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In this paper we propose a method that exploits 3D motion-based features between frames of 3D facial geometry
sequences for dynamic facial expression recognition. An expressive sequence is modelled to contain an onset fol-
lowed by an apex and an offset. Feature selection methods are applied in order to extract features for each of the
onset and offset segments of the expression. These features are then used to train GentleBoost classifiers and
build a Hidden Markov Model in order to model the full temporal dynamics of the expression. The proposed fully
automatic systemwas employed on the BU-4DFEdatabase for distinguishing between the six universal expressions:
Happy, Sad, Angry, Disgust, Surprise and Fear. Comparisonswith a similar 2D system based on themotion extracted
from facial intensity imageswas also performed. The attained results suggest that the use of the 3D information does
indeed improve the recognition accuracy when compared to the 2D data in a fully automatic manner.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

It is widely expected that in the future computing will move into
the background, becoming a part of our everyday life, with the user
moving into the foreground. As a part of this transition, the interactions
betweenusers and computerswill need to becomemore natural,moving
away from the traditional interface devices, and replicating human-to-
human communication to a larger extent. Facial expressions constitute
an important factor of communication, revealing cues about a person's
mood, meaning and emotions. Therefore the requirement for accurate
and reliable facial expression recognition systems is a crucial one.

Recognition of facial expressions is a challenging problem, as the face
is capable of complex motions, and the range of possible expressions is
extremely wide. Even recognition of the six universal expressions –

happiness, sadness, anger, disgust, fear and surprise – is a difficult prob-
lem, due to thewide variations seen between subjects when expressing
these emotions, and the differences between acted and naturalistic
examples.

Expression dynamics are of great importance for the interpreta-
tion of human facial behaviour [1]. They convey cues for behaviour
interpretation [2], and are useful for distinguishing between sponta-
neous and posed emotional expressions [3]. In addition, they are
essential for the recognition of complex states such as pain and
mood [4], as well as of more subtle emotions such as social inhibition,
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embarrassment, amusement and shame [5,6]. It is therefore obvious
that a system capable of accurate and robust expression recognition
will need to harness the information available in expression
dynamics.

Methods and systems have been proposed for automatic facial ex-
pression and facial action unit (AU) recognition from 2D facial images
and video. Unfortunately, these systems are highly sensitive to the re-
cording conditions such as illumination conditions, facial pose and
others changes in facial appearance like make up, sunglasses etc.
More precisely, in most cases when 2D facial intensity images are
used it is necessary to maintain a consistent facial pose (preferably
a frontal one) in order to achieve good recognition performance.
Even small changes in facial pose can reduce the effectiveness of the
systems. For these reasons, it is now widely accepted that in order
to address the challenge of accuracy, different capture modalities
(such as 3D or infrared) must be employed. Furthermore, advances
in structured light scanning, stereo photogrammetry and photometric
stereo have made the high-end acquisition of 3D facial structure and
motion a feasible task [7].

The use of 3D facial geometry data and extracted 3D features for
expression recognition has so far not been heavily studied. Images
and videos of this kind will allow a greater amount of information
to be captured (2D and 3D), including out-of-plane movement
which 2D cannot capture, and remove the problems of illumination
and pose inherent to 2D data. There are previous research efforts
that use 2D images to construct 3D models in order to extract 3D fea-
tures that can be used for classification of the facial expression, such
as in [8–10]. However these methods are also susceptible to the prob-
lems of illumination and pose inherent to all 2D methods. For this
reason, more recently several methods have been proposed which
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use 3D facial geometry data for facial expression recognition, either
for static analysis [11–16], to encode the temporal information
[16,17], or to model the temporal dynamics of facial expressions in
3D image sequences [18,19].

Expression dynamics and 3D facial geometry data combined
offer a wealth of information that can be harnessed for the analysis
of facial expressions. The development of such systems will open up
new avenues in facial expression recognition as 3D facial geometries en-
sure that all motion in the face will be captured, unlike 2D data, and
analysis of full expression dynamics allows cues to be detected that
are unavailable in static data. This paper proposes a method that aims
to exploit the advantages in data of this kind through the extraction of
3Dmotion-based features and temporalmodelling of the full expression
dynamics for recognition purposes.

We propose a fully automatic method for facial expression recog-
nition which consists of several stages. Firstly the 3D motion of the
face appearing between frames in each image sequence is captured
using Free-Form Deformations (FFDs) [20]. We extract features by ap-
plying a quad-tree decomposition of the motion fields. Features are
then collected using a GentleBoost (GB) feature selection method
for the onset and offset temporal segments of the expression and
frame classification. Temporal modelling of the full expression is per-
formed via neutral–onset–apex–offset hidden Markov models
(HMMs). These models are then used for dynamic expression recog-
nition. We have also conducted a comparison between the use of mo-
tion extracted from 2D facial intensity and 3D facial geometry
information using a similar methodology in order to prove the supe-
riority of the latter approach.

In summary, the novel contributions of this paper are as follows:

• Employing 3D FFDs, sets of 2D vector projections and quad-trees
in order to perform 3D motion-based feature extraction.

• An extension of the method proposed in [21] to perform expres-
sion recognition using both 2D intensity images and 3D facial
geometry information.

• Modelling of the temporal segments of the full expression rather
than those of action units.

A comparison of the equivalent 2D and 3D methods is then per-
formed on the same database, the BU-4DFE, in order to assess the
benefits of the 3D data. To the best of our knowledge, this is the
first fully automatic approach for dynamic 3D facial expression
recognition.

2. Related work

The use of facial expression dynamics in expression recognition
systems has recently increased dramatically. Analysis of this kind
makes use of the implicit temporal encoding in expressions which
have been shown to hold the key to distinguishing between different
meanings and emotions. The majority of work in this field so far has
made use of 2D image sequences, though a few works have started
to capitalise on 3D facial geometry data. In addition research has
been conducted into analysis of facial expressions from 3D static
data, which is also related to the work presented here.

In this section we discuss previous 2D dynamic facial expression
analysis, and then go on to look at the 3D static and dynamic work
that has been completed in this area, focusing mainly on the feature
extraction stage as this provides the main differences in the analysis
of expressions in 3D versus 2D images and image sequences.

2.1. 2D facial expression dynamics analysis

Facial expression recognition systems generally consist of several
different stages: feature extraction, feature classification and tempo-
ral modelling. This section examines the main techniques that have
been used for each of these stages in previous 2D dynamic work.
2.1.1. Feature extraction
The feature extraction approaches can mostly be divided into

three categories of approaches: geometric features, appearance
based features, and motion based features. There have been several
examples of the use of geometric features which concentrate on the
shapes of particular facial components or the position of facial fiducial
points. These include the works in [22–25], each of which track facial
feature points, and use the movements of these points to find inter-
mediate parameters.

