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Audiovisual Discrimination Between Speech
and Laughter: Why and When Visual

Information Might Help
Stavros Petridis, Member, IEEE, and Maja Pantic, Senior Member, IEEE

Abstract—Past research on automatic laughter classification/de-
tection has focused mainly on audio-based approaches. Here
we present an audiovisual approach to distinguishing laughter
from speech, and we show that integrating the information from
audio and video channels may lead to improved performance over
single-modal approaches. Both audio and visual channels consist
of two streams (cues), facial expressions and head pose for video
and cepstral and prosodic features for audio. Two types of exper-
iments were performed: 1) subject-independent cross-validation
on the AMI dataset and 2) cross-database experiments on the AMI
and SAL datasets. We experimented with different combinations
of cues with the most informative being the combination of facial
expressions, cepstral, and prosodic features. Our results suggest
that the performance of the audiovisual approach is better on
average than single-modal approaches. The addition of visual
information produces better results when it comes to female
subjects. When the training conditions are less diverse in terms of
head movements than the testing conditions (training on the SAL
dataset, testing on the AMI dataset), then no improvement was
observed with the addition of visual information. On the other
hand, when the training conditions are similar (cross validation on
the AMI dataset), or more diverse (training on the AMI dataset,
testing on the SAL dataset), in terms of head movements than is
the case in the testing conditions, an absolute increase of about 3%
in the F1 rate for laughter is reported when visual information is
added to audio information.

Index Terms—Human behavior analysis, laughter-versus-
speech discrimination, neural networks, principal components
analysis (PCA).

I. INTRODUCTION

I N human–human interaction, communication is regulated
by audiovisual feedback provided by the involved parties.

There are several channels through which the feedback can
be provided, with the most common being speech. However,
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spoken words are highly person and context dependent [18],
making the speech recognition and extraction of semantic
information about the underlying intent a very challenging task
for machines [68]. Other channels which provide useful feed-
back in human–human interactions include facial expressions,
head and hand gestures, and nonlinguistic vocalizations. While
there are numerous works on automatic recognition of facial
expressions and head and hand gestures, automatic recogni-
tion of nonlinguistic vocalizations has attracted less attention
[37], [68]. Scherer [54] defines nonlinguistic vocalizations (or
nonverbal vocalizations) as very brief, discrete, nonverbal ex-
pressions of affect in both face and voice. People are very good
at recognizing emotions just by hearing such vocalizations [55],
which suggests that information related to human emotions is
conveyed by these vocalizations. For example, laughter is a
very good indicator of amusement and crying is a very good
indicator of sadness.

One of the most important nonlinguistic vocalizations is
laughter, which is reported to be the most frequently annotated
acoustic nonverbal behavior in meeting corpora [30]. In the
same work, it is reported that 8.6% of the time when a person
vocalizes in a meeting is spent on laughing and an additional
0.8% is spent on laughing while talking. Laughter is a powerful
affective and social signal since people very often express their
emotion and regulate conversations by laughing. It has been
reported that people frequently laugh after their own utterances
and it has been suggested that this provides a mechanism to
change the meaning of the utterance [63].

In human–computer interaction (HCI), automatic detection
of laughter can be used as a useful cue for detecting the user’s
affective state and conversational signals such as agreement [6].
This information can be used by affect-sensitive human–com-
puter interfaces [37] to make the interaction between humans
and machines more natural and user-friendly. Another area of
application is computer-aided psychotherapy where a computer
not only saves the patient’s answers while performing some
computer-based exercises but also monitors his/her reactions,
which is of particular interest to psychologists [34]. Also, se-
mantically meaningful events in meetings such as topic change
or jokes can be identified with the help of a laughter detector
[64]. Provine [46] has shown that people tend to laugh at places
where punctuation would be placed in a transcript of a conver-
sation. Hence, such a detector can be used in automatic speech
recognition for speech segmentation and for the recognition of
nonspeech segments. Finally, a laughter detector can be a useful
tool for multimedia tagging and retrieval. A user can watch a
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video and then a tag can be automatically generated based on
his or her reaction classifying the video as funny or not (implicit
tagging), or he/she can search a multimedia database based on
the specific content (content-based video retrieval) [38].

It is clear that laughter is an audiovisual event. It consists of an
audio component, the laughter vocalization and a visual compo-
nent which involves facial activity around the mouth, the cheeks,
and often the upper face. Changes in the upper face appear-
ance may not be present in ironic (not genuine) smiles [12], but
they are usually present in laughter (a typically genuine expres-
sion of amusement) and especially in intense laughter episodes
[53]. Therefore, it seems logical that the additional information
carried by the visual modality would be beneficial for solving
the problem of laughter detection/classification in an automatic
way. Audiovisual approaches have been successfully applied to
speech recognition [15], [45] and affect recognition [68]. In gen-
eral, the main contribution of the visual information is the addi-
tion of complementary and redundant information which cannot
be corrupted by acoustic noise in the environment and therefore
may improve the performance of a recognition system.

In this paper, we present our research on audiovisual dis-
crimination of laughter from speech. We extend our previous
works [41]–[43], by using two cues per channel, spectral and
prosodic cues for audio and head pose and facial expressions
for video, with features extracted either per frame (video) or
in a sliding window (audio) and fused using feature-level fu-
sion. Our research on an audiovisual approach rather than an
audio-only approach to laughter classification is mainly driven
by research on audiovisual speech recognition that reported im-
proved performance over audio-only speech recognition [15],
[45]. Given that the previous research in the field has been fo-
cused on laughter classification/detection from the audio signal
only (see Section II for overview of the past research), our ob-
jective in this study is to investigate if the addition of visual fea-
tures helps the discrimination between laughter and speech.

We only use spontaneous (as opposed to posed) displays
of laughter and speech episodes from the audiovisual record-
ings of the AMI meeting corpus [35] and the SAL database
[14]. We focus on person-independent classification, which
makes the task of laughter-versus-speech discrimination even
more challenging. The paper is further organized as follows.
Section II provides an overview of the past research on laughter
classification/detection. Section III details the utilized datasets.
Sections IV and V explain audio and video signals processing,
respectively. Section VI describes the experimental setup
and Section VII presents the experimental results. We com-
pare the performance of several approaches to audiovisual
laughter-versus-speech discrimination where different com-
binations of audio and visual cues are used in the process.
The best individual cues were found to be facial expressions
and spectral features for discriminating laughter from speech.
The combination of facial expressions, cepstral features, and
prosody resulted in a relatively small but statistically significant
improvement over single-modal approaches. This improve-
ment was found to be person-dependent and more pronounced
when it comes to female subjects than male subjects. More
specifically, for the majority of female subjects, a statistically
significant improvement in the performance of the method has

been attained with the addition of visual information, while
only in the case of 25% of male subjects did the method benefit
from adding the visual information.

When tested on 278 audiovisual sequences from the AMI
corpus in a cross validation manner, the absolute increase for
the classification rate and F1 rate for laughter is 2.4% and 3%,
respectively. When training on the AMI dataset and testing on
the SAL dataset, which is a less diverse dataset than AMI, an
absolute increase of 2.3% and 3.4% is achieved for the clas-
sification rate and F1 rate for laughter, respectively. However,
when a system is trained on the SAL dataset and tested on the
AMI dataset, no improvement was observed with the integration
of audio and visual information. These experiments also reveal
that the AMI dataset is a more challenging dataset since systems
trained on it and tested on the SAL dataset achieve much better
performance than systems trained on the SAL dataset and tested
on the AMI dataset.

II. PAST RESEARCH ON LAUGHTER-VERSUS-SPEECH

DISCRIMINATION AND LAUGHTER DETECTION

A. Research in Psychology

Laughter is one of the most common and useful human social
signals [64]. It helps humans to express their emotions and
intentions in social interactions and provides useful feedback
during interpersonal interactions. It is usually perceived as
positive feedback, i.e., it shows joy, acceptance, and agreement,
but it can also be used as negative feedback, e.g., irony. Camp-
bell [10] presented results from the telephone conversations
between Japanese speakers, showing that the speakers varied
their laughing styles according to the sex and nationality of
the partner. Provine [47] found that in the absence of stimu-
lating media, e.g., television, people are about 30 times more
likely to laugh, whereas they are only four times more likely
to talk, when they are in company than when they are alone.
Vettin and Todt [63] found that laughter is much more frequent
in conversations than what had been previously reported in
self-report studies. Babies have the ability to laugh before they
can speak [53] and children who were born both deaf and
blind still have the ability to laugh [16]. This suggests that at
least some features of laughter can be developed without the
experience of hearing/seeing laughter which is the evidence of a
strong genetic basis [47]. These facts illustrate the significance
of laughter and explain why it is considered one of the most
important universal nonverbal vocalizations. However, it is
surprising that our knowledge about laughter is still incomplete
and little empirical information is available [28].

Since laughter has attracted interest by researchers from
many disciplines, the terminology is sometimes confusing.
Ruch and Ekman [53] point out that laughter is not a term used
consistently nor is it precisely defined in research. In addition,
Trouvain [59] points out that terms related to laughter are either
not clearly defined or they are used in different ways in different
studies.

Several classifications have been proposed in the literature
regarding different types of laughter. The most commonly
accepted one is the discrimination of laughter into two types:
voiced and unvoiced [3], [21]. Voiced laughter is a harmonically
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rich, vowel-like sound with a measurable periodicity in vocal
fold vibration, whereas unvoiced laughter is a noisy exhalation
through nose or mouth and the vocal folds are not involved
in the production of laughter. These two broad categories are
characterized by significant variability. Especially the unvoiced
class can contain different unvoiced variants such as grunts,
pants, cackles, and snort-like sounds. Another classification has
been proposed by Campbell et al. [11], which does not label
an entire laughter episode but assumes that each laughter is
composed of different combinations of four laughter segments:
voiced, chuckle, breathy, and nasal.

It has been demonstrated that different types of laughter have
different functions in social interactions. Grammer and Eibl-
Eibesfeldt [21] found that male interest was partly predicted by
the number of voiced laughs produced by female partners. The
opposite does not hold and this result has also been confirmed by
Bachorowski and Owren [3]. The latter study also demonstrated
that voiced laughter always elicited more positive evaluations
than unvoiced laughter. It is also believed that voiced laughter
is directly related to the experience of positive affect, whereas
unvoiced laughter is used to negotiate social interactions [24].
Except judging social signals like interest, the distinction be-
tween voiced and unvoiced laughter could be useful for judging
the mirth of the laughter. This could be used for assessing the
hilarity of observed material like movies and tagging the mate-
rial in question accordingly (see [44] for a preliminary study).

Regarding the acoustics of laughter, two main streams can
be distinguished in the literature. One suggests that the acoustic
features of laughter are stereotyped [48], whereas the other sug-
gests that its acoustics are variable and complex so laughter can
be considered as a repertoire of sounds [4], [28]. Although not
all studies agree on the findings regarding acoustic parameters
of laughter, the majority of them agree on some general prin-
ciples. Perhaps the most studied parameter in this area is the
fundamental frequency and almost all recent studies agree
that mean is higher in both male and female laughter than it
is in speech [4], [52], [60]. The average duration of a laughter
episode varies from less than 1 s [4], [52], to approximately 2 s
[60]. It is also common to consider laughter as a series of succes-
sive elements whose parameters are not constant but changing
between or even within elements [28]. Another characteristic of
laughter is the alternation of voiced and unvoiced segments with
the proportion of unvoiced segments being higher in laughter
than in speech [60]. Finally, it has also been reported that the
intensity of laughter goes down over time [53].

B. Automatic Laughter Classification/Detection

Relatively few works exist in the literature on automatic
laughter classification/detection. These are summarized in
Table I. As can be seen from Table I, there is a lack of a
benchmark dataset based on which different methods could be
compared. The use of different datasets in combination with the
use of different performance measures makes the comparison
of different approaches almost impossible. Further, as can
be seen from Table I, both static and dynamic modeling ap-
proaches have been attempted. For dynamic modeling, hidden
Markov models (HMMs) are commonly used just as is the
case in automatic speech recognition. This is mainly due to

suitability of HMMs to represent temporal characteristics of
the phenomenon. For static modeling, support vector machines
(SVMs) and neural networks (NNs) are the most commonly
used tools in this field. Unlike automatic speech recognition
where HMMs usually outperform static approaches, initial
results on presegmented episodes using static models were
very promising, and that explains why these methods are still
commonly used. This is also confirmed by Schuller et al. [57],
who have recently shown that the performance of SVMs is
comparable to that of HMMs for the classification of nonlin-
guistic vocalizations. Another recent study [40] comparing
NNs and coupled HMMs for discrimination of laughter-versus
speech and posed-versus-spontaneous-smiles has come to a
similar conclusion.

Regarding the audio features, several different features have
been used with the most popular being the standard features
used in automatic speech recognition, mel-frequency cepstral
coefficients (MFCCs) and perceptual linear predictive (PLP) co-
efficients. Pitch and energy, which have been used in emotion
recognition from speech [68], are commonly used as well.

From Table I, it can also be seen that the vast majority of
the attempts towards automatic laughter classification/detection
used only audio information, i.e., visual information carried by
facial expressions of the observed person is ignored. Recently,
few works on audiovisual laughter detection have been reported,
which use information from both the audio and visual channel
(see Table I and the end of this section).

1) Audio-Only Laughter Classification/Detection: In this
category, works can be divided into two groups: those which
focus on the detection of laughter in unsegmented audio stream
or on the discrimination between several nonlinguistic vocal-
izations in presegmented audio episodes (where each episode
contains exactly one of the target nonlinguistic vocalizations)
and those which perform audio segmentation/classification into
several audio categories, which are usually not nonlinguistic
vocalizations, but one class is laughter. In the first group, there
are usually two approaches:

1) laughter detection/segmentation, e.g., [27], [29], [31],
where the aim is to segment an unsegmented audio stream
into laughter and nonlaughter episodes;

2) laughter-versus-speech classification/discrimination, e.g.,
[33], [57], [60], where the aim is to correctly classify pre-
segmented episodes of laughter and speech.

One of the first works on laughter detection is that of Kennedy
and Ellis [27], who trained SVMs with MFCCs, spatial cues, and
modulation spectrum features (MSFs) to detect group laughter,
i.e., when more than a certain percentage of participants are
laughing. They used the ICSI corpus achieving true positive and
false positive rates of 87% and 13%, respectively. However, in-
consistent results were obtained when the system was tested on
unseen datasets from NIST RT-04 [2]. Truong and van Leeuwen
[61] used cepstral features (PLP) for laughter segmentation in
meetings. GMMs were trained for speech, laughter, and silence,
and the system was evaluated on the ICSI corpus achieving an
EER of 10.9%. Laskowski and Schultz [31] present a system
for the detection of laughter and its attribution to specific par-
ticipants in multi-channel recordings. Each participant can be
in one of the three states (silence, speech, laughter) and the
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TABLE I
PREVIOUS WORKS ON AUDIO-ONLY AND AUDIOVISUAL LAUGHTER CLASSIFICATION/DETECTION. A: AUDIO, V: VIDEO, L: LAUGHTER, NL: NONLAUGHTER,

S: SPEECH, NT: NEUTRAL, SUBJ: NUMBER OF SUBJECTS, Y: YES, N: NO, CV: CROSS VALIDATION, SI: SUBJECT INDEPENDENT, CR: CLASSIFICATION

RATE, TP: TRUE POSITIVE RATE, FP: FALSE POSITIVE RATE, EER: EQUAL ERROR RATE, R: RECALL, PR: PRECISION, ER: ERROR RATE. WINDOW:
DURATION OF THE WINDOW USED FOR CLASSIFICATION/SEGMENTATION. THE LABEL “SEQUENCE” MEANS THAT CLASSIFICATION IS PERFORMED

DIRECTLY ON THE ENTIRE PRESEGMENTED EPISODE. WHEN NO INFORMATION IS PROVIDED IN A STUDY, THEN THIS IS DENOTED BY ?

aim is to decode the vocal activity of all participants simul-
taneously. HMMs are used with MFCCs and energy features.
The system is tested on the ICSI meeting corpus. To reduce the
amount of states that a multi-party conversation can have, they
apply minimum duration constraints for each vocalization and
overlap constrains which assume that no more than a specific
number of participants speak or laugh at the same time. The F1
rate achieved is 34.5%. When tested on unseen datasets, the F1
is less than 20%, but the system does not rely on manual preseg-
mentation. Knox et al. [29] used MFCCs, pitch, energy, phones,
prosodics, and MSFs with neural networks in order to segment
laughter by classifying audio frames as laughter or nonlaughter.

A window of 1010 ms (101 frames) was used as input to the
neural network and the output was the label of the center audio
frame (10 ms). The ICSI corpus was used and an equal error rate
of 5.4% was achieved.

