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Abstract— Many problems in machine learning and computer
vision consist of predicting multi-dimensional output vectors
given a specific set of input features. In many of these
problems, there exist inherent temporal and spacial dependencies
between the output vectors, as well as repeating output patterns
and input-output associations, that can provide more robust
and accurate predictors when modelled properly. With this
intrinsic motivation, we propose a novel Output-Associative
Relevance Vector Machine (OA-RVM) regression framework
that augments the traditional RVM regression by being able
to learn non-linear input and output dependencies. Instead of
depending solely on the input patterns, OA-RVM models output
structure and covariances within a predefined temporal window,
thus capturing past, current and future context. As a result,
output patterns manifested in the training data are captured
within a formal probabilistic framework, and subsequently used
during inference. As a proof of concept, we target the highly
challenging problem of dimensional and continuous prediction
of emotions from naturalistic facial expressions. We demon-
strate the advantages of the proposed OA-RVM regression
by performing both subject-dependent and subject-independent
experiments using the SAL database. The experimental results
show that OA-RVM regression outperforms the traditional
RVM and SVM regression approaches in prediction accuracy,
generating more robust and accurate models.

I. INTRODUCTION

Kernel methods such as Support Vector Machines (SVM),
Relevance Vector Machines (RVM) and Gaussian Processes
(GP) are amongst the most dominant techniques used in
machine learning and computer vision. Many problems
in these fields are inherently related to the prediction of
multi-dimensional, inter-correlated structured outputs (e.g.
pose normalisation, pose estimation). While most machine
learning techniques aim at capturing input relationships and
patterns (e.g. extracted features), many problems expose
an inherent dependency amongst the output dimensions
(e.g. emotion dimensions). Not being able to learn such
co-occurrences can result in less robust and less accurate
predictors, that will not be able to exploit specific output
configurations manifested in the training data.

With these intrinsic motivations, we introduce the output-
associative RVM (OA-RVM) regression, a framework that
extends the traditional RVM regression by being able to
learn temporal output correlations. As we show by means of
various experiments, OA-RVM appears to be advantageous
against traditional RVM not only in terms of prediction
accuracy but also in terms of sparsity of the final model
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(i.e., dependence on a small number of basis vectors), thus
resulting in a simpler and more robust model. To evaluate
the proposed technique, we apply it to a highly challenging
and suitable problem: dimensional and continuous emotion
prediction.

Most research in automatic emotion recognition and pre-
diction has focused on examining posed data acquired in
laboratory settings [1], [2] in terms of basic emotional states
(e.g., happiness, sadness, surprise). However, many studies
show that in everyday life interactions, humans exhibit subtle
affective states that do not fall under the basic emotional
states (e.g. bored or interested). In order to represent and
model such states, a dimensional and continuous description
of human affect is employed, where an affective state can be
described by a number of latent dimensions [3]. We focus on
the two dimensions which are considered to cover most of
the affect variability [4]: The valence dimension (V) which
describes how positive or negative an emotional state is, and
the arousal dimension (A) which relates to how excited or
apathetic an emotional state is [5].

Our motivation for the work presented in this paper is
three-fold. Firstly, dimensional and continuous affect predic-
tion (as opposed to discrete and quantised recognition) and
output-associative structured prediction are two highly inter-
related problems. Psychological evidence has shown that the
V-A dimensions are inter-correlated [4], [6]–[8]. Therefore,
the proposed scheme aims to enable the learning of such
correlations and generate more substantiated predictions by
embedding in the model an initial output estimation (using
RVM) together with the original input features. Secondly,
temporal dynamics play a significant role in emotion recog-
nition [1], [2]. The proposed OA-RVM regression aims to
capture the temporal dynamics by employing a temporal
window (covering a set of past and future outputs) in order
to accommodate temporal (output) patterns both in past
and future context. Thirdly, dimensional and continuous
prediction of emotions is a relatively unexplored area in the
field of affective computing, and which prediction method is
best suited to the task is still unknown. Therefore, as well as
validating the proposed OA-RVM model with comprehensive
experiments, we also compare it to traditional regression
techniques such as RVM and Support Vector Regression
(SVR). In the following, we briefly review related work
on output-associative structured regression and dimensional
and continuous emotion prediction, and subsequently list the
contributions of our work.

