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Abstract

We show that when fuzzy C-means (FCM) algorithm is used in an over-partitioning mode, the resulting membership values can be further
utilized for building a connectivity graph that represents the relative distribution of the computed centroids. Standard graph-theoretic procedures
and recent algorithms from manifold learning theory are subsequently applied to this graph. This facilitates the accomplishment of a great
variety of data-analysis tasks. The definition of optimal cluster number Co, the detection of intrinsic geometrical constraints within the data,
and the faithful low-dimensional representation of the original structure are all performed efficiently, by working with just a down-sampled
version (comprised of the centroids) of the data. Our approach is extensively demonstrated using synthetic data and actual brain signals.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The detection of meaningful structure in the data, the proper
description of this structure and its subsequent economical rep-
resentation are unavoidable steps for discovering knowledge
from large datasets and using it later for modeling and predic-
tion. Clustering, very often, plays an instrumental role in such
explorations. Using the algorithm of choice, the ensemble of
data is partitioned into homogenous data chunks with a single
prototype representing each one of the produced groups. The
derived, down-sampled, version of the dataset, if/when orga-
nized properly can be used for skimming (i.e. it can serve as an
intelligible summary of the whole spectrum of information con-
tained within the original dataset). Such organization, which is
inherent in some neural network algorithms like the Kohonen’s
map, can be achieved with a suitable post-processing (e.g. [1]).
In the simplest case, the individual dataset items are distributed
among different clear-cut categories, which are readily recog-
nized by the clustering routine.
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Dimensionality reduction offers an alternative way to look
for putative structure in the dataset by representing the items in
a reduced space and therefore facilitating visual inspection (e.g.
PCA and MDS). Recently, there has been a renewed interest in
dimensionality reduction techniques that evolved into a distinct
branch of data analysis, namely the manifold learning theory
[2–5]. The emerging techniques have a common theme: they
attempt to recover, in a fully unsupervised manner, the intrinsic
dimensionality of the data by starting from high-dimensional
observations and detecting geometrical constraints in their lo-
cal distribution. They offer a natural re-parameterization of the
items, and this is equivalent with an efficient structural descrip-
tion for a given dataset. Depending on the particular method,
the learning of manifolds (i.e. the tracing of constrained sur-
faces) can be accomplished by means of spectral-graph theory,
semidefinite programming, etc.

The conjunction of clustering and dimensionality reduction
has a long history. First, distance-preserving maps were sug-
gested as visual tools that can support the selection of true
cluster number. Then, some self-organizing nets had inbuilt an
interaction between the clustering process and the mapping of
the formed groups on a low-dimensional grid. Finally, spectral
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graph-theoretic algorithms for cluster analysis (e.g. [6,7]) were
built over the eigenanalysis (and therefore the low-dimensional
description) of pairwise relational data. More recently, manifold
learning algorithms were shown to result in low-dimensional
embeddings that either enhance the clustering tendencies of
the original data or could be easily handled via traditional
cluster algorithms like C-means [8]. Specifically, an elongated
cohesive structure, which would otherwise split into multiple
groups, can be transformed after embedding into a single, com-
pact group easily detectable by standard clustering [9]. We can
try to conceptualize the essence of these algorithms as follows.
An overall graph is built that encapsulates all the dataset items.
This graph conveys all important pairwise relationships and in
such a way that coherencies in the partial distribution of items
are emphasized. A distinct graph component corresponds to a
meaningful data structure, which might be characterized by in-
tricate idiosyncratic geometry. A graph simplification/flattening
step produces the final low-dimensional embedding in which
the different graph components can be detected and traced
easily.

Despite the commonsense practice to apply clustering after
dimensionality reduction, in this work we wanted to explore
the possibility of reversing this order as a means to achieve ef-
ficient and economical description of the structure in our data.
The original motivation was the practical problem that large
datasets are inaccessible to many of the current manifold learn-
ing algorithms. Especially in a visual data mining setting, where
the dynamic interaction of the user with the embedding is de-
sired, the execution time is prohibitive even for medium-sized
datasets (of ∼ 2000 items). Apparently the effective size of a
large dataset can be reduced by via random sampling or proto-
typing and the derived down-sampled version could be directly
fed to any manifold learning algorithm. However, the former
strategy cannot resolve this situation, since delicate structure
is revealed only when sufficient number of items is taken into
account. Only prototyping can indeed alleviate the problem,
but only up to some extent since the geometrical relationships
among prototypes cannot always reveal the true distribution
over the manifold (see for instance Fig. 1).

The principal goal was to advance fuzzy C-means (FCM) al-
gorithm, a widely available and indisputably efficient clustering
technique, in such a way that the computed prototypes would
provide a faithful skeleton of the underlying dataset structure.
The core idea was that using the membership values, avail-
able after the execution of FCM, refined geometrical relation-
ships among prototypes could be estimated with respect to the
underlying data distribution. In this paper we show that, with
simple algorithmic steps, a (C × C) connectivity graph is built
containing all the essential information for the structural de-
scription and amenable (after some simple transformations)
to recent manifold learning algorithms and standard graph-
theoretic procedures for organizing datasets.