The most extensive study in laughter-versus-speech discrim-
ination was made by Truong and Leeuwen [60], who compared
the performance of different audio-frame-level features (PLP,
Pitch and Energy) and utterance-level features (Pitch and
Voicing, Modulation Spectrum) using SVMs and Gaussian
mixture models (GMMs). They used the ICSI corpus [26] and
CGN corpus [36] achieving an equal error rate of 2.6% and
7.5% in subject-dependent and subject-independent experi-
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ments, respectively. Campbell et al. [11] first divided laughter
into four classes: hearty, amused, satirical, and social and
decomposed each laughter into four laughter segments: voiced,
chuckle, breathy, and nasal. They used HMMs to recognize
these four laughter segments and the four classes of entire laugh
episodes from the ESP corpus [9] resulting in classification
rates of 81% and 75%, respectively. Schuller et al. [57] used
the AudioVisual Interest Corpus (AVIC) [58] to classify five
types of nonlinguistic vocalizations: laughter, breathing, hesi-
tation, consent, and other vocalizations including speech. They
used HMMs and hidden conditional random fields (HCRF)
with PLP, MFCC and energy features and SVMs with several
statistical features, e.g., mean, standard deviation, etc., which
describe the variation over time of other low level descriptors,
e.g., pitch, energy, zero-crossing rate, etc. Using a 3-fold strat-
ified cross validation, they reported an overall classification
rate of 80.7%. From the confusion matrix provided in [57], the
recall and precision of laughter can be computed which are
87.7% and 75.1%, respectively. Lockerd and Mueller [33] used
spectral coefficients and HMMs with the aim to detect when
the operator of a video camera laughs. The system was trained
using data of a single subject achieving a classification rate of
88%.

In the second group of approaches, there are usually several
classes which correspond to different sounds, e.g., laughter,
applause, music, scream, etc. Because of the nature of this
problem, the features used are more diverse. That includes
zero crossing rate (ZCR), brightness (BRT), bandwidth (BW),
total spectrum power (TSP) and subband powers (SBP) and
short time energy (STE) in addition to the standard features
mentioned above. SVMs [22] and HMMs [8] have been used
and the results of these methods can be seen in Table I. Since
these works are not focused on laughter detection/classification,
they are not described in this paper in further detail.

2) Audiovisual Laughter Classification/Detection: To the
best of our knowledge, there is only one work on audiovi-
sual laughter detection/segmentation and just a few works on
audiovisual laughter-versus-speech discrimination and, as a
consequence, the approaches followed are less diverse. In all
works, the aim is to discriminate laughter from nonlaughter
(speech [41]–[43], or speech and silence [25], [50]). The only
study on audiovisual laughter detection was conducted by
Ito et al. [25], who built an image-based laughter detector
based on geometric features (lip lengths and angles), mean
intensities in the cheek areas (grayscale images were used),
and an audio-based laughter detector based on MFCC features.
Linear discriminant functions (LDFs) and GMMs were used for
the image-based and audio-based detectors, respectively, and
the output of the two detectors were combined with an AND
operator to yield the final classification for an input sample.
They attained 71% recall rate and 74% precision rate using
three sequences of three subjects in a person-dependent way.
Reuderink et al. [50] used visual features based on principal
components analysis (PCA) and RASTA-PLP features for
audio processing. GMMs and HMMs were used for the audio
classifier, whereas SVMs were used for the video classifier.
The outputs of the classifiers were fused on decision level,
by weighted combination of the audio and video modalities,

obtaining an equal error rate of 14.2% in a subject-dependent
way on 60 episodes of laughter and 120 episodes of speech
from the AMI corpus.

In our previous works on audiovisual laughter-versus-speech
discrimination, we used either PLP features alone [41], [42]
or together with pitch and energy [43]. As visual features, we
used either displacements of the tracked facial points [41],
or visual features based on PCA [42], [43]. Neural networks
were used as the single-modal classifiers (for audio and video
separately), which were fused on the decision and feature level
achieving an F1 rate of 89% in a subject-independent test
for 40 presegmented laughter episodes and 56 presegmented
speech episodes from the AMI corpus. The work presented in
this paper represents a continuation and enhancement of this
earlier work.

III. DATASET

Posed (acted) expressions may differ in visual appear-
ance, audio profile, and timing from spontaneously occurring
behavior. For example, spontaneous smiles are smaller in am-
plitude, longer in total duration, and slower in onset and offset
time than posed smiles [62]. Also it seems that spontaneous
smiles exhibit characteristics of automatic movement, i.e., the
motor routines seem to be preprogrammed [12]. On the other
hand, posed smiles are less likely to exhibit characteristics of
preprogrammed motor routines, because they are mediated
by greater cortical involvement [12]. In the case of laughter,
Ruch and Ekman [53] point out that laughing on command
may be embarrassing, and thus, the results obtained from vol-
untary laughter are of limited value for describing spontaneous
laughter. In conclusion, spontaneous expressions may signifi-
cantly differ from posed expressions. An additional evidence
supporting this hypothesis is apparent from the significant
degradation in performance of tools trained and tested on posed
expressions and applied to spontaneous expressions [68]. For
this reason, we only used spontaneous expressions in this study.

Another challenge in studying laughter is the lack of data.
Since laughter usually occurs in social situations, when people
are in groups, it is not easy to obtain clear recording of in-
dividual spontaneous expressions of laughter. Consequently,
meeting corpora are commonly used where laughter often oc-
curs as described below. For the purpose of this study we used
two datasets, one containing social interactions between four
subjects (AMI dataset) and the other one containing interaction
between subjects and an artificial agent (SAL dataset).

1) AMI Dataset: The AMI Meeting Corpus [35] is an ideal
dataset for our study since it consists of 100 h of meeting record-
ings where people show a huge variety of spontaneous expres-
sions. We only used close-up video recordings of the subjects’
faces ( , 25 frames per second), and the related
individual headset audio recordings (16 kHz). The language
used in the meetings is English, with speakers being mostly
nonnative speakers. For our experiments, we used seven meet-
ings (IB4001 to IB4005 and IB4010, IB4011) and the relevant
recordings of ten participants, eight young males (subjects: s01,
s04, s05, s06, s07, s08, s09, s10) and two young females (sub-
jects: s02, s03), with or without glasses and no facial hair. Nine
participants are of Caucasian origin and one is of Asian origin.
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Fig. 1. Example of voiced laughter from subject s02, AMI dataset, Meeting
ID:IB4011_1. (a) Frame 1. (b) Frame 21. (c) Frame 41. (d) Frame 63. (e) Top
row: Audio signal, Bottom Row: Spectrogram.

2) SAL Dataset: The Sensitive Artificial Listener (SAL)
technique is described in [14] as “a specific type of induction
technique that focuses on conversation between a human and
an agent, that either is or appears to be a machine and it is
designed to capture a broad spectrum of emotional states”. The
subjects interact with four different agents that have different
personalities and the audiovisual response of the subjects is
recorded. For our experiments, we used 15 subjects in total,
eight males (subjects: s03, s05, s06, s07, s08, s09, s10, s13)
and seven females (subjects: s01, s02, s04, s11, s12, s14, s15).
We used the close-up video recordings of the subject’s face
( for 12 subjects and 352 288 for subjects
s04, s07, and s13) and the related audio recording (48 kHz for
12 subjects and 44.1 kHz for subjects s04, s07, and s13). The
language used in the human–agent interaction is English, with
all speakers being native.

All laughter and speech episodes used in this study were pre-
segmented based on audio. This means that the start and end
point of a laughter episode is defined for the audio signal and
then the corresponding video frames are extracted. All methods
presented in this study used such audiovisual data for training
and testing. So, instead of using information only from the audio
modality, as by audio-only approaches, our approach uses the
visual information co-occurring with laughter as well, repre-
senting an audiovisual approach to laughter classification.

Initially, laughter episodes were selected based on the anno-
tations provided with the AMI Corpus. After examining these
episodes, we only kept those that do not co-occur with speech,
do not contain profile views of the face (i.e., all facial compo-
nents are still visible), and satisfy the criterion as suggested in
[4]: “Laughter is defined as being any perceptibly audible ex-
pression that an ordinary person would characterize as laughter
if heard under everyday circumstances”. For the SAL dataset,

Fig. 2. Example of unvoiced laughter from subject s02, AMI dataset, Meeting
ID:IB4002_2. (a) Frame 1. (b) Frame 11. (c) Frame 21. (d) Frame 31. (e) Top
row: Audio signal, Bottom Row: Spectrogram.

we manually annotated laughter episodes according to these
rules.