Appearance-based methods have been used throughout facial ex-
pression recognition work on 2D image sequences. These include the
use of Gabor wavelets in [26] to produce feature representations of
each frame that can then be used for classification. The work in [27] is
another example of work that used a set of Gabor wavelet coefficients,
but this time facial feature pointswere identifiedbefore applying thefil-
ters at only these locations. An alternative filter type, exploited in [28],
are morphological operators which use the processes of dilations and
erosion to highlight various facial characteristics useful for expression
analysis. Another type of feature descriptor that have been employed
for facial expression recognition are local binary patterns (LBPs), [29].
Afinal alternativemethod used in [30] involved embedding feature vec-
tors representing images into a manifold in order for temporal analysis
to be done. The dynamics of the expression were then traced through
the low-dimensional representation of the unfolded manifold.

Motion-based featureswere used in [21,31]. In theseworks, free-form
deformations (FFDs) [32] were used to capture the motion between
frames which is used to extract features from different regions in each
image. Optical flow features, computed through a least squares approach,
were also employed in [33,34]. An alternative method was employed in
[35], where Gabor energy filters were used to encode the motion in
image sequences.

Some works used features that implicitly encode the temporal in-
formation. These works have not generally aimed to model the tem-
poral segments of the expression. One such method was the LBP
based descriptor, LBP-TOP [36], which encodes the full image se-
quence as a three-dimensional image (2D+time). Alternatively,
multi-linear representations of the image sequence were used in
[37] for classification.

2.1.2. Classification
Several classification techniques have been used in previous dy-

namic 2D work. Simple rules were used as classifiers in [23,24] to dis-
criminate between AUs from mid-level parameters determined from
the features. Multi-class Support Vector Machines (SVMs) have
been used in many works: in [25,38] to analyse facial action unit tem-
poral segments, in [35] for analysis of full expression dynamics and in
[22] for recognition of both. Additionally the AdaBoost algorithm has
been used prior to classification to choose features that give the most
information which were then passed to SVMs [38,35]. Alternatively,
AdaBoost was used for classification itself in [26], and a variation on
AdaBoost classification, GentleBoost [39] which uses a different up-
date rule to AdaBoost which makes the classifier more stable and in-
creases the speed of convergence, was used for classification in [21].
An additional method that has been used in several works such as
[8,10] is Tree-Augmented Naive Bayes (TAN) classification which
model the dependencies between the different features.

2.1.3. Temporal modelling
The use of temporal modelling of the dependencies between

frames in either a full expression or action unit is an important step
in the analysis of facial expression dynamics. It allows the information
contained in the relationships between movement at different points
in the expression to be harnessed for recognition. One method used
for this purpose is dynamic Bayesian networks (DBNs) [27,26]. In
this work static Bayesian networks were created for each time step
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in the image sequence, and dependency links are added between
nodes, AUs in this case, both within the time step, and between them.

An alternative model regularly used for dynamic facial expressions
analysis is the HMM, a tool best known for its use in speech proces-
sing. These model the observable output as dependent on the states
of hidden variables, which in this case can represent the different
temporal segments of the expression or AU. These were used in
[8,34] to model the full expression dynamics, and in [21] to model
AU dynamics. Alternatively, a hybrid SVM-HMM classifier has also
be used to model the dynamics of AUs [25].
2.2. 3D static facial expression analysis

Several previous works have used 3D static images for facial ex-
pression recognition. In these works the feature extraction stage pro-
vides the main differences in methodology over those of the 2D
systems. Classification and temporal modelling is carried out using
similar techniques to those used in the 2D work.

One feature type that has been used for analysis of 3D data, for ex-
ample in [40,14], are characteristic distances, extracted from the dis-
tribution of facial feature points in the 3D facial geometries. In these
works, the distances were then used directly as inputs to classifiers
in order to distinguish the six basic expressions. In [14], the discrim-
inative power of a range of distances were determined, in order to se-
lect which distances showed the biggest differences between the
expressions.

Alternatively, the method proposed in [41] made use of 2D geo-
metric features, 3D curvature features, and moment invariants that
combine 3D geometry with 2D texture, and embedded these into an
Isomap manifold in order to distinguish between normal expressions
and those of people with schizophrenia.

Another method widely used is morphable models, formed from
the principal components of a set of 3D faces. Examples of work
that use this approach include [11,42,43], in which bilinear models
are used to model both the expression and identity, and [44], in
which aMorphable ExpressionModel (MEM)was proposed which al-
lows any expression to be built from a weighted linear combination of
components. These models provided a vector representation of the
face to be formed, which allowed classification of the expression via
clustering.

Afinalmethod is tomap the 3D information into a 2D representation.
This was employed in [45], where preprocessed 3D data was mapped
into 2D curvature images with each point in the image representing
the curvature of the 3D surface at that point in the 2D plane. These
were then used to extract Gabor wavelet features for classification in a
similar way to how they are applied to 2D texture images. Similarly, in
[13], the 2D images were formed from 3D data, and used to capture
the deformation between the resultant meshes and a reference mesh,
by using themethod developed in [46]. In thiswork least squares confor-
mal mapping was used for the initial 2D mapping, and then adaptive
mesh generation was applied to provide different point densities as re-
quired across the mesh. The resulting deformation estimates were used
for AU classification.

In addition, some approaches, both for static and dynamic expres-
sion analysis, have used 3D models built from 2D images or videos, in
order to extract 3D features to be used for expression analysis. Static
examples include [47], which fitted a 3D face mesh to each image and
used this to produce face texture maps that were independent of the
original geometric motion. These were then used to extract high fre-
quency components as features. Another example is [9], in which a
model-based tracker was used to extract the pose and shape of the
face in each frame before feature extraction was done. A generic
face model based on fitting Bezier patches to the 2D images in the se-
quence was used in [10] and [8]. In the former this was used for static
expression analysis only, whereas in the latter facial points in this
model were tracked through the image sequences in order to extract
features and perform analysis of the dynamics of the expression.

2.3. Encoding of 3D temporal information

One of the first works to exploit 3D motion-based features for fa-
cial expression analysis was [16] which performed recognition of the
six basic expressions. This work did not aim to explicitly model the
temporal dynamics of the expression, rather using motion vectors in
order to classify particular expressions. Experiments were conducted
on the BU-4DFE database [48], upon which the work presented in this
paper is based. A deformable model was used for tracking the changes
between frames and from which the motion vectors could be found.
These were then classified via an extracted 3D facial expression
label map which was produced for each expression.

An alternative method employed in [17,49] used the active shape
model (ASM) to represent pairs of 2D and 3D images in order to track
the movements of landmarks. These were then used to determine the
presence of different deformations in the face that correspond to par-
ticular AUs, and classified using a rule-based approach. In this work
the features were used in two ways: for a particular frame indepen-
dently, and alongside the features from previous frames in order to
encode the temporal information for use in detecting AUs after they
have concluded.

2.4. Dynamic 3D facial expression modelling

3D data was used for analysis of expression dynamics in [18], in
which a small 3D database was created which could be used for the
analysis. Feature points were tracked in order to capture the deforma-
tion of the 3D mesh during the expression. Dimensionality reduction
was then used to embed the video sequences into a low dimensional
manifold, which then allowed a probabilistic model to be built con-
taining the temporal information from the videos.

One of the first works to conduct experiments using the BU-4DFE
database for the analysis of facial expression dynamics was [19]. The
deformable model from [16] was adapted to each frame in the
image, and then used to track the changes in this model to extract
geometric features. Dimensionality reduction was applied via Linear
Discriminant Analysis (LDA), followed by the use of 2-dimensional
HMMs to model the spatial and temporal relationships between the
features.

This work proposes an alternative method for dynamic facial ex-
pression analysis. We employ FFDs to model the motion between
frames in the image sequence, rather than fitting a deformable
model to each mesh. Quad-tree decomposition is used to allow the
density of features extracted to reflect the percentage of motion present
in each part of the image. The expression ismodelled as consisting of four
temporal segments, neutral–onset–apex–offset, with GB classifiers
trained for the onset and offset segments and then used to build a
HMM for the full expression, rather than training directly from the
frame features. Each of these stages in our systemwill be described in de-
tail in the following section.

3. Methodology

An overview of our system can be seen in Fig. 1. In the preprocessing
stage, the 3D meshes in each frame are aligned to a reference frame
using an iterative closed point (ICP)method [50]. The 3Dmotion is cap-
tured from each set of frames via FFDs [32], and the 3D vector fields are
interpolated onto a uniform grid. Vector projections and quad-tree de-
compositions are calculated in order to determine the regions of the im-
ages inwhich the greatest amount ofmotion appears. Features are then
gathered from each region in each frame, and are used to train classi-
fiers on the onset and offset segments of the expression. The outputs
are used to build a HMM of the full expression sequence.



Fig. 1. An overview of the full system including motion caption, feature extraction, classification, and training and testing.
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Algorithm 1. Non-rigid registration algorithm

Require: Stopping criterion ε
Require: Step size μ

Initialise the control points Φ′

Calculate the gradient vector of the cost function Cwith respect
to the current control points Φ′:

∇C ¼
∂C Φ′

� �
∂Φ′

while ||∇C||> do
Recalculate the control points

Φ′ ¼ Φ′ þ μ
∇C
jj∇C

jj

Recalculate the gradient vector ∇C
end while
Calculate Φδ=Φ−Φ′

Derive T(p) through B-spline interpolation of Φδ

3.1. Motion extraction

The motion between the frames in each image sequence was cap-
tured using 3D FFDs. FFDs [32] is a method for non-rigid registration
based on B-spline interpolation between a lattice of control points.
The 2D version of this method was employed for motion capture in
[21]. Our aim is given two meshes, with vertices p=(x,y,z) and p′=
(x,ý,ź) respectively, to find a vector field given by T(p) such that:

p′ ¼ T pð Þ þ p: ð1Þ

The basic idea is to deform an object bymanipulating an underlying
mesh of control points. The lattice,Φ, is regular in the source image and
consists of nx×ny×nz points φ(i, j,k) with regular spacing. This is then
deformed by registration of the points in the target image to become
Φ′ with irregularly spaced control points. The difference between the
two lattices is denoted as Φδ. T(p) can be computed using B-spline in-
terpolation on Φδ.

For any point in the 3D mesh p, let the closest control point have
coordinates (x0,y0,z0) and displacement φδ(i, j,k). The transformation
of this point can be given as the B-spline interpolation of the 64 closest
control points:

T pð Þ ¼
X3
l¼0

X3
m¼0

X3
n¼0

Bl a1ð ÞBm a2ð ÞBn a3ð Þφδ iþ l; jþm; kþ nð Þ ð2Þ
where a1=x−x0, a2=y−y0, a3=z−z0, and Bl is the lth basis function
of uniform cubic B-spline, defined as follows:

B0 að Þ ¼ 1
6

−a3 þ 3a2−3aþ 1
� �

B1 að Þ ¼ 1
6

3a3 þ 6a2 þ 4
� �

B2 að Þ ¼ 1
6

−3a3 þ 3a2 þ 3aþ 1
� �

B3 að Þ ¼ 1
6
a3:

T(p)=(u(p),v(p),w(p)) is the vector field used in this work for expres-
sion analysis.

In order to calculate Φδ, a cost function C is defined. In this paper
we chose C to be the sum of squared differences between the points
in the target and reference meshes. The non-rigid registration algo-
rithm then proceeds to optimise the control point lattice,Φ′, by mini-
mising this cost function. To do this, we employ an iterative gradient
descent technique which takes steps with size μ in the direction of the
gradient vector. The algorithm finishes when a local optimum is
found, which in this case is defined as when the gradient of the cost
function reaches a suitably small positive value. The difference between
the optimised control point lattice and the original regular lattice is then
calculated, and this is used to perform B-spline interpolation in order to
find the vector field that captures the motion between the frames. The
full algorithm is shown in Algorithm 1.

Fig. 2 shows an example of applying 2D FFDs to extraction of the
motion in a pair of images displaying a smile. Here the lattice of con-
trol points and the B-spline interpolation between them is shown as a
yellow grid. In Fig. 2a the grid is almost regular, whereas in Fig. 2b this
grid has been deformed in order to capture the bulging of the cheeks
and stretched lips around the mouth.

The resolution of the grid used determines the sensitivity of finely
motion tracking between the two images. In this work a grid with
control point spacing of 1 mm is used. Fig. 3 shows a neutral and
apex mesh for a happiness expression, and the motion tracked by
FFDs between these frames. The most highly concentrated areas of
motion are around the corners of the mouth and the cheeks, as is
expected for this expression.