The paper is organized as follows. In Section 2 we review
the standard FCM algorithm. In Section 3 we describe some
ideas borrowed from topology-representing neural networks
and show how these can be implemented within the frame-
work of fuzzy clustering. In Section 4 we outline the known

algorithms as adapted here for the post-processing of FCM out-
comes, while in Section 5 we provide selected worked exam-
ples. Section 6 is devoted to the correlation of the presented
work with recent literature and some concluding remarks.

2. The FCM algorithm

Fuzzy clustering can be traced back to Ref. [10] and the
seminal work of Bezdek [11–14]. It incorporates various algo-
rithms in which an object can simultaneously belong to several
classes but with different degrees of certainty, as these mea-
sured by a membership function. In general, any such algo-
rithm attempts to estimate a partition matrix U(X) of a given
dataset X = {X1, X2, . . . , XN }, that defines its segmentation
into a number C>N of homogeneous and contrasted subsets
(X1, X2, . . . , Xc), the clusters. The partition matrix U is of size
C × N and has the form

U(X) = [uij ]C×N =

⎡
⎢⎢⎢⎣

U1

U2
...

UC

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

u11 u12 · · · u1N

u21 u22 · · · u21
...

...
...

...

uC1 uC2 uCN

⎤
⎥⎥⎥⎦ .

In the above notation uij ∈ [0, 1] denotes the membership
grade of jth object to ith cluster, satisfying the usual conditions
in fuzzy clustering

(a) 0 <

N∑
j=1

uij < N, ∀i, (b)

C∑
i=1

uij = 1, ∀j ,

(c)
C∑

i=1

N∑
j=1

uij = N .

In the particular case of FCM algorithm, the objects to
be clustered are represented by vectors in Rp and there-
fore the dataset can take the form of a large matrix
X = [xij ]N×p = [X1|X2| · · · XN ] with row-vectors of the form
Xi = [xi1, xi2, . . . , xip]. The algorithm derives C cluster cen-
troids Oi in Rp, by minimizing the following objective func-
tion that includes the memberships as additional unknowns in
the estimation of an aggregate, weighted and within-cluster
dispersion

Jm(U, O) =
C∑

i=1

N∑
j=1

um
ij‖Xj − Oi‖2. (1)

The matrix O denotes the set of centroids tabulated in the form
O=[oij ]C×p=[O1|O2| · · · OC], m ∈ (1, ∞) is a weighting pa-
rameter [14,15] that controls the fuzziness in the classification
process and the distance function ‖·‖ is the standard Euclidean
norm. After a proper initialization of the partition matrix, an
iterative optimization scheme is followed that alternates be-
tween the re-estimation of cluster centroids and the evaluation
of new memberships for the objects according to the following
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two formulae:

Oi =
∑N

j=1u
m
ijXj∑N

j=1u
m
ij

, 1� i�C (2)

uij =
[

C∑
k=1

( ‖Xj − Oi‖2

‖Xj − Ok‖2

)1/(m−1)
]−1

,

1� i�C, 1�j �N . (3)

Every time this dual step is executed, the emerged partition
matrix is compared with its former version and the whole pro-
cedure terminates when the changes have become negligible.
Alternatively, the termination can be based on the comparison
of successive Jm values.

In the standard FCM-algorithm, both C and m are user-
defined parameters. While for the later the usual choice is m=2,
the definition of optimal number of classes Co is generally con-
sidered and important issue that deserves a careful treatment
since this number has to be tailored to the dataset at hand. Many
validity indices, devoted specifically to fuzzy clustering, have
been proposed (see Ref. [16] for an extensive comparison) and
their relative success seems to be case-dependent. Among these
indices, we briefly mention here the Bezdeck’s fuzzy partition
coefficient FPC due to its affinity with the ideas presented later

FPC(U) = tr(U.UT)

N
. (4)

This index expresses the overall unshared membership of the
data after being segregated in the C fuzzy clusters [15]. It is
an aggregate ‘anti-overlap’ measure for which in general holds
1/C�FPC �1. The higher the FPC value, the clearer the in-
duced partition is. When used for the definition of optimal clus-
ter number, FCM is applied with variable cluster number Ci

and the computed partition matrices U(Ci) are used to identify

Co = arg max
2�Ci �Cmax

FPC(U(Ci)).

The FCM algorithm has gained great popularity over the
last years due to the concrete mathematical formulation, the
straightforward implementation and the wide availability in
software packages like Matlab. It has found a tremendous num-
ber of applications (e.g. [17–19]), and undergone a lot of mod-
ifications or extensions (e.g. [20–23]). Finally, post-processing
procedures have been recently introduced with the aim of vi-
sualizing the computed memberships and therefore portraying
inter-cluster overlap (see Ref. [24] for a detailed discussion of
the topic).

3. Topology representing graphs

Martinez and Schulten, in a highly influential article [25],
introduced the notion of induced Delaunay triangulation (IDT)
and showed how IDT can be computed using a stochastic al-
gorithm, that simulates Hebbian competitive rule, within the
framework of neural-gas vector quantizer. Their implementa-
tion builds over the particular self-organizing neural network.

However the core idea of a connectivity graph Gij , (i, j =
1, . . . , C) that refers to the actual topological relations between
prototypes and serves as a model-skeleton for even intricately
structured distributions, applies to other prototyping procedures
as well. In the sequel, we first describe the originally proposed
procedure for defining G, then mention briefly its basic proper-
ties and finally show how it can be estimated from the outcomes
of FCM algorithm.

