users.

Different emotional representation models, including dis-

crete and dimensional have been proposed by psychologists

[4]. Discrete emotions, e.g., sadness, joy, fear, are easier to

understand but are limited in describing the whole spectrum

of emotions in different languages. Dimensional models of

emotions represent emotions in different dimensions where

an emotion can be mapped into a point in that space. One of

the most adopted dimensional emotion representation model

is valence and arousal space. Arousal ranges from calm to ex-

cited/activated, and valence ranges from unpleasant to pleas-

ant [5].

The contributions presented in this paper are as follows.

First, to the best of our knowledge, this is the first attempt in

detecting continuous emotions, in both time and dimension,

using EEG signals. Second, we detect continuous emotions

from facial expressions and provide the multimodal fusion re-

sults. Third, we study the correlation between the EEG power

spectral features that we used for emotion recognition and

continuous valence annotations to look for the possible effect

of muscular artifacts. Finally, we apply the models trained

with the continuously annotated data on EEG responses that

could not be interpreted due to the lack of facial expressions

from the users. In this work, the emotional responses visible

in the frontal camera capturing facial expressions are anno-

tated continuously in time and valence dimension by five an-

notators. The averaged annotations served as a ground truth to

be detected from facial expression analysis and EEG signals.

Different regression models, utilized in the similar state of the

art studies [6], were tested, and the performance of continu-

ous emotion detection was evaluated using a 10-folding cross

validation strategy.

2. BACKGROUND

Wollmer et al. [7] suggested abandoning the emotional cate-

gories in favor of dimensions and applied it on emotion recog-

nition from speech. Nicolaou et al. [8] used audio-visual



modalities to detect valence and arousal on the SEMAINE

database [9]. They used support vector regression (SVR) and

Bidirectional long short term memory recurrent neural net-

works (BLSTM-RNN) to detect emotion continuously in time

and dimensions. One of the major attempts in advancing the

state of the art in continuous emotion detection is the Au-

dio/Visual Emotion Challenge (AVEC) 2012 [10]. The SE-

MAINE database includes the audio-visual responses of par-

ticipants recorded while interacting with the Sensitive Affec-

tive Listeners (SAL) agents. The responses were continuously

annotated on four dimensions of valence, activation, power,

and expectation. The goal of the AVEC 2012 challenge was

to detect the continuous dimensional emotions using audio-

visual signals. For a comprehensive review of continuous

emotion detection, we refer the reader to [6].

Physiological signals have been used to detect emotions

with the goal of implicit emotional tagging. Soleymani et

al. [11] proposed an affective characterization for movie

scenes using peripheral physiological signals. Eight partici-

pants watched 64 movie scenes and self-reported their emo-

tions. A linear regression trained by relevance vector ma-

chines (RVM) was utilized to estimate each clip’s affect from

physiological features. A similar approach was taken using a

linear ridge regression for emotional characterization of mu-

sic videos. Arousal, valence, dominance, and like/dislike rat-

ing was detected from the physiological signals and video

content [12]. Koelstra et al. [13] used electroencephalogram

(EEG) and peripheral physiological signals for emotional tag-

ging of music videos.

3. DATA SET AND ANNOTATIONS

The dataset, which is used in this study, is the first experiment

from MAHNOB-HCI database [14], which is a publicly avail-

able database for multimedia implicit tagging1. The experi-

ments were conducted to record the participants’ emotional

responses to short videos with the goal of emotional tagging.

The participants were shown 20 short videos, between 34.9s

to 117s long (M = 81.4s, SD = 22.5s), to elicit differ-

ent emotions. The short videos were movie scenes from fa-

mous commercially produced movies as well as some semi-

professional, user-generated content from the Internet. The

experimental data was collected from 28 healthy volunteers,

comprising 12 male and 16 female between 19 to 40 years

old. EEG signals were recorded from 32 active electrodes on

10-20 international system using a Biosemi Active II system.

A frontal view video was captured at 60 frames per second

with the goal of recording the facial expressions . The syn-

chronization method, hardware setup and the database details

are given in [14]. A subset of 239 responses containing visi-

ble facial expressions is selected to be analyzed in this study.

The rest of the trials, except 10 trials that we used in the verifi-

cation study, were discarded since the annotators were unable

1http://mahnob-db.eu/hci-tagging/

to annotate the expressions without any visible expression.