3.2. Feature extraction

We used motion based features, extracted from the vector fields
captured by the FFDs, to train our classifiers. In order to simplify our
approach vector projections were computed for each pair of axes (x,
y,z and t), in a similar manner to the method used in [21]. However,
here it was necessary to compute projections for all three spatial di-
mensions, resulting in six different projections. Furthermore, in
order to focus only on the areas in which the greatest amount of



(a) (b)

Fig. 2. Example of 2D FFDs applied to aligned face images. Grid shows the control point lat-
tice and theB-spline interpolation of this. (a) Start of onset of Smile. (b) Endof onset of Smile.
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motion occurs, a quad-tree decomposition was then applied on these
projections to divide the vector field into regions according to the
amount of motion in every region. Finally, a set of features were
extracted from each region.

3.2.1. Vector projections
Vector projections, displayed as an image, show the areas in the

image in which there is a high concentration of motion in the se-
quences across a number of frames (or an axis). Two sets of vector
projections were produced from the dataset, one built from frames
in which the onset segment of the expression occurred, and other
from frames in which the offset segment of the expression occurred.
Six 2D vector projections were created from the 3D facial motion.
These consisted of three spatial vector projections, one for each pair
of spatial axes, and three time-space vector projections.

The spatial vector projections for awindowwidth of θwere calculated
as follows:

Pθ
xy x; yð Þ ¼

XM
i¼1
∑
τ∈Ωi

Xτþθþ1

t¼τ−θ
∑

z
u2
i;x;y;z;t þ v2i;x;y;z;t þw2

i;x;y;z;t ð3Þ

Pθ
xz x; zð Þ ¼

XM
i¼1

∑
τ∈Ωi

Xτþθþ1

t¼τ−θ
∑
y
u2
i;x;y;z;t þ v2i;x;y;z;t þw2

i;x;y;z;t ð4Þ

Pθ
yz y; zð Þ ¼

XM
i¼1

∑
τ∈Ωi

Xτþθþ1

t¼τ−θ
∑
x
u2
i;x;y;z;t þ v2i;x;y;z;t þw2

i;x;y;z;t ð5Þ

whereΩi is the set of frames belonging to the temporal segment in the ith
image sequence,M is the total number of image sequences of the current
expression in the training set, and

ui;x;y;z;t ¼ ui x; y; z; tð Þ;

vi;x;y;z;t ¼ vi x; y; z; tð Þ;

wi;x;y;z;t ¼ wi x; y; z; tð Þ
Fig. 3. Mesh representations of neutral and apex frames taken from the Happy image
sequence for subject F004, along with the motion tracked between them by FFDs.
(a) Mesh of the cropped neutral 3D facial geometry. (b) Mesh of the cropped apex
3D facial geometry. (c) Vector field showing the motion between these frames.
are the vector components, in the x, y and z directions respectively, at
coordinates (x,y,z) and time t in the ith image sequence. Note the sum-
mation is performed over thewindow to be used, aswell as over the se-
quence, to ensure all frames that will be used for gathering features
influence the quad-tree decomposition.

The time-space vector projections were calculated for t values in
the range 0≤ t≤2θ−1 as follows, using only the vector component
in the spatial direction applicable:

Pθ
xt x; tð Þ ¼

XM
i¼1

∑
τ∈Ωi

∑
y
∑

z
u2
i;x;y;z;τ−θþt ð6Þ

Pθ
yt y; tð Þ ¼

XM
i¼1

∑
τ∈Ωi

∑
x
∑

z
v2i;x;y;z;τ−θþt ð7Þ

Pθ
zt z; tð Þ ¼

XM
i¼1

∑
τ∈Ωi

∑
x
∑

y
w2

i;x;y;z;τ−θþt : ð8Þ

Examples of vector projections can be seen in Fig. 4a–c and
Fig. 4g–i, here collected from one fold of onset of the Happy expres-
sion with window width of 4. The former shows the spatial vector
projections and the latter the space-time vector projections.

3.2.2. Quad-tree decomposition
Before feature extraction could be performed on each of the image

sequences, we divided the images into regions from which a set of
features was acquired. Instead of dividing the images into evenly
sized regions, the technique that we employed was quad-tree decom-
position. Quad-tree decomposition has been widely used in computer
vision and image processing for image segmentation and feature ex-
traction. In our case we used quad-tree decompositions to divide
the image into regions sized according to the amount of motion pre-
sent in each part of the vector projection. The algorithm, detailed in
Algorithm 2, works by measuring the percentage of total motion in
the frame that is contained in each region. A region is divided into
four equally sized square regions if the percentage it contains is
over a certain threshold. A lower limit is set on the region size,
below which the regions cannot be divided further. The division con-
tinues repeatedly until no further regions can be split. The threshold,
γ, used was 6% of the average amount of motion in the blocks. This
was determined to give adequate quad-tree decomposition results
from preliminary testing. Two sets of quad-tree decompositions
were found from the training set — one from the frames consisting
of onset motion, and one from frames consisting of offset motion.
These sets were then used throughout the training and testing.

Algorithm 2. Quad-tree decomposition
Require: Splitting threshold γ
Require: Minimum region size σ

Define ptot as the total sum of movement across the full image
Initialise R with single region which is entire image
while True do

for region r in R do
Set p to be sum of movement in r
if p>γptot and size of r>σ then

remove r from R
divide r into four equally sized square regions
add these new regions to R

end if
end for
if no region was divided then

Stop
end if

end while

image of Fig.�2


(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4. Spatial and space-time vector projections and the quad-trees they produced for
the onset segment of the Happy expression with window width of 4. (a) x–y vector
projection. (b) x–z vector projection. (c) y–z vector projection. (d) x–y quad-tree.
(e) x–z quad tree. (f) y–z quad tree. (g) x–t vector projection. (h) y–t vector projection.
(i) z–t vector projection. (j) x–t quad-tree. (k) y–t quad tree. (l) z–t quad tree.
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We used sliding windows throughout the quad-tree decomposition
and feature extraction in order to allow information from previous or
later frames to be used in the classification of the current frame. This
is useful as the duration of a certainmotion can helpwith differentiating
between two ormore expressions. Variouswindowwidths were tested
to identifywhichwidth gave the best results for each expression. Awin-
dow width of θ will produce a set of 2θ frames in total.