(step-1): The elements of a C × C matrix G are initialized
to zeroes, with the entry Gij corresponding to the strength of
connection between prototypes Oi and Oj

(step-2): Each vector Xk , k=1, . . . , N is compared with all
the prototypes according to Euclidean distance, the two near-
est prototypes Or and Oq are detected and the corresponding
entries Grq and Gqr are increased by 1.

The derived G is a symmetric matrix. Its elements Gij �0 are
directly analogous to the extent of overlap between the recep-
tive fields of Oi and Oj . More formally, nonzero values denote
that the corresponding Voronoi regions are sharing a common
boundary. With simple elementwise thresholding �(Cij )=Aij ,
where �(·) is the Heavyside step function, the adjacency matrix
A of IDT is computed. This matrix corresponds to a meaning-
ful subgraph of the Delaunay triangulation of the vectors Oi ,
i = 1, . . . C, that perfectly preserves the topology of the data.
It has the important property that a link connects two nearby
prototypes only when they are natural neighbors over the man-
ifold (for instance, see Fig. 1). Provided that the distribution
of Oi is dense on M (i.e. C is sufficiently high), this implies
that each edge OrOq characterized byGrq > 0 (or equivalently
Arq = Aqr = 1) belongs to the data manifold. According to the
authors of Ref. [25], this property opens the possibility of a
discrete path preserving representation of the data manifold.

The connectivity graph G can be estimated easily after the ex-
ecution of FCM algorithm, since the partition matrix U contains
all the required information regarding the relative closeness of
each vector Xj with all the prototypes Oi , i = 1, 2, . . . , C. Us-
ing separately each column U(:,j) = [u1j , u2j , . . . , ucj ]T, we
can estimate the ordering of distances {‖Oi − Xj‖}i=1:C di-
rectly through the reverse ordering of the corresponding mem-
bership values. Therefore, the identification of the two highest
memberships urj and uqj in the jth column casts a single vote,
associated to the specific vector Xj , regarding the connection
between Or and Oq (i.e. the step-2 in the previous algorithm).
By summing up the contributions from all the N vectors, the G
is built.

Let U+ the matrix produced after replacing the two highest
memberships, in each column of U, with ones and zeroing all
the remaining elements. Then the computation of G takes the
following compact form:

G = G(U) = U+ · U+T
. (5)

Actually this formula provides C extra values tabulated in the
diagonal of G. These values report the relative distribution of
vectors in the different clusters and sum up to the value 2N .
They do not carry any direct information about the topological
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relations between the prototypes and therefore can be ignored.
The overall computation of G will be later simplified even
further, by replacing the U+ matrix with the one produced in
a simpler way.

Before introducing this simplification, let us first compare
the above equation with Eq. (4). Apart from a scaling factor and
the trace operator, there is an obvious correspondence between
these two equations. The matrix multiplication U.UT results in
a C ×C matrix with the off-diagonal elements having the form

[U.UT]rq =
N∑

j=1

urjuqj ,

which is a known measure of the relative overlap of the fuzzy
class intersection between the rth and qth fuzzy clusters [15]. It
is a point-by-point correlation of the membership values corre-
sponding to the two clusters. As this summation extends to all
the vectors Xj , j = 1, . . . , N , even those that have very small
memberships to either of the two clusters, it has the tendency
to produce nonzero values for all the cluster pairs. On the other
hand, the point-by-point correlations implied by Eq. (5) produce
useful topological measures since they follow a ‘hardening’-
step applied to each U(:,j) vector. Inspired by this parallelism
between topology-representation and fuzzy-classification met-
rics, the following algorithmic procedure is suggested for a
computationally economical approximation of the connectivity
graph G:

The fuzzy connectivity graph (FCG):

step-1: Apply FCM algorithm, (O, U) = FCM(X, C)

step-2: Build U′ = [u′
ij ]C×N such that u′

ij = uij .�(uij − �)

step-3: G’ = G’(U, �) = [gij ’]C×C = U′.U′T

In this pseudocode, the first step denotes the application
of standard FCM-algorithm using a high number C, i.e. in
an over-clustering fashion. The second step denotes a simple
thresholding scheme in which all the membership values below
a user-defined threshold 0 < � < 1 are zeroed. Hence, they do
not contribute in the subsequent estimation of correlations via
the execution of the third step. We have experimentally verified
that (with a proper selection of the �) the fuzzy connectivity
graph (FCG) bears almost equivalent information, regarding
the topological description of the data, with the G. Apart from
its appealing simplicity, the introduced approximation is of
practical utility in the case of high N. In what follows (except
Sections 5.1 and 5.2.) when we are talking about connectivity
graph we mean its fuzzy approximation G’ and, hence, the
apostrophe is dropped hereafter.

4. Graph-based post-processing of the FCG

The FCG contains information about the intrinsic data topol-
ogy, since each entry Gij quantifies the adjacency between
prototypes in the sense that its value is directly analogous to
the overlap between the corresponding receptive fields. Pro-
vided a dense data sampling (i.e. high N), this estimation of
adjacency is very reliable and more informative than using the

naı¨ve pairwise Euclidean distance which assumes embedding
of data in a flat space. In order to exploit the rich structural
information contained in G for the benefit of data organization,
we adopted the following graph-theoretic techniques.