Valence from the frontal videos were annotated continuously

using a software implemented based on feeltrace [15] and a

joystick. Unlike the SEMAINE database [9] where the par-

ticipants are engaged in a conversation with an agent, in this

study, they were quiet and passively watching videos. Hence,

the annotators were unable to annotate arousal, power or ex-

pectation.

4. METHODS

4.1. EEG signals

EEG signals were available at 256Hz sampling rate. The

unwanted artifacts, trend and noise were reduced by pre-

processing the signals. EEG signals were re-referenced to the

average reference to enhance the signal-to-noise ratio.

The spectral power of EEG signals in different bands

was found to be correlated with emotions [16]. The power

spectral densities were extracted from 1 second time win-

dows with 50% overlapping. Koelstra et al. [13] studied

the correlation between emotional dimensions, i.e., valence,

arousal, dominance and EEG spectral power from different

bands. They found the power spectral densities (PSD) of sig-

nals from following electrodes to be significantly correlated:

Fp1, T7, CP1, Oz, Fp2, F8, FC6, FC2, Cz, C4, T8, CP6,

CP2, PO4. Therefore, we only used these 14 electrodes for

EEG feature extraction. The logarithms of the PSD from theta

(4Hz < f < 8Hz), slow alpha (8Hz < f < 10Hz), alpha

(8Hz < f < 12Hz), beta (12Hz < f < 30Hz) and gamma

(30Hz < f ) bands were extracted from all 14 electrodes to

server as features. In addition to power spectral features, the

difference between the spectral power of all the possible sym-

metrical pairs on the right and left hemisphere was extracted

to measure the possible asymmetry in the brain activities due

to the valence of emotional stimuli [17]. The asymmetry fea-

tures were extracted from all 5 mentioned bands. The features

from the selected electrodes comprised of 5 power spectral

bands of 14 electrodes in addition to 3 symmetric pairs, i.e.,

T7-T8, Fp1-Fp2, and CP1-CP2. The total number of EEG

features of a trial for 14 electrodes and 3 corresponding asym-

metric features is 14×5+3×5 = 85 features. These features

were available at 2Hz temporal resolution due to the short

time Fourier transform (STFT) window size (w = 256).

4.2. Analysis of facial expressions

An active appearance model face tracker was employed to

track 40 points [18] (see Figure 1). The facial points were

extracted after registering the face to a normalized face and

correcting the head pose. A reference point was generated by

averaging the inner corners of eyes and points on the subjects’

nose which assumed to be stationary. The distances of 33

point including eyebrows, eyes, lips and iris to the reference

point were calculated and averaged to be used as features.

The first derivative of these distances was also calculated as



Fig. 1. Examples of the recorded camera view including

tracked facial points. The top left image shows the active ap-

pearance model that is fit to the face.

the features reflecting the dynamics of facial expressions. Fi-

nally the angles between the horizontal line, the line connect-

ing the inner corners of eyes, and outer corner of eyebrows

as well as the angles between corners of lips were also calcu-

lated as features. We also extracted the distance between the

central points of the upper lip and the lower lip as a measure

of mouth openness. In total 271 features were extracted from

facial points.

4.3. Dimensional affect detection

Four commonly used regression models for similar stud-

ies were utilized for continuous emotion detection, namely,

multi-linear regression (MLR), support vector regression

(SVR), conditional random fields (CCRF) [19], and long

short-term memory recurrent neural networks (LSTM-RNN)

[20].

4.3.1. Long Short Term Memory Neural Networks

LSTM-RNN have shown to achieve top performances in emo-

tion recognition studies for audio-visual modalities [8, 6].

LSTM-RNN is a network which has one or more hidden lay-

ers including LSTM cells. These cells contain a memory

block and some multiplicative gates which will determine

whether the cell stores, maintains or resets its state. In this

way, the network learns when to remember and forget infor-

mation coming in a sequence over time and therefore it is able

to preserve long-range dependencies in sequences. Recurrent

Neural Networks are able to remember the short term input

events through their feedback connections. LSTM adds the

ability to also remember the input events from a longer pe-

riod using the gated memory cell.

An open source implementation of LSTM2 which is pow-

2https://sourceforge.net/p/currennt

ered by NVIDIA Inc., Compute Unified Device Architecture

(CUDA) technology was used in this paper. We chose to have

two hidden layers containing LSTM cells for all the three con-

figurations that we used. The number of hidden neurons were

set to the half the number of the input layer neurons, or fea-

tures. The learning rate was set to 1E-4 with the momen-

tum of 0.9. The sequences were presented in random order in

training and a Gaussian noise with the standard deviation of

0.6 has been added to the input to reduce the problem of over-

fitting. The maximum epochs in training were 100. If there

was no improvement on the performance, i.e., sum of squared

errors, on the validation set after 20 epochs, the training was

stopped with the early stopping strategy.