Output-Associative Structured Regression: Output-
associative structured regression has gained much popularity



over the last years within the pattern recognition community.
Kernel Dependency Estimation (KDE) was proposed in 2002
by Weston [9], with a goal of learning output dependencies
using Kernel Principle Component Analysis (KPCA) and
ridge regression. KDE was reformulated in 2005 by Cortes
et al. [10] discarding the need for KPCA and adopting the
optimisation of a cost function. KDE has been applied to
problems such as string matching and image reconstruction.
Previous efforts on modeling input and output covariances
have motivated the extension of models such as Kernel
Ridge Regression (KRR), SVM for regression [11] and
GP [12]. [11] optimises an output-associative functional
which incorporates outputs and inputs using primal/dual
formulations and adapts the model to KRR and SVR. [12]
develops the Twin GP model, which employes GP priors
to model input and output relations. The Kullback−Leibler
divergence is applied on the input and output distributions.
Subsequently, the output targets are estimated by the
minimisation of the KL divergence. Both works have been
applied to modeling human pose estimation.

We choose to extend RVM as it is considered more
efficient than GP [12]. Compared to the models presented
in [11], [12] we offer a specific output temporal window
parameter for fine-tuning our model. Furthermore, com-
pared to [11], our OA-RVM regression framework offers a
probabilistic formulation of the output-associative function
by following the original RVM framework and providing
explicit noise modelling.

Dimensional and Continuous Emotion Prediction: Past
work on dimensional affect recognition was based on clas-
sifying emotional states by quantising the real values, into
coarse binary categories of positive vs. negative [13], into
quadrants of the V-A space [14] or into dense quantised
levels (e.g. 7 levels [15]). [16] fuses facial expression and
audio cues exploiting SVM for regression (SVR) and late
fusion, using weighted linear combinations, and uses discre-
tised annotations (on a 5-point scale, for each dimension).
The works that focused on predicting continuous and real
values are few. Using speech features, [15] employs recurrent
neural networks (Long Short-Term Memory) and SVR, while
[16] uses SVR, k-NN and a fuzzy logic estimator. None
of these works have explored input-output associations and
spatio-temporal dependencies between the output vectors for
dimensional and continuous emotion prediction.

Contributions: Based on the aforementioned literature
review, and to the best of our knowledge, this paper presents
the first approach in the affective computing field that utilises
input-output associations for dimensional and continuous
prediction of emotions. More specifically, our work (i) pro-
poses a novel, sparse and probabilistic regression model with
output-association (OA-RVM, henceforth), taking advantage
of the traditional RVM framework, and (ii) investigates the
feasibility and the usefulness of the proposed OA-RVM
framework on the highly challenging problem of dimensional
and continuous prediction of emotions from naturalistic
facial expressions.

The rest of the paper is organised as follows. In Section

II, we briefly revisit the RVM and SVM models in order to
provide a basis for OA-RVM, introduced and explained in
Section III. Section IV describes the data set employed in our
experiments, as well as the feature extraction and tracking
process. Section V explains the experimental settings em-
ployed. Section VI provides a demonstration of the behaviour
of the model on learning dimensional emotion annotations,
while Section VII presents the experiments and and discusses
the results. Finally, Section VIII concludes the paper.

II. RVM AND SVM REVISITED

In this section, we briefly describe the two generic meth-
ods used, namely, Relevance Vector Machine (RVM) and
Support Vector Machines (SVM) for Regression (i.e. SVR).

We assume a (multidimensional) regression problem with
N training examples, (xi, ti). In the Bayesian framework
applied in RVM, our goal is to learn the functional:

ti = wTφ(xi) + εi (1)

where the εi are assumed to be independent Gaussian sam-
ples with zero mean and σ2 variance, εi ∼ N (0, σ2). φ is
a typically non-linear projection of the input features, xi.
The method infers the set of weights w along with the noise
estimation, given the training data.

In the SVR, the functional ti = wTφ(xi) + b is learnt,
where φ is an implicit mapping to a kernel space, w repre-
sents the set of weights and b the bias. Lagrangian optimisa-
tion is employed to determine the optimal parameters provide
the final model. In contrast to Bayesian regression methods,
there is no explicit noise modelling in SVR while the
structural risk minimisation principle is applied to minimize
the risk of overfitting.