4.1. Minimal spanning tree (MST) and MST-ordering

The minimal-spanning tree (MST) is a popular graph-
theoretic tool that can provide, for a given connected weighted
graph, both the ‘nearest neighbor’ information about each node
and the ‘shortest linkage’ information about subsets of vertices.
When used to handle data points, its Euclidean version (eMST)
is applied. In this implementation there is a node for each data
point on a fully connected graph, while the Euclidean pairwise
distances serve as the link weights. The eMST was used in a
recent work for organizing the prototypes Oi , i = 1, 2, . . . , C

derived via neural-type vector-quantization [1]. There, a node
was associated with the endpoint of each vector Oi and the
eMST was the connected graph formed by connecting all these
nodes with the unique set of (C − 1) line segments having the
minimal total length. MST-graphs, in general, are character-
ized by the existence of a unique path connecting every pair of
nodes that can be followed in order to navigate, systematically,
in the graphical structure. Associated with this property of
MST, there is a graph-theoretic procedure for transforming this
graph to an ordered list, in which similar ranks are assigned to
nearby nodes. The so-called MST-ordering is based on a stan-
dard technique for traversing a tree-graph and accomplished
by selecting one node of the MST as the ‘root’ and following
a breadth first search for the remaining ones [27]. The rank of
each node is the order in which it is visited in this search (see
Fig. 3).

Having in mind to emphasize the intrinsic geometrical rela-
tions, the above ideas are employed here by first applying stan-
dard Prim’s algorithm [26] to a dissimilarity-matrix −G derived
from the FCG as

−G = [−gij ]C×C : −gij = max
i,j

(gij ) − gij . (6)

The derived MST is a set of C−1 links that can be thought of as
the skeleton of data structure. Hence, it constitutes an appeal-
ing tool for detecting degeneracies in the approximation of data
structure via dimensionality reduction techniques. Any crossing
between different links in the new low-dimensional space indi-
cates defects in the representation of local topological relation-
ships between the centroids. In addition the derived MST can be
utilized for the rough re-parameterization of centroids. The sub-
sequent MST-ordering provides a seriation O[i] i =1, 2, . . . , C

that, depending on the selection of ‘root’, may reveal the most
important degrees of variation in our data. This selection can be
simplified through dimensionality reduction, as discussed later.

4.2. Laplacian eigenmap (LE) and locality preserving
projection (LPP)

LEs belong to the early scientific contributions that
founded the field of manifold leaning. Based on ideas from
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spectral-graph theory, and in particular the graph-Laplacian,
they provide a low-dimensional geometric representation of a
data manifold [28]. First, a neighborhood graph is built over
the data points. Weights representing the similarity between
nodes are then assigned to the formed edges. After that, the
Laplacian operator L is applied to the produced graph and
finally a geometric embedding is produced, via eigenanalysis,
in which associated nodes are mapped to nearby positions. The
LE algorithm has a locality preserving character that makes it
robust to outlier and noise. Moreover, is known to produce a
mapping in which possible clustering tendencies in the data
are enhanced. The core idea implemented by this algorithm is
such that it can be directly adopted for visualizing the struc-
ture of any given weighted graph (as long as positive sym-
metric weights are denoting the association between nodes)
in a coordinate space [29]. Hence, it can be applied to the
FCG graph, giving rise to a point diagram denoted hereafter
as FCGLE.

FCG-related Laplacian eigenmap (FCGLE):

step-1: Solve the generalized eigenvector problem L Fi =
�iDFi with D = [dij ]C×C : dii = ∑C

j=1gij ∨ dij = 0, j 
= i and
L = D − G

step-2: Define the order F[i], i = 1, . . . , C of eigenvectors
according to the order of their eigenvalues:
0 = �[1] < �[2] < · · · < �[C]

step-3: Output P=[pij ]C×r : Oi → Pi=(F[2](i), F[3](i), . . . ,
F[r+1](i))

The jth-node of FCG is mapped to a point. Hence, a nonlinear
mapping is implicitly performed Oi → Pi , i = 1, 2 . . . C, from
Rp to Rr , in which r < p. Specifically the choice r = 2 (or
even r = 3) facilitates the direct visualization of connectivity
between the fuzzy groups.

LPP, on the other hand, came with the second wave of ad-
vances in manifold learning theory that extended the potential
of early techniques by including additional characteristics, like
the possibility of extrapolating the mapping to data points out-
side the initial training set. It was introduced [30] as a linear
approximation of LE. In this work we resort to LPP since it
engages, apart from the FCG, also the centroids Oi in the com-
putation of low-dimensional map. Due to linearity, the derived
map is smoother than LE (a useful property when data struc-
ture is characterized more by gradual variations than large dis-
continuities) and very helpful for selecting the ‘root’ needed
for a successful MST ordering of the FCG. The steps of LPP
technique have been adopted as follows:

FCG-related locality preserving projection map (FCGLPP ):

step-1: Solve the generalized eigenvector problem OTLOFi=
�iOTDOFi with O = [oij ]C×p = [O1|O2|....OC], L = D − G
and D = [dij ]C×C : dii = ∑C

j=1gij ∨ dij = 0, j 
= i

step-2: Define the order F[i], i = 1, . . . , C of eigenvectors
according to the order of their eigenvectors: �[1] < �[2] < · · · <
�[C]

step-3: Select the first r eigenvectors and tabulate them as
different columns in A = [aij ]p×r = [F[1], F[2], . . . , F[r])

step-4: Output P = [pij ]C×r = OA

The mapping rule from Rp to Rr , defined by matrix A, can
be generalized to any vector including the original ones, i.e.
Xi → Qi = Xi A, i = 1, 2 . . . , N . By doing so, the whole
data sample can appear in a low-dimensional space as a way to
provide a more vivid picture of the overlap between different
clusters (in the spirit of Ref. [24]).