Examples of the quad-trees produced for each of the vector projec-
tions in Fig. 4 can be seen in Fig. 4d–f and Fig. 4j–l. For example,
Fig. 4e shows the decomposition created by dividing the vector projec-
tion in Fig. 4b according to the amount of motion in the image. The
smallest regions correspond to those parts of the image that contain
the highest concentration of the motion, whereas the larger regions
contain very little motion.
0 20 40 60 80 100 120
−12

−10

−8

Frame Index

Fig. 5. Example of the onset and offset GB classifier outputs for a Sad sequence with
window width 12.
3.2.3. Features
Once the quad-trees had been produced for each vector projection

they were used to extract features for every frame in the set of image
sequences. For each region in the quad-tree, one set of 3D features
was identified and stored. Therefore, areas where little motion was
present will be covered by large regions and so produce few features,
whereas areas with a large amount of motion produced small regions
and so gave many features. The features used included the mean and
standard deviation of the distribution of directions of the vectors in
that region, the magnitude of the total motion, and the divergence
and curl of the vector field in the region. The features from all the re-
gions were concatenated into one feature vector per frame in the
image sequences, and these were used for classification.

Again, a sliding window was used to allow frames before or after
the current frame to influence the features gathered for that frame.
Hence, the features are extracted for a window of width θ around
the current frame which is at time τ in the image sequence. The vec-
tor field for the frames in this window was averaged across either
space or time using a similar calculation to that used for the vector
projections. The quad-trees previously computed were used to divide
up each average motion image into appropriately sized regions, from
which features are collected.
3.3. Classification

At the next stage, once the features for a set of image sequences had
been extracted, we used GentleBoost (GB) classifiers [39], an extension
to the traditional AdaBoost classification algorithm, in order to simulta-
neously select the best features to use, and perform the training used for
classification. We used two classifiers for each expression: one for the
onset temporal segment, and the other the offset segment.

Target labels were created for each classifier by setting the labels
for frames belonging to the temporal segment to be 1, and all other
frames to be −1. These were used, along with the features matrix
produced from each set of quad-trees, as input to the classifiers. At
each iteration in the training algorithm, the classifier chooses a fea-
ture that reduces the error by the largest margin, and then stores
this feature and the associated parameters. This continues until the
error rate no longer reduces, or the maximum number of features is
reached, here set to be 200.

Once the two classifiers had been fully trained theywere used to test
the same set of features. This produced a set of predicted labels for the
frames in the training set, along with confidence levels for these labels.
The labels and confidences were multiplied together to form a distribu-
tion of values suitable which were suitable as input for the HMMs.

The test set frames were then tested against these classifiers, in
order to produce emission values. An example of the output from
the two classifiers throughout a test Sad sequence can be seen in
Fig. 5. Values above the zero x-axis indicate frames which are labelled
as belonging to the corresponding segment, onset or offset.
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3.4. Temporal modelling

We used HMMs in order to model the temporal dynamics of the
entire expression. HMMs are a tool that have been well-used in the
analysis of facial expression dynamics, though they are best known
for their use in speech recognition. These were trained on the emis-
sion output from the GB classifiers which was formed by multiplying
the labels and confidence values together.

We model a sequence which displays a full expression using four
different temporal segments — neutral, onset, apex and offset. These
form the basis for four possible states of the hidden variable in the
HMM. The general form of the model for one expression can be
seen in Fig. 6. This model allows transitions from each state to the
next, as well as to itself, but also from apex back to onset, and from
offset back to apex, to reflect the fact that for some expressions the
subject can have multiple apexes. The actual transitions possible for
each expression, the equivalent probabilities, are calculated from
the labels in the training set, and so the latter two transitions may
not be possible for all expressions. The model assumes that the ex-
pression will start in neutral or onset, progressing through all of the
other three states, until finally returning to neutral. Hence only
frames at the beginning and end of the sequence are labelled as neu-
tral, and all other stationary frames in between are labelled as apexes.
This is appropriate in these experiments, as the examples from the
BU-4DFE used all contain this sequence.

The three sets of parameters of an HMM are:

• Initial probabilities — the probability distribution of the initial
states across the image sequences.

• Transition probabilities — a matrix defining the probabilities of
the different transitions between underlying states in the model.

• Emission probabilities — the conditional probability distribu-
tion defining how the observed values depend on the hidden
states.

Each of thesewas determined from the results gathered from testing
the trained classifiers. Let L be a matrix containing the state labels for
the training set of frames, where each row corresponds to a different
image sequence, and each column to a different frame index in this se-
quence. In practise this is stored as an array of cells as the image se-
quences are of different lengths and so contain different numbers of
frames. In addition, let Eon and Eoff be matrices containing the emission
values produced by the onset and offset classifiers respectively. We
computed the initial probability distribution, P, by estimating the
prior probabilities from the state labels of the first frame in each
image sequence in the training set. The transition probability matrix,
Fig. 6. The HMM transition model consisting of neutral, onset, apex and offset states
and the transitions possible between them.
T, was also be estimated from the state labels by using the frequency
of each transition between states.

Finally the emission probability distribution must be calculated
using the emission values and the labels. The distributions used were
Gaussian, and so were represented by a mean, μ, and standard devia-
tion, σ, for the possible emission values for each of the five possible
states. Hence the distribution was represented by two matrices each
with five rows corresponding to the five states, and two columns corre-
sponding to the two classifiers, onset and offset. The mean matrix, M,
was calculated by averaging the emission values observed for each of
the temporal states:

M 1;sð Þ ¼
1
Ns

∑
i;jð Þ∈f sð Þ

Eon
i;jð Þ;

M 2;sð Þ ¼
1
Ns

∑
i;jð Þ∈f sð Þ

Eoff
i;jð Þ;

where Ns is the total number of frames in L with label s, and

f sð Þ ¼ i; jð Þf jL i;jð Þ ¼ sg:

The standard deviation matrix, S, can be calculated as:

S 1;sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ns

∑
i;jð Þ∈f sð Þ

Eon
i;jð Þ−M 1;sð Þ

� �2
s

;

S 2;sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ns

∑
i;jð Þ∈f sð Þ

Eoff
i;jð Þ−M 2;sð Þ

� �2
s

:

Once these properties of the HMM had been estimated from the
training data, the model was ready to be used for testing new image
sequences. Testing is conducted by collecting features from the new
image sequence using the same quad-trees created from the training
set, testing the classifiers on these features, and then using the ob-
served values along with the standard Viterbi algorithm to determine
the most likely sequence of states.

