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ABSTRACT

In this paper, we combine the principles of temporal slowness
and nonnegative parts-based learning into a single framework
that aims to learn slow varying parts-based representations of
time varying sequences. We demonstrate that the proposed
algorithm arises naturally by embedding the Slow Features
Analysis trace optimization problem in the nonnegative sub-
space learning framework and derive novel multiplicative up-
date rules for its optimization. The usefulness of the devel-
oped algorithm is demonstrated for unsupervised facial be-
haviour dynamics analysis on MMI database.

Index Terms— Nonnegative Matrix Factorization, Slow
Features Analysis, Facial behaviour dynamics analysis

1. INTRODUCTION

Arguably image data high dimensionality is one of the most
crucial problems that every image processing algorithm has
to overcome. To alleviate this problem latent feature learning
methods that aim to effectively represent the high dimensional
image data in a simpler and more compact form, are currently
widely adopted. These methods aim to identify an appropri-
ate subspace where a certain criterion is optimized and the
latent image features are discovered by performing a linear
or non-linear projection of the image. These extracted latent
features can significantly decrease computational complexity
and boost the performance of the succeeding image process-
ing algorithms.

In computer vision research significant attention has been
attracted in developing latent feature learning algorithms that
mimic the functions of the human visual system. Two of the
most popular and efficient principles that model human vi-
sual perception and have inspired significant volume of re-
search in latent feature learning, are the temporal slowness
and the parts-based representation. Nonnegative Matrix Fac-
torization (NMF) [1], is a representative parts-based learn-
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ing algorithm widely used in image processing. It is an un-
supervised data matrix decomposition method that requires
both the matrix being decomposed and the derived factors to
contain nonnegative elements. The nonnegativity constraint
leads to a parts-based representation, since it allows only ad-
ditive and not subtractive combinations. The semantic inter-
pretability of the nonnegative subspace learning is enhanced,
since this conforms nicely to identifying appropriate basic el-
ements, corresponding to the basis images, which are added
to reconstruct the original data. Moreover, there is a close
relationship between NMF and objects parts-based represen-
tation in the human brain, since the firing rates of the visual
cortex neurons can never be negative.

Slow Feature Analysis (SFA) [2] is a latent feature learn-
ing algorithm that intuitively imitates the functionality of the
receptive fields of the visual cortex [3], thus being appropri-
ate for describing the evolution of time varying visual phe-
nomena. The temporal slowness learning principle in SFA
was motivated by the empirical observation that higher order
meanings of sensory data, such as objects and their attributes,
are often more persistent (i.e., change smoothly) than the in-
dependent activation of any single sensory receptor. For in-
stance, in facial behaviour analysis it has been recently shown
that SFA learning can discover mapping functions between an
input image sequence that varies quickly and the correspond-
ing high-level semantic concepts that vary slowly [4].

In this paper, we combine the principles of temporal
slowness and nonnegative parts-based learning into a single
combined framework. The proposed novel algorithm called
Slow Features Nonnegative Matrix Factorization (SFNMF)
aims to learn slow varying parts-based representations of time
varying sequences for unsupervised facial behaviour dynam-
ics analysis. More precisely, we aim to accurately capture the
transitions between the temporal phases of facial Action Units
(AUs). To derive SFNMF optimization problem we demon-
strate that this naturally arises by embedding the SFA trace
optimization problem in the nonnegative subspace learning
framework, resulting in simultaneously minimizing the re-
construction error and the temporal variance of the derived
latent features. As it has been shown in the literature SFA is



a special case of Locality Preserving Projections (LPP) [5]
acquired by defining the data neighborhood structure using
their temporal variations [6]. Thus, SFNMF problem is sim-
ilar to other recent NMF based algorithms that incorporate
extra regularization terms [7, 8, 9, 10, 11].

2. A BRIEF REVIEW OF NMF & SFA

Without losing generality let us assume that NMF is applied
for the decomposition of N images stored is the nonnegative
data matrix X ∈ <F×N

+ whose columns are F -dimensional
feature vectors obtained by scanning each image row-wise.
NMF attempts to find two low rank matrices V and W that
minimize the reconstruction error subject to nonnegativity
constraints:

min
V,W

||X−VW||2F (1)

s.t. vi,k ≥ 0 , wk,j ≥ 0, ∀i, j, k.

where matrix V ∈ <F×M
+ (M << F ) contains the basis

images, while W ∈ <M×N
+ contains the appropriate linear

combination coefficients that reconstruct each original image
and ||.||F is the matrix Frobenius norm. Using an appropri-
ately designed auxiliary function, it has been shown in [12]
that the following multiplicative rules update wk,j and vi,k,
yielding the desired factors, while guarantee a non increasing
behavior of the cost function:

w
(t)
k,j = w

(t−1)
k,j

[V(t−1)T X]k,j
[V(t−1)T V(t−1)W(t−1)]k,j

, (2)

v
(t)
i,k = v

(t−1)
i,k

[XW(t)T ]i,k
[V(t−1)W(t)W(t)T ]i,k

. (3)