4.3. ISOMAP

The pioneering paper of Tenenbaum et al. [2] introduced
ISOMAP, one of the milestones in manifold learning [5].
Graph-theoretic ideas were engaged with a linear dimensional-
ity reduction technique, namely the multi-dimensional scaling
(MDS), to discover intrinsically low-dimensional structures
embedded in high-dimensional datasets. Starting from a neigh-
borhood graph built over the N dataset items, shortest-path
distances are computed and tabulated in a (N × N ) dissim-
ilarity matrix that is then fed to classic MDS. A point dia-
gram with N elements is then computed, via eigenanalysis,
in a space of low-dimensionality r (usually 2 or 3) as an
interface helpful in recovering the essential degrees of free-
dom in the data. In the standard implementation (available
at http://isomap.stanford.edu/), the input data are expected
in a relational format. This format implies a fully connected
graph with pairwise distances as weights. Then the user can
select among two strategies for trimming redundant links
from the original graph. In the simplest case, the links with
weights above a threshold �o are removed and remains a
sparse neighborhood graph, over which graph distances are
computed. There is a strong affinity between the notion of
a path-preserving representation of data manifolds (see Sec-
tion 3) and the function of ISOMAP which, in essence, is
the unfolding of shortest-path distances in a low-dimensional
space. This suggested the engagement of this technique in the
visualization of FCG.

FCG-related ISOMAP (FCGISOMAP ):

step-1: Define a small �o such that after trimming a single
connected neighborhood-graph is constructed

step-2: Run ISOMAP with the default option for a
10-d coordinate space [Q, R] = ISOMAP (−G, ‘epsilon’, εo),
Q = [qij ]C×10

step-3: Output the first r-rows from Q,
P = [pij ]C×r , pkl = [qkl], k = 1, . . . , C, l = 1, 2, . . . , r

With the first step, we secure that all nodes will be seen in the
final r-dimensional point diagram (the selection of threshold �o
is not difficult, since there is a corresponding diagnostic in the
ISOMAP-routine and moreover its value ranges in (0,1)). Using
the dissimilarity matrix −G of Eq. (6), a 10D point diagram is
computed. The successive values of residual variance R indicate
the relative improvement in the approximation of −G (by the
point diagram) as dimensionality is increased. These values can
therefore facilitate the selection of parameter r used in the final
step. As in the case of Laplacian eigenmap, a nonlinear mapping
Oi → Pi , i = 1, 2, . . . , C, such that r < p is performed also
with ISOMAP. The latter is expected to perform better when
relative smooth manifolds are to be recovered, since a global

http://isomap.stanford.edu/
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view of the data is pursued (via the computation of shortest-
path distances).

5. Experiments

In this section some worked examples are included with the
aim of clarifying the previously presented ideas and demon-
strating the different ways in which can be applied to the data
at hand. Having in mind an exploratory-data-analysis scenario,
where the user wants to gain some insights to his data and
provide a meaningful summarization through graphs, the over-
all scheme takes the following form (for instance see Fig. 4).
We begin by running FCM in an over-partitioning mode. We
next construct the FCG and derive the corresponding MST.
We then apply LPP in order to select the root for MST-ordering

Fig. 1. Examples of connectivity graph G built with varying the number C of fuzzy clusters.

and also sketch the FCG in two dimensions. Finally we per-
form either LE or ISOMAP and overplot the MST in the re-
duced space. A color map, that follows the MST-based ranks, is
adopted so as to enhance further the visualization of data struc-
ture. User–machine interaction can readily ‘optimize’ the few
control parameters, namely the partition size C, the threshold
� and the type/size of dimensionality reduction.

5.1. The topology representing graph G

We commence by providing a few examples of connectiv-
ity graph G built with the original procedure. Using the 2D
example of Fig. 1, we demonstrate the rich structural infor-
mation that can be conveyed by such a graph and discuss the
role of C. Fig. 1a1 shows the data distribution as thin dots and
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the C = 15 computed centroids as tiny spheres. Fig. 1a2
provides the connectivity graph G drawn over the previous
centroids. The relative strength of each connection (link) is de-
noted using a twin code: by the thickness of the corresponding
edge and its luminance. Hence, thin dark links correspond to
weaker connections. Fig. 1a3 shows the whole distribution of
strength for all the detected connections. It has been produced
by ordering all entries Gij , j > i and plotting the connectivity
strength (expressed in counts) versus the order of the connec-
tion. The attached color bar, shows the correspondence be-
tween luminance and connection strength and is in common for
Figs. 1a2 and 1a3. The middle and lower panels, comprised
of Figs. 1b1.3 and 1c1.3 correspondingly, contain similar in-
formation, but for different number of centroids. It is clearly
evident (middle column) that as the number C of fuzzy clusters
increases, the connectivity graph is cleared from erroneous
connections. A sufficiently high number C is therefore needed.
On the other hand, a very large C (i.e. in the order of data size
N) is not a reasonable choice as well, since both the compu-
tational cost and the error in estimating connection strength
will increase. The decision on a C that constitutes a sensible
trade-off can be assisted by graphs in the form of right-most
column. When C is very small (Fig. 1a3) the values of G tend
to cover different isolated ranges. As C increases (Fig. 1b3)
there is no such isolation. With a sufficiently high C (Fig. 1c3),
the strengths tend to distribute more uniformly and within a
smaller range. Therefore, as a rule of thumb, we can suggest
a value of C such that the connection strengths will tend to
distribute uniformly, but without collapsing to a very small
range of values. Obviously, whether or not a specific C value is
appropriate, can easily be decided through a graph in the form
of those seen in the middle column. This is the reason why we
suggest, in any case (not only whenever the data are 2D as in
this particular example), a similar presentation of interconnec-
tions in the reduced 2D-space produced via LPP (see Fig. 4d).

