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Abstract. Laughter is a highly variable signal, which can be caused by
a spectrum of emotions. This makes the automatic detection of laugh-
ter a challenging, but interesting task. We perform automatic laughter
detection using audio-visual data from the AMI Meeting Corpus. Audio-
visual laughter detection is performed by fusing the results of separate
audio and video classifiers on the decision level. This results in laughter
detection with a significantly higher AUC-ROC1 than single-modality
classification.

1 Introduction

Laughter is omnipresent in human vocal communication, and conveys cues for
emotional states. This makes automatic laughter detection an interesting re-
search subject. Earlier work on laughter detection has mainly focused on laugh-
ter detection in audio. In this work, we will add the video modality, and perform
audio-visual laughter detection. We will construct classifiers for the audio and
video modalities independently, and test if fusion of these modalities can improve
the performance of automatic laughter detection.

In the next section we will describe some previous research on laughter de-
tection and fusion of audio-visual data. Then we will outline the experiment,
present our results and end with conclusions and suggestions for future work.

2 Previous Work

2.1 Laughter Detection in Audio

Automatic laughter detection has been studied several times in the context of
meetings, for audio indexing and to detect affective states. We will describe a
number of studies on automatic laughter detection in audio, and summarize
some characteristics of these studies.
1 Area under curve - receiver operating characteristic.
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Campbell et al. developed a system to classify a laugh in different categories
[3]. They constructed a corpus from daily speech containing four affective classes
of laughter: a hearty laugh, an amused laugh, a satirical laugh and a social laugh.
A training set of 3000 hand-labeled laughs was used to train Hidden Markov
Models (HMMs). The HMMs recognized the affective class correctly in 75% of
the test cases. Automatic laughter detection is frequently studied in the context
of meetings. Kennedy and Ellis [13] detected multiple laughing participants in
the ICSI Meeting Corpus. Using a Support Vector Machine (SVM) on one second
windows of Mel-Frequency Cepstrum Coefficients (MFCCs) features, an equal
error rate (EER) of 13% was obtained. Truong and Van Leeuwen [21] used a clean
subset of the ICSI Meeting Corpus to train Gaussian Mixture Model (GMM) and
SVM classifiers. Instances containing speech and inaudible laughs were removed
to form the clean subset. The classifiers were trained on spectral features, pitch
& energy, pitch & voicing features and modulation-spectrum features. Usually,
the SVM classifiers performed better than the GMM classifiers. Fusion based on
the output of the GMM and SVM classifiers increases the discriminative power,
as does fusion between classifiers based on spectral features and classifiers based
on prosodic information.

When we compare the results of these studies, GMMs and SVMs seem to
be used most for automatic laughter recognition. Spectral features seem to out-
perform prosodic features, and although different corpora are used, an EER of
12–13% seems to be usual.

2.2 Audio-Visual Fusion

Most work on audio-visual fusion has focused on the detection of emotions
[2, 9, 10, 25, 27]. Some other studies perform cry detection [15], movie clas-
sification [24], tracking [1], speech recognition [6] and laughter detection [12].
These studies all try to exploit the complementary nature of audio-visual data.
Decision-level fusion is usually performed using the product, or a (weighted) sum
of the predictions of single-modality classifiers. As an alternative to decision-level
fusion, sometimes feature-level fusion is used where the features are merged be-
fore classification. An overview of relevant work on audio-visual fusion can be
found in Table 1.

Audio-visual laughter detection has already been performed by Ito et al. [12]
on a database with Japanese, English and Chinese subjects. The lip lengths, the
lip angles and the mean intensities of the cheek areas were used as features for
the video modality. Frame level classification of the video features was performed
using a perceptron, resulting in a recall of 71%, and a precision of 52%. Laugh-
ter sound detection was performed on MFCC and delta-MFCC features, using
two GMMs, one for laughter, and one for other sounds. A recall of 96% and a
precision of 60% was obtained using 16 Gaussian mixtures. Decision-level fusion
was performed with manually designed rules, resulting in a recall of 71% and a
precision of 74%. Ito et al. do not report if this increase is statistically significant.