Assuming that the decomposed data are not static images
but a time varying sequence, as for instance the frames xt ∈
<F of a video sequence where t ∈ [1, N ] denotes time, SFA
seeks to determine appropriate projection bases stored in the
columns of matrix V ∈ <F×M , that extract the slowest vary-
ing features. To do so, SFA attempts to minimize the variance
of the approximated first order time derivative of the latent
variables W ∈ <M×N subject to zero mean, unit covariance
and decorrelation constraints:

minV tr[ẆẆT ]
s.t. W1 = 0, WWT = I

(4)

where tr[.] is the matrix trace operator, 1 is aN×1 vector with
all its elements equal to 1

N and I is an M ×M identity ma-
trix. Matrix Ẇ approximates the first order time derivative of
W, evaluated using the forward latent variable differences as
Ẇ = WP where P is an N × (N − 1) matrix with elements
Pi,i = −1 and Pi+1,i = 1.

Considering the linear case where the latent space can be
derived by projecting the input samples on a set of basis as

W = VTX and assuming that input data have been normal-
ized such as to have zero mean, the SFA problem in (4) can
be reformulated to the following trace optimization problem:

min
V

tr[VTAV], s.t. VTBV = I (5)

where B is the data covariance matrix and A is a covariance
matrix evaluated using the forward temporal differences of
the input data, contained in matrix Ẋ:

A =
1

N − 1
ẊẊT =

1

N − 1
XLXT , B =

1

N
XXT , (6)

where L = PPT . As it has been shown in [2] the solution
of (5) can be found from the Generalized Eigenvalue Prob-
lem AV = BVΛ where the columns of the projection ma-
trix V are the generalized eigenvectors associated with the
M -lowest generalized eigenvalues contained in the diagonal
matrix Λ.

3. SLOW FEATURES NONNEGATIVE MATRIX
FACTORIZATION

Next we first present the SFNMF optimization problem and
demonstrate that this naturally arises by embedding the SFA
trace optimization problem in the nonnegative subspace learn-
ing framework. Subsequently, we derive multiplicative up-
date rules for SFNMF optimization.

3.1. SFNMF Optimization Problem

Assuming that we have centred our data such as to have
zero mean, and assuming an orthogonal base VTV = I
the constrained trace optimization problem in (5) is equiv-
alent to simultaneously requiring the minimization of term
tr[VTXLXTV] and the maximization of term tr[VTXXTV].
This can be expressed by the following minimization prob-
lem:

min
V

tr[VTXLXTV]− tr[VTXXTV]. (7)

However, optimizing term tr[VTXXTV] with respect to V
is equivalent to optimizing 1

2 ||X−VVTX||2F since:

||X−VVTX||2F = tr[XXT ]− tr[VTXXTV] (8)

and term tr[XXT ] is independent of V. Hence, the cost func-
tion is reformulated as 1

2 ||X−VVTX||2F + tr[VTXLXTV].
Consequently, considering the linear case where W =

VTX, relaxing the orthogonality constraints and incorporat-
ing nonnegativity constraints on the elements of matrices V
and W we derive the proposed SFNMF problem that aims to
identify slow varying basic components:

min
V,W

1

2
||X−VW||2F + λtr[W(L+ − L−)WT ] (9)

s.t. vi,k ≥ 0 , wk,j ≥ 0, ∀i, j, k,



where λ is a positive constant. Moreover, since matrix L con-
tains both positive and negative elements we have expressed
it as the difference of the nonnegative matrices L+ and L−

to ensure that the subsequently derived update rules cannot
assign negative values to the updated elements.

3.2. Multiplicative Update Rules for SFNMF Optimiza-
tion

To solve the SFNMF constrained optimization problem in (9)
we introduce the Lagrangian multipliers φ = [φi,k] ∈ RF×M

and ψ = [ψj,k] ∈ RM×N each one associated with con-
straints vi,k ≥ 0 and wk,j ≥ 0, respectively. Thus the La-
grangian function L is formulated as:

L =
1

2
tr[XXT ]− tr[VWXT ] +

1

2
tr[VWWTVT ]

+ λtr[W(L+ − L−)WT ] + tr[φVT ] + tr[ψWT ].(10)

Consequently, the optimization problem in (9) is equivalent to
the minimization of the Lagrangian. To minimize L, we first
obtain its partial derivatives with respect to vi,j and wi,j and
set them equal to zero:

∂L
∂vi,k

= −[XWT ]i,k + [VWWT ]i,k + φi,k = 0 (11)