III. OUTPUT-ASSOCIATIVE RVM REGRESSION

In this section we describe the proposed OA-RVM frame-
work. Firstly, to obtain the output associative functional, we
increment Eq. 1 as follows:

ti = wTφw(xi) + uTφu(yv
i ) + εi (2)

Where each yv
i is a vector of multi-dimensional outputs

over a temporal window of [i − v, i + v]1 The yv
i features

are called the output features, while x are called the input
features, henceforth. Note that the output features can be
estimated by predicting the multi-dimensional ground truth
using any (noisy and imperfect) prediction scheme. The goal
now becomes learning not only the set of weights (w) for
the input features, but also the set of weights (u) for the
output features along with the noise estimate, (εi)2.

1For frame based online application, we can limit the context to past
input only, i.e. [i − v, i]. Futhermore, the output window regards only the
output dimensions since we study the effect of output-covariances.

2Note that in the output-associative formulation, the noise component can
now be considered as the sum of the noise generated by the input features
σx and the output features σyv , i.e. εi ∼ N(0, σ2

y + σ2
x) = N(0, σ2).



A. The Framework

In this section we specify the Bayesian framework which
describes our model. Firstly, we consider Φw (NxMu) to
be the basis matrix attained by applying a selected kernel
to the input features x, and Φu (NxMw) respectively for
the output features, yv (the columns, Mu and Mw, refer to
the complete set of basis vectors though usually both are of
dimensionality N ). Then, by extending Eq. 2 we obtain:

t = Φww + Φuu + ε = Φwuwu + ε (3)

where Φwu = [Φw|Φu] is an Nx(Mu + Mw) matrix
and wu = [w1 . . .wMw |u1 . . .uMu ]

T is the concatenated
vector of weights. Thus, the complete data set likelihood
is formulated as:

P (t|w,u, σ2) =

N∏
i=1

N(wTφw(xi) + uTφu(yv
i ), σ2)

=

N∏
i=1

N(wu
T [φw(xi)|φu(yv

i )], σ2)

Following the Bayesian approach of RVM [17], we need
to set the hyperpriors on our weights. Each set of weights
(w,u) is assigned a Gaussian zero-mean prior to express
preference over smaller weights, thus infer smoother, less
complex functions and induce sparsity:

P (w|α) =

Mu∏
i=0

N (0, α−1
i ) (4)

P (u|ζ) =

Mw∏
i=1

N (0, ζ−1
i ) (5)

We have now introduced two vectors of hyperparameters, α
(as originally used in RVM) and ζ (for our output features),
each controlling the distribution of each of the weights.

B. Inference

The goal is to infer the unknown parameters of our
problem given the training data. The posterior is decomposed
as:

P (w,u,α, ζ, σ2|t) =
P (t|w,u,α, ζ, σ2)P (w,u,α, ζ, σ2)

p(t)
(6)

Ideally, given a new test data x∗, we would like to predict
target t∗:

p(t∗|t) =∫
P (t∗|w,u,α, ζ, σ2)P (w,u,α, ζ, σ2|t)dwdudαdζdσ2

(7)
Unfortunately, the above equation is intractable, thus an
approximation is needed. Therefore, similarly to the original
RVM formulation [17], we decompose the posterior as
follows:

P (w,u,α, ζ, σ2|t) = P (w,u|t,α, ζ, σ2)P (α, ζ, σ2|t)
(8)

Using the Bayes theorem we obtain:

P (w,u|t,α, ζ, σ2) =
P (t|w,u, σ2)P (w,u|α, ζ)

P (t|α, ζ, σ2)
(9)

This calculation is tractable, since all components are Gaus-
sian distributions and it is well known that products and
divisions of Gaussian distributions result also in Gaussian
distributions. We will firstly examine the joint probability.
By assuming independence, we obtain P (w,u|α, ζ), a zero-
mean Gaussian distribution with a covariance matrix AZ =
diag(α1 . . . αMw , ζ1 . . . ζMu ).

P (t|α, ζ, σ2) =

∫
P (t|w,u, σ2)P (w,u|α, ζ)dwdu

(10)
is a convolution of Gaussian and after replacing with the
defined variables wu, Az and Φwu, it is shown [17] to be
a zero-mean Gaussian distribution with covariance matrix
σ2I + ΦwuA−1

Z ΦT
wu.