Recently, Petridis and Pantic performed audio-visual discrimination between
laughter and speech [17]. The AMI Meeting database was used to create a corpus
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Table 1. Audio-visual fusion. The last column contains the performance using different
modalities and fusion techniques; A indicates audio, V indicates video, FF indicates
feature-level fusion, and DF indicates decision-level fusion. The performance is mea-
sured in classification accuracy, except for [12, 17, 18] for which we present the F1

measure instead of recall - precision pairs.

Study Dataset Performance

Petridis and Pantic [17]
(2008)

AMI, spontaneous, laugh-
ter

A: F1 = 0.64, V: F1 =
0.80, DF: F1 = 0.82,
FF: F1 = 0.81

Petridis and Pantic [18]
(2008)

AMI, spontaneous, laugh-
ter

A: F1 = 0.69, V: F1 =
0.80, DF: F1 = 0.88

Zeng et al. [26] (2007) AAI, spontanous, 2 emo-
tions

A: 70%, V: 86% DF: 90%

Hoch et al. [10] (2005) Posed, 3 emotions A: 82%, V: 67%, DF: 87%
Ito et al. [12] (2005) Spontaneous, laughter A: F1 = 0.72, V: F1 =

0.60, DF: F1 = 0.72
Wang and Guan [23]
(2005)

Posed, 6 emotions A: 66%, V: 49%, FF: 82%

Busso et al. [2] (2004) Posed, 4 emotions A: 71%, V: 85%, FF: 89%,
DF: 89%

Go et al. [8] (2003) Unknown, 6 emotions A: 93, V: 93%, DF: 97%
Dupont and Luettin [6]
(2000)

M2VTS, spontaneous, 10
words

A: 52% V: 60%, FF: 70%,
MF: 80%, DF: 82%

with 40 laughter segments and 56 speech segments. These laughter segments con-
tain a clearly audible harmonic laugh, and do not contain speech. Video features
were extracted by tracking 20 facial points, and transformed to uncorrelated
features using a PCA similar to our approach in [19]. A few relevant principal
components were used to calculate distance based features. Perceptual Linear
Prediction coding (PLP) was used to obtain audio-features. For classification,
AdaBoost was used to select a feature-subset, on which an Artificial Neural Net-
work classifier was trained. Both decision-level and feature-level fusion of the
audio and video modality seem to improve on the performance of the video-
classifier slightly (see Table 1) but it remains to be seen on which level fusion
works best. In a follow-up study Petridis and Pantic use the same dataset to
perform decision-level fusion based on different configurations of single-modality
classifiers, such as spectral and pitch & energy based audio-classifiers, and face-
component and head-component based video-classifiers [18]. The best combina-
tion was formed by the combination of the spectral audio-classifier and both the
head and face modality for video.

From Table 1 it appears that fusion of the audio and video modality boosts
the classification performance generally with a few percent. However, most work
does not report the significance of this gain in performance. The fusion of audio
and video modalities seems to work best when the individual modalities both
have a low performance, for example due to noise in the audio-visual speech
recognition of Dupont [6]. When single classifiers have a high performance, the
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performance gain obtained by fusion of the modalities is low, and sometimes
fusion even degrades the performance, as observed in the work of Gunes and
Piccardi [9].

3 Methodology

We perform fusion on the decision-level where the audio and video modalities
are classified separately. When the classifiers for both modalities have classified
the instance, their results are used to make a final multi-modal prediction. We
have chosen to evaluate decision-level fusion because it allows us to use different
classifiers for each of the two modalities.

3.1 Dataset

Previous work on laughter detection often used the ICSI Meeting Corpus. Be-
cause this corpus does not provide video recordings, we have created a dataset
based on the AMI Meeting Corpus. The AMI Meeting Corpus consists of 100
hours of meeting recordings, stored in different signals that are synchronized to
a common time line. The meetings are recorded in English, mostly spoken by
non-native speakers. For each meeting, there are multiple audio and video record-
ings. We used seven unscripted meetings recorded in the IDIAP-room (IB4001,
IB4002, IB4003, IB4004, IB4005, IB4010, IB4011) as these meetings contain a
fair amount of spontaneous laughter. We removed two of the twelve subjects;
one displayed extremely asymmetrical facial expressions (IB4005.2), the other
displayed a strong nervous tick in the muscles around the mouth (IB4003.3,
IB4003.4). We used the close-up video recording (DivX AVI codec 5.2.1, 2300
Kbps, 720 × 576 pixels, 25 frames per second) and the headset audio recording
(16 KHz WAV file) of each participant for our corpus.

