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This manuscript introduces a novel system for content-based identification of image replicas. The

proposed approach utilizes image resemblance for deciding whether a test image has been replicated

from a certain original or not. We formulate replica detection as a classification problem and show that

we can optimize efficiency on a per query basis by dynamically solving a reduced multiclass problem.

For this purpose, we investigate the effective coupling of multidimensional indexing and machine

learning approaches and we aim to achieve replica detection through the training of classifiers with

distortions expected in a replica. Visual descriptors are indexed using an R-tree based multidimensional

structure for fast image retrieval. Cases unsuccessfully handled by the R-tree are resolved by a

multiclass classifier operating on the transformed feature space that results from the application of

linear discriminant analysis (LDA) and principal component analysis (PCA). Experimental results show

that the proposed system can identify replicas with high accuracy and facilitate a wide range of

applications such as copyright protection, content-based monitoring, content-aware multimedia

management, etc.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recent technological advances in the area of multimedia
content distribution have resulted in a major reorganization of
this trade. Valuable digital artworks can be reproduced and
distributed arbitrarily, sometimes without any control by their
owners. The identification of replicated data is considered an
important issue for a number of applications such as copyright
infringement, digital rights management, multimedia manage-
ment using content-aware networks, monitoring and filtering
broadcasted content (e.g., tracking of child pornography content),
etc. Among the various types of multimedia content, images are a
particularly valuable asset and will be the focus of this manu-
script. The approaches that have been proposed for robust image
identification are watermarking and, recently, image replica
detection algorithms.

Watermarking is the technique of imperceptibly embedding
information within the host image content [1]. Although water-
marking has attracted considerable interest from both industry
and academia, it bears certain deficiencies that pose limitations
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on its use. The requirement of embedding information in a digital
image before it is made public, automatically excludes images that
are already in the public domain and need to be copyright
protected. Another inherent watermarking drawback is the fact
that it is an active technique i.e., it modifies the content of the
images to be protected. Although these modifications are in
general invisible, they do exist and might create problems in
certain content categories like medical images, where quality
requirements are extremely high.

In order to overcome these inherent watermarking deficien-
cies, the scientific community started to investigate robust image
identification from a content-based perspective. Replica detection,
also referred as replica recognition, near-replica detection,
perceptual or robust hashing [2], content-based copy detection
[3], and multimedia fingerprinting aims at identifying all images
that have been reproduced from a source original through the
application of intentional or unintentional manipulations. It is
based on image similarity and relies on the assumption that
images shares plenty of information with their replicas and yet
contains enough information to be discriminated from any other
non-replica image. The type and severity of manipulations that
should be successfully handled by a replica detection system
depend on the target application.

The major benefit of such an approach stems from the fact that
no additional information should be embedded within the image
content, thus eliminating the invisibility constraint inherent to
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watermarking systems. On the other hand, the fact that the
response speed and efficiency of a replica detection scheme is
largely affected by the size of the original/reference image dataset,
can be considered as the disadvantage of such an approach. All the
above make replica detection an important alternative to water-
marking that found applications on many types of multimedia
data, such as video [4,3] and audio [5]. Although the problem
formulation as described above, bears many similarities with
content based image retrieval (CBIR), certain differences do exist,
that are detailed in Section 2.

Image replica detection research is still in its early stages, thus
only few works addressing tasks identical or slightly different to
the one addressed in this manuscript can be found in the
literature. In order to tackle the replica detection problem,
existing works aim at (a) optimizing the distance function
quantifying the perceptual similarity between two images [6,7],
(b) extracting highly representative and informative features for
discriminating between replicas and non-replicas [8,9], or (c)
using machine learning techniques and considering the problem
as a classification task [10–12].

In the first case, Qamra et al. [6] present an enhanced
perceptual distance function (DPF) which adaptively chooses a
different set of features according to their discriminative power.
The benefit of this approach is that unlike other schemes that
select that same features for all the images, DPF dynamically
activate features (with minimum difference) in a pair-wise
fashion. In the same direction Kim [7] use the ordinal measure
of DCT coefficients as the feature to represent images and the
ordinal measures of AC coefficients for measuring distance
similarity. A scheme for the optimal selection of a similarity
threshold, based on the maximum a posteriori (MAP) criterion, is
used to enhance the efficiency of the employed distance function.

Concerning methods that focus on robust features extraction,
Ke et al. [9] use PCA-SIFT [13], a local descriptor that has been
shown to be more discriminative and compact than the original
SIFT [14], and features several characteristics that are ideal for
solving the image replica detection problem. Roy and Chang [8] on
the other hand, focus on finding a feature space where any two
images in the database are well separated from each other. More
precisely, the original images are slightly modified in order to
increase their mutual separation within the feature space, while
taking care that the perceptual difference between the original
and the modified image is kept to a minimum.

Finally, in the group of methods that view the problem as a
classification task, Maret et al. [10] propose a method where
binary classifiers based on support vector machines are con-
structed for each original image and are independently applied to
decide whether a query image is a replica or not. A variation of
this system is described in [11] where indexing is used to perform
a coarse and rapid selection of the most likely originals and reduce
the number of classifiers that need to be applied. In a more recent
work [12] the authors improve their method by trying to estimate
and efficiently describe the partition of the image space that
contains the replicas of a particular original image.

Even though the systems introduced in the aforementioned
papers are trying to tackle the same replica detection problem, the
proposed solutions, except from the ones proposed in [10–12],
rely mainly on the discriminative power of the extracted features
and the effectiveness of the employed distance function. Thus, no
particular attention is paid to the fact that having many
similarities with a classification problem, image replica detection
might benefit from the use of appropriately trained classifiers. In
our work we try to take advantage of this fact by searching for an
optimal space where the projection of visual features will enable
the construction of more discriminant classifiers. The proposed
system operates upon a database of stored originals. Its novelty
stems from the fact that image similarity is dealt as a classifica-
tion problem that employs a training scheme and a suitable
feature space transformation in order to increase the system
robustness. It generates training images based on the types of
attacks that the system is designed to cope with, and during the
classification process it uses class statistic information to achieve
maximum separability between classes.

More specifically, each image is represented by a feature vector
and a multidimensional indexing structure based on R-trees [15]
is used for indexing these vectors. The ‘‘hyper-bounding boxes’’
employed by the R-tree are selected using an attack-oriented
training strategy that aims at modeling all potential attacks that
the system is designed to encounter. The structure returns a
relatively small set of images (ideally one) that are candidates for
being the original of the query image. In order to resolve cases
where more than one candidates are returned by the R-tree we
introduce the dynamic use of discriminant techniques. Each
candidate original and its modified copies are assumed to form a
class. Linear discriminant analysis (LDA) [16] is applied in order to
yield more discriminant image representations taking into
account class information. The resulting representations are
expected to be more easily separable, since the reduced number
of involved classes facilitates the estimation of a class-discrimi-
nant projection space. A classification function is subsequently
applied on the projection space for selecting the image corre-
sponding to the original version of the query, if such an image
indeed exists. It must be noted that the manuscript is a largely
extended and improved version of [17] where the proposed
approach was initially presented.