∂L
∂wk,j

= [VTVW]k,j − [VTX]k,j + 2λ[WL+]k,j

− 2λ[WL−]k,j + ψk,j = 0. (12)

Using the KKT conditions it holds that φi,kvi,k = 0 and
ψk,jwk,j = 0. Thus, solving equation (11) for vi,k leads
to the multiplicative update of conventional NMF algorithm
shown in (3), since the incorporated term is independent of
V. On the other hand, solving (12) for wk,j we derive the
proposed multiplicative update rule:

w
(t)
k,j = w

(t−1)
k,j

[V(t−1)T X]k,j + 2λ[W(t−1)L−]k,j

[V(t−1)T V(t−1)W(t−1)]k,j + 2λ[W(t−1)L+]k,j
.

(13)
Since the derived update rule for V is the same as in (3) we
can recall the proof in [12] to show that the cost function of
SFNMF is non-increasing under this update. Regarding the
proposed update in (13) the detailed proof is omitted here due
to space limitations. However, this can be easily derived sim-
ilarly to that in [7].

4. EXPERIMENTAL RESULTS

We compared the proposed method against NMF, GNMF [7]
and SFA for unsupervised facial behaviour analysis. More
precisely, we investigated how effectively each method can
detect the transitions between the temporal phases during dif-
ferent facial AUs activation. In general, when activating an
AU, the following temporal phases are recorded: Neutral,

when the face is relaxed, Onset, when the action initiates,
Apex, when the muscles reach the peak intensity and Off-
set when the muscles begin to relax. The action finally ends
with Neutral. Experiments were conducted on the publicly
available MMI database [13] which consists of more than 400
videos annotated in terms of facial AUs activations and their
temporal phases. All facial images acquired by MMI video
sequences have been aligned and scaled to a fixed size of
169 × 171 pixels. Image alignment was performed by warp-
ing the facial images based on 68 landmark points obtained
by tracking each subjects facial expression formation.

For each method in the comparison we performed a val-
idation step using part of the available data in order to fine
tune the involved parameters. Thus, for GNMF we consid-
ered a 5-nearest neighbors graph to capture the local geomet-
ric structure of data, a 0 − 1 weighting system for defining
the weight matrix and set parameter λ that regulates the con-
tribution of the two parts in GNMF cost function to 150. Fi-
nally, for all algorithms we considered projection to a sub-
space of equal dimensionality which was set to 50, while
the proposed method, NMF and GNMF algorithms were it-
eratively trained until convergence determined by monitoring
the objective function improvement between successive iter-
ations.

To facilitate the comparison between the considered al-
gorithms and the ground truth, we map the recovered latent
space by each method to the temporal phases of AUs. This
is done by finding for each method the slowest varying la-
tent feature of the 50 extracted. To identify this we compute
the first order derivative for each obtained latent variable and
select the one that minimizes: argmini wiLwT

i . We should
note that since SFA introduces an ordering to the derived la-
tent variables sorted by their temporal slowness, we simply
acquire the first identified latent feature which corresponds to
the slowest varying one.

Fig. 1 shows the performance of the examined methods in
terms of capturing the AU temporal phases on two video se-
quences displaying the activation of two different AUs. More
precisely, the results presented in Fig. 1(a) correspond to a
video sequence where the subject performs AU 27 (i.e. mouth
stretch), while results shown in Fig. 1(b) correspond to the ac-
tivation of AU 43 (i.e. eyes closed). In each plot the ground
truth instances when the AUs temporal phases transition ap-
pear are highlighted with red marks. As can be observed in
both videos the proposed method outperforms both GNMF
and SFA since it detects the temporal phases more accurately.
Moreover, NMF was not able to detect AU phases transition
on both videos.

5. CONCLUSION

In this paper, we proposed a novel algorithm called Slow
Features Nonnegative Matrix Factorization that aims to learn
slow varying parts-based representations of time varying se-
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Fig. 1. Obtained results by applying the proposed method, NMF, GNMF and SFA on a video sequence from the MMI dataset
displaying a subject performing: (a) Mouth stretch (AU 27) and (b) Eyes closed (AU 43). The red marks indicate the annotated
ground truth where the AU temporal phase changes (N - Neutral phase, ON - Onset phase, AP - Apex phase, OF - Offset phase).

quences. The proposed method attempts to simultaneously
minimize the data reconstruction error and the temporal vari-
ance of the derived latent features. For SFNMF optimization
we derived novel multiplicative update rules and verified its
superiority against NMF, GNMF and SFA for unsupervised
facial behaviour dynamics analysis on MMI database. Fur-
ther research includes, extensions using multi-linear and ker-
nel decompositions [14, 15, 16, 17]. Another research direc-
tion is applying the propose decomposition in an incremental
manner for visual tracking [18].
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