We were unable to use the laughter-annotations provided with the AMI-
Corpus as these are often not correctly aligned. Therefore the seven meetings we
selected from the AMI Meeting Corpus were segmented into laughter by the first
author. Due to the spontaneous nature of these meetings, speech, chewing and
occlusions sometimes co-occur with the laughter and non-laughter segments.

The final corpus is built from the segmented data. The laughter instances
are created by padding each laughter segment with 3 seconds on each side to
capture the visual onset and offset of a laughter event. Laughter segments that
overlapped after padding are merged into a single laughter instance. A prelim-
inary experiment indicated that including these 3 seconds improved the classi-
fication performance significantly. The non-laughter instances are created from
the audio-visual data that remains after removing all the laughter segments.
The length of the non-laughter instances is taken from a random Gaussian dis-
tribution with a mean and standard deviation equal to the mean and standard
deviation of the laughter segments.

We have based our corpus on 60 randomly selected laughter and 120 randomly
selected non-laughter instances, in which 20 facial points needed for tracking are
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Fig. 1. Example laughter segments for the subjects

visible. We included some barely audible laughs and laughter overlapping with
speech, in contrast to [17, 18] where no speech was included in the laughter seg-
ments. Some examples of laughter segments are displayed in Fig. 1. We made
sure no smiles occurred in the non-laughter instances. To test the validity of the
class-labels, two other annotators annotated the corpus. One annotator rated 4
laughter-instances as non-laughter, the other annotator agreed completely, re-
sulting in a agreement of 97.7%. Of all the 180 instances, 59% contains speech of
the visible participant. Almost all instances contain background speech. Together
these instances form 25 minutes of audio-visual data. The dataset is available at
http://hmi.ewi.utwente.nl/ami-laughter.

3.2 Features

Audio Features. We use RASTA-PLP features to encode the audio-signal.
RASTA-PLP adds filtering capabilities for channel distortions to PLP features,
and yields significantly better results for speech recognition tasks in noisy

http://hmi.ewi.utwente.nl/ami-laughter
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environments than PLP [6]. We used the same settings as were used by Truong
and Van Leeuwen for PLP features [21]. The 13 cepstral coefficients (12 model
order, 1 gain) are calculated over a window of 32 ms with a step-size of 16 ms.
Combined with the temporal derivative (calculated by convolving with a simple
linear-slope filter over 5 audio frames) this resulted in a 26 dimensional feature
vector per audio frame. We normalized these 26-dimensional feature vectors to
a mean μ = 0 and a standard deviation σ = 1 using z-normalization.

Video Features. The video channel is transformed into sequences of 20 two-
dimensional facial points located on key features of the human face. These point
sequences are subsequently transformed into orthogonal features using a Princi-
pal Component Analysis (PCA).

The points are tracked as follows. The points are manually assigned at the
first frame of an instance movie and tracked using a tracking scheme based on
particle filtering with factorized likelihoods [16]. We track the brows (2 points
each), the eyes (4 points each), the nose (3 points), the mouth (4 points) and
chin (1 point). This results in a compact representation of the facial movement
in a movie using 20 (x, y)-tuples per frame. This tracking configuration has been
used successfully for the detection of the atomic action units of the Facial Action
Coding System (FACS) [22].

After tracking, we performed a PCA on the 20 points per video-frame with-
out reducing the number of dimensions; the principal components now serve as
a parametric model, similar to the Active Shape Model of Cootes et al. [5]. No
label information was used to create this model. An analysis of the eigenvectors
revealed that the first five principal components encode the head pose, includ-
ing translation, rotation and scale. The other components encode interpersonal
differences, facial expressions and corrections for the linear approximations of
movements (see Figure 3.5 of [19]).

In order to capture temporal aspects of this model, the first order derivative
for each component is added to each frame. The derivative is calculated with
Δt = 4 frames on a moving average of the principal components with a window
length of 2 frames. Again, we normalized this 80-dimensional feature vector to
a mean μ = 0 and a standard deviation σ = 1 using z-normalization.

3.3 Classification

We evaluate Gaussian Mixture Models (GMMs), Hidden Markov Models (HMMs)
and Support Vector Machines (SVMs) for classification. GMMs and HMMs model
the distribution for both classes and classify by estimating the probability that an
instance was produced by the model for a specific class. GMMs and HMMs are fre-
quently used in speech recognition and speaker identification, and have been used
before for laughter recognition [3, 12, 14, 21]. SVMs are discriminatory classifiers,
and have been used for laughter detection in [13, 21]. We used HMMs and GMMs
for the audio-modality and SVMs for the video-modality as this resulted in the
best performance [19].

The HMMs we use model the generated output using a mixture of Gaussian
distributions. We used two different topologies; the left-right HMMs that are
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frequently used in speech recognition, and ergodic HMMs that allow transitions
from all states to all states. For the SVMs we use a sliding window of 1.20 seconds
to create fixed-length features from the video segments. During classification, a
probability estimate for the different windows of an instance is calculated. The
final prediction of an instance is the mean of its window-predictions. We use
Radial Basis Function (RBF) kernel SVMs, which are trained using LIBSVM [4].

To estimate the generalization performance of the classifiers, we perform two
times 15-fold cross-validation. Inside each fold, we use 1/28 of the training data
as a validation set to select model parameters such as the HMM configuration,
the number of Gaussians and the C and γ parameter of the SVMs, the rest
of the training data is used to train classifiers. To find well-performing model
parameters we use a multi-resolution grid search [11]. Note that we extracted the
PCA-model outside of the cross-validation loop to focus on the generalization
performance of the classification. However, we do not expect that this has a big
influence on the measured performance.

Fusion. Fusion is performed on the decision-level, which means that the output
of an audio and a video classifier is used as input for the final fused prediction.
For each instance we classify, probability estimates are generated for the audio
and video modalities. Fusion SVMs are trained on the z-scores of the estimates
using the same training, validation and test sets as used for the single modality
classifiers. The output of these SVMs is a multi-modal prediction based on high-
level fusion. As an alternative to this learned fusion, we tested fusion using a
weighted-sum of the single-modality predictions:

ffused(x) = α ∗ fvideo(x) + (1 − α) ∗ faudio(x). (1)

Evaluation. We have chosen to use the Area Under Curve of the Receiver
Operating Characteristic (AUC-ROC) as performance measure because it does
not depend on the bias of the classifier, and is class-skew invariant [7]. The AUC-
ROC of a classifier is equivalent to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly chosen negative
instance. In addition to the AUC-ROC performance, we will report the EER
for a classifier. The EER is the point on the ROC where the false-positive rate
equals the false-negative rate. A paired two-tailed t-test is used to compare the
AUC-ROCs of the different classifiers.

4 Results

For audio, the GMM classifiers performed better than the HMM classifiers, re-
sulting in a mean AUC-ROC of 0.825. On average 16.9 Gaussian mixtures were
used to model laughter, non-laughter was modeled using 35.6 Gaussian mixtures.
The HMM performed slightly worse with an AUC-ROC of 0.822. The HMMs
used 11.6 fully connected states to model laughter, and 21.3 fully connected
states to model non-laughter. Surprisingly, no left-right HMMs were selected in
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Table 2. The performance of the audio and video classifiers. The standard deviation
of the AUC-ROCs is displayed between parenthesis.

Classifier Params AUC-ROC EER

RASTA-GMM 16.9 (3.2) pos. mix., 35.6 (5.9) neg. mix. 0.825 (0.143) 0.258
RASTA-HMM 11.6 (1.9) pos. states, 21.3 (1.9) neg. states 0.822 (0.135) 0.242
Video-SVM C = 2.46, γ = 3.8 × 10−6 0.916 (0.114) 0.133

Table 3. Results of the decision-level fusion. The t-test is a paired samples t-test on the
AUC-ROCs of the video-SVM (V-SVM) classifier and the specified fusion classifiers.
The mean value of the AUC-ROCs is displayed with the standard deviation displayed
between parenthesis.