5.2. “The FCG approximates G”

This subsection is devoted to the comparison of original con-
nectivity graph G with its fuzzy counterpart G’ regarding the
implied structural information. The FCG is computed with the
introduced algorithm (see Section 3), in which a threshold pa-
rameter � needs to be set. For both the examples included in
Fig. 2 the value � = 0.1 was used.

Fig. 2 contains two different panels in which the numbering
of included graphs has been duplicated since they are in full
correspondence. In the upper part, the structure of previous 2D
point distribution is studied. For the lower part a uniformly dis-
tributed 2D dataset has been used. Fig. 2b portrays the strength
of connectivity between the centroids seen in Fig. 2a, while
Fig. 2c shows the distribution of the strength values. Both
graphs correspond to G matrix and have been produced as de-
tailed in the previous section. On the other hand, Fig. 2d and
Fig. 2e correspond to the matrix G’. The two diagrams have
been produced in a similar way with the previous ones. The
only technicality needs to be mentioned is that the strength val-
ues have been brought to the range (0, 1], with the maximum

entry of G’ corresponding to 1. The contrast of Figs. 2b and
d provides clear evidence about the resemblance between the
topological information contained in the two graphs G and G’.

The comparison of G and G’ was also carried out in a
more quantitative way. Using the Hubert’s �-statistic, we cor-
relate the structure between the two Graphs derived for several
datasets of varying dimensionality and structural complexity. A
highly significant similarity was revealed in every case. As it
was expected, this similarity was found to depend on the em-
ployed threshold �. However, the optimal choice of � was de-
pending on the dataset nature and the employed C (to a much
lesser extend) as well. Based on extensive experimentation, we
can suggest a value in the range (0.085–0.15). The visual in-
spection of connectivity graphs produced with different � can
provide the near-optimal value resulting in the most interest-
ing structural description. In the sequel, the value � = 0.1 is
everywhere implied.

5.3. Analyzing the FCG from synthetic data

The classical ‘two-moons’ dataset is used to demonstrate
the potential of FCGLE for enhancing clustering tendencies in
the data, even when these are obscured by the nonEuclidean
nature of the intrinsic topology. The 50 centroids are shown
in Fig. 3a along with the original 2D dataset. The visualized
connectivity of Fig. 3b clearly indicates the existence of two
elongated substructures approaching at a specific site. After
choosing the ‘root’ on a different site, the MST-ordering as-
signed ranks as seen in Fig. 3c. To enhance visualization even
further, the color map seen beside has been used to color the
nodes according to MST-based ranks. The result vividly repre-
sents that we can navigate in the dataset using the MST-based
parameterization (using as a single parameter the rank of each
centroid). An even clearer re-parameterization of the dataset
can be achieved with the application of FCGLE. Fig. 3d shows
the derived point diagram in a 2D coordinate space. Please no-
tice that this mapping did not actually realize dimensionality
reduction, but rather a nonlinear transformation of the orig-
inal structure (reduction would have been performed if only
r1 dimension had been kept). In the new space the original
MST has been appended and thenodes have been assigned the
previously defined ranks. It is apparent that the FCGLE is help-
ful in tearing the ‘two moons’ apart. Even via simple threshold-
ing along the r1 dimension the two elongated clusters can be
separated, whereas traditional FCM with C=2 will be confused
around the nearby sites of the two moons since it is dominated
by the assumption of spherical clusters.

A second example is discussed next, in which dimension-
ality reduction is actually mandatory for mediating the struc-
tural representation. The dataset is 3D and synthesized from
four distinct multivariate Gaussian distributions, with two of
them characterized by elongated structure (and containing 1000
vectors) and the others being spherical (and containing 500
vectors).

The original dataset is shown in Fig. 4a together with the
50 derived prototypes. The corresponding FCG-based MST is
first portrayed in the original space along with the related ranks
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Fig. 2. Comparing connectivity graph G with its fuzzy counterpart FCG.