Finally, Eq. 9 is considered to be a Gaussian distribution
with a mean µ = σ2ΣΦT

wut and a covariance matrix Σ =
(AZ + σ2ΦT

wuΦwu)−1.
Returning to the second component P (α, ζ, σ2|t) of the

posterior in Eq. 8, by following the Bayes rule, we find it to
be proportional to:

P (α, ζ, σ2|t) ∝ P (t|α, ζ, σ2)P (α)P (ζ)P (σ2) (11)

By assuming uniform uninformative hyperpriors [17], we
need to maximise P (t|α, ζ, σ2) with respect to the hyper-
parameters. Again, we have a convolution of Gaussians (Eq.
10) which in turn generates another zero mean Gaussian
distribution with covariance matrix σ2I + ΦwuK−1ΦT

wu.
The maximisation of this probability can be performed by
expectation maximisation as described in [17] or the faster
marginal maximisation algorithm proposed in [18]. The most
probable values (MP ) are selected by the chosen optimisa-
tion procedure ( [17], [18]), while we adopt an approximation
of P (α, ζ, σ2|t) in Eq. 8 by replacing it with a delta function
at its mode.

C. Prediction

Given a new (multi-dimensional) input data x∗,y
v
∗ , we

want to calculate t∗ given the training data. By considering
αz = [a1 . . . aMw

, ζ1 . . . ζMu
] and using Eq. 7 and Eq. 9 we

obtain:
P (t∗|t,αzMP , σ

2
MP ) =∫

P (t∗|wu, σ
2
MP )P (wu|t,αzMP, σ

2
MP )dwu (12)

Again, this is a convolution of Gaussians and it can be shown
that

P (t∗|t,αzMP , σ
2
MP ) ∼ N(t∗|σ2

∗) (13)

where
t∗ = µT

wu[φw(x∗)|φu(yv
∗ )] (14)

σ2
∗ = σ2

MP + [φw(x∗)|φu(yv
∗ )]TΣ[φw(x∗)|φu(yv

∗ )] (15)

with the variance σ2
∗ (which relates to the confidence in our

prediction). The parameter vector µwu contains the weights
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Fig. 1. Graphical model comparison of RVM and OA-RVM. Shaded nodes
are observed variables.

for the input and output relevance vectors, i.e. µwu =
[µw|µu]. The basis matrix for a new set of test points should
now contain both the distances from the new test input
features x∗ to all the input feature relevance vectors, as well
as the test output feature yv

∗ distances to the output feature
relevance vectors. The graphical models of both OA-RVM
and RVM are illustrated in Fig. 1.

D. Complexity

The parameter determination algorithm of RVM generally
involves the optimisation of a non-convex function. The
basis matrix for RVM is considered to be NxM , with M
basis functions. An inversion of this matrix is required,
which induces O(M3) computational complexity. In OA-
RVM, without loss of generality, we assume that we have
a Nx2M basis matrix: A dimensionality of M for the input
features and an additional M for the output features. Thus,
the complexity is O((2M)3) = O(M3). Furthermore, to
obtain the output features for OA-RVM we apply the original
RVM algorithm. If for a d-dimensional output problem,
the complexity of the original RVM algorithm is O(dC),
then for OA-RVM the complexity would be 2O(dC) which
is still O(dC). Therefore, OA-RVM induces no further
computational complexity to the RVM algorithm.

IV. DATA SET AND FEATURE EXTRACTION

As a proof of concept for this work, we use the Sensitive
Artificial Listener (SAL) Database [19]. It contains audio-
visual, naturalistic affective conversational data taking place
between a participant and an avatar (operated by a human).
Each avatar is considered to have a different personality:
Poppy is happy, Obadiah is gloomy, Spike is angry and
Prudence is pragmatic.

The recordings were made in a controlled laboratory
setting with one camera, microphones, uniform background
and constant lighting conditions. As our aim is to achieve
continuous emotion prediction, we could only take advantage
of the amount of data which was annotated in the valence-
arousal dimensional affect space. This corresponds to a
portion of the database that contains data from 4 subjects
(subjects 1 and 2 are female, and subjects 3 and 4 are male)
and their respective annotations (provided by 3-4 coders).