In total, there are 633 laughter episodes annotated in the
subset of the AMI corpus we use. However, the majority of
them violates the aforementioned rules. Specifically, many
episodes are with subjects in a profile view to the camera,
subjects laughing altogether so the individual subject’s laughter
is not perceivable and subjects smiling rather than laughing,
i.e., there is no audible laughter expression. For our study, we
randomly selected 124 laughter episodes that do not violate
the above-mentioned rules. The reason why 124 episodes were
selected is that the number of episodes per subject varies a lot.
For s01, only seven episodes do not violate the above-men-
tioned rules. Therefore, in order not to have an extremely
unbalanced dataset, the number of laughter episodes per subject
was randomly set to be between 7 and either 21 (which is
three times the minimum number of episodes) or the maximum
number of episodes that do not violate the above rules if this
number is less than 21. So in total, 124 laughter episodes were
selected, with s01 and s03 being the subjects with the minimum
and maximum number of laughter episodes, 7 and 17, respec-
tively. It is important to note that laughter episodes included
in our dataset were selected such as to meet the above criteria,
no matter how similar they are to a prototypical “ha-ha-ha”
laughter expression. Therefore, there are both prototypical and
nonprototypical laughter episodes (i.e., unvoiced laughter like
snorts and cackles) included in the datasets.

Examples of voiced laughter and unvoiced laughter included
in the AMI dataset are shown in Figs. 1 and 2, respectively.
Examples of voiced and unvoiced laughter included in the SAL
dataset are shown in Figs. 13–15. It is common that audible
inhalations are present either at the beginning or at the end of
episodes or both and phoneticians argue whether or not they
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TABLE II
DESCRIPTION OF THE TWO DATASETS USED IN THIS STUDY

TABLE III
AVERAGE NUMBER OF VOICED AND UNVOICED LAUGHTER EPISODES

PRODUCED BY MALES AND FEMALES

should be considered as belonging to an instance of laughter
[59]. In this study, inhalations were considered a part of laughter
episodes if they were present exactly after or before the laughter.

For the AMI dataset, speech segments were determined by
the annotations provided with the AMI Corpus. For the SAL
dataset, speech segments were manually annotated and seg-
mented. Finally, speech segments were randomly selected such
that they do not contain long pauses between two consecutive
words. As a result, only few speech segments are adjacent to
laughter segments. Details of the two datasets used in this study
are given in Tables II and III. As can be seen from Table II, fe-
male subjects produce more voiced laughter than male subjects,
and this is consistent with findings in psychology [4]. In this
study, a laughter episode is labeled as voiced if at least 20% of
its frames are voiced. The annotated episodes used from both
corpora can be found in [1].

IV. AUDIO MODULE

The audio module extracts features from the audio part of the
input episode, which are then used by the classification algo-
rithm to classify the episode as a speech or laughter episode.
Two different kinds of features are used in this study: 1) cep-
stral features and 2) prosodic features.

A. Cepstral Features

Cepstral features, such as MFCC or PLP coefficients, have
been widely used in audiovisual speech recognition [15], [45]
and language identification [67]. From Table I, it can be con-
cluded that they are very often used for laughter classification/
detection as well. On average, MFCC and PLP show very sim-
ilar performance [56], [67]. This is also confirmed by experi-
ments in our study. We have chosen to use MFCC but the use of
PLP results in an equally good performance. The MFCCs were
computed using the MATLAB functions provided in [17].

An important issue when using cepstral features is the number
of coefficients to be used. The use of 12 or 13 MFCC/PLP co-
efficients is common in speech recognition. However, using 6
or 7 MFCC/PLP coefficients have been reported to lead to ei-
ther the same or an improved performance in laughter detection
[27], [43] and language identification [67]. Hence, we use 6 co-
efficients based on the finding of Kennedy and Ellis [27], who
reported that using 6 MFCCs results in the same performance
as using 13 MFCCs. In addition to the 6 MFCCs, their delta
features were calculated as well. The delta features
are calculated by a linear regression over a short neighborhood
around a spectral feature. The slope of the fitted line represents
the derivative of the spectral feature and therefore can capture
some local temporal characteristics. So in total, 12 features are
computed every 10 ms over a 40 ms long frame.

Since not much information is carried by a single frame, it
is beneficial to compute features over longer temporal windows
as shown in [42]. In order to do that, we compute the mean and
standard deviation of each MFCC and over temporal
windows of 160 ms. A similar approach was used by Kennedy
and Ellis [27], who used windows of 1 s. As shown in [42],
choosing a longer temporal window is beneficial in the case of
presegmented data as is the case with our data. However, note
that this could degrade the performance in a real-world sce-
nario where segmentation is not available. For computational
efficiency, there is no overlap between consecutive windows,
since the improvement is marginal as shown in [42]. Using this
approach, the information contained in each temporal window
is encoded in terms of features.

B. Prosodic Features

The two most commonly used prosodic features in studies
on vocal affect recognition are pitch and energy [68]. Both
of them have also been used in previous works on audio-only
laughter-versus-speech discrimination (see Table I). The addi-
tion of prosodic features to MFCCs, both on decision level and
feature level, has been proven to be beneficial for deceptive
speech detection [20] and for language identification [67]. In
addition, Bachorowski et al. [4] found that the mean pitch
in both male and female laughter was higher than in modal
speech. Hence, in this study, we use both pitch and energy for
discriminating laughter from speech episodes.

Pitch (P) was computed using a MATLAB implementation of
the Praat pitch estimator described in [5]. The pitch ceiling for the
algorithm was set to 1000 Hz. For each frame, the harmonics-to-
noise ratio is computed, and if it is lower than 0.45, then the frame
is labeled as unvoiced and pitch is not defined. Energy (E) of a
signal is simply the sum of squares of the signal’s raw values.
The root mean square energy is used in this study as the energy
feature. Both pitch and energy are computed every 10 ms over a
window of 40 ms. Again, we compute statistics of pitch and en-
ergy features over a 160 ms long window with no overlap. We
compute the same statistics as in [7], i.e., mean, standard devi-
ation, range, median, interquartile range, lower quartile, upper
quartile, minimum, and maximum. The statistics for pitch are
computed only from the voiced frames. In addition, the unvoiced
ratio is computed as well, i.e., the proportion of unvoiced frames
contained in the window.



PETRIDIS AND PANTIC: AUDIOVISUAL DISCRIMINATION BETWEEN SPEECH AND LAUGHTER 223

Fig. 3. PCA analysis of facial point tracking using PCs computed from the AMI dataset. Upper row: actually tracked facial points. Bottom row: (left) 20 facial
points after they have been reconstructed using the first 5 principal components, (right) 20 facial points after they have been reconstructed using principal compo-
nents 7 to 10. (a) Subject s03. (b) Subject s08.

In addition to these prosodic features, the zero crossing rate
(ZCR) was computed, too. The reason for using ZCR is its sen-
sitivity to the difference between voiced and unvoiced sections.
High zero crossing rates usually indicate noise and low rates
usually indicate periodicity [49]. So ZCR is likely to be ben-
eficial in laughter-versus-speech discrimination, since laughter
contains more unvoiced frames than speech [60]. The same sta-
tistics as for pitch and energy were computed for the ZCR.

In order to avoid the need for synchronization between cep-
stral and prosodic features, the same window length was used
for both. In other words, all the above-mentioned statistical
features were computed over a 160 ms long window with no
overlap between two consecutive windows.

V. VIDEO MODULE

The video module is responsible for processing the visual part
of an input episode. The first step is to track a number of charac-
teristic facial points. Then, a Point Distribution Model (PDM) is
learnt with the aim of decoupling rigid from nonrigid face move-
ments. Both are used in this study: 1) features which correspond
to rigid head movements and 2) features which correspond to fa-
cial expressions.

A. Tracking

To capture face movements in an input video, we track 20
facial points, as shown in Fig. 3. These points are the corners/
extremities of the eyebrows (2 points), the eyes (4 points), the
nose (3 points), the mouth (4 points), and the chin (1 point).
To track these facial points we used the Patras–Pantic particle
filtering tracking scheme [39], applied to tracking color-based
templates centered around the facial points to be tracked. The
points were manually annotated in the first frame of an input
video and tracked for the rest of the episode. Hence, for each
episode containing video frames, we obtain a set of vectors
containing 2-D coordinates of the 20 points.