Fig. 4b. The FCGLPP point diagram is shown in Fig. 4c, with
the original MST overplotted. A few crossings between the
links of MST can be seen and this indicates that the original
structure cannot be perfectly embedded in two dimensions. The
same point diagram is used in Fig. 4d in order to visualize the
FCG-related connectivity. Augmented by the connectivity links,

it makes evident the existence of four distinct components in
the original data and their differences in shape. The correspond-
ing FCGLE point diagram is shown in Fig. 4e with the ranks
denoted as previously. The later point diagram intensifies clus-
tering even more and facilitates the easy delineation of the four
distinct graph components as seen in Fig. 4f. This delineation
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Fig. 3. FCG related analysis applied to the ‘two moons’ dataset (see Section 5.3).

can be done manually using interactive graphics, through stan-
dard clustering applied in the reduced space or alternatively by
removing the three weaker edges from the MST graph.Next,
with the inverse mapping Pi → Oi , i = 1, 2, . . . , C, from Rr

to Rp, each one of the four swarms of centroids are identified
in the original 3D space and used to segment the data as seen in
Fig. 4g. The color of the four graph components has been trans-
ferred to the initial vectors Xi according to the simple nearest-
neighbor classification rule (i.e. maximum defuzzification in the
fuzzy logic terminology [15]). This result can be directly com-
pared with the output from standard FCM with C = 4, which
is presented in Fig. 4h in the same format. It is clear that the
standard FCM fails to completely separate the elongated from
the spherical substructures.

With the third example, we meant to demonstrate the in-
sensitivity to noise. We started by constructing the 2D syn-
thetic dataset of Fig. 5a, that follows Archimedean spiral and

therefore is characterized by intrinsic dimensionality 1. The
original dataset X1 was of [4000 × 2] size. With a simple
linear transformation, using a matrix W[2×10] containing ran-
domly distributed vectors, we created the following dataset
X[4000×10] = X1.W. This was equivalent with embedding the
original structure in a 10D space. On the top of these data
we added Gaussian noise distributed uniformly and indepen-
dently in all 10 dimensions. Two different perspectives of
the resulting dataset are provided in Fig. 5b and Fig. 5c. The
FCG-based MST-ordering is indicated in Fig. 5d (original
space) and Fig. 5e (reduced space). The connectivity is visual-
ized in Fig. 5f, while the point diagram from LE is provided
in Fig. 5g. Specifically the comparison of the last two fig-
urines indicates the basic difference between the FCGLE and
FCGLPP point diagrams. LPP is a linear technique (although
it emphasizes the nonlinear characteristics of a given data
structure), therefore it is not expected to recover perfectly the
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Fig. 4. (a–g) FCG based clustering of 3D data. (h) Standard FCM clustering (see Section 5.3).
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Fig. 5. Parameterization of an intrinsically 1D structure recovered from 10D data (see Section 5.3).

highly nonlinear structure of Archimedean spiral. LE, being of
nonlinear nature, goes one step further and unfolds the detected
structure in the reduced space. Regardless of this difference,
it should be noticed that both techniques effectively portray
the main topological characteristics even from data corrupted
by noise.

The last included example, using synthetic data, deals with
the learning of “Swiss-roll” dataset, a standard benchmark in
manifold learning theory. The original dataset is shown in
Fig. 6a along with C = 300 derived centroids. In full accor-
dance with the previously discussed figures, the MST-ordering
is depicted in Fig. 6b. The ISOMAP-based representation of
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Fig. 6. Unfolding the ‘Swiss-roll’ data with the FCG-related ISOMAP (see Section 5.3).

the FCG is shown in Fig. 6d, where it is clear that the induced
graph flattening faithfully represents the hidden structure. The
successive values of residual variance, seen in Fig. 6c, serves
as a further indication that two dimensions were sufficient for
the representation of graph structure. Two points need to be
mentioned here. First, that the corresponding FCGLE mapping
(not shown here) was relatively less successful. This can be
explained by the smoothness of specific nonlinear manifold.
The second point is that ISOMAP could not be applied directly
due to dataset size. Using FCG-based ISOMAP, we achieve a
meaningful subsampling along with structure representation.

5.4. Application of FCG-analysis to neuromagnetic responses

Finally, we chose to include a realistic example in which the
proposed methodology is applied to neuroscientific data with
the purpose of knowledge discovery from a large dataset of
encephalographic responses. This particular choice was moti-
vated by our own experience with similar techniques applied
previously to the same data [1] and facilitated the discussion
of relative improvements.

The data correspond to single-trial (ST) responses from a
simple visual experiment targeting at the early neuromagnetic
response known as N70m. A detailed description of the exper-
imental data can be found in Ref. [31]. In short, the MEG sig-
nal was recorded continuously with a sampling rate of 625 Hz
after low pass filtering at 200 Hz using the 151-channel whole-
head Omega biomagnetometer (CTF Systems Inc). The stim-
ulus was a circular checkerboard patch of 4.5

◦
radius and the

whole experiment consisted of 240 trials of pattern reversal at
the rate of 1.43 Hz. After standard preprocessing, trials were
extracted in the range from −100 to 200 ms relative to the onset
of each pattern reversal. A spatial operator was applied to the
multichannel data in order to extract a single temporal pattern
conveying the neural activity from the occipital region, during
the ith ST:

xi(t), i = 1, . . . , N, t = −100: Ts : 200 ms,

Ts = 1/fs = 1/625 s

A simple data-driven procedure was adopted for extracting
features from each temporal pattern which were then used in
the detailed study of N70m responses. Based on the pattern of



2642 N.A. Laskaris, Stefanos P. Zafeiriou / Pattern Recognition 41 (2008) 2630–2644

Fig. 7. The visual summary produced via FCG-based prototyping from a dataset of MEG responses (see Section 5.4).

the ensemble average, a set of p latencies around the latency
tmax of the N70m peak was defined from the zero crossings
around it (see Ref. [1] or [31]). The chain of signal values at
these latencies (i.e. the specific segment) constituted the set of
extracted features. In this way, the feature vector extracted from
the ith ST-pattern xi(t) was a p-dimensional vector of the form

Xi =
[
xi

(
tmax − p − 1

2
Ts

)
, . . . , xi

(
tmax + p − 1

2
Ts

)]
,

tmax = 59.2 ms, p = 21.