The rest of the manuscript is organized as follows. Section 2
provides a solid definition of image replica detection and outlines
its particularities with respect to image retrieval systems. The
proposed image replica detection system is described in Section 3.
Section 4 describes the experiments conducted and summarizes
the performance evaluation results. Concluding remarks are
drawn in Section 5.
2. Problem formulation

2.1. Image replica detection vs. content based image retrieval

The goal of a query by example content based image retrieval
(CBIR) system is to return a set of database images that are related
to the query image in a broad sense of similarity [18]. On the other
hand, an image replica detection system (RDS) should retrieve a
database image only if the query image is a replica of this image,
otherwise no image should be retrieved. Thus, the notion of
similarity in an RDS is considerably different than similarity in the
sense of general purpose CBIR. Moreover, an RDS should be robust
to malicious image manipulations and resilient to security attacks,
whereas such a requirement does not generally apply to CBIR.
Security attacks, either try to forge a database image and cripple
the system’s reliability or produce false negatives by exploiting
information related to the specific attributes of the feature
extraction algorithm. Finally, unlike typical CBIR applications,
retrieval of more than one image is usually unacceptable for an
RDS. Our intention is to briefly review the techniques utilized in
the field of CBIR and focus on the ones that most coherently
satisfy the aforementioned requirements. Afterwards we will
proceed with the enhancements introduced in this work for
coping with issues that are specific to RDS.

Let I and Iq denote an original and a query image, respectively.
The original images constitute the original image set (database) SI .
Additionally, we define a result set SR corresponding to the images
retrieved by the system when queried with a specific image. The
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functionality of a CBIR system can be formulated by the following
function:

Q ðSI ; IqÞ ¼ SR; 0o jSRjr jSIj; ð1Þ

where Q ðSI; IqÞ denotes querying SI with Iq. The cardinality jSRj

depends on the system settings and usually contains a specific
number of images jSRj5 jSIj, possibly sorted according to their
visual resemblance with Iq. On the other hand, the functionality of
a replica detection system can be expressed by the following
function:

Q ðSI ; IqÞ ¼
I if Iq ¼ RðIÞ; IASI ;

| otherwise;

(
ð2Þ

where Rð�Þ is an allowable replica generator function, i.e., a
function producing attacked images such as compressed, scaled,
cropped, etc. Although common techniques are utilized in both
cases there are differences between their operational models, to
be detailed subsequently.

2.2. Operational models of image replica detection and image

retrieval systems

Some of the elements that are typical to CBIR and are also
fundamental for RDS are (a) image representation scheme, where
an image I is represented by a feature vector xI that is ideally of
small dimension and retains all or most of the original image
significant information, (b) similarity metric, DðxI1 ;xI2 Þ, that
evaluates the resemblance between two images by measuring
the distance of their feature vectors xI1 and xI2 and (c) decision
strategy which sets the rules by which the result set is selected. A
few details regarding the decision strategies that are most widely
used in CBIR systems will help us identify the one that most
consistently adhere to RDS requirements.

Nearest Neighbor is the decision strategy used by a system
attempting to answer the question ‘‘which of the images included
in the database resembles most the query one’’. According to
Nearest Neighbor the system retrieves the images that are found
to be closer to the query, with respect to a specific similarity
metric. Returning an empty result set can only be made feasible
by imposing a dissimilarity threshold on the results. On the other
hand, range query is a different strategy that incorporates a
threshold on the level of similarity between images, instead of
specifying the cardinality of the result set. Range queries can be
envisaged as defining feature space neighborhoods NðIÞ surround-
ing the feature vector of each image, thus answering the question
‘‘which images resemble the query up to a specified degree’’. The
shape of the neighborhood is determined by the similarity metric
and can be a hyper-parallelepiped (L1 norm), a hyper-sphere (L2

norm) or a hyper-ellipse (Mahalanobis distance). The result set
cardinality jSRj may vary since the query image is likely to reside
in more than one image neighborhoods. SR might also be an empty
set.

In the trivial case, the functionality requirements of an RDS are
identical to those of a range query based CBIR. However their
difference, apart from selecting the feature extraction method that
best serves the purpose of each application, is in the way we
define the image neighborhoods in the feature space. In the case
of image retrieval, similarity has ideally a semantic dimension and
such a system should be able to retrieve images that depict
conceptually similar scenes or objects as those included in the
query image. In practice, we define the feature space neighbor-
hood NIRðIÞ of an image I on the ground of any visual similarity
scheme (e.g., color similarity, contour similarity), and operate
under the assumption that there is visual similarity between
semantically adjacent images. In the case of an RDS the images
that are considered similar to a certain image are only those that
have resulted from this image through some manipulation. As a
consequence, the feature space neighborhood NRDðIÞ of an image I

should be ideally defined in such a way so that RðIÞANRDðIÞ, where
Rð�Þ is a function generating all manipulated versions of I.

Obviously, the different notion of similarity between an RDS
and a CBIR system, introduces new issues that cannot be
confronted efficiently by simply selecting a robust feature
extracting scheme and a more ‘‘tight’’ neighborhood in a range
query decision strategy. Learning techniques, that employ training
for finding optimal neighborhoods, and classification approaches,
that make dynamic use of discriminant techniques to achieve
better class discrimination, are the solutions introduced in this
work for tackling these issues.
3. Proposed replica detection system

3.1. System overview

The process of engineering the proposed system can be
separated into two phases. The first deals with the database
organization. Each time a new image is added into the database it
is subjected to a series of predefined manipulations. These
manipulations are selected according to the system specifications
and simulate all types of attacks that we wish the system to be
able to withstand. Feature vectors are extracted from each
attacked version resulting in a matrix (from here on called the
training matrix Tr) consisting of the feature vectors of the training
replicas. The training matrix is used for calculating an extent
vector that is associated with the newly added original image.
Afterwards, the feature vector of the new image is indexed within
a multidimensional structure using the extent vector to set its
neighborhood boundaries for each dimension. The formulated
hyper-rectangle corresponds to the feature space neighborhood of
I that will be used for range search. A graphical representation of
the database organization is depicted in Fig. 1.