B. Decoupling of Rigid and Nonrigid Face Movements

While speaking and especially while laughing, people may
exhibit large head movements. It is even more so in the case of
our data since we use recordings of naturalistic (spontaneous)
expressions rather than deliberately displayed episodes of
speech and laughter. Since we are interested in separating facial
expression configurations (relevant to speech and laughter
episodes) from head movements, we need to distinguish be-
tween changes in the location of facial points caused by facial
expressions and changes caused by rigid head movements. In
other words, we wish to decouple rigid head movements from
nonrigid head movements (facial expressions) so that we can
investigate the effect of each cue separately. To do so, we use a
similar approach to that by Gonzalez-Jimenez and Alba-Castro
[19], in which PCA is used for decoupling. Our approach is
based on PDMs [13] and has also been used in [42], [43],
and [50].

First, we concatenate the (x, y) coordinates of the 20 tracked
points in a 40-dimensional vector. Then we use PCA to extract
40 principal components (PCs) for all frames in the dataset. PCA
is defined as an orthogonal linear transformation that transforms
the data to a new coordinate system such that the greatest vari-
ance of the data comes to lie on the 1st coordinate (i.e., 1st
PC), the 2nd greatest variance on the 2nd coordinate, and so
on. Given that in our dataset head movements account for most
of the variation in the data, lower-order PCs are expected to
reflect rigid-face-movement aspects of the data, while higher-
order PCs are expected to retain nonrigid-face-movement (fa-
cial expression) aspects of the data. To test this assumption, we
computed the PCs for the whole AMI dataset and then recon-
structed the position of the points in each frame by using dif-
ferent combinations of the PCs with the help of the following
equations:

(1)

(2)
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Fig. 4. Principal component analysis, AMI dataset—Mode 1: Effect of varying � .

Fig. 5. Principal component analysis, AMI dataset—Mode 2: Effect of varying � .

Fig. 6. Principal component analysis, AMI dataset—Mode 3: Effect of varying � .

Fig. 7. Principal component analysis, AMI dataset—Mode 7: Effect of varying � .

Fig. 8. Principal component analysis, AMI dataset—Mode 8: Effect of varying � .

where is a 40-dimensional vector containing the (x, y) coor-
dinates of the 20 tracked points , is the mean shape

, contains out of the 40 eigenvectors , and
is an -dimensional vector . With the help of equation

(1), we can compute the shape parameters and then the face
can be reconstructed using equation (2).

As can be seen from Figs. 3–8, it seems that indeed the lower-
order PCs reflect rigid-face-movement aspects of the data, while

the higher-order PCs reflect facial expression aspects of the data.
The same has been reported by Gonzalez-Jimenez and Alba-
Castro [19]. To further investigate what is captured by each PC,
shape parameters can be varied one at a time. In other words,
we can vary shape using equation (2). The variance of the th
parameter, , is given by its corresponding eigenvalue , so
each takes values in the range of . The variation cor-
responding to the th parameter, , is called the th mode of the
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model [13]. By visual inspection, we can identify which PCs re-
veal information about the facial expression information (non-
rigid face motion) and which the information about the head
pose (rigid face motion).

1) Head Pose: Modes 1, 2, and 3 are shown in Figs. 4–6.
We see that the 1st, 2nd, and 3rd modes correspond to hori-
zontal head movement, vertical head movement, and head ro-
tation, respectively. Similarly, the 4th and 5th modes, which are
not shown, correspond to changes in scale and head yaw, respec-
tively. In other words, the first five PCs contain head movement
information. Shape parameters [equation (1)] are computed in
each frame and since no temporal information is used they cor-
respond to head pose information. Therefore, we use the first
five shape parameters, i.e., to , as the head pose descriptive
features.

2) Facial Expressions: Modes 7 and 8 are shown in Figs. 7
and 8. As can be seen, the 7th and 8th modes correspond to
mouth movements (mouth closing). Modes 9 and 10, which are
not shown, correspond to other facial expressions. Therefore,
we use shape parameters 7 to 10, i.e., to , as the facial
expressions features. Mode 6 and modes do not account
for any visible or clearly distinguishable change in head pose
or facial expression, and therefore, they are not used in further
processing.

Ideally, we would like the first five shape parameters to con-
tain only head pose information whereas the other shape pa-
rameters (7–10) to contain only nonrigid facial motion. How-
ever, this largely depends on the training data used to built the
PDM. This is shown, for example, in Fig. 4, where apart from
the horizontal head movement, subtle facial expressions are also
present. The same problem is reported in [19]. We should note
here that this analysis holds when PCs are computed from AMI.
In case of the SAL dataset, which is less diverse, the first four
modes correspond to head pose and modes 5 to 7 correspond to
facial expressions.

As shown in [42], a video frame already contains a lot of
information for discriminating laughter from speech. Hence,
computing statistical features, like mean and standard deviation,
over longer temporal windows, i.e., over several video frames, is
not very beneficial [42]. An absolute increase in the F1 measure
of 1.21% (from 83.49% to 84.70%) is reported in [42], when
using the mean and standard deviation of shape parameters to

over a 240 ms window with the maximum overlap between
consecutive windows. This result is also confirmed in this study,
with an increase of 1.2% in the F1 measure when statistical fea-
tures of were considered as well for a 240 ms window
with 50% overlap. Since this increase in the classification ac-
curacy is relatively small and in order to make synchronization
between audio and visual features easier (since a 160 ms audio
window contains exactly four video frames), we use the shape
parameters and per frame as the sole visual
features.

VI. CLASSIFICATION METHODOLOGY

AND EXPERIMENTAL SETUP

Neural networks were used as classifiers in this study since
they are able to learn nonlinear functions from examples. As
already mentioned in Section II-B, some recent works [40],

[57] have shown that the performance of static classifiers like
NNs and SVMs is comparable to that of HMMs and coupled
HMMs for the classification of nonlinguistic vocalizations.
Feedforward neural networks with one hidden layer are used
as classifiers in this study and the resilient backpropagation
training algorithm [51] is used for training. The learning rate is
set to 0.05 and the training is stopped when either the maximum
number of epochs is reached (500 in our case) or the magnitude
of the gradient is less than 0.04. The number of hidden neurons
is defined by means of a 2-fold cross validation in the following
way. The subjects used for training are randomly divided into
two groups. Then, several networks are trained, with different
numbers of hidden neurons, using only subjects from one group
and tested on the other group and vice versa. The number of
hidden neurons leading to the best performance in terms of
the F1 measure is chosen for training a network on the entire
training set.

As explained in Section V-B and as shown in Figs. 4–8, modes
1 to 5 and 7 to 10 (based on the AMI dataset) represent head pose
and facial expression information. Therefore, when training on
the AMI dataset (Sections VII-A and VII-BI), PCs 1 to 5 and
7 to 10 are used which are computed from the AMI dataset.
When training on the SAL dataset (Section VII-BII), PCs 5 to
7 are used (since only facial expression information is used),
computed from the SAL dataset.

Both audio and visual features are z-normalized per subject,
to a zero mean and unity standard deviation, by subtracting the
features’ means and dividing the result by their standard devi-
ation. Subject normalization has been useful in emotion detec-
tion from speech [65] and helps removing subject and recording
variability [7].

In the first set of experiments (Section VII-A), we performed
leave-one-subject-out cross validation on the AMI dataset, using
in each cross validation cycle all samples of one subject as the
test data and all other samples from the remaining nine subjects
as the training data. In this way, the obtained results are subject
independent. The performance of the cross validation overall is
the average of the performances in each cross validation cycle
(fold). In the second set of experiments (Section VII-B), we
performed cross-database experiments on the AMI and SAL
datasets, by training a classifier on one dataset and testing it on
the other and vice versa. For both types of experiments, ROC
curves, area under the ROC curve (AUC), F1 measure, and clas-
sification rate are used as the performance measures.

The training and testing of the classifiers is performed on a
frame-level basis for video (40 ms) and on window-level basis
(160 ms) for audio, as described in Sections IV and V, respec-
tively. Since the audio and visual features are extracted at dif-
ferent frame rates, they must be synchronized for audiovisual fu-
sion. This is achieved by upsampling the audio features, which
are extracted at a lower frame rate than the visual features, by
simply copying each feature so as to match the rate at which
the visual features are extracted [15]. After synchronization, the
audio and visual features are concatenated in a single vector
for feature-level fusion. In previous work [42], we have shown
that the performance of decision-level and feature-level fusion
is comparable in case of the laughter-versus-speech discrim-
ination problem. In case of other problems, like audiovisual
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speech recognition [15], [45], feature-level fusion is still the
most commonly used type of fusion, although this solution is
suboptimal given the asynchronous nature between audio and
video. Motivated by this past research, we use feature-level fu-
sion in this work. Classification is performed by applying ei-
ther the single-modal or the bimodal classifiers to all individual
frames/windows of the given episode resulting in a series of
“speech” and “laughter” labels. The majority of these labels is
assigned as the label of the entire episode in question.