The ST-segments were tabulated, in a corresponding (N × p)

data-matrix X, that can be thought of as containing the differ-
ent snapshots of regional brain activity during the specific time
interval. We need to notice here that dealing with such a dataset
is not a trivial task, especially when the study of response vari-
ability is among the objectives. At the ST level, the ‘true’ brain
response can be hidden by the brain waves related to ubiqui-
tous ongoing brain activity. Thus, we need to rely exclusively
on efficient data-mining techniques in order to organize and
represent the related information.

Fig. 7 includes the results from a recording in which the
dataset contained N = 220 brain responses and the proposed
methodology was applied with C = 10. The FCGLE point
diagram is shown in Fig. 7a. with the MST-ranks being
incorporated in the form of both colors and labels. The proto-
typical brain responses (i.e. temporal patterns) are presented

in an orderly fashion in Fig. 7b based on their MST-ranks.
They have been derived by first grouping the signals xi(t),
i = 1, . . . , N , according to the membership of the correspond-
ing feature vectors Xi and then performing within-group aver-
aging. Since the two diagrams share the same color code, the
graphical representation of dataset variation in Fig. 7a has as
natural counterpart the ordered list of signals in Fig. 7b. The
FCG-related connectivity graph is visualized in Fig. 7c, while
the FCGLE point diagram clearly indicates the presence of two
different types of brain responses. The first type (prototypes
with ranks 1–8) shows a stimulus related reaction, while the
second type (prototypes with ranks 9 and 10) indicates brain
activity remained unaltered after the stimulus presentation. In
our previous experimentations with different techniques on
the same data ([1,31]) we have produced response-variability
graphs of similar quality, but we have missed this indication
for a bi-level kind of behavior. Such a kind of reaction (i.e. the
identical stimulus is delivered but not always perceived by the
subject in a repetitive stimulation paradigm) has recently been
attributed to the existence of network attractor dynamics gov-
erning the spontaneous brain activity and switching between
UP and DOWN states [32].

6. Discussion

We suggested the concept of fuzzy connectivity graph
FCG and showed that it captures rich topological information
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regarding the data structure. We further showed that FCG can
be computed, effortlessly, after the execution of standard FCM
routine and analyzed, readily, via graph-theoretic techniques
ranging from graph-traversal to advanced graph-visualization
schemes. Emphasis was put in suggesting easily implemented
algorithmic procedures which were built over efficient, widely
available routines. Therefore, simplicity and rapid execution,
rather than sophistication and mathematical soundness, are the
main characteristics of this work. Taking into account the time
complexity of FCM, which is O(NCp), it is easily deduced
that the total complexity of the suggested methodologies is
governed by the complexity of the included spectral proce-
dures. This is O(C2) for both LPP and LE (using a sparse
eigensolver) and O(C3) for ISOMAP. Hence, with a reason-
able selection for C < 0.1N the net computational load can be
kept at the level of FCM complexity.

We should notice here, that throughout this presentation it
is assumed that FCM has been executed properly. This implies
a proper initialization, a check on convergence based on the
evolution of J (Eq. (1)), and the avoidance of sparsely pop-
ulated clusters (the latter situation may appear when C is of
the same order with N or when outliers exist in the dataset). A
second underlying assumption, inherent to all manifold learn-
ing approaches, is the existence of intrinsic data structure. The
lack of detectable structure can be signaled by the sparseness
of FCG and, mainly, by the similarity of this graph with the
corresponding one from a surrogate dataset (produced from the
original dataset via randomization [33]).

The core idea of this work is the duality between clustering
and manifold learning, which is currently attracting the inter-
est of data analysts (e.g. [34]). Our approach is governed by
the philosophy of visual data mining: the user should be able
to interact rabidly with graphs summarizing his data with the
aim of extracting high-level semantics. Structure visualization
schemes akin to the suggested ones have been recently intro-
duced in the setting of Kohonen’s map (see Ref. [35] and the
papers cited there in). The advantage of our approach is that
there are no topological restrictions imposed by a regular grid.
Finally, structure visualization has been introduced, lately, in
the setting of supervised learning [36]. There the overlap be-
tween predefined classes is portrayed in an appropriate reduced
space.

This work can be extended in many ways. First, the con-
nectivity mainframe from the FCG can be combined with
data-dependent weights from the corresponding pairwise rela-
tionships. Second, since the fuzzy partition matrix is the main
ingredient different algorithms form fuzzy clustering literature
can be employed as well, with the potential to achieve extra
characteristics like robustness to impulsive noise. Currently we
are experimenting with different ways to test if C is sufficiently
high regarding the topology of the given data.
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