Fig. 2. Examples of the data at hand from the SAL database along with
the extracted 20 points, used as features for the facial expression cues.

Frames from this portion of the SAL database, together with
the trackings of facial points, are shown in Fig. 2. Based on
the annotations provided, we used a set of automatic seg-
mentation and ground truth generation algorithms [20] that
generated segments of positive/negative emotional displays.
More specifically, we generated segments capturing transi-
tions to an emotional state and back (e.g., going from non-
positive to positive and back to non-positive). Henceforth,
we refer to these classes as positive for the transition to a
positive emotional state, and negative for the transition to a
negative emotional state. In total, we used 61 positive and 73
negative segments, and approximately 30,000 video frames.

For feature extraction, we employ the Patras - Pantic
particle filtering tracking scheme [21] for tracking the facial
feature movements displayed during the naturalistic interac-
tions. We track the corners of the eyebrows (4 points), the
eyes (8 points), nose (3 points), mouth (4 points) and chin
(1 point). For each video segment containing n frames, the
tracker results in a feature set with dimensions n ∗ 20 ∗ 2.
Fig. 2 shows examples from the data set employed together
with the tracking of the facial feature points.

V. EXPERIMENTAL SETTING

We conducted comprehensive experiments in order to
validate the proposed OA-RVM regression framework, and
investigate its feasibility and usefulness for dimensional and
continuous prediction of emotions.

We use the traditional RVM as the baseline for our
comparisons with OA-RVM. We also use SVR as it is
one of the most widely adopted regression techniques in
the field. The kernel used for the construction of the basis
matrices is a Gaussian, K(x, xi) = exp

{
(−(x− xi)2)/r2

}
where r stands for the width of the function. The window
parameter v in the output-associative functional we employ
(Eq. 1) is generally varied in the range [0,18] and can be
determined by cross-validation. It should be noted that for
the probabilistic regression methods (RVM, OA-RVM), the
hyperparameters are determined by optimising the likelihood
function (by using fast marginal likelihood maximisation
algorithm proposed in [18]). We use RVM to obtain the initial
output estimation (i.e., the output features) for OA-RVM. For
SVR we apply cross-validation employing an ε-insensitive
loss function.



In our current setting, we assume that the segments
contained in our data set (Section IV) have been coarsely
classified into either positive or negative, prior to the pre-
diction (regression) procedure. The classification stage is
beyond the scope of this paper, and can be achieved by
applying an accurate (coarse) classifier, e.g. [13], on top of
the current scheme. This assumption is motivated by the fact
that we would like to focus on the prediction results in more
detail, and study them in isolation for each class (e.g., which
dimension is easier to predict for which class). Based on
the aforementioned assumptions, we conduct two types of
experiments.
Subject-dependent experiments. For each subject we divide
the data into equal training and testing sets. We predict the
emotional dimensions for each subject separately over 2-fold
cross-validation. We present the average of these results.
Subject-independent experiments. Subject-independent ex-
periments are generally considered difficult when data from
only a few subjects are available [15]. We conduct subject-
independent experiments in a more challenging scenario
where we use the data from one subject only for training, and
subsequently use the data from the remaining three subjects
for testing.

We evaluate our models in terms of both prediction ac-
curacy and sparsity. For prediction accuracy, we employ the
root mean squared error (RMSE) estimation that incorporates
the bias and variance of the prediction. To evaluate sparsity,
we refer to the number of relevance vectors (RVs) retained
by the model after training (for RVM and OA-RVM). While
evaluating the sparsity of OA-RVM, we consider the output
features (the initial output estimation provided via RVM)
as part of the initialisation, and thus evaluate the sparsity
of the final model. Since these RVs correspond to basis
vectors centered on a training example, we can infer which
and how many training examples are considered significant
and retained for the specific task at hand. A smaller set of
RV implies a less complex model, with a reduced risk of
overfitting.

VI. WHY OUTPUT-ASSOCIATION FOR
CONTINUOUS EMOTION PREDICTION?

In this section, we would like to demonstrate how the
proposed OA-RVM regression framework is efficiently ap-
plicable to the problem of automatic emotion prediction in
a continuous dimensional space. We focus our analysis and
discussion on Fig. 3. The figure illustrates how employing
the original RVM and the proposed OA-RVM provides
continuous prediction of valence and arousal dimensions for
one training sequence (consisting of 315 frames) extracted
as explained in Section IV.

The predictions generated by RVM are shown in Fig.
3(a,b) while the OA-RVM generated predictions with a
window of v = 0 and v = 4 are shown in Fig. 3(c,d) and Fig.
3(e,f), respectively. The ground truth for both the valence and
the arousal dimensions is shown in all figures as gTruth, for
comparison. The generated predictions for valence appear on
the left column of Fig. 3, while the generated predictions for

arousal appear on the right. The window of v = 0 is meant to
represent the most sparse results, while a window of v = 4 is
deemed sufficient for a sequence of 315 frames as it embeds
9 temporal steps (frames) in terms of past (4 frames), present
(current frame) and future (4 frames) context.

In this particular sequence, the subject appears to be
displaying negatively valenced emotions (e.g., sadness, dis-
appointment), with a decreasing arousal over time (towards a
more passive emotional state). In the figure we observe how
the RVM framework generates predictions (depicted with
RVM line) by using 32 relevance vectors (RVs) for valence
(Fig. 3a) and 39 RVs for arousal (Fig. 3b). Fig. 3(c,d) then
illustrates how the proposed OA-RVM framework generates
predictions for the sequence at hand, for valence and arousal,
with a temporal window of v = 0. Note how OA-RVM is
able to learn a smoother and more accurate model by using
just 7 RVs for valence and 6 RVs for arousal, respectively.

As specified in Eq. 2, OA-RVM depends on both the input
features (x, depicted as IF in the figure) and the output
features (yv, depicted as OF in the figure). To illustrate the
behaviour of the framework, we decompose the relevance
vectors (RVs) selected by OA-RVM into the RVs centred
around the input features (RV-IF) and the RVs centred around
the output features (RV-OF).

For the valence dimension, the 7 RVs used for the OA-
RVM model can be decomposed into 4 RVs corresponding
to input features (the relevant frames shown in Fig. 3c)
and 3 RVs corresponding to output features (shown in Fig.
3(a,b) as Val OA-RV). A similar analysis is performed for
the arousal dimension. For the sequence at hand, in Fig. 3d
we can see that 6 RVs in total are required for learning the
arousal dimension. Note how for this prediction only one
input feature RV is used. This implies that, only the actual
input features (the facial expression features x, in this case)
from one frame (shown in Fig. 3d) are retained by the model.

The remaining 5 RVs centred around the output features
are depicted in Fig. 3(a,b) as Ar OA-RV. An interesting
observation is that, both for valence and arousal prediction,
there are two common RVs centred around the output-
features, in frame 1 and frame 15. In these frames, the arousal
begins to decrease, and is accompanied by a change of sign
in the valence dimension.

To conclude this section, in Fig. 3(e,f), we show the results
of applying OA-RVM with a temporal window of v = 4 (Eq.
2). Note how the learned OA-RVM model provides a nearly
perfect fit by using no more RVs than the original RVM
model. Although the complexity of the model is observed
to increase with an increase in the window size (Fig. 4
and Section VII-A), overall, the OA-RVM model appears to
generalise to new data very well while avoiding overfitting.

VII. EXPERIMENTS AND RESULTS

In this section, we conduct both subject-dependent and
subject-independent experiments to evaluate the proposed
OA-RVM framework in terms of sparsity and prediction
accuracy with respect to RVM and SVR.
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Fig. 3. Illustration of how employing the original RVM and the proposed OA-RVM provide continuous prediction of valence and arousal
dimensions for one training sequence (315 frames). (a,b) RVM prediction with RVs used for OA-RVM, (c,d) OA-RVM prediction with a
window of v = 0 and IF-RV frames, and (e,f) OA-RVM with prediction with a window of v = 4.

A. Sparsity

This section provides a comparison between RVM and
OA-RVM in terms of model sparsity. For this comparison,
we use a small temporal window v, as a larger window
complicates the model and increases the number of relevance
vectors (RVs) needed. The comparison is performed by
selecting the window with the highest sparsity while keeping
the RMSE accuracy of both the RVM and the OA-RVM
models approximately equal (RMSE = 0.23). The results
are presented in Table I and Table II, and are discussed in
Section VII-B.