4.3.2. Continuous Conditional Random Fields

conditional random fields (CRF) are frameworks for building

probabilistic models to segment and classify sequential data.

Unlike hidden Markov models (HMM), they do not assume

that the observations are conditionally independent and there-

fore are good alternatives for cases where there is a strong de-

pendency between observations. continuous conditional ran-

dom fields (CCRF) [19] are developed to extend the CRFs for

regression. CCRF models a conditional probability distribu-

tion with the probability density function:

P (y|X) =
exp(Ψ)

∫

∞

−∞
exp(Ψ)dy

(1)

Where
∫

∞

−∞
exp(Ψ)dy is the normalization function which

makes the probability distribution a valid one (by making it

sum to 1).

Ψ =
∑

i

K1
∑

k=1

αkfk(yi, X) +
∑

i,j

K2
∑

k=1

βkgk(yi, yj , X) (2)

In this equation, Ψ is the potential function, X =
{x1, x2, ..., xn} is the set of input feature vectors (matrix with

per frame observation as rows, valence estimation from an-

other regression technique such as MLR in our case), Y =
{y1, y2, ..., yn} is the target, αk is the reliability of fk and βk

is the same for edge feature function gk. fk, the Vertex feature

function, (dependency between yi and Xi,k) is defined as:

fk(yi, X) = −(yi −Xi,k)
2 (3)

And gk, the Edge feature function, which describes the rela-

tionship between two estimation at steps i and j, is defined

as:

gk(yi, yj , X) = −
1

2
S
(k)
i,j (yi − yj)

2 (4)

The similarity measure, S(k), controls how strong the

connections are between two vertices in this fully connected

graph. There are two types of similarities:

S
(neighbor)
i,j =

{

1, |i− j| = n

0, otherwise
(5)



S
(distance)
i,j = exp(−

|Xi −Xj |

σ
) (6)

The neighbor similarity (Equation 5) shows the connection

of one output with its neighbors and the distance similarity,

(Equation 6), controls the relation between y terms based on

the similarity of x terms (by distance σ).

The CCRF can be trained using stochastic gradient descent.

Since the CCRF model can be viewed as a multivariate Gaus-

sian, the inference can be done by calculating the mean of the

resulting conditional distribution, i.e., P (y|X).

5. EXPERIMENTAL RESULTS

5.1. Analyses of features

There is often a strong interference of facial muscular activ-

ities and eye movements in the EEG signals. We hence ex-

pect that the contamination from the facial expressions in the

EEG signals to contribute to the effectiveness of the EEG sig-

nals for valence detection. The facial muscular artifacts are

usually more present in the peripheral electrodes and higher

frequencies. To study this assumption, the correlation be-

tween the EEG features and continuous valence were calcu-

lated. The topographs in Figure 2 show that the higher fre-

quency components from electrodes positioned on the frontal,

parietal and occipital lobes have higher correlation with va-

lence measurements. The location of the correlated electrodes

undermines the assumption that the correlation between the

EEG features and valence were due to the contamination from

the electromyogram (EMG) signals, facial muscular activi-

ties, on the peripheral electrodes. However, the strong cor-

relation from the higher frequency bands, beta and gamma,

supports this assumption. We think the correlation is caused

by a combination of the effect from the facial expression and

brain activities.

We calculated the correlation between different facial ex-

pression features and the ground truth for each sequence and

averaged them over all sequences. The features with the

highest correlations were related to the mouth points, e.g,

ranked by their averaged correlation were: lower lip angle

(ρ = −0.15), left lip corner distance (ρ = −0.13), and right

lip corner distance (ρ = −0.13).

5.2. Continuous emotion detection

All the features and annotations were re-sampled to 4Hz from

their original sampling rate. This enabled us to perform mul-

timodal fusion on different levels. All the features were nor-

malized by removing the average of the features in the train-

ing set and dividing by their standard deviation. The results

were evaluated in a 10-folding cross validation. In every fold,

the samples were divided in three sets. 10% were taken as the

test set, 60% of the remaining samples (54% of the total) were

taken as the training set and the rest were used as the valida-

tion set. For the multi-linear regression (MLR) and support
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Fig. 2. The correlation maps between PSD and continuous

valence for theta ,alpha, beta, and gamma bands. The cor-

relation values are averaged over all sequences. In these to-

pographs the frontal lobe, the nose, is positioned on top.

vector regression (SVR), only the training sets were used to

train the regressors and the validation sets were not used. A

linear ǫ-SVR with L2 regularization, from Liblinear library

[21], was used and its hyper-parameters were found based on

a grid search on the training set. We used the validation sets in

the process of training the LSTM-RNN to avoid over-fitting.