4. Experimental results

We conducted experiments using the BU-4DFE database [48]. This
database consists of 4D data (3D plus time) collected by asking 100
subjects to act out the six basic expressions. The 3D data collected
consists of the 2D image, with an added depth map showing the
height of each point throughout the sequence. The image sequences
available in the database were filtered to remove any expressions
that were deemed to be inaccurate representations, or any sequences
that did not start and end in the neutral expression. This resulted in
the following numbers of examples for being used for each expres-
sion: Happy — 90, Sad — 58, Angry — 53, Disgust — 59, Surprise —

87 and Fear — 50.
The testing was done using 6-fold cross-validation. For each fold

to be tested, a training set was created for each expression from the
other 5 folds. The method employed for construction of a suitable
training set involved taking all available positive examples from the
folds, and then an equal number of negative examples by randomly
selecting from the remaining expressions available. These training
sets were used to train one classifier to model each expression.

The next stage in the testing was choosing a suitable window
width for each expression. This was done by performing a validation
test for each of the expressions and window widths. This test looked
at the ability of each classifier to discriminate between positive and
negative examples of the expression for which it has been trained.
The window width which gave the best validation F1-measure could
then be chosen as the most suitable window width to use in the
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Fig. 7. Validation F1-measures for each expression for all window widths. (a) Happy Validation F1-measures. (b) Sad Validation F1-measures. (c) Angry Validation F1-measures.
(d) Disgust Validation F1-measures. (e) Surprise Validation F1-measures. (f) Fear Validation F1-measures.

Table 1
F1-measures achieved with 2D and 3D testing. WW = Window width, RR = Recall
rate, PR = Precision rate, and F1 = F1-measure. The best F1 performance achieved for
each expression is show in bold.

Expression 2D system 3D system

WW RR PR F1 WW RR PR F1

2*Automatic window width selection performance (%)
Happy 8 76.40 77.27 76.84 16 71.91 84.21 77.58
Sad 12 44.83 42.62 43.70 12 70.69 57.75 63.57
Angry 12 61.54 58.18 59.81 12 48.08 45.45 46.73
Disgust 12 57.63 65.38 61.26 16 54.24 52.46 53.33
Surprise 12 79.07 78.16 78.61 12 79.07 85.00 81.93
Fear 8 38.46 37.50 37.97 8 43.59 42.50 43.04
Average 59.65 59.85 59.70 61.26 61.23 61.03

Manual window width selection performance (%)
Happy 8 76.40 80.00 78.16 12 75.28 88.16 81.21
Sad 16 44.83 44.83 44.83 12 68.97 57.14 62.50
Angry 12 61.54 56.14 58.72 12 51.92 48.21 50.00
Disgust 12 50.85 68.18 58.25 8 62.71 66.07 64.35
Surprise 8 89.53 73.33 80.63 8 82.56 82.56 82.56
Fear 8 38.46 44.12 41.10 8 46.15 46.15 46.15
Average 60.27 61.10 60.28 64.60 64.72 64.46
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six-way expression decision. The validation F1-measures can be seen
in Fig. 7 for each of the expressions. Initially, the window width cho-
sen for each expression was automatically selected as being the one
that produced the highest F1-measure in the validation tests. Then,
for expressions that had more than one window width that gave a
similar F1-measure, an alternative window width was manually cho-
sen if it improved the results of the six-way classification process.

Then each of the sequences in the test set was tested against all six
of the classifiers, and the outputs used to make a decision about which
expression the sequence represented. The method for determining the
predicted expression was as follows. Firstly, only the sequences for
which one or more frames were labelled as the apex state were consid-
ered. Finally the most appropriate expression label was chosen by tak-
ing the expression for which the sequence containing the apex was
most likely compared to an equivalent sequence with no apex.

An additional test was run in order to measure the benefit of using
3D facial geometries over 2D image sequences for facial expression rec-
ognition. Here the 2D facial intensities available from the BU-4DFE
were used along with an adapted version of the system proposed in
[21] which could model the full expression and make a six-way deci-
sion suited to recognition rather than a validation result which is
more suitable for detection. The differences in the 2D tests as compared
to 3D were: the alignment used between image sequences required
manual eye detection as opposed to that used with the 3D method
which was fully automatic. 2D FFDs were used to compute the motion
between frames in each sequence. For feature extraction and classifica-
tion similar methods were employed as in [21], and then HMMs were
used to model the full expression as done for 3D. Hence a comparison
between 2D and 3D facial expression analysis was possible.

4.1. Performance

The recall rate, precision rate, and F1-measure, the balanced F-
measure [51], were calculated for each expression. This was first
conducted using the automatically selected window widths, and
then using the manually optimised windowwidths which show a sig-
nificant increase in the average F1-measure achieved. The full results
achieved, including average, can be seen in Table 1. This table shows
that the recognition rates for the different expressions varies widely.
The best result achieved is for Surprise, with an F1-measure of 82.56%,
with the lowest rate found for Fear, with an F1-measure of only
46.15%. The average rate found was 64.46%.

The confusion matrix produced for the six universal expressions
using the manually selected window widths can be seen in Table 2.
This shows the percentage of each expression that was correctly clas-
sified, along with where the misclassifications occurred. The



Table 2
Confusion matrices for 2D and 3D testing. Recall rates for each expression are shown in
bold.

Happy Sad Angry Disgust Surprise Fear

2D experimental results
H 76.40 8.99 1.12 4.49 5.62 3.37
Sa 18.97 44.83 13.79 1.72 6.90 13.79
A 1.92 13.46 61.54 15.38 5.77 1.92
D 6.78 8.47 15.25 50.85 10.17 8.47
Su 0.00 4.65 3.49 0.00 89.53 2.33
F 2.56 20.51 10.26 2.56 25.64 38.46

3D experimental results
H 75.28 2.25 1.12 6.74 4.49 10.11
Sa 1.72 68.97 17.24 5.17 3.45 3.45
A 0.00 28.85 51.92 11.54 1.92 5.77
D 3.39 5.08 16.95 62.71 5.08 6.78
Su 2.33 4.65 4.65 2.33 82.56 3.49
F 10.26 15.38 10.26 5.13 12.82 46.15
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confusion matrix shows where the main errors are introduced. Fear is
often classified as Surprise, which is an expected result due to the
similarities in the way these two expressions are acted — subjects
often stretch their mouths, raise their eyebrows and open their eyes
in both cases. However in addition, it is also regularly misclassified
as Sad. This could be due to creasing around the eyes in both expres-
sions which gives some similarities. The main confusion for Angry
comes from incorrect classification as Sad, though this expression is
oftenmisclassified as Disgust aswell. This could be due to the similarities
in the creases in the forehead for these three expressions, especially in
examples where the subject does not have much movement in other
areas of the face such as the mouth. Disgust is most often misclassified
as Angry, and to a lesser extent Sad, showing again the similarities in
these expressions as seen by the 3D system. Happy is misclassified as
Fear most often, which could be explained by the fact that the corners
of the mouth move horizontally outwards in several examples of fear
in this database.