The second phase implements the actual replica detection
functionality. An arbitrary image is submitted as a query to the
indexing structure and a set of candidate originals or an empty set
is returned. In order to select one of the competing candidates
their feature vectors are projected into a different space, that is
determined by dynamically applying LDA preceded by PCA. This is
achieved by treating each candidate original and its training
replicas as a separate class. Finally, the system picks the
neighborhood (candidate original) whose center is closest to the
query image in the projected space (see Section 3.5). If the query
image is found to reside outside the neighborhoods of the
candidate originals the result is an empty set. The way the
queries are handled is demonstrated in Fig. 2.
3.2. Feature extraction

Various feature extraction approaches have been proposed in
the literature each one carrying different advantages and
disadvantages. Important advantages include low dimensionality
and reduced computational cost, high discrimination i.e., ability to
distinguish between images that although share many visual
characteristics they depict different scenes/objects, and robust-
ness i.e., ability to extract very similar feature vectors for images
that have been generated from the same source original using
manipulations. Moreover, the particularities of the proposed
scheme, outlined in Section 3.1, pose two additional constraints
that limit the range of applicable feature extraction methods.
Specifically, the method should be able to describe an image using
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a unique, fixed length vector of scalar values and estimate image
similarity by calculating the distance between the corresponding
vectors. Other types of descriptors such as, local descriptors
combined with voting schemes that assess image similarity by
counting the number of point to point matches, are not readily
‘‘compatible’’ with the proposed approach. Thus, a visual
descriptor that would be ideal for the proposed replica detection
system should be (a) discriminate, (b) robust, (c) low dimensional,
(d) with low computational complexity, and (e) global in the sense
that a single vector should be enough to represent the image.

For the purposes of the proposed system we have investigated
the suitability of histogram-based color descriptors, that were
tested in a replica detection setting [19] against common attacks
(i.e., cropping, compression, smoothing, rotation, additive noise
and luminance change). Moreover, we have examined the
histogram-based descriptors provided by MPEG-7 standard and
discussed in [20,21]. These descriptors capture different aspects of
color, texture and shape, and have been widely used in a number
of applications. The reason for primarily investigating histogram-
based descriptors is because they satisfy most of the aforemen-
tioned requirements. Histogram-based descriptors are known to
be robust against a number of attacks (i.e., geometric transforma-
tions, compression, filtering, etc.), they are global, they have a
relatively low number of dimensions and their extraction is
usually of low computational cost. Details of the investigated
descriptors are provided subsequently.

The normalized histogram of colors quantized according to the
Macbeth Color checker chart [22] was found in [19] to outperform
all other descriptors that have been tested. The image colors were
quantized to the 24 colors of the Macbeth chart by assigning to
each pixel the closest (in the Euclidean distance sense) chart color.
Once the image colors have been quantized the 24-dimensional
descriptor, from here on referred as ColorHistogram, is extracted
using the following equation:

HIi
¼

NIi

NI
; i¼ 1 . . .Cp; ð3Þ

where NIi
is the number of pixels with color i, NI is the total

number of pixels in the Image I and Cp is the number of colors in
the palette.

ColorLayout (CL) [23] is a compact descriptor that captures the
spatial layout of the dominant colors on a grid. An input image is
divided into 64 (8� 8) blocks and their average colors are derived.
These colors are transformed into a series of coefficients by
performing 8� 8 DCT. The descriptor is extracted by performing
zigzag scanning and selecting a few low-frequency coefficients. CL
operates on the YCbCr color space and yields a resolution
independent 18-dimensional representation of the image.

ColorStructure (CS) [24] aims at identifying localized color
distributions using an 8� 8 structuring element. It counts the
number of times a particular color is contained within the
structuring element as the structuring element scans the image.
It is defined using four different color quantization options with
184, 120, 64, and 32 bins. Each bin of the resulting histogram hm

represents the number of locations at which a pixel with color cm

falls inside the structuring element. The bin values are normalized
by the number of locations of the structuring element and lie in
the range [0.0, 1.0]. In our experimental study we have tested the
32-dimensional version of CS descriptor.

ScalableColor (SC) [24] consists of a normalized histogram that
does not take any spatial information into account. It is initially
computed in the Hue saturation value (HSV) color space according
to a uniform quantization (16 levels in H, 4 levels in S and V) and
subsequently converted through a Haar transform in a 4-bit per
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bin representation, assigning higher significance to small values.
The resulting space is 256-dimensional and can be further
reduced to half by summing all pairs of adjacent vector elements.
Despite the fact that performing this process iteratively, histo-
grams of 128, 64, 32 and 16 dimensions can be obtained, we
decided to use the 128-dimensional feature vector for our
experiments.

EdgeHistogram [25] represents the local distribution of edges
in an image. The image is first subdivided into sub-images and
local edge histograms for each of these sub-images is computed.
Edges are broadly grouped into five categories: vertical, horizon-
tal, 45 diagonal, 135 diagonal, and isotropic (non-orientation
specific). Thus, each local histogram has five bins corresponding to
the above five categories. By partitioning the image into 16 sub-
images we get a 80-dimensional descriptor. For the purposes of
our work the Canny algorithm [26] was employed for performing
edge detection.

HomogeneousTexture [27] is based on the use of Gabor filters
and provides a quantitative characterization of image texture. It is
computed by first filtering the image with a bank of orientation
and scale sensitive filters and calculating the mean and standard
deviation of the filtered outputs in the frequency domain. It
exhibits scale and rotation invariance and the resulting feature
space consists of 62 dimensions.

Finally, we have generated a 208-dimensional descriptor,
named ScalableColorEdgeHistogram (SCEH), by concatenating
the 128-dimensional version of ScalableColor with EdgeHisto-
gram. The reason for testing this descriptor was to evaluate the
performance of a feature extraction approach mixing different
elements of perception.
3.3. Indexing multidimensional feature vectors

Multidimensional indexing structures have been widely used
for performing fast search in large scale datasets. These structures
can be classified into two categories [28]. The first includes the so-
called space partitioning methods, which are based on kd-trees
[29] and have been shown to perform well for point data. These
methods aim at automatically generating an optimal partitioning
of the entire multidimensional space yielding mutually disjoint
sub-partitions. The second category includes the data partitioning
methods, which are based on R-trees [15] and have been shown to
perform well for hyper-rectangular data. Data partitioning
methods do not subdivide the entire space but evaluate and store
(possibly overlapping) hyper-rectangles that enclose the data to
be partitioned. From the overview of the proposed scheme
(Section 3.1) it is evident that data partitioning methods are more
appropriate for constructing customly defined hyper-neighbor-
hoods, determined using training data. An experimental verifica-
tion of this fact is provided in Section 4.3.2.

An R-tree [15] is a height-balanced tree with index records in
its leaf nodes (containing pointers to data objects). Typically, R-
trees index spatial objects using their bounding boxes (BBs).
When a query is submitted the R-tree returns all records with BBs
enclosing the query. In our case, since each image is represented
by a d-dimensional feature vector, an R-tree structure can be
constructed by associating a hyper-BB with each original image in
the database. Selecting optimal hyper-BBs is crucial for the
performance of the proposed replica detection system. Indeed, if
the hyper-BBs are too large many of them overlap resulting in the
retrieval of a large number of candidate originals and rendering
the subsequent application of linear discriminant techniques
ineffective. On the other hand, if the hyper-BBs are too small a
replica is likely to fall outside the hyper-BB of its original image
and will not be included in the response. Therefore, we employ
training to define the size of the corresponding hyper-BB for each
original image.