Subject-dependent results are presented in Table I showing
the number of relevance vectors selected by the traditional
RVM and OA-RVM models. The most sparse results are
achieved by using a window of v = 0. It can be clearly

seen that both for valence and arousal, when employing the
OA-RVM scheme, the number of RVs retained is decreased
significantly.

The subject-independent results are presented in Table
II. In this case, the results with highest sparsity were not
always obtained by using a window of v = 0, but rather
by using a window of v = 1 for subject 1, and v = 2 for
subject 3 (positive class). An interesting observation is that
more RVs are required for the negative class, leading to a
more complex prediction model. Nevertheless, compared to
the traditional RVM, the sparsity increase is still very high.
Although we decomposed the RVs captured by the OA-RVM
model into the ones that correspond to the input-features
and to those corresponding to the output-features, we found
no consistent patterns to report. Overall, we conclude that



subject-dependent variations in emotional expressions lead
to variations in experimental results.

TABLE I
SUBJECT-DEPENDENT SPARSITY COMPARISON

ValenceRV ArousalRV

RVM OA-RVM RMSE RVM OA-RVM RMSE
Positive 267 10 0.23 270 12 0.22

Negative 245 10 0.23 244 13 0.36

TABLE II
SUBJECT-INDEPENDENT SPARSITY COMPARISON

ValenceRV ArousalRV

RVM OA-RVM RMSE RVM OA-RVM RMSE
Positive 485 10 0.2 495 11 0.15

Negative 394 21 0.19 417 29 0.36

B. Prediction

We begin our discussion on prediction accuracy of the pro-
posed OA-RVM (with respect to RVM / SVR) by referring
to the subject-dependent results presented in Table III.

For both valence and arousal dimensions, we observe
that OA-RVM improves the prediction results in all cases.
Arousal appears to be more challenging to model and predict
for the negative class, in accordance with psychological
evidence suggesting that visual cues are more indicative of
valence rather than arousal [1]. Nevertheless, for the positive
class, except for subject 4, arousal appears to be easier to
model and predict.

The best prediction results are typically captured with
an output-associative window size of v > 8, showing
the significance of past and future context for continuous
emotion prediction. To illustrate the increase of the RVs
retained with the increase of window size, in Fig. 4 we
present the number of RVs retained for subject 1 (positive
class), from a window of v = 0 up to the optimal window
of v = 10, which provided us with the best results. The
increase in the number of RVs with the increasing window
size applies to all subjects.

Overall, the optimal window size appears to be subject-
and data-dependent. This in turn implies that naturalistic
emotional displays are rather subject-specific in nature. For
instance, predicting the valence and arousal level of subject 3,
who displays the most subtle emotional expressions, appears
to be easier compared to the rest of the subjects.

Table IV presents the subject-independent prediction re-
sults in terms of RMSE and window size (v). Each row on
the table presents the results obtained by training the model
using data from one subject (indicated in the first column)
and using testing data from the rest.

OA-RVM provides better prediction results than RVM
and SVR, in each and every tested case, similarly to the
subject-dependent results. When comparing the RVM results
to the results provided by SVR, it is possible to state that

TABLE III
SUBJECT-DEPENDENT PREDICTION RESULTS (RMSE).

Valence Arousal

POS RVM RVM-OA v RVM RVM-OA v
subj1 0.16 0.15 10 0.13 0.11 10
subj2 0.17 0.13 18 0.14 0.13 5
subj3 0.11 0.09 12 0.10 0.09 18
subj4 0.17 0.15 8 0.23 0.19 18

NEG RVM RVM-OA v RVM RVM-OA v
subj1 0.14 0.10 12 0.30 0.29 14
subj2 0.11 0.09 18 0.37 0.33 9
subj3 0.08 0.07 18 0.22 0.21 18
subj4 0.11 0.10 18 0.48 0.40 12
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Fig. 4. Increase of Relevance Vectors in the OA model with the increase
of window size in output features (Subject 1, Positive). The RVM RV are
643 and 626 for valence and arousal respectively.

on average, RVM performs better. However, there is no clear
prediction advantage of one model over the other.