As shown in Table III, the total duration of speech episodes
is higher than the total duration of laughter episodes. Conse-
quently, there are many more speech than laughter frames/win-
dows, which means that the training set can become unbalanced
with the speech class containing more than two times more ex-
amples than the laughter class. Such an unbalanced set tends to
degrade the performance of the classifier [32]. In order to avoid
this problem, the speech class is created by randomly sampling
examples, such that it contains not more than two times more
examples than the laughter class.

Due to the random initialization of the weights of the neural
networks and the random sampling, as explained above, each
time we run a cross validation or a cross database experiment,
we get slightly different results. In order to assess the replica-
bility of the experiments, each cross validation and cross data-
base experiment is executed ten times and the mean and standard
deviation are reported.

In order to compare the performance of different combination
of audiovisual cues with audio or visual cues, a paired T-test is
used. Given the small number of instances, the assumptions of
the paired T-test may be violated, so the results should be in-
terpreted carefully. The paired T-test is applied on the average
performance measure, i.e., over all subjects, of each cross-vali-
dation/cross database experiment. Since each experiment is con-
ducted ten times, we end up with ten paired differences. In this
way, we compare the overall performance of the cues in ques-
tion. In order to get a more detailed view of the comparison, we
also apply the paired T-test for each subject separately. The sig-
nificance level used was set to 5%.

VII. EXPERIMENTAL STUDIES

As explained in the previous sections, we extract informa-
tion simultaneously from the audio and the visual channel.
The extracted visual information concerns two cues: facial
expressions and head pose. Similarly, the extracted audio in-
formation channel concerns two cues as well: cepstral (MFCC)
and prosodic features (including ZCR). In order to investigate
which cues carry useful information for the task in question
(i.e., speech versus laughter discrimination), we conducted
several experimental studies combining different audio and
visual cues for audiovisual, audio-based, and video-based
laughter-versus-speech discrimination.

A. Cross Validation Experiments on the AMI Dataset

1) Single-Modal Approach: In this set of experiments, the
laughter-versus-speech classifier uses information extracted
only from one modality, either video or audio. The results for
each cue separately are shown in Table IV. As can be seen,
the best performing single cue for video are the nonrigid facial

TABLE IV
F1 RATES AND CLASSIFICATION RATE (CR) FOR THE AUDIO-BASED AND

VIDEO-BASED DISCRIMINATION BETWEEN LAUGHTER AND SPEECH. THE

RESULTS PRESENTED ARE THE MEAN (AND STANDARD DEVIATIONS)
OF 10-FOLD CROSS VALIDATION CONDUCTED TEN TIMES USING

THE AMI DATASET. THE HIGHEST MEAN PERFORMANCES IN EACH

COLUMN ARE IN BOLD. FF: FEATURE-LEVEL FUSION

movements (facial expressions) and for audio are the spectral
features, achieving a CR of 83.9% and 92.3%, respectively.
Cepstral features have been already found informative for
discriminating laughter from nonlaughter in earlier studies
[27], [60]. Face is the channel that carries most information
in interpersonal communications [37]. Speech and laughter
are arguably the two most common ways of communicating,
changing the facial appearance in two very different ways. It is,
therefore, only logical that facial expression is informative for
the task in question.

The classification based on head pose is much worse (CR
of 53.2%), indicating that head pose, as used in this study, is
not very informative for laughter-versus-speech discrimination
when used alone. Even if delta features are added, which can be
considered to capture local head movements, the performance
remains the same. Head pose/movements have been found to be
useful for the discrimination between posed and spontaneous
smiles [62]. In addition, there is evidence in the literature that
head movements are linked to prosody, pitch in particular [66],
during speech and that intense laughter results in significant
head movement [53]. However, there is no evidence that head
pose/movements are different in laughter than in speech, espe-
cially when both of them are spontaneous.

Prosodic features perform quite well achieving a similar
performance to facial expression features but then perform
worse than cepstral features. The addition of prosodic features
to cepstral features slightly improves the performance of the
audio-only classifier, but this improvement is not statistically
significant.

2) Audiovisual Approach: In this set of experiments, we use
information extracted from both modalities, video and audio.
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TABLE V
F1 RATES AND CLASSIFICATION RATE (CR) FOR THE AUDIOVISUAL

DISCRIMINATION BETWEEN LAUGHTER AND SPEECH. THE RESULTS PRESENTED

ARE THE MEAN (AND STANDARD DEVIATIONS) OF 10-FOLD CROSS VALIDATION

CONDUCTED TEN TIMES USING THE AMI DATASET. THE TWO HIGHEST

MEAN PERFORMANCES IN EACH COLUMN ARE IN BOLD

The results for different combinations of audio and visual cues
are shown in Table V. The best two results in each column are
shown in bold. As can be seen, this is achieved when combining
facial expression features with cepstral or cepstral and prosodic
features, resulting in a CR of 94.4% and 94.7%, respectively.
We should point out that the improvement of 2.8% and 2.4%,
respectively, is attained when using only four visual features,
i.e., the projection of the coordinates of the 20 tracked points to
PCs 7–10 as explained in Section V [equation (1)] in addition
to 52 audio features.

The difference in CR and F1 rates between the best two au-
diovisual approaches, FACE + MFCC + P & E + ZCR and FACE
+ MFCC and the best two single-modal approaches, MFCC +
P & E + ZCR and MFCC, is statistically significant. But the
difference between the two audiovisual approaches is not sta-
tistically significant. The confusion matrices for the audio-only,
video-only, and audiovisual approaches are shown in the Ap-
pendix, Tables VII–IX.

The addition of head pose features is not beneficial in general.
This shows that the information conveyed by the head pose, as
used in this study, is rather uninformative for laughter-versus-
speech discrimination. The addition of prosodic features on the
other hand results in an improved performance, but it is not al-
ways statistically significant.

The main conclusions drawn from the above experiments can
be summarized as follows.

1) Facial expression and cepstral features are the most infor-
mative visual and audio cues for discrimination between
laughter and speech episodes.

2) Head pose features seem to be uninformative for laughter-
versus-speech discrimination in spontaneous data.

3) Prosodic features when combined with other audio and vi-
sual cues lead to a slight improvement. However, this im-
provement is not always statistically significant.

4) The best audiovisual approach to discrimination of
laughter from speech episodes is to combine facial expres-
sion with cepstral features or to combine with cepstral and
prosodic features.

B. Cross Databases Experiments on AMI and SAL Datasets

In all the above experiments, we reported results on the
AMI dataset based on a subject-independent cross validation.
Although each time the trained system was tested on the data
of a subject that has not been used for training, the recording
conditions for both the training and the test data were the same.
In order to evaluate the generalization performance of the pro-
posed classifiers, we used the SAL dataset, which was recorded
under very different conditions as explained in Section III.

We conducted two experiments. In the first one, the entire
AMI dataset was used for training a laughter-versus-speech
classifier, which was then tested on the entire SAL dataset.
In the second experiment, the same systems were trained on
the SAL dataset and then tested on the AMI dataset. Only
the best audio cues, i.e., cepstral features and combination of
cepstral and prosodic features, the best video classifier, i.e.,
facial-expression-based classifier and the best audiovisual clas-
sifiers combining facial expression and cepstral or cepstral and
prosodic features, found by means of the experiments described
in Section VII, were used. The results are shown in Table VI.

1) Training on the AMI Dataset and Testing on the SAL
Dataset: When classifiers are trained on the AMI dataset and
tested on the SAL dataset, similar conclusions to those obtained
for subject-independent cross validation on the AMI dataset
can be drawn as shown in Table VI. More specifically, the two
audiovisual approaches (combining facial expression features
with cepstral or cepstral and prosodic features) result in a statis-
tically significant improvement over the two best single-modal
approaches (based on cepstral features or cepstral features and
prosodic features), in terms of the average CR and F1 rates.
For example, the addition of facial features to cepstral and
prosodic features leads to an absolute increase of 2.3%, 1.8%,
and 3.4% for CR, F1 for speech, and F1 for laughter, respec-
tively. Similarly to the approach presented in Section VII-AII,
since the training was performed on AMI, the same four visual
features were used. It is also worth emphasizing the fact that,
although the systems were tested on a very different database,
the performance is still very good. The confusion matrices for
the audio-only, video-only, and audiovisual approaches are
shown in the Appendix, Tables X–XII, respectively.

Fig. 9 shows the ROC curves for audio-based, video-based,
and audiovisual classifiers achieving the highest CR. As can be
seen, the video-only classifier has the worst ROC curve from
the plotted cases with AUC 0.896. The audio-only classifier has
the second best ROC curve with AUC 0.947. From Fig. 9, it is
obvious that the audiovisual classifier achieves the highest AUC
0.979. This result agrees with the results listed in Table VI.

Fig. 11 shows the classification rates per subject for the audio-
only, video-only, and audiovisual approaches. The video-only
classifier, based on the facial expression features, is usually the
worst performing approach. Its classification performance de-
pends heavily on the subjects, ranging from 70% for subject s11
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TABLE VI
F1 RATES AND CR FOR CROSS DATABASE EXPERIMENTS. THE RESULTS PRESENTED ARE THE MEAN (AND STANDARD DEVIATIONS) OF TEN EXPERIMENTS. THE

TWO HIGHEST MEAN PERFORMANCES IN EACH COLUMN ARE GIVEN IN BOLD. FOR THE TRAIN AMI �� TEST SAL (TRAIN SAL �� TEST AMI) EXPERIMENT,
PCS COMPUTED FROM AMI (SAL) ARE USED. IN ORDER TO INVESTIGATE HOW THE LIMITED DIVERSITY OF THE SAL DATASET AFFECTS THE GENERALIZATION

PERFORMANCE OF CLASSIFIERS TRAINED ON SAL, EXPERIMENTS WITH PCS COMPUTED FROM AMI WERE ALSO PERFORMED

Fig. 9. ROC curves for audio-, video-only, and audiovisual feature-level-fusion
approaches to laughter-versus-speech discrimination, when a classifier is trained
on the AMI dataset and tested on the SAL dataset.

to 100% for subjects s01, s06, and s10. The audio-only classi-
fier usually performs better than the video-only classifier, and
its performance is less subject-dependent, ranging from 88.3%
for subject s11 to 100% for subjects s01 and s09. The audio-
visual approach is even less subject-dependent than the single-
modal approaches, with the classification accuracy ranging from
91.7% for subject s14 to 100% for subjects s01, s02, s06, s09,
s10, s12, and s15. The difference between the audio-only and
audiovisual classifiers are statistically significant for subjects
s02, s06, s07, s11, s12, s14, and s15. By looking at the per-
formances in Fig. 11, this means that the audiovisual approach
outperforms audio-only classification for six subjects, is worse
in the case of one subject, and results in similar performance in
the case of eight subjects.

It is interesting to point out that subjects s02, s11, s12, s14,
and s15 are females. Consequently, this means that the addition
of the visual information to the audio information is beneficial
in the case of 4 out of 7 female subjects, and it is not beneficial in

Fig. 10. ROC curves for audio-, video-only, and audiovisual feature-level-fu-
sion approaches to laughter-versus-speech discrimination, when a classifier is
trained on the SAL dataset and tested on the AMI dataset.

the case of one subject. On the other hand, it is only beneficial in
the case of two out of eight male subjects. Also, as mentioned
in Section III, subjects s04, s07, and s13 of the SAL dataset
have lower video resolution than subjects of the AMI dataset
or the remaining subjects of the SAL dataset, but nonetheless a
statistically significant improvement is reported for subject s04.

2) Training on the SAL Dataset and Testing on the AMI
Dataset: For this experiment, the results are quite different,
as shown in Table VI. Generally, the overall performance of
the classifiers is much lower than is the case in the previous
experiment, indicating that the AMI dataset is a more chal-
lenging dataset than the SAL dataset. This is due to the specific
recording conditions under which the SAL dataset has been
recorded. More specifically, in the SAL dataset, subjects always
look at the camera, retaining such a frontal view throughout
the recording, whereas in the AMI dataset, subjects are rarely
in a frontal view since they participate in a meeting and tend to
move their head a lot; see, for example, Figs. 1 and 2. Also the
audio conditions are different with a lot of noise present in the
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Fig. 11. Classification rate per subject for audio-based, video-based, and au-
diovisual feature-level-fusion approaches to laughter-versus-speech discrimina-
tion. The results presented are the mean and standard deviations of the classi-
fication rates achieved for each subject over ten experiments, when a classifier
is trained on the AMI dataset and tested on the SAL dataset. The horizontal
lines indicate the CR if the majority class is always guessed for each subject. In
case there is no horizontal line for a subject, then this means that the majority
guessing CR is less than 66%, which is the lower limit of the plot.

AMI dataset due to multiple subjects being recorded at the same
time. To wit, the AMI recordings are of four subjects, where
each subject is recorded by a separate camera, whereas the SAL
recordings are of only one subject at the time interacting with
an agent. Therefore, a system trained on the SAL dataset fails
to generalize well on the AMI dataset.

In this experiment, the audiovisual approaches also achieve
higher CR and F1 rates than the corresponding audio-only
approaches. However, this difference is not statistically sig-
nificant. As explained in Section VI, three visual features are
used in this case, i.e., the projection of the coordinates of the
20 tracked points to PCs 5, 6, and 7 computed based on the
SAL dataset [equation (1)]. In order to confirm the hypoth-
esis, that the limited diversity of the SAL dataset in terms of
head movements affects the generalization performance of the
systems when tested on the AMI dataset, we used the PCs
7–10 computed based on the AMI dataset, in order to train
a classifier on the SAL dataset and then test it on the AMI
dataset. The results are shown in the corresponding rows of
Table VI. Indeed, as can be seen, a significant improvement in
the performance, up to an absolute increase of 10.1% for the
F1 rate for laughter, is achieved. In this case, the differences
between the audiovisual classifiers and the audio classifiers
are all statistically significant. The confusion matrices for the
audio-only, video-only, and audiovisual approaches are shown
in the Appendix, Tables XIII–XV, respectively.

Fig. 10 shows the ROC curves for audio-based, video-based,
and audiovisual classifiers achieving the highest CR. As can be
seen, the video-only classifier has the worst ROC curve from the
plotted cases with AUC 0.717. The audio-only and audiovisual
classifiers have very similar ROC curves with an AUC of 0.773
and 0.780, respectively.

Fig. 12. Classification rate per subject for audio-based, video-based, and au-
diovisual feature-level-fusion approaches to laughter-versus-speech discrimina-
tion. The results presented are the mean and standard deviations of the classifi-
cation rates achieved for each subject over ten experiments, when a classifier is
trained on the SAL dataset and tested on the AMI dataset. The horizontal lines
indicate the CR if the majority class is always guessed for each subject.

Fig. 12 shows the CR for each subject of the AMI dataset. As
can be seen in all cases, the performance varies a lot depending
on the subject. The difference between the audio-only and the
audiovisual classifiers is statistically significant for subjects s01,
s02, s05, s06, and s07. In other words, the audiovisual approach
performs better than audio-only classification for three subjects,
it performs worse for two subjects, and performs the same in the
case of the remaining five subjects. It is interesting to point out
that there are only two female subjects in the AMI dataset, s02
and s03. So the addition of the visual information to the audio
information is beneficial for one out of two female subjects. On
the other hand, it is beneficial only for two out of eight male
subjects and it is not beneficial for the other two male subjects.

3) Discussion: From the experiments explained above, we
see that a system trained on the AMI dataset can generalize very
well on the SAL dataset and the addition of visual information
to the audio information results in a small but statistically signif-
icant improvement. On the other hand, a system trained on the
SAL dataset, which is a less challenging dataset than the AMI
dataset, does not generalize well on the AMI dataset and the
addition of the visual information is not beneficial. Taking into
account the results of the evaluation studies conducted on the
AMI dataset, it can be concluded that when test data are similar
to (cross validation on AMI) or less diverse than training data
(training on the AMI dataset and testing on the SAL dataset) in
terms of head movements, then the combination of audio and
visual cues leads on average to improved classification rates.
It should also be emphasized that although on average over all
subjects the performance improves, there are subjects in whose
cases the addition of the visual information does not lead to an
improved performance. On the other hand, when test data are
more diverse than training data (as when training on the SAL
dataset and testing on the AMI dataset), then the addition of the
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Fig. 13. Example of voiced laughter displayed by subject s02 (Alis), SAL dataset. (a) Frame 1. (b) Frame 3. (c) Frame 5. (d) Frame 8. (e) Frame 10. (f) Frame
12. (g) Frame 15. (h) Pitch. (i) Evolution of shape parameter 7 (using PCs-AMI) over time.

Fig. 14. Example of unvoiced laughter displayed by subject s06 (GHillSect3), SAL dataset. (a) Frame 1. (b) Frame 5. (c) Frame 9. (d) Frame 13. (e) Frame 18.
(f) Frame 22. (g) Frame 26. (h) Pitch. (i) Evolution of shape parameter 7 (using PCs-AMI) over time.

visual information is not expected to improve the performance
of the system.

Based on the above-described experiments, there is also ev-
idence to suggest that in the case of female subjects, the ad-
dition of the visual information leads to a better performance
more often than is the case with male subjects. To wit, in the
case of five out of nine female subjects, adding the visual in-
formation resulted in a better performance and only in the case
of one female subject did it result in a degraded performance.
This result is significant when compared to that attained for male
subjects, where adding the visual information resulted in an im-
proved performance in the case of four out of 16 male subjects
and in a degraded performance in the case of two out of 16.
This is also consistent with findings in psychology [4] which
suggest that females produce voiced laughter more often than
unvoiced laughter, which is typically accompanied with more
pronounced smile and opened mouth than is the case with the
unvoiced laughter produced commonly by males.

Fig. 13 shows a voiced laughter episode which is confused
by the audio classifier (FACE + MFCC + P & E +ZCR) for a
speech episode. It is accompanied by a smile which is picked up
by the visual module, helping the audiovisual classifier to cor-

rectly label the episode as laughter. Fig. 14 shows an example
of an unvoiced laughter episode which is again confused by the
audio classifier for a speech episode. The smile produced by the
subject helps the audiovisual classifier to classify this episode
correctly. Fig. 15 shows an example where an unvoiced laughter
is produced with closed mouth and, as a result, the visual infor-
mation is not helpful in this case. This example is misclassified
by the audio classifier, but since the smile is barely visible, the
video module cannot pick it up and, as a result, the audiovi-
sual classifier also confuses this laughter episode for a speech
episode. Note the higher values that the 7th shape parameter
takes in Fig. 15 compared to those depicted in Figs. 13 and 14.
Usually, lower values of the 7th shape parameter correspond to
a more open mouth (for example, see how the value of de-
creases as the mouth opens in Fig. 14). Generally, visual cues
do not carry much discriminative information when laughter
episodes are accompanied by subtle facial expressions, and in
such cases, the visual information is not beneficial. As men-
tioned above, subtle facial expressions occur more often with
unvoiced laughter episodes than with voiced ones, making the
visual information less beneficial in case of unvoiced laughter
that is more often displayed by males than by females.
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Fig. 15. Example of unvoiced laughter displayed by subject s14 (RuthSect1), SAL dataset. (a) Frame 1. (b) Frame 5. (c) Frame 9. (d) Frame 13. (e) Frame 18.
(f) Frame 22. (g) Frame 27. (h) Pitch. (i) Evolution of shape parameter 7 (using PCs-AMI) over time.

Fig. 16. 1st row: Audio Signal. 2nd row: Pitch. 3rd row: Values of shape parameter 7 (b7). 4th row: Outputs of the audio, video, and audiovisual systems, 1 is
laughter, 0 is speech. Ground truth is indicated on the top of the graphs (a) Subject 10, AMI dataset. Meeting ID: IB4010_3. (b) Subject 8, AMI dataset. Meeting
ID: IB4010_2.

The main conclusions drawn from the above experiments can
be summarized as follows.

1) The combination of visual and audio information leads to
improved performance over single modal approaches, but
it is not beneficial for all subjects.

2) The addition of visual information to audio information
seems to affect more the performance of female than male
subjects. For the majority of female subjects, a statisti-
cally significant improvement has been attained, while
only 25% of male subjects benefited by adding the visual
information.

3) The audiovisual approach is beneficial when training con-
ditions are similar or less diverse in terms of head move-
ments than training conditions.

4) When testing conditions are more diverse than training
conditions in terms of head movements, the addition of the
visual information to the audio information does not seem
to help.

C. Segmentation Example

The methods described in this study work with presegmented
sequences, i.e., episodes. In a real-life scenario, where preseg-
mentation is not available, the methods could work with a fixed
window length. Alternatively they could work on the frame level
directly by labeling each frame independently of the others fol-
lowed by a smoothing step.

Two examples of how the best performing audiovisual ap-
proach works by labeling directly each frame is shown in Fig. 16.
In both cases, the method was trained on the AMI dataset coming
from the nine subjects and was tested on data containing both
speech and laughter coming from the subject who was left out. As
canbenoticed, thepitch ishigher in laughter than inspeech,asde-
scribed in the psychology literature as well. The 7th facial shape
parameter (b7) takes lower values for laughter, indicating that
mouth shapes differ in laughter and in speech. In Fig. 16(a), it can
be seen that the video-only approach misclassifies the first half
of the first laughter episode. The person smiles while speaking
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TABLE VII
CROSS VALIDATION ON AMI—FACIAL EXPRESSIONS FEATURES

between the two laughter episodes and the video-based detector
labels all these frames as a laughter instance. The audiovisual
approach performs slightly better than the audio-only approach,
classifying just a few frames belonging to speech episodes as
laughter. As can be seen from Fig. 16(b), the audio-based and
video-based approaches misclassify some frames. However,
these false detections occur at different times, and the audiovisual
approach is able to successfully combine the audiovisual infor-
mation to eliminate these misclassifications.

VIII. CONCLUSION

In this paper, we presented an automated audiovisual
approach to distinguishing laughter from speech episodes.
Very high performance measures were reported for the
laughter-versus-speech discrimination problem when training
data were similar or more diverse than test data (in terms of
head movements). In these cases, adding the visual information
to the audio information leads to an improved classification
performance on average. This is especially so in the case of
female subjects, who produce voiced laughter more often than
unvoiced laughter, which is characterized by distinct changes
in the facial expression (a wider smile and more open mouth),
resulting in significant improvements of performance of the
method when the visual information is added to the audio
information. On the other hand, when training data are less di-
verse than test data (in terms of head movements), then adding
visual information does not seem to help. We also investigated
which cues are informative for the target discrimination. Facial
expression and cepstral features play a very important role in
discriminating laughter from speech, and prosodic features
may help as well. Future research includes the investigation of
the performance of the audiovisual approach in the presence
of acoustic noise when the addition of the visual information
is expected to be particularly beneficial (as is the case in
audiovisual speech recognition). Finally, it is also interesting
to investigate the use of more sophisticated classification and
fusion tools that can take into account the asynchronous nature
of the audio and visual streams as well as the contextual infor-
mation, like asynchronous HMMs and long short-term memory
networks [23], having the potential to outperform the standard
multimodal data fusion approaches.

APPENDIX

CONFUSION MATRICES—MEAN AND (ST. DEV.) OF NUMBER

OF INSTANCES OVER TEN EXPERIMENTS

Tables VII–IX show the cross validation on AMI—facial
expressions features, cepstral + prosodic features, and fa-
cial expressions + cepstral + prosodic features, respectively.
Tables X–XII show the train AMI, test SAL—facial expressions

TABLE VIII
CROSS VALIDATION ON AMI—CEPSTRAL + PROSODIC FEATURES

TABLE IX
CROSS VALIDATION ON AMI—FACIAL EXPRESSIONS + CEPSTRAL +

PROSODIC FEATURES

TABLE X
TRAIN AMI, TEST SAL—FACIAL EXPRESSIONS FEATURES

TABLE XI
TRAIN AMI, TEST SAL—CEPSTRAL + PROSODIC FEATURES

TABLE XII
TRAIN AMI, TEST SAL—FACIAL EXPRESSIONS +

CEPSTRAL + PROSODIC FEATURES

TABLE XIII
TRAIN SAL, TEST AMI—FACIAL EXPRESSIONS FEATURES

features, cepstral + prosodic features, and facial expressions
+ cepstral + prosodic features, respectively. Tables XIII–XV
show the train SAL, test AMI—facial expressions features,
cepstral + prosodic features, and facial expressions + cepstral +
prosodic features, respectively.
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TABLE XIV
TRAIN SAL, TEST AMI—CEPSTRAL + PROSODIC FEATURES

TABLE XV
TRAIN SAL, TEST AMI—FACIAL EXPRESSIONS + CEPSTRAL +

PROSODIC FEATURES
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