As already mentioned in Section 3.1 hyper-BBs are defined
using an extent vector. In order to determine the extent vector for
each original image I, we use the corresponding training matrix TI

r

that contains the feature vectors extracted from the training
replicas of I. More specifically, if xIk

r ¼ ½x
Ik

r;1; . . . ; x
Ik

r;d� is the feature
vector of the r-th training replica of the original image Ik, the
hyper-BB for this image is defined by the vector cIk ¼ ½cIk

1 ; . . . ; c
Ik

d �

which controls its extent for each dimension and is calculated as
follows:

cIk

i ¼max
r
jxIk

r;i � xIk

i j; i¼ 1; . . . ; d; ð4Þ

where xIk ¼ ½xIk

1 ; . . . ; x
Ik

d � is the feature vector of the original image
Ik. The values that determine the boundaries for each dimension i

are calculated by

BEIk

�;i ¼ xIk

i � cIk

i ; BEIk

þ ;i ¼ xIk

i þcIk

i ; i¼ 1; . . . ;d: ð5Þ

The goal of this procedure is to find a hyper-rectangle that
encloses the feature vectors of all training replicas. The feature
vector of a replica generated by a manipulation less severe than
those used to build the R-tree is expected to be enclosed in the BB
associated to its original.

An inherent drawback of R-tree based methods is the so-called
dimensionality curse which states that the computational gains in
retrieval performance degrades exponentially as a function of
dimensionality. For this purpose, we reduce the dimensionality of
the original feature space by projecting the initial feature vectors
(described in Section 3.2) on a fixed PCA (principal component
analysis) basis. We pre-calculate this basis by finding the principal
components of the data space formed by the feature vectors
corresponding to the total amount of database images and their
training replicas. Given the large amount of samples, PCA manage
to robustly detect the existing patterns in data and reduce the
dimensionality of the indexed feature vectors without loosing
much of the significant information. For the purposes of our work
we reduce the feature space dimensionality to 24 dimensions in
all cases, except for the ColorHistogram and ColorLayout descrip-
tors that were left to their original 24 and 18 dimensions,
respectively. Concerning the R-tree branching factor, we have
used M¼ 8 and m¼ 4, as the maximum and minimum number of
allowed entries (i.e., children) in a node.

3.4. Achieving better class separability using linear discriminant

analysis

The fact that the R-tree may return more than one candidate
images does not allow the system to decide unambiguously on the
true original image. In such cases, in order to obtain a single result
we propose the use of linear discriminant analysis (LDA) [16]
preceded by PCA. In the context of the proposed replica detection
system PCA–LDA is applied as follows. Let I¼ fI1; I2; . . . ; IKg be the
set of images returned by the R-tree. Considering that each image
Ii and its training replicas define a class Ci, a set of classes
C ¼ fC1;C2; . . . ;CKg is dynamically formed every time a query is
submitted. PCA is employed to find the principal components of
the data space formed by the feature vectors corresponding to the
images in I and their training replicas. These components are used
to reduce the dimensionality of the initial feature vectors
described in Section 3.2. Fisher’s discriminant criterion [30] is
subsequently employed to define a new feature space that ensures
better class separability between the classes of C than the original
feature space.

The result of this analysis is a linear transformation matrix W0

that is used to project the initial feature vectors to the new feature
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space. Since PCA–LDA is applied after the R-tree traversal the
number of classes is not known in advance. Thus, a new matrix
W0 has to be calculated every time a new query is submitted to
the system, each time resulting in a different projection space.
Although applying PCA–LDA on the fly may seem to hinder the
process from the viewpoint of computational efficiency, it is
necessary for allowing the proposed framework to achieve the
best possible discrimination between the candidate classes
and optimize replica detection on a per query basis. Moreover,
as will be demonstrated in Section 4.3.7, the computational
cost introduced by applying PCA–LDA prior to classification is
marginal.

The reason for employing PCA prior to LDA is to maximize the
discrimination power of the final feature space. In pattern
recognition problems (especially in object and face recognition
problems) PCA has been combined with LDA in several cases. The
motivation for combining PCA with LDA was initially the
singularity of the within class scatter matrix due to the small
sample size (SSS) problems that occur when the number of the
training samples is smaller than the dimensionality of the
samples [31,32]. Theoretical work has been developed which
proves that the PCA step is necessary in order to train LDA in SSS
problems [31–33]. However, it has been also verified that by
rejecting some dimensions that correspond to the eigenvectors of
the total scatter matrix with small (in magnitude) eigenvalues
(and not only the necessary ones so that the within scatter matrix
is invertible) the classification performance of LDA is increased
[34,35]. Such an approach has been introduced in [34,36] as the
enhanced Fisher’s linear discriminant (EFLD) method. EFLD aims
to seek a proper number of PCA components that balance between
the need to keep enough spectral energy of raw data and the
requirement that the eigenvalues of within-class scatter in the
reduced PCA space are not too small. In our case, we have adopted
a similar approach where the number of retained PCA compo-
nents is the one that preserves 95% of the total variance.

An important consideration concerning the application of PCA
on the data corresponding to the candidate classes, is whether the
number of available samples is enough for learning the statistical
properties of the dataset. As will become apparent in the
experimental section, the number of samples that need to be
handled by PCA–LDA in most of the cases is well above the
number of dimensions of the employed feature space, which is the
condition for robustly applying PCA. Indeed, if we accept that the
average number of candidate images returned by the R-tree is
approximately 13 and taking into consideration that 40 training
replicas are generated for each original image (see Section 4.1), the
number of available training samples which is approximately 520
is well above the number of feature vector dimensions, even
for the SCEH descriptor that exhibits the largest number of
dimensions (208).

Moreover, our choice of applying LDA rather than some other
state-of-the-art approach for classification was driven by the
special requirement of dynamically resolving cases unsuccessfully
handled by the R-tree. The power of the proposed approach lies on
maximizing the efficiency of discriminant classifiers by only
having to cope with a relative low number of classes. However,
this entails that training should always be performed on the fly
based on the candidate classes returned by the R-tree. On the
other hand, in order for a replica detection system to be useful in
real applications it should be able to exhibit low response time.
This poses strict limitations on the computational complexity of
the employed training method. The complexity properties that
characterize LDA was the main reason for choosing this approach
over other state-of-the-art solutions. Indeed, the complexity of
LDA training is dominated by the calculation of the within class
scatter matrix and its inverse, which is Oðd2nÞ with d being the
feature space dimensionality and n the total number of training
samples. An important characteristic of this complexity is that the
multiplication factor of n depends on the number of feature space
dimensions. This is particularly desirable since d depends
exclusively on the system’s configuration settings and is not
affected by the number of images accommodated by a replica
detection system. This is not the case for other discriminative
classification approaches. Let us consider for example the case of
support vector machines (SVM) which are considered to deliver
state-of-the-art performance in real world pattern recognition
problems. Using the standard training procedure the computa-
tional complexity of training depends on the number of necessary
support vectors nSV and is Oðn � nSVþn3

SV Þ. Driven by the theore-
tical result of Steinwart [37] who showed that nSV grows as a
linear function of n, it is clear that in contrast to the previous case
the multiplication factor of n depends on the number of
accommodated images. Since the amount of images (and as a
consequence n) that needs to be handled by a replica detection
system can be arbitrary big, we decided to opt for a classification
approach the complexity of which behaves optimally with respect
to the number of accommodated images.

3.5. Classification function

By projecting the members of C to the new feature space
derived from the maximization of Fisher’s criterion, we obtain �C

where better class separability is expected. Since we require the
system to strictly return one original image or an empty set, we
need to define a classification function that will deal with this
issue in the new feature space. For each class �C i representing a
candidate original Ii we calculate the mean vector �x Ii (class center)
and a threshold �T Ii

that defines its new neighborhood as

�T Ii
¼ max

r ¼ 1;...;Mi

ðJ �x
Ii

r � �x
Ii
J2Þ; ð6Þ

where J � J2 denotes the L2 norm. The response of our system to
the query image Iq is determined by the following function:
DðIqÞ ¼

Ir ; r¼ arg min

i

ðJ �xIq � �x IiJ2Þ and J �xIq � �x Ir J2o �T Ir
; ð7Þ

where Ir is the member of the database that is considered as the
original of the query image Iq. The reason for incorporating a
threshold on the classification function was to provide the system
with a criterion for rejecting non-replica images, which was also
the reason for employing the SIFT variant of the system detailed in
the following section.

3.6. SIFT variant of the proposed system

In certain cases, histogram-based descriptors do not contain
enough information to discriminate between simply similar
images and images that are connected with a replica-original
relation. As a consequence, a non-replica image might be included
in the neighborhood of a similar original image and be
erroneously characterized as its replica. False replicas constitute
a hard problem for replica detection systems that can only be
confronted using a highly discriminative feature extraction
algorithm. In order to overcome this deficiency, we enhanced
our system functionality by incorporating an additional module
that involves feature vectors generated using the SIFT [14]
algorithm. SIFT is based on detecting highly distinctive, scale
and rotation invariant keypoints and describing them using
128-dimensional orientation histograms. The resulting represen-
tation constitutes a K � 128 matrix, where K is the number of
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identified keypoints. Although, it is known to produce distinctive
keypoints that exhibit robustness against a substantial number of
image manipulations, it was not possible to incorporate SIFT as
the basic feature extraction scheme, due to their high computa-
tional cost and non-compliance with the fixed-length global
representation requirement.

The reason for using SIFT is not to replace the main feature
extraction scheme, but to add a verification step before producing
the final output. In more detail, prior to reaching a final decision
the SIFT feature extraction and matching scheme [14] is used to
assess the similarity between the query and the database image
that has been selected by the classification function. Similarity
assessment is performed by individually comparing the
128-dimensional feature vector of each keypoint from the query
image to the feature vectors of all keypoints of the selected
original. A match is counted every time the Euclidean distance
between the feature vectors of two keypoints is below a certain
threshold determined by Lowe in [14]. Eventually, if the number
of matches exceeds a threshold, equal to one-tenth of the total
number of keypoints identified in the original image, the system
response is validated as correct. Otherwise, the system initial
suggestion is rejected and the query image is characterized as
non-replica. Although the experimental results show that SIFT can
be a very effective countermeasure against falsely accepting non-
replicas as replicas, the total time required for executing a query
with this setup is considerably increased (see Section 4.3.7).
3.7. Security considerations

Since the target applications of a replica detection system
might include ownership identification and content-based media
monitoring for legitimate use, one should expect that intentional
attacks coming from an adversary that tries to hinter its
functionality would occur. Two different types of intentional
attacks can be encountered. The first aims at producing false
negatives by intentionally modifying the content of a protected
image in order to go undetected (false negative attacks). The
second type of attacks includes those actions that generate false
positives and cripple the reliability of system by trying to forge,
for example, a protected image through the modification of an
arbitrary image (false positive attacks). In accordance to Ker-
ckhoff’s principle, the attacker is expected to have full knowledge
of the protection mechanism details.

With respect to false negative attacks, the factor limiting the
attacker actions is related to the amount of distortion that should
be introduced in the protected image in order to render it
undetectable. The fact that our feature vector is histogram-based,
eases the task of an adversary in producing false negatives since
he knows the elements he should focus on in order to achieve his
goal. However, the fact that SCEH (which was experimentally
selected as being the most appropriate for our system, see Section
4.3.1) combines both color and edge histograms, renders difficult
the creation of a false negatives with sufficient quality even if the
algorithm details are known. Moreover, the fact that the proposed
system is constructed so as to be robust to a wide range of
manipulations (see Section 4.1), hinders the task of an adversary
to create false negatives without severely distorting the image. In
what refers to false positive attacks, the requirements are similar
to those imposed by the collision-free property of hash functions.
This property refers to the fact that, given an image I and a hash
function gð�Þ, it is computationally hard to find a second image �I
such that gðIÞ ¼ gð�IÞ. The fact that the SCEH detector involves both
color and edge information along with the fact that a final
verification step based on SIFT descriptors is utilized by our
algorithm, makes the creation of forged originals through the
modification of a protected image difficult and time-consuming.
4. Experimental study

4.1. Test set characteristics

Prior to presenting the results, it is necessary to describe the
particular characteristics of the experimental testbed. Two image
sets were used in experiments. A sample of 2.232 color images
were downloaded from the Internet to compose the first set, from
here on referred as the Monument set. Images were selected so as
to form 12 content categories, each containing different views of a
famous monument, as shown in Table 1. The rationale was to
construct a test set consisting of images featuring high perceptual
and/or semantic similarity within each category. Table 2 depicts
samples from two of these categories. This selection strategy was
dictated by the high dependency between the performance of a
replica detection system and the level of visual similarity among
the database members. Evaluation against such a challenging test
set was performed in an effort to assess its behavior under an
unfavorable situation and introduce a sense of fairness compared
to other technological approaches (e.g., watermarking), whose
performance is largely unaffected by the image content. Moreover,
in order to validate the efficiency of our system on a much larger
database we applied the optimally configured replica detection
system on a portion of the Corel database containing 9.908
images. The reason for choosing Corel as our second test corpus
was to be in accordance with the aforementioned selection
strategy, since this collection was originally constructed to form
groups of pictures depicting the same theme.

For training, we generated manipulated copies for each original
image by applying the following 40 transformations. (a) Color-
izing: colorize the red, green, and blue channel by 10% by blending
the fill color with each pixel in the image, (b) contrast changes:
increase or decrease the intensity differences between the lighter
and darker elements using the default parameter provided by
ImageMagick, (c) cropping: symmetrically remove the outer
borders of an image to reduce its size by 5%, 10%, 20%, and 30%
and then scale the cropped image back to its original size, (d)
despeckling: the amount of speckle noise is reduced through
ImageMagick’s despeckling operation while preserving the edges
of the original image, (e) downsampling: downsample by seven
percentages 10%, 20%, 30%, 40%, 50%, 70%, 90%, (f) flopping: create
a mirror image by reflecting the scanlines along the horizontal
direction, (g) color quantization: reduce the color palette to 256
colors, (h) framing: four framed images are produced by adding an
outer frame covering 10% of the total image area. A different frame
color is utilized for each image, (i) rotation: rotation by 903, 1803,
and 2703, (j) scale up then down by a factor of 2, 4, and 8.
Respectively, scale down then up by a factor of 2, 4, and 8, (k)
saturation change: modulate the color saturation amplitude by
70%, 80%, 90%, 110%, and 120%, (l) intensity change: modulate the
image intensity by 80%, 90%, 110%, and 120%. These manipulations
were initially proposed by Meng et al. [38].
4.2. Evaluation metrics

For evaluating the performance of the proposed system, the
false positive and false negative rates were considered. In the
context of an image replica detection system a false positive
occurs when a query image is erroneously considered to be a
replica of a certain image. This includes both the case of a non-
replica image being identified as a replica, as well as the case
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Table 1
Monument test image set.

Monument

name

Parthenon (Greece) White Tower

(Greece)

Liberty Statue (USA) Sagrada Familia

(Spain)

Lighthouse (Arbitrary

Photos)

Coliseum (Italy)

#Images 343 78 71 247 56 128

Monument

name

Eiffel Tower

(France)

Piza Tower (Italy) Pyramids (Arbitrary

Photos)

Sphinx (Egypt) Duomo (Florence-Italy) Big Ben

(England)

#Images 233 78 63 193 266 476

Table 2
Sample images from two content categories (Parthenon and Eiffel tower) in the

monument test image set.
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where a replica image is identified as such but is associated with a
wrong original. Respectively, the system produces a false negative
when a query image that is a replica of a certain original is not
evaluated as such. Let Norg be the number of original images, Nnrep

the number of non-replicas and Nrep the number of replicas per
original image. Let also T be the number of cases that a replica is
identified as such but is classified to a wrong original, W be the
number of cases that a non-replica is evaluated as a replica and S

the number of cases that a replica is considered as a non-replica.
Then false positive and false negative rates are defined as,
FP¼ ðTþWÞ=ðNorg � NrepþNnrepÞ and FN¼ ðTþSÞ=Norg � Nrep. Recall
(R) and precision (Pr) are two other well established metrics that
are commonly used in the area of image retrieval but have been
also considered in image replica detection. Using the notations
described above recall and precision are defined as

R¼
ðNorgþNorg � NrepþNnrepÞ � ðTþWþSÞ

NorgþNorg � NrepþNnrep

and

Pr¼
ðNorgþNorg � NrepþNnrepÞ � ðTþWþSÞ

Ntotal
;

where Ntotal is the total number of results produced by the system.
Although, false positive and false negative rates were selected

for measuring the efficiency of the proposed system, in order to
allow comparisons with other schemes, recall and precision were
also evaluated taking into account that due to the adopted
configuration Ntotal ¼NorgþNorg � NrepþNnrep and thus R� Pr. Re-
ceiver operating characteristic (ROC) curves that are commonly
used to represent the tradeoff between FP and FN were used for
measuring the system’s performance in experiments that involved
a tunable system parameter. The equal error rate (EER), i.e., the
point of the ROC where FP¼ FN, was also used as an indicator of
the system’s performance.

4.3. Experiments on the monument set

Out of the 2232 images included in the monument set, we
selected a set SM

org of 2000 for populating the original image
database while the remaining 232 formed the set SM

nrep of non-
replicas. The query set SM

Q1 was constructed of original images, test
replicas and non-replicas. Two hundred images randomly chosen
from SM
org were used to compose the set of original images SM

seed

that was included in the query set SM
Q1. These images were also

used to generate the set SM
rep of 8000 test replicas. This set was

generated by applying the transformations described in Section
4.1 to the images in SM

seed (40 transforms per original image).
Finally, SM

nrep was appended to the other test images resulting in a
query set containing a total of 8432 images,
SM

Q1 ¼ SM
seed [ SM

rep [ SM
nrep.

4.3.1. Evaluation of feature extraction methods

For evaluating the performance of the various extraction
methods presented in Section 3.2, we used the R-tree to measure
the average miss rate (i.e., the probability that the R-tree fails to
retrieve the correct original) against the average number of
retrieved images. For generating the evaluation curves we varied
the extent of the R-tree hyper-neighborhoods by multiplying their
boundaries with a scaling factor sR. Retrieving a relatively small
number of candidates is crucial for the proposed system
efficiency, since LDA will not manage to attain good class
discrimination on the feature space if the number of participating
classes is large. Given the fact that it is far more important for the
R-tree not to miss any real replicas than to retrieve more than one
candidates, we are interested in the point where zero miss rate is
achieved. It is important to notice that the query set SM

QR used in
this experiment is different from SM

Q1 in the sense that non-replica
images are not included, SM

QR ¼ SM
seed [ SM

rep.
As demonstrated in Fig. 3a the average number of retrieved

images for zero miss rate differs substantially between the various
types of features. The SCEH descriptor, incorporating both color
and edge elements, achieves the lowest average number of
retrieved images (� 2:4) for zero miss rate and was adopted as
the feature extraction method throughout our experimental
study. The superiority of SCEH features was also verified on
experiments involving the performance of the complete image
replica detection system. The ROCs depicted in Fig. 3b that
compare the performance of the most prominent descriptors,
prove that SCEH outperforms the other features extraction
schemes. The regulation parameter used for drawing the ROCs
of Fig. 3b was a scaling factor sLDA changing the classification
neighborhoods formulated in the LDA-transformed feature space
by multiplying the class threshold �T Ii

used in Eqs. (6) and (7).

4.3.2. Data partitioning vs. space partitioning methods and the

influence of training

In order to verify that data partitioning outperforms space
partitioning in the context of repica detection, we compared the
performance of the basic representatives from the two categories,
namely R-tree and kd-tree. The same experiment attempts to
highlight the benefits of selecting optimal hyper-neighborhoods
using the training matrices Tr , as described in Section 3.3. In order
to do this we examine the case where no training is involved, i.e., a
constant extent value denoted as v is utilized for all feature
dimensions n, and for all database images. As in the previous case
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SM
QR was utilized for testing and the average number of retrieved

images required to achieve zero miss rate was used as the
performance criterion.

For generating the performance curve in the training case, we
varied the extent of the hyper-neighborhoods by multiplying the
elements of the extent vector cI

i with a scaling factor sR, while in
the other case the value of v was modified. The kd-tree
performance curve was obtained by varying the threshold skd of
the Euclidean distance between the query image and the ones
already indexed within the multidimensional structure. The
results are depicted in Fig. 4a. It is clear that although kd-tree
performance (dashed-dotted curve) is superior from the R-tree
when no training is involved (dashed curve), it is considerably
outperformed by the R-tree constructed using the training
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samples of Tr (solid curve). The solid curve shows that in order
to construct a system with miss rate 0% (which is crucial for
obtaining small false negative rate), we should allow the ‘‘trained’’
R-tree to retrieve approximately 2.4 images per query, on average.
For the other cases on the other hand, in order to achieve zero
miss rate the average number of returned originals should let to
grow very large (the two curves converge towards the horizontal
axis very slowly).
4.3.3. System performance when the training and query sets are

identical

This experiment is aimed at measuring the performance of the
proposed system using sR ¼ 1 for the R-tree. In this case, the
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tuning parameter used to create the ROC presented in Fig. 4b is
the scaling factor sLDA described in Section 4.3.1. The image set SM

Q1

that contains the same replica images as the ones used for
training, was used as a query set. The EER of 1.1% is obtained when
the regulation parameter sLDA is equal to one, which suggests that
training has indeed selected optimal neighborhoods for the
classification function of Section 3.5.
4.3.4. Employing a query set different than the one used for training

The fact that the set of images used for training was exactly the
same with the set of replicas included in the query set may lead to
biased performance evaluation. For assessing the system perfor-
mance more rigorously, a query set that includes manipulated
images that were not used during training was constructed. In
order to produce the new query set we utilize SM

seed and SM
nrep but

instead of SM
rep we used a different set of replicas that was

generated by exposing the original images of SM
seed to the same type

of attacks, but with different attack parameters. The new attack
parameters depicted in Table 3 (40 manipulations per original
image) were chosen so that they reside inside the parameter range
used for constructing the training set. The resulting replicas �S

M

rep

were combined with the original images and non-replicas in order
to produce the new query set, SM

Q2 ¼ SM
seed [

�S
M

rep [ SM
nrep.

Fig. 5 depicts the R-tree retrieval performance as well as the
overall system’s performance when SM

Q2 is used. For comparison
purposes the curves corresponding to SM

Q1 are also drawn.
Examination of the R-tree performance in Fig. 5a shows that
Table 3

Manipulations used to construct the set of replicas �S
M

rep utilized in the query set SM
Q2.

Framing Colozing Color quantization

9% 6% As previous

Despeckling Flipping Intensity change

As previous Vertical 93%, 98%

108%, 116%
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Fig. 5. System performance for query sets SM
Q1 and SM

Q2. (a) R-tree retriev
unlike the case where the query images were the same as those
used for training, the R-tree is difficult to achieve a zero miss rate
while maintaining a relatively small number of retrieved images.
Therefore, instead of rendering PCA–LDA ineffective due to the
increased number of participating classes, one can fix the size of
the neighborhoods so that the miss rate of the R-tree is acceptable
but no zero. The miss rate was fixed to 0.027 and the average
number of images retrieved for this value is approximately 13. Fig.
5b shows replica detection performance for SM

Q1 and SM
Q2 query

sets. The EER obtained for SM
Q2 is equal to 3.0%, not significantly

worse from the one obtained when using SM
Q1.
4.3.5. Employing the SIFT module

As already mentioned in Section 3.6 falsely accepting non-
replicas as replicas constitutes a hard problem for replica
detection systems. In order to check this experimentally we have
recorded the performance of our system using strictly non-replica
images as queries. We did so by using SM

nrep, that only consists of
non-replica images, for testing. The value of the scaling factor was
set to sLDA ¼ 1, so as to tune our system to the operating point
where EER is attained. The experiments showed that 23.28% of the
non-replica images were erroneously identified as replicas.
However, after incorporating the SIFT variant described in Section
3.6 the percentage of falsely accepted non-replicas reduces to 3%.
The overall impact of appending the SIFT module to the system is
depicted in Table 4. The decrease in the false positive rate stems
mainly from the drastic decrease of errors in case of queries with
Downsampling Contrast change Cropping

19%, 28%, 38%

41%, 52%, 80%, 88%

As previous 6%, 8%

11%, 22%

Rotation Saturation change Scaling

953 , 1833 75%, 85% 3, 5

2683 95%, 115% 7
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non-replicas. Specifically, given that the proportion of non-replica
images in the both query sets is approximately 2.5%, the
improvement from 23% to 3% recorded against the images of
SM

nrep, translates to an improvement of the false positive rate from
1.1% to 0.58% when testing with SM

Q1 and from 3.0% to 1.9% when
testing with SM

Q2. However, in the case of SM
Q2 the use of the SIFT

module results in a small increase (� 0:2%) of the false negative
rate, which is nevertheless smaller than the corresponding
decrease of the false positive rate.

4.3.6. Combining PCA with LDA

The goal of this experiment was to verify the improvement in
performance introduced by employing PCA prior to LDA. Fig. 6
demonstrates the performance curves for both query sets SM

Q1 and
SM

Q2 with and without applying PCA. One can see that in both cases
the system performance benefits substantially from the use of
PCA.

4.3.7. Computational time

Table 5 presents the computational time spent during each
phase of the query procedure. All experiments were conducted on
the monument set using an Intel Pentium-M/Centrino processor,
running at 1.86 GHz with 1.00 GB of RAM. An average of 0.0305 s is
required by the overall system to handle a single query, when the
SIFT module is not incorporated, which can be considered
satisfactory even for real-time applications. Obviously, the time
required for traversing the R-tree is influenced both by the
number of database images and the amount of overlapping
between their hyper-rectangles. Respectively, LDA is more time
Table 4
System error rates—monument dataset.

Without-SIFT SIFT

SM
Q1 (%) SM

Q2 (%) SM
Q1 (%) SM

Q2 (%)

FN 1.1 3.0 1.1 3.2

FP 1.1 3.0 0.58 1.9
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Fig. 6. Optimizing performance using PCA prior to LDA
consuming when the number of participating classes increases.
However, since R-tree is logarithmic to the number of indexed
images and taking into consideration that LDA operates only on the
small number of classes returned by the R-tree, it is safe to conclude
that the increase in computational time induced by the growing
number of database images, will not render the proposed system
impractical even for large scale applications. When the SIFT module
is incorporated to the system the total execution time for a single
query increases to 11.756 s. This amount of time is prohibitive for
real time applications but can be tolerated for applications like off-
line copyright infringement detection. Additionally, since the SIFT
module always operates on just two images (i.e., candidate original
and query) the average time consumed by this module is unaffected
by the amount of database images.
4.4. Experiments on the Corel image set

After evaluating each module independently and fine-tuning
the proposed replica detection system, a portion of the Corel
image collection was utilized to inquire the efficiency of our
approach when the number of database images increases. From
the Corel set we utilized 9.908 images depicting 120 different
themes. These images were divided into 9000 originals SC

org , and
908 non-replicas SC

nrep. Two thousand images were drawn from SC
org

to form the seed image set SC
seed, while the same strategy was

followed to construct Tr , SC
Q1 and SC

Q2, consisting of 360 000, 82 908
and 82 908 images, respectively. The performance curves for the
monument set are also included in the diagrams to allow
comparisons.
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Table 5
Query execution time (monument dataset).

Query image set Time required per query (s)

R-tree LDA SIFT Total (NO SIFT) Total (SIFT)

SM
Q1 query image set 0.003 0.015 11.738 0.018 11.756

SM
Q2 query image set 0.005 0.038 11.815 0.043 11.858

Average 0.004 0.0265 11.776 0.0305 11.807
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Table 6
System error rates—corel dataset.

Without-SIFT SIFT

SC
Q1 (%) SC

Q2 (%) SC
Q1 (%) SC

Q2 (%)

FN 6.5 13 6.59 15.74

FP 6.5 13 6.58 10.89

S. Nikolopoulos et al. / Pattern Recognition 43 (2010) 636–649 647
It is clear from Fig. 7a, that as the number of database images
increases, the feature space becomes more crammed and the
efficiency of our system is affected. Using SC

Q1, the average number
of retrieved images returned by the R-tree in order to achieve zero
miss rate increases to 10 from the corresponding 2.4 in the
monument set case. Respectively, the curve showing the R-tree
performance for SC

Q2 shows that we will have to let the average
number of retrieved images grow at approximately 30 images for
achieving a miss rate of 0.057.

Similar conclusions can be derived by inspecting the diagram
of Fig. 7b where the performance curves of the overall system
without incorporating the SIFT module are depicted. The EER
achieved for SC

Q1 is approximately 6.5% and it grows to 13% when
the system is evaluated using SC

Q2. The impact of incorporating the
SIFT variant is shown in Table 6 where the performance results for
the Corel dataset are summarized. Although the dependence
between the performance of our system and the number of
database images is clear, recalling that both image sets were
intentionally constructed to feature a high degree of similarity
between their members, it is reasonable to claim that the
proposed scheme can be safely used for detecting replicas with
sufficient accuracy.

4.5. Performance evaluation review of existing replica detection

systems

Comparing the performance of different methods addres-
sing the same problem is a difficult task particularly
when the associated research community lacks a standardized
benchmarking methodology. Inconsistencies regarding the ex-
perimental test-bed configuration, the utilized dataset, the variety
in robustness tests and performance metrics need to be overcome
before drawing safe conclusions. This subsection is an effort to
review the performance figures achieved by different replica
detection systems. However, readers should have in mind that due
to the different testbed configurations and sets of original images
used by the various authors, the presented performance results
are not directly comparable and should be treated as such.

In their work, Qamra et al. [6] utilize original and modified
versions of copyright protected images for populating the test
database. Training and querying are both based on the same set of
manipulations proposed by Meng et al. [38]. The method’s
efficiency is measured using recall and precision and the equally
balanced tradeoff is � 0:82. On the other hand, Maret et al. [10]
choose a configuration where only the original versions of the
copyright protected images are included in the database. The set
of modifications proposed in [38] is used for training the classifier
and for generating test replicas. Performance is measured in terms
of false positive and false negative rates and according to the
authors, the method is able to detect, on average, 92% of the
replicas while achieving a fixed false positive rate of only 1� 10�4.
An important limitation of this system is that a different classifier
is trained for every original image in the database, thus, in the
worst case scenario the query image has to be evaluated against
all classifiers before reaching a decision. As a consequence
considerable amount of time might be required for handling a
query as the number of database images grows. In some of their
subsequent works [11,12] the authors try to alleviate this problem
by employing multidimensional indexing schemes. The database
configuration that Ke et al. [9] use in their system is similar to that
of [6] where original images and their modified versions coexist.
No training is required by the method and the authors employ two
different image manipulation sets for evaluating the performance.
The manipulation set of [38] and a more challenging set of
transformations that includes cropping by 50%, 70% and 90%,
shearing by 53, 103 and 153, changes of intensity by 50% and 150%
and changes in contrast (10 transformations per image). The
method achieves 99.85% recall and 100% precision and these
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Table 7
Performance figures review of existing replica detection systems.

Method Image database configuration Image manipulation set Relation between train and query set Recall (%) Precision (%)

Qamra [6] Original and modified Meng [38] Identical 82 82

Ke [9] Original and modified Meng [38] No training 99.85 100

Meng extension 98.40 99.86

Kim [7] Original and modified Miscellaneous Subset 83 96

Roy [8] Original Subset of Meng Identical 96.8 96.8

Proposed Original Meng Identical 98.73 98.73

method (Monument) Different 95.79 95.79

Proposed Original Meng Identical 99.25 99.25

method (SIFT) (Monument) Different 96.74 96.74

False negative (%) False positive (%)

Maret [10] Original Meng Identical 8 0.01

Proposed Original Meng Identical 1.1 1.1

method Different 3.0 3.0

Proposed Original Meng Identical 0.65 0.58

method (SIFT) Different 3.22 1.99
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figures decrease to 98.40% and 99.86% for the more challenging
manipulation set. However, the number of features extracted from
every image ranges from a few hundreds to a few thousands and
the time required for their extraction is considerably large. A
similar test-database configuration is adopted by Kim [7]. For
training, the author uses a set that includes various modifications
while a subset of this set is used for testing. The evaluation
experiments showed that the system achieves, on average,
83% recall and 96% precision. Roy and Chang [8] implement a
database containing only the original versions of copyright
protected images. For such a setup recall and precision coincide
and the common figure provided by the authors is 96.8%.
Synthetic training examples are constructed by adding Gaussian
noise in the feature domain and the query set is produced using a
subset of the Meng set [38] (nine transformations per image). An
important difference of this method compared to the other
experimental setups is that no non-replica images are included
in the query set.

The proposed system adopts the configuration where only the
original version of the images are stored in the database.
Performance figures for the monument set have been calculated
both in terms of false positive and false negative as well as recall
and precision metrics. Note that in the latter case, due to the
database configuration, the two metrics have the same value.
Table 7 summarize the results obtained by the various methods
evaluated in terms of recall–precision and false positive–false
negative rates, respectively.
5. Conclusions

In this manuscript, we describe a replica detection system that
operates upon a database of stored originals. Motivated by the fact
that replica detection has many common characteristics with a
classification problem, we worked towards the employment of
proper training strategies for improving efficiency. This training
strategy is used to drive both image indexing conducted using an
R-tree and the construction of robust classifiers in a transformed
feature space. This feature space is generated by dynamically
applying PCA–LDA on the candidate classes produced by the R-
tree. The power of our approach lies on maximizing the efficiency
of discriminant classifiers by only having to cope with a relative
low number of classes. Two very challenging image sets were used
in our experimental study. Although, the obtained performance
figures reveal some dependency on the size of the dataset, they
can be considered rather satisfactory for the purposes of replica
detection.
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