Overall, valence appears to be easier to predict than
arousal for the negatively valenced emotions, while arousal
appears to be easier to predict for the positively valenced
emotions, similarly to subject-dependent prediction results.

The maximum output-associative window size of v = 18
appears to provide the best prediction results in many cases,
while on average, a window of size v > 9 appears to be
optimal. Exceptions can be observed in some experiments
referring to subjects 3 and 4. Subject 4 who has the most
intense expressions, is modelled with a smaller window
for predicting positively valenced emotions and predicting
arousal for negatively valenced emotions, while subject 3,
who is observed to have the most subtle expressions is
modelled with a smaller window for predicting negatively
valenced emotions. Although these results are consistent, we
do not consider them sufficient to draw general conclusions
regarding the optimal window size with respect to the expres-
sivity of each subject. We rather attribute them to subject and
data-specific characteristics of the experiments.

Overall, naturalistic emotional expressions are highly
subject-dependent [1]. However, from our experiments we
conclude that automatic, subject-independent, dimensional
and continuous prediction of emotions becomes feasible by
utilising input and output associations as well as temporal
context.

Psychological research findings suggest that there ex-
ist gender-related differences in expressing emotions (e.g.,



women appear to be more facially expressive than men
[22]). However, in our experiments we found no consistent
differentiations between male and female subjects.

To conclude this section, we comment on the noise aspect
of the prediction (in terms of average standard deviation). For
the subject-dependent experiments the average noise standard
deviation for OA-RVM is 0.001, while for RVM is 0.007.
For the subject-independent experiments the average noise
standard deviation for OA-RVM is 0.003, while for RVM is
0.01. Thus, we are able to state that OA-RVM induces more
confidence in the generated predictions than RVM.

.

TABLE IV
SUBJECT-INDEPENDENT PREDICTION RESULTS (RMSE)

Valence Arousal

POS SVR RVM RVM-OA v SVR RVM RVM-OA v
subj1 0.21 0.16 0.15 18 0.16 0.16 0.15 18
subj2 0.22 0.26 0.17 18 0.18 0.18 0.14 9
subj3 0.22 0.22 0.22 12 0.17 0.17 0.16 12
subj4 0.19 0.16 0.15 6 0.19 0.14 0.13 18
NEG SVR RVM RVM-OA v SVR RVM RVM-OA v
subj1 0.11 0.10 0.09 12 0.36 0.39 0.35 18
subj2 0.14 0.11 0.09 14 0.37 0.33 0.32 10
subj3 0.10 0.10 0.10 5 0.37 0.40 0.37 18
subj4 0.13 0.11 0.09 18 0.14 0.13 0.13 2

VIII. CONCLUSIONS AND DISCUSSION
In this paper, we proposed a novel Output-Associative

Relevance Vector Machine (OA-RVM) regression frame-
work that augments traditional RVM by being able to learn
non-linear input-output dependencies. Instead of depending
solely on input patterns, OA-RVM models output structure
and covariances within a predefined temporal window, thus
capturing past and future context. We successfully applied
the proposed framework for dimensional and continuous
prediction of emotions from facial expressions, and demon-
strated its advantages and efficiency over a comprehensive
set of experiments, both for the commonly employed subject-
dependent (training and testing the model for each subject
separately) and the highly challenging subject-independent
(training the model by using data from one subject only and
testing on the rest) case. Our experimental results show that:

• OA-RVM outperforms both RVM and SVR in terms
of prediction accuracy. Employing a temporal (output)
window, which induces the learning of past and future
context, contributes significantly to the prediction ac-
curacy. The size of the optimal temporal window may
vary depending on the task and the data at hand.

• OA-RVM appears to provide a more sparse model than
RVM, at no additional cost to the overall accuracy.

• Although there is an inherent, subject-dependent charac-
teristic attributed to naturalistic emotional expressions;
automatic, subject-independent, dimensional and con-
tinuous prediction of emotions is possible by utilising
input and output associations, and temporal context.

As future work, the proposed model remains to be evalu-
ated on databases with a larger number of subjects (e.g.,

SEMAINE) in order to (i) obtain deeper insights into the
accuracy improvement provided by the OA-RVM model, and
(ii) evaluate thoroughly the impact of the sparse OA-RVM
model in terms of its generalisation capability over different
data set(s) and subjects.
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