The window widths used for each expression are also shown in
Table 1. These show that Happy, Sad and Angry perform best with a
window width of 12, whereas the remaining three expressions give
the best performance with a window width of only 8. In order to de-
termine if these window widths are what we would expect, we com-
pare these to the distributions of length of the onset and offset
segments for each expression, as shown in Fig. 8. These plots show
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Fig. 8. Comparison between the chosen window widths and the onset and offset length dis
with each segment length, the mean is shown as a red cross at the centre of the red bar show
cross. (a) The onset length distributions for each expression. (b) The offset length distribut
that the window width chosen in each case generally falls within
one standard deviation of the mean of either the onset or offset
mean, and in almost all cases it lies within this range for both seg-
ments. Only for Disgust do we see that the window width is below
this range for the onset segment, and in this case it is only just within
the range for the offset, though it does lie very close to the mode in
this case. This plots show that the window widths chosen generally
appear to be sensible compared to the onset, offset, or both, lengths.
4.2. Comparison to 2D

The F1-measures achieved in the six-way decision when employing
the 2D method, for both the automatic and manually selected window
widths, can be seen in Table 1. The corresponding confusion matrix
for the manually selected widths using the 2D method can be seen in
Table 2. With both automatic and manual window width selection,
the 3D system achieves a higher average F1-measure than 2D: 61.03%
compared to 59.70%, and 64.46% compared to 60.28%. In the manual
case, for five of the expressions, Happy, Sad, Disgust, Surprise and
Fear, the 3D method outperforms the 2D method, achieving a signif-
icant rise in F1-measure. This is particularly striking for the Sad ex-
pression, which achieves a far higher F1-measure with 3D features
than with 2D, 62.5% compared to 44.83%. This improvement seen
with the 3D data is in contrast to that seen purely from the validation
results in Fig. 7. This suggests that the 3D system is not generally su-
perior to 2D when distinguishing positive and negative examples for
most of the expressions, with the notable exception of Sad, and to a
lesser extent Fear. However, 3D information is beneficial when it
comes to discrimination between the six expressions, which is dem-
onstrated by the improvement in the F1-measure seen in five out of
six of the expressions.

The only expression for which the 2D method significantly out-
performs the 3D is Angry, achieving an F1-measure of 58.72% com-
pared to 50.00%. Comparing the performance in the validation
results, the 2D system does demonstrate a slightly better ability to
discriminate between positive Angry examples and the other nega-
tive examples. This may be because the FFDs used in the 3D case are
too coarse to pick up on the subtle motions in the forehead and
around the eyes that are present in many of the Angry examples.
However, the significant difference in the Angry results in the six-
way decision are not accounted for solely by this. In addition, most
of the misclassification of this expression seems to be due to the
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performance of Sad. Though the 2D systemmisclassifies a significant
number of Angry sequences as Disgust, as happens in the 3D case,
the difference here is that there is much less confusion between
Angry and Sad. The reason for this may be due to the fact that in
this case Sad performs very poorly for 2D. This suggests that the
3D process is able to distinguish features that are useful for recogni-
tion of the Sad expression that are not possible using 2D. This in-
creases the recognition rate for Sad, but it could mean that these
features are confused with those present in the Angry sequences,
and so add to the confusion between these two expressions which
results in a much lower classification rate for Angry.

4.3. Temporal comparison

The proposed method employs HMMs in order to temporally
model the full expression, and to find the most likely sequence from
the individual frame outputs from the GB classifiers. The aims of
this process is to smooth errors in the GB classification when predict-
ing the frame sequence, to ensure that the full sequence is present in
order for any part of the sequence to be labelled, and then to require
that the sequence is likely enough to be chosen from the classifier
outputs. In addition, the likelihood of each of the sequences being
predicted is also used to determine the best expression for each
sequence.

The smoothing benefits of this method are demonstrated in Fig. 9.
This figure shows positive and negative examples from the Sad classi-
fier results. The graphs in Fig. 9a and b show the emission values from
the two GB classifiers for a positive example, Sad, and a negative
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Fig. 9. The Sad GB classifier outputs and labels for positive and negative examples Frame lab
classifier outputs for a Sad sequence. (b) Sad onset and offset classifier outputs for a Fear se
segment labels for Fear sequence. (e) Sad GB classifiers predicted labels for Sad sequence. (f
labels for Sad sequence. (h) Sad HMM classifier predicted labels for Fear sequence.
example, Fear, respectively. As has been previously stated, these
emission values are formed from the labels for the frames, 1 or −1,
being multiplied by the confidence value for these labels. Hence,
whenever the plot becomes positive, this is due to the label changing
from negative to positive classification. Alongside these, Fig. 9c and 9d
show the true frame segment labelling for these sequences for the
Sad classifier, Fig. 9e and 9f show the frame labels taken directly
from each of the classifiers, with the apex frames inferred as filling
in gaps between the onset and offset frames, and Fig. 9g and 9h
show the labels predicted by the most likely HMM sequence when
using the emission values from the classifiers.

The positive example demonstrates that it can be possible for the
GB classifiers to repeatedly classify onset and offset frames through-
out the sequence, as is shown in Fig. 9e, but the HMM takes only
the main sections of the sequence where these classifications occur,
which are where the emission values are at their highest, as part of
the most likely sequence, Fig. 9g. Hence the effect is to smooth the la-
belling to something that is much closer to the true frame labels as
shown in Fig. 9c. The negative example demonstrates the other ben-
efit of the HMM. This time the GB classifiers classify some frames as
onset and offset, as seen in Fig. 9f, even though none are present for
the Sad expression in this sequence. This results in apex frames
being inferred, so this expression would be considered to possibly
be Sad if using the classifiers outputs alone. However, the HMM is
able to smooth over these frames, choosing the most likely sequence
as one that contains only neutral frames, as seen in Fig. 9h, due to the
low emission values, and small number, of these frames. This means
that this sequence would be rejected immediately as not being Sad.
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In addition to looking at particular examples of the benefit of using
the HMMs for temporal modelling, it is also possible to do an analysis
of the expression classification differences between using the GB clas-
sifier outputs directly, from the HMM classifier outputs. Due to the
way the six-way decision is made from the sequence likelihoods,
and the fact there is no equivalent probability measure to use for
the GB classifiers, it is not possible to perform a fair comparison be-
tween six-way expression classifications directly. However, one way
to compare the performance of each method is to assess the percent-
age of sequences that are predicted to contain the apex state in each
case. This would be the first stage in each classification process, where
those expressions for which the sequence does not display the apex
state are rejected. Here we look at the desired result for positive
and negative examples for each expression: positive examples should
contain the apex, and negative examples should not contain the apex
state. The results of this analysis for a windowwidth of 12 can be seen
in Table 3. These results show that the GB classifiers generally show
the apex for a higher percentage of positive examples than the
HMM classifier — 92.4% compared to 80.4%. However, this is at a
cost, as the negative rates show. The GB classifiers also give the
apex state in a large number of negative sequences, with only 36.0%
of sequences not containing the apex state. This is compared to
72.6% when using the smoothed HMM output. This results in the
HMM process giving a much higher average percentage of 76.5% com-
pared to the average GB result of 64.2%. This demonstrates that the
full HMM classifier allows better discrimination between positive
and negative examples purely on the basis of whether the apex is pre-
sent or not, and that is before the likelihoods of the different expres-
sions are taken into account.
5. Discussion and future work

This method has been demonstrated to exploit the extra informa-
tion available in the 3D facial geometries to improve on the results
found with the 2D, and to use temporal modelling to smooth over in-
correct classifications from the GB classifiers in order to correctly clas-
sify image sequences. The approach proposed in this paper has been
shown to achieve an improvement over the equivalent 2D method
when tested on the BU-4DFE database. However, in order to prove
that these improvements are repeatable it would have been desirable
to test themethod on other databases. But, as the BU-4DFE database is
the only dynamic 3D database currently publicly available, this was
not possible. In future, it is expected that more databases will become
available, allowing validation testing to be done on several datasets.

The results show that there are a number of image sequences will
are still incorrectly classified by this method. The main way in which
the method fails is when an expression is classified as positive by two
or more expressions. This can occur due to the onset/offset being incor-
rectly detected by some of the GB classifiers, and the expression which
the highest likelihood is then one of the incorrect expressions. Thismay
happen due to variability in themotion during the onset/offsets of some
of the expressions, and the GB classifiers not capturing this variability
adequately. Another failure mode is when the onset or offset for an ex-
pression is not detected by the appropriate classifier, and so another ex-
pression is deemed most likely. These problems occur both in the 2D
and 3D methods, and demonstrate the GB classifiers are not capable
of fully capturing the variability of the onset and offsets for all the
Table 3
Percentage of positive/negative sequences containing/not containing the apex state using
the GB classifier outputs directly compared to theHMMoutputs for awindowwidth of 12.
Values in bold show the best performing method for each category of sequences.

Method Pos Neg Average

GBs 92.4 36.0 64.2
GBs+HMM 80.4 72.6 76.5
expressions. Throughout the database, the same expression can be
acted in very different ways by different subjects, hence giving a wide
range of features that are particular to the onset or offset of an expres-
sion, and this causes these problems. Even within the onset of an ex-
pression by one subject, there can be different stages (e.g. the upper
face and lower face moving separately). In order to deal with this prob-
lemamore complexmodelwould be required that is able to capture the
different aspects of the onset or offset of an expression. However, the
complexity required would quickly make this method unwieldy, espe-
cially as more expressions were added to the recognition process. For
this reason in future work we would prefer to move towards AU detec-
tion rather than full expression analysis.

AUs are well defined due to their anatomical basis, and so vary far
less between subjects. They are far better suited to the neutral–onset–
apex–offset model, and so would be better captured by this method.
In addition, due to the number of AUs being finite, it would be possi-
ble to adapt this system to cover all of the possible AUs, and then use
higher level methods to perform expression recognition from these
actions. A subset of the AUs was focussed on in [21] in this way, and
this work would be able to build on this to detect more AUs, including
those that are particular hard to detect in 2D, such as AU18 (Lip Pucker),
AU29 (Jaw Thrust) and AU31 (Jaw Clencher). This approach would also
have the added advantage that AUs are much more consistent as
regards the length of time taken for onset and offset, and so would be
expected to have window widths which are clearly best suited for
each AU. This would eradicate the issue of automatic versus manual se-
lection of window width that was seen in this paper, due to the wide
variation seen in the onset and offset lengths across the expressions
(as seen in Fig. 8). So far there is no publicly available data that contains
dynamic examples of the AUs, and hence experiments of this kind have
not yet been possible.

There are other extensions to this method that would be desirable
in future work. Posed expressions, as employed in these experiments,
have been shown to differ greatly, in content and dynamics, from
spontaneous natural expression data. Spontaneous expressions are
also rarely seen on their own; subjects often display a mixture of
emotions, such as amusement and embarrassment, or sadness and
anger. In addition, one expression can transition to another without
a neutral expression in between, and expressions can be mixed with
periods of speech. In order to create a system that will be useful in
real-life situations, it is therefore highly desirable to train and test
this system on this kind of data, and to adapt the models used in
order to do so. However, the 3D facial expression databases currently
available contain only posed examples, hence these experiments are
currently not possible. The collection of more 4D databases, including
spontaneous expressions of emotion, is an open area of research in
this field. Finally, an additional area of research in 3D dynamic facial
expression analysis is continuous expression modelling, as opposed
to discrete recognition as is carried out in this paper. However, cur-
rently this is also not possible due to no 3D databases being currently
available that contain continuous annotation.

6. Conclusions

In this paper we exploit the facial geometry data in the BU-4DFE
database in order to perform dynamic analysis of the six universal ex-
pressions for the purpose of fully automatic expression recognition.
The methodology used employed 3Dmotion-based features, captured
with FFDs, which were captured in each pair of dimensions, spatial
and time. Best features were chosen and classified by GB classifiers,
and the output of these was used to build temporal models of each ex-
pression using an HMM. Six-way classification was conducted using all
sequences in the database deemed to accurately reflect the expression,
with a classifier being trained and tested for each expression in each
fold. Window widths were chosen based on the validation results for
each expression.
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The results were compared with the same method (using manual
alignment) conducted on 2D facial motion data extracted from the
facial intensity image sequences in the same database. The expression
recognition rates achieved indicate that there is a gain when using 3D
facial geometry data, and that the 3D data is particularly important for
correct classification of the Sad expression. In addition, temporal analy-
sis indicates thatmodelling the full dynamics of the expressionwith the
HMMs leads to a higher recognition rate of the expressions than using
the GB classifier outputs alone.
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