Fusion Features T-test AUC-ROC EER

RBF-SVM V-SVM + R-GMM t(29) = 2.45, p < 0.05 0.928 (0.107) 0.142
RBF-SVM V-SVM + R-HMM t(29) = 1.93, p = 0.06 0.928 (0.104) 0.142
W-sum, α = 0.57 V-SVM + R-GMM t(29) = 2.69, p < 0.05 0.928 (0.107) 0.142
W-sum, α = 0.55 V-SVM + R-HMM t(29) = 2.38, p < 0.05 0.930 (0.101) 0.142

the model selection procedure. This indicates that there was no strict sequen-
tial pattern for laughter that could be exploited for recognition, which seems to
support the claim that laughter is a group of sounds [20].

The SVM video-classifier outperformed the audio-classifiers with an AUC-
ROC of 0.916, using a mean C = 2.46 and a mean γ = 3.8 × 10−6. See Table 2
for the performance of the different single-modality classifiers. Note that these
performances are measured on normalized datasets, and we do not test the gen-
eralization performance over subjects.

We used these classifiers to perform decision-level fusion. The performance
of the different fusion configurations is displayed in Table 3. The fused clas-
sifiers have a higher mean AUC-ROC than the single-modality classifiers. In
the case of SVM-fusion, the combination of the video-SVM classifier and the
RASTA-GMM classifiers outperforms the best single-modality classifier slightly,
but significantly. Inspection of the trained (RBF) SVM-classifiers reveals that
the separating hyperplane is nearly linear.

In addition to fusion using a SVM, we used a weighted-sum rule (1) to combine
the output of the audio and video classifiers. The weight of both modalities is
determined using the α parameter. The highest mean AUC-ROC values are
obtained in the region with a more dominant audio-classifier. However, for a
significant improvement over the video-SVM classifier α = 0.57 and α = 0.55
are needed for the RASTA-GMM and the RASTA-HMM classifier respectively
(see Table 3).

When we compare the ROC of the linear fusion classifiers with the ROC
of the video-SVM classifiers, we can see that the EER of the fused classifiers
is higher than the EER of the video-SVM classifiers (see Fig. 2). Most of the
performance-gain is obtained in the direct vicinity of the EER point, where the
error-rates are not equal. This trend is also visible with the SVM-fusion. This can
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Fig. 3. The normalized output of the audio and video classifiers on the test-sets. Laugh-
ter instances are marked with an plus, non-laughter instances are marked with a dot.

be explained by the observation that for unequal error rates the fusion classifier
can exploit the complementary nature of both modalities, which it cannot do for
the threshold with an equal error rate, where the hyperplane needs to separate
instances for which both modalities are uncertain (see Fig. 3).
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5 Conclusion and Future Work

Our goal was to perform automatic laughter detection by fusing audio and
video signals on the decision level. We have built audio and video-classifiers,
and demonstrated that the fused classifiers significantly outperformed the best
single-modality classifiers. The best audio-visual classifiers are constructed using
a weighted sum of the RASTA-HMM and video-SVM classifiers, resulting in a
AUC-ROC performance of 0.930. While fusion on the decision-level improves
the performance of the laughter-classifier significantly, fusion seems only benefi-
cial for classification with unequal false-negative and false-positive rates. With
equal error rates, the decision-boundary has to separate instances for which both
modalities are uncertain. For unequal error rates, these instances fall on one side
of the decision-boundary, and now instances with only one uncertain modality
can be classified more reliably, resulting in a better performance.

For future work we recommend an investigation of fusion on the feature-level.
We have demonstrated that decision-level fusion can improve the performance,
but it is not yet clear how this relates to other fusion techniques, such as feature-
level fusion. Previous work on audio-visual laughter detection is inconclusive on
this subject. A limitation of this experiment is that we removed smiles from
our corpus. Adding a smile class to the corpus would most likely decrease the
performance of the video-classifier. A follow-up experiment could show if fusion
would increase the performance in this setting. In addition to these technical
challenges, focussing on the context in which laughter and smiles occur would
form an interesting subject. During segmentation we observed interaction be-
tween laughter and smiles of different participants in a meeting. It is likely that
laughter detection can be improved by explicit use of interactions and semantic
information.
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