The output of MLR on the validation set was used to train the

CCRF. The trained CCRF was applied on the MLR output on

the test set. The CCRF regularization hyper-parameters were

chosen based on a grid search using the training set. The rest

of the parameters were kept the same as [19].

Two fusion strategies were employed to fuse these two

modalities. In the feature level fusion (FLF), the features

of these modalities were concatenated to form a larger fea-

ture vector before feeding them into models. In the Deci-

sion Level Fusion (DLF), the resulting estimation of valence

scores from different modalities were averaged. The emotion

recognition results are given in Table 1. The LSTM-RNN

achieved the best performance. In general, facial expression

and EEG modalities performed similarly, even though the

ground truth is heavily under the influence of the participants’

facial expressions. This further confirms the finding of Koel-

stara and Patras [22], who showed that in case of single trial

emotion recognition based on participants’ self report, EEG

signals outperform facial expressions. Regarding the corre-

lation, although the highest average correlation is higher for

the fusion of facial expressions and EEG modalities of CCRF,

the average correlation resulting from decision level fusion of

LSTM-RNN is very different with lower standard deviation.

The lowest linear error is achieved with the LSTM-RNN and

decision level fusion. Therefore, we conclude that the LSTM-

RNN performed the best in this setting and with the goal of

continuous valence detection. Although direct comparison of



the performance is not possible with the other works due to

the difference in the nature of the databases, the best achieved

correlation is in the same range as the result of [23], the win-

ner of AVEC 2012 challenge, on valence and superior to the

correlation value reported on valence in a more recent work,

[24]. Unfortunately, the previous papers on this topic did not

report the standard deviation of their results; thus its compar-

ison was impossible. We have also tested the bidirectional

long short term recurrent neural networks (BLSTM-RNN),

but their performance was inferior compared to the simpler

LSTM-RNN for this task.

5.3. Emotional highlight detection

In order to verify whether the model trained on annotations

based on facial expression analyses can reflect on the case

without any facial expressions, we chose one of the videos

with distinct highlight moments, the church scene from ”Love

Actually”, and took the EEG responses of the 10 participants

who did not show any significant facial expression while

watching that video clip. Since these responses did not in-

clude any visible facial expressions, they were not used in the

annotation procedure and were not in any form in our train-

ing data. We extracted the power spectral features from their

EEG responses and fed it into our regression models and av-

eraged the output curves. The regression models were trained

on all the available data which had annotations. The resulting

valence detection are shown in Figure 3. The results show

that despite the fact that the participants did not express any

visible facial expressions and likely did not have very strong

emotions, the valence detected from their EEG responses can

still detect the highlight moments and the valence trend in the

video. The CCRF provides a smoother profile compared to

the other methods whereas all the methods are resulting fairly

similar profiles. The snapshots in Figure 3, show the frames

corresponding to three different moments. The first one, at

20 seconds, is during the marriage ceremony. The second and

third frames are the surprising and joyful moments when the

participants bring their musical instruments in sight and start

playing a romantic song unexpectedly.

6. CONCLUSIONS

We presented a study of continuous detection of valence using

EEG signals and facial expressions. Promising results are ob-

tained from EEG signals. We expected the results from facial

expressions to be superior due to the bias of the ground truth

towards the expressions, i.e., the ground truth was generated

based on the judgment of the facial expressions. However,

the results from LSTM-RNN showed that EEG modality per-

formance is not far inferior to the one of facial expressions.

The analyses of the correlation between the EEG signals and

the ground truth showed that the higher frequency compo-

nents of the signals carry more important information regard-

ing the pleasantness of emotion and the informative features
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Fig. 3. The average valence curve, emotional pleasantness

profile, resulted from the EEG signals of 10 participants who

did not show any facial expressions while watching a scene

from Love Actually. The joyful moments and a highlights are

still detectable from the curve and its trend.

from EEG signals are not completely due to the contamina-

tion from facial muscular activities. The continuous annota-

tion of facial expressions suffers from the lag and the lack

of synchronicity of the annotators. In future, the continuous

annotations should be aligned to improve the ground truth.
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