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We explore the possibility of using human-generated time-series as biometric signature. Adopting a sim-
ple psychometric procedure, in which a button is pressed in entirely random manner, successive elapsed
times are registered and gathered in a signal reflecting user's internal cognitive processes. By reconstruct-
ing and comparing the dynamics across repetitions from the same subject a noticeable consistency was
observed. Moreover, the dynamics showed a prominent idiosyncratic character when realizations from
different subjects were contrasted. We established an appropriate similarity measure to systematize such
comparisons and experimentally verified that it is feasible to restore someone's identity from RTI (random
time-interval) signals. By incorporating it in an SVM-based verification system, which was trained and
tested using a medium sized dataset (from 40 persons), a considerably low equal error rate (EER) of ∼5%
was achieved. RTI signals can be collected effortlessly and this makes our approach appealing, especially
in transactions mediated by standard pc terminal keyboards or even telephone keypads.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The new era of Biometrics includes automated methods of recog-
nizing a person based on a physiological or behavioral characteristic,
like face, fingerprints, hand geometry, handwriting, iris, vein topog-
raphy, and voice [1]. As the level of security breaches and transac-
tion fraud increases, the need for highly secure identification and
personal verification technologies is becoming apparent. Biometric-
based solutions are able to provide for confidential financial trans-
actions and personal data privacy. Utilizing biometrics for personal
authentication is becoming convenient and considerably more accu-
rate than current methods (such as the utilization of passwords or
PINs). This is because biometrics links the event to a particular indi-
vidual (a password or token may be used by someone other than the
authorized user), is convenient (nothing to carry or remember), ac-
curate (it provides for positive authentication), can provide an audit
trail and is becoming socially acceptable and cost effective.

After the first wave of biometrics, which included static and
naturally distinctive characteristics like the face and signature, re-
searchers started to experiment with more dynamic characteristics
like the voice or handwriting style (online/dynamic signature veri-
fication) which are more difficult to be imitated (e.g. [2]). Keystroke
dynamics [3] also known as typing recognition, is a typical biometric
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approach of this kind. It analyses the way a person types. Users en-
roll by typing the same word or phrase a number of times [4]. Verifi-
cation is based on the concept that the rhythm with which a person
types is distinctive. It is an appealing approach since no extra hard-
ware is required and typing is the most natural way for a user/client
to interact with the system/server in most applications, particularly
over the world-wide web. However, the passage to be typed might
need to be fixed and this means a memory load, analogous to re-
membering an extra password. Moreover, there is a potential change
due to continuous practice of the same typing patterns.

In the present paper we propose an alternative biometric in which
the simplicity of interface is kept, while the restriction of typing
specific patterns is alleviated. The present work was motivated by
recent, independent studies in cognitive neuroscience and psychia-
try reporting that the generation of random rhythms or numbers is
a demanding cognitive task and carries enough information to dis-
criminate between different clinical populations. When someone is
asked to generate (verbally of via keyboard) random numbers, there
is a cognitive load implied, since there is a close interaction between
short-term memory and internalized decision making mechanisms
[5–8]. A closely related task is the generation of random tapping
rhythms [9,10]. Finger tapping, in particular, requires sensorimotor
interaction and specific cortical networks responsible for this have
been identified and modeled by Kelso [11,12]. Interestingly, it has
been demonstrated that everyone has his own eigen-rhythms regu-
lating spontaneous finger tapping [13].

Following a standard psychometric procedure [14–16], we gath-
ered multiple RTI (random time-interval)-signals from a random
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group of subjects and systematize the inter-subject comparisons
with respect to the dynamics governed the generation of the reg-
istered random-rhythms. Due to the non-stationary (and rather
`chaotic') character of the signals, neither standard spectral anal-
ysis nor traditional morphological analysis could provide us with
useful discriminating characteristics. Nonlinear-dynamics, instead,
enabled us to compare the underlying generation mechanisms di-
rectly based on the time-series (TS). Dynamic trajectories, when
suitably reconstructed, were proved sufficient for building reliable
biometric-tests.

The contribution of our paper is twofold. At an experimental level,
it is the first time that human-generated TS of random latencies are
tested as biometric. Moreover, at a more theoretical level, TS re-
lated to brain-event dynamics are compared in a novel way, namely
by means of a non-parametric statistical test. The results from the
extensive experimentation with a particular authentication-system
(encompassing the introduced ideas) are highly encouraging, since
the measured performance approximates the current standards in
the field, without resorting to highly sophisticated registration pro-
cedures (like 3D scanners).

The paper is organized as follows. Section 2, describes the proce-
dure for recording RTI-signals. Section 3 is devoted to the novel pair-
wise comparison of such signals. Section 4 describes a possible way
to transform these pairwise comparisons to discriminant-functions.
Section 5 outlines a specific verification system, while Section 6 in-
cludes a detailed evaluation. The final section includes a short dis-
cussion and some comments on a more beneficial implementation
of our suggested-methodology.

2. The random rhythm generation test

The procedure for generating the RTI signals is very simple
[14–16]. The subject is asked to press the space key of the com-
puter with the index finger of his/her dominant hand as irregularly
as possible, until the screen shows the end of the exercise. The
first time the subject encounters this task, he/she is provided be-
forehand with an example consisting of a square 4×4 cm, which
appears and disappears in the screen at random rhythm and is
synchronized with a sequence of beeps. The particular example is
indicative of the sort of TS he has to create and—as it is explicitly
stated—its exact reproduction is not the objective of the task. If x(t)
denotes the T-length sequence of exact time-latencies of subject's
blows �[n] = [t1,t2, . . . ,tT], the corresponding RTI signal takes the
form x[n] = [t2−t1,t3−t2, . . . ,tT−tT−1]. During the enrolment-stage,
such a �[n] sequence is provided by the user and the RTI signal (i.e.
the sequence of latency-differences) is automatically created and
compared with analogous ones previously stored in the database of
the system. This comparison should reflect as much as possible the
inter-user differences regarding the internalized process of gener-
ating random rhythms. On the other hand, someone's mechanism
was expected to remain the same and this constancy should be
apparent, as well, in the temporal characteristics of his RTI-signals
measured repeatedly. Fig. 1a, includes a few examples of RTI-signals
recorded from three different subjects.

3. Comparing the reconstructed dynamics

Since, the ultimate goal was to contrast the underling dynam-
ics by means of comparing the corresponding TS, we resorted to
techniques from nonlinear dynamics field [17]. In our approach we,
first, reconstruct the dynamics from each TS as a trajectory in a suit-
able chosen state-space of high dimensions and then compare these
trajectories—in pairs—via a powerful non-parametric multivariate-
statistical test [18,19].

Using Taken's time-delay embedding procedure [20], a succes-
sion of delay-vectors xi(n) = (x[n−(p−1)×�], . . . ,x[n−�],x[n]) is first
formed from each RTI-signal xi[n] and them listed in a matrix
X = [ . . . xi(n−1)|xi(n)|xi(n+1), . . . ]. In this formulation the parameter
p is the embedding dimension, i.e. the dimensionality of reconstructed
state-space and � is the so-called time-lag parameter [17]. The former
is usually selected high enough so that the degrees of freedom of the
dynamical system are preserved. The latter is usually defined so as
to decorrelate the successive components of the formed vectors. The
matrix X tabulates the dynamical orbit related with the generation
mechanism of the RTI-signal. Fig. 1b, demonstrates two such trajec-
tories reconstructed (with � = 5 and p = 2) from RTI-signals of Fig. 1a.
The systematic comparison between any two such trajectories X
and Y resulting from time-delay embedding is a relative unexplored
task and only recently a few methodologies have been introduced
[21–24]. Motivated by our own previous work, where we had com-
pared trajectories related to brain-response dynamics [25,26], we
adopted the statistical procedure of multivariate Wald-Wolfowitz
(WW-test) which is described in some detail in Appendix B. In short,
using two sets of delay-vectors {xi} and {yi} (tabulated correspond-
ingly in matrices X and Y) the overall minimal spanning tree (MST)
graph is constructed (see Appendix A) and the W statistic quantifies
if the different branches of MST are populated equally by the two
sets of vectors. W is computed based on the encountered combina-
torics and used as a measure expressing the similarity between the
dynamics of RTI-signals x[n] and y[n]. The more positive the value
W(x[n],y[n],�,p) = W({xi},{yi}), the more similar the two trajectories
are. The function of WW-test is demonstrated in details via Fig. 1c,
where RTI-signals from two different subjects are contrasted. It
is clear that WW-test practically takes into account the relative
overlap of the corresponding trajectories. Hence the W-index is a
symmetric measure, i.e. W(x[n],y[n],�,p) = W(y[n],x[n],�,p). Due to
the non-parametric character of the employed test, this index has a
generic character when used as a similarity measure for comparing
the dynamics from two different TSs. The only restriction is that
the embedding parameters p and � should be the same for the two
signals. It can easily be understood that WW-test can compare sig-
nals of different length and simultaneously ignore differences due
to relative latency jitter (i.e. it is translation invariant). Moreover,
since the W-index springs from an appropriate standardization
(see Eq. (B.3)), it carries an absolute meaning and, hence, can be
compared across different embeddings of the same RTI-signals. This
particular option can be utilized, as it described below, to optimize
the selection of the two involved parameters (�, p).

4. Classifying the reconstructed dynamics and optimizing the
embedding

Having introduced the similarity measure W(x[n],y[n],�,p) be-
tween any two RTI-signals x[n] and y[n], we proceed by describing
the way the adopted similarity measure can be utilized in establish-
ing classifiers, the core-machinery in any biometric-system. For a
given set of available RTI-signals xi[n], i = 1, . . . ,N with known iden-
tity, we compute all pairwise similarities and tabulate them, after a
simple transformation, in an [N×N] distance-matrix D with elements

[D]i,j = D(i, j) =
{

0 W(xi[n], xj[n], �, p)>0

abs(W(xi[n], xj[n], �,p)), otherwise
(1)

Since the majority of classifiers operate on vectorial data, the above
relational data are transformed to coordinate vectors via multi-
dimensional scaling (MDS), a spectral technique that results to N
vectors gi ∈ Rl such that the interpoint Euclidean distances ‖gi−gj‖
approximates as much as possible the tabulated ones [D]i.j. The MDS
operation is signified as G = MDS(D,l), with l denoting the output
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Fig. 1. From RTI-signals to similarity-relations: (a) multiple RTI-signals from three different subjects; (b) superposition of two reconstructed (� = 5, p = 2) trajectories; and
(c) using the WW-test for measuring the similarity between the two given trajectories.

dimensionality [26]. The quality of this approximation is measured
via the discrepancy

Stress =
∑N

i<j|D(i, j) − ‖gi − gj‖|∑N
i<jD(i, j)

(2)

A stress value lower than 0.15 denotes a configuration, which can be
considered a faithful representation of the provided dissimilarities.
As l increases, the stress decreases and this succession can be used
to select the optimal representation-dimension. Fig. 2, exemplifies
the above described procedures using the RTI-signals from Fig. 1a.
The left-panel provides a visualization of the Distance-matrix corre-
sponding to WW-test applied with p = 2 and � = 5. The successive
value of stress, shown in the middle-panel, indicate (according to the
`elbow-rule') that l = lo = 2 is sufficient. The right panel provides the

MDS-based 2D coordinate representation of the Distance-matrix. In
this plot, the RTI-signals appear as distinct points with labels [1–9]
and colors in full accordance with the ones used in Fig. 1a. From the
stress-index value is evident that this point-sample provides a re-
liable representation regarding the dynamics of the RTI-generation
mechanism. Taking into consideration the given classification
(i.e. the labels denoting the subjects' id), it is apparent that RTI-
signals treated with our approach reflect enough information to
discriminate the involved subjects and therefore a classifier could
be easily built in the MDS-based representation-space. To quantify
more precisely this apparent inter-subject differentiation, we em-
ployed a functional J that expresses the ratio between the between-
group scatter (an aggregate measure of differences between TSs
from different subjects) and the within-group scatter (the aggregate
difference between TSs from the same subject). The form of this



2790 N.A. Laskaris et al. / Pattern Recognition 42 (2009) 2787 -- 2796

Fig. 2. From the original relational data (corresponding to all the WW-related pairwise comparisons among the RTI-signals of Fig. 1a) to their 2-D representation using MDS.
Similar signals are mapped to nearby points.

Fig. 3. Quantifying the separability among three different subjects based on the WW-related comparisons between their RTI-signals (originally shown in Fig. 1a).

functional was borrowed from the Fisher-analysis literature and
properly translated for the particular scenario in which only dis-
similarities D(xi[n],xj[n]) are available between the RTI-signals. We
introduce the functional J using Fig. 3 to conceptualize the employed
measures, but it can straightforward be generalized for arbitrary
number of subjects and RTI-signals per subject (a similar formula-
tion has been provided recently in [27]). Put it in words, for each
subject in turn its own TSs are considered as forming one group and
all the rest TSs as forming a single, complementary group. For both
groups the k nearest neighbors among the members of the same
group are identified and the corresponding distances are summed
to express the within-scatter (WS). In the same way, the k-nearest
neighbors belonging to opposite groups are recognized and the
corresponding distances are summed to provide inter-scatter (IS).
By averaging the ratios IS/WS estimated for all subjects, we provide
the net class-separability J = J(D,k)

J = J(D,k) = 1
3

3∑
i=1

J(Si, k) = 1
3

3∑
i=1

(
IS
WS

)
i

(3)

For the particular instantiation of Fig. 3, the number of neighbors
was set to k = 2 and J was found J(D,k = 2) = 7.1. In general, values
significantly higher than 1 denote sufficient inter-subject discrimi-
nation. In this work we utilized the J functional as a gauge to guide
the selection of the two embedding parameters � and p. During the
preliminary stage of the authentication-system development, we ex-
perimented with different values for the two parameters and formed

Fig. 4. Schematic diagram of the training procedure for the SVM-based verification
system.

the corresponding distance-matrices D� ,p. By identifying the maxi-
mum of J(D� ,p ,k) over the range of tested parameters, we decided for
the optimal embedding that could facilitate the best performance in
the subsequent training of the classifier (see Fig. 4). In other words,
our approach is reminiscent of the filter-procedure (rather than the
wrapper-approach) used for feature selection in classifiers design.

5. The SVM-based verification system

We provide here an outline of the employed verification system.
It builds over the minimum class variance support vector machine
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Fig. 5. Schematic diagram of the testing procedure for the SVM-based verification
system.

(MCVSVM). Details for the classifier and its training can be found in
[28]. A short description can be found in Appendix C. Following the
standard distinction between the training and the test/claim stage,
we list below the corresponding algorithmic steps (and schematically
present them in Figs. 4 and 5).

Training stage:

(i) Build the database with N RTI-signals from the L users xi[n]
(each user should provide multiple signals).

(ii) Select the embedding parameters p,� (preliminary stage), apply
WW-test and derive Dp ,� using Eq. (1).

(iii) Via spectral analysis, derive a vectorial representation
G = MDS(D,l) for the set of N signals using variable dimen-
sionality l and select the optimal lo based on the stress-value.
In our particular implementation, this representation goes be-
yond classical MDS [31], as it is discussed in the Supplementary
material.

(iv) Using this optimized vectorial representation (i.e. the gi vec-
tors, gi ∈ Rlo ), train the SVM-system. For each user, a decision
function in computed (see Eq. (C.5) in Appendix C).

Test/claim stage:

(i) For an unknown person that claims to be one of the L users,
in particular the r-th client, collect T successive latencies and
construct a single RTI-signal z[t].

(ii) Apply WW-test between the new RTI-signal and those in the
database, i.e. compute WW(z[n],xi[n]), i = 1, . . . ,L and transform
these to dissimilarities using Eq. (1).

(iii) Use the `out of sample Extensions' (see [29,30] and the supple-
mentary material), to `project' the new RTI-signal z[n] in the
MDS-based coordinate space.

(iv) Apply the decision-function corresponding to the r-th user on
the appended image of z[n].

6. Experimental procedure—evaluation of the verification system

6.1. The data

Forty (18/22 males/females) age-matched subjects (age:
23 ± 3yrs) participated in this initial study. Each participant was
employed in the generation of 10 RTI-signals in five different
recording days. A couple of random-latency signals, consisting of
T = 128 blows each, were recorded every time. Between the two TS
recorded within the same appointment, a different task was offered
to the participant (either a constant-time interval generation task,
or a short session of a computer game). All the measurements were

carried with the same software developed for Matlab-platfom, but
using five different computers (with similar settings for the key-
boards connected to PS/2 port) placed in two different laboratories.
Subjects were assigned randomly to laboratories and computers
and in way that a particular subject never used the same computer
for two consecutive recording appointments. The recording time of
a single TS, on average, lasted 175 ± 35 s.

6.2. The optimal embedding

Using all the RTI-signals we first searched for the optimal embed-
ding parameters. Following the procedure described in Section 4, we
varied p and � giving rise to a graph (not shown here) in the form
shown in Fig. 6. In the particular graph of Fig. 6, the original values of
J functional have been transformed to z-scores based on a random-
ization test [32] (which included 1000 random permutations of the
tabulated RTI-signals, the corresponding derivations of J-value, and
the final computation of mean and standard deviation of all these
intermediate J-values). It is easy to notice that for the wide range
of embedding parameters, person-recognition/identification based
on RTI-signals appears a feasible task. Moreover, the shown curve
was suggestive of using two different pairs for the embedding pa-
rameters: (� = 1, p = 7) and (� = 3, p = 4). For both cases the `elbow
rule' provided that a vectorial representation in a coordinate space
of lo = 10 dimensions was sufficient for encompassing the compar-
isons between all the RTI-signals and building the SVM-verification
system within.

6.3. The parameter tuning of the verification system(s)

To fully validate our suggestion, we adopted a standard exper-
imental protocol and use it to validate the function of MCVSVM-
system presented in Section 5. To further demonstrate that the
RTI-signals convey discriminative information that can be captured
by simpler verification systems as well, we measured the perfor-
mance of alternative verification systems as well (including a simple
thresholding scheme and a standard SVM algorithm [33,34]). In the
followings, we refer to the employment of all these alternatives as
different verification scenarios. The common protocol used for every
verification scenario was the following. Five experimental sessions
were implemented by employing the leave-one-out (jackknife) and
rotation estimates. In each session, two samples were left out to be
used as a test set. To implement test impostor claims, we rotated over
the 40 person identities by considering the samples of each person
in the test set as an impostor. By excluding any sample of the test
impostor from the remaining four sessions, a training set consisted
of 39 clients was built. The test impostor pretended to be one of the
39 clients and this attempt was repeated for all client identities. As
a result, 39×2 impostor claims were produced. In a similar manner,
39×2 test client claims were tested by employing the clients' sam-
ples from the session that was left out and those of the training set.
Let A1,A2,A3, . . . ,A40 be the identity codes of the persons included in
the database. Fig. 7 depicts the experimental protocol when person
A1 is considered to be an impostor and the samples of Session 5 is
employed as test set. It can be seen that the training set is built of
four out of the five available sessions each one consisted of 39 out
of the 40 available persons. The comparisons shown for person A1
are repeated for all other persons in the database. Obviously, similar
comparisons are made by rotating among the available sessions.

Next, we describe the training procedure. It is applied to the
training set of the 39 clients. For each client, we had 8 samples at
our disposal. Let us assume that person A1 using one of his two
samples from Session 5 pretends to be person A2 during the test pro-
cedure. To test such a claim, we first implement the training stage,
which—depending on the verification scenario—includes: (i) the
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Fig. 6. Class-separability J as a function of the two embedding parameters.

Fig. 7. The experimental protocol.

computation of WW-test scores and their transformation to dissim-
ilarities; (ii) the vectorial representation of all the pairwise compar-
isons among RTI-signals and the subsequent computation of L2-norm
distances (here MDS acts as a `denoising' step); (iii) the derivation of
optimal separating hyperplane for every person so that the margin
is maximized (i.e. SVMs [33,34]) and the construction of a decision
functions; and (iv) the derivation of optimal separating hyperplane
for every person so that the within-class variance is minimized (i.e.,
MCVSVMs [28]), and the construction of a decision functions.

In all the previous scenarios, the derivation of a decision-
threshold is included as a common training step.

For the last two cases the distance to the optimal separating hy-
perplane is used as the measure to be compared against the op-
timized threshold. On the contrary, in the former two cases the
WW-related scores are submitted to thresholding. In all cases the
defined thresholds should ideally enable the distinction between
the distance measures that correspond to client claims within the
trained class under study and the distance measures that correspond
to impostor claims for impostors that belong to any other class. In
the instantiation of Fig. 7, the training procedure determines and
39 thresholds TAi (and 39 pairs of separating hyperplanes (wAi;bi) in
the case of the last two verification-scenarios). Let us now explain
how these thresholds are defined and incorporated in the final de-
cision. For clarity purpose, we consider the case of person A1 being
an impostor and persons A2, . . . ,A40 being clients. We assume that
person A1 uses one of his samples to pretend to be person Ar. When
using only the WW-test related dissimilarity measure (i.e. the first
verification scenario) between the samples, we employ the method
proposed in [35] for threshold calculation. According to this, the dis-
similarity measures for every person calculated in the training set
are used to form the distance vector o(r). The elements of the vec-
tor o(r) are sorted in ascending order and are used for the person
specific thresholds on the distance measure. Let TQ(r) denoting the
Q-th order statistic of the vector of distances, o(r). The threshold of
the person r is chosen to be equal to TQ(r). Let r1,r2, . . . ,r8 be the 8

instances of the person r in the training set. A claim of a person t is
considered valid if minj{Dt(rj)}< TQ(r) where Dt(rj) is the distance
between the sample of test person t and the reference sample rj. In
the rest three verification scenarios, we proceed in a similar way for
the threshold calculation.

6.4. Performance evaluation

The performance of verification systems is measured in terms
of the false rejection rate (FRR) achieved at a fixed false acceptance
rate (FAR). There is a trade-off between FAR and FRR. That is, it is
possible to reduce either of them with the risk of increasing the
other one. This trade-off between the FAR and FRR can create a
curve where FRR is plotted as a function of FAR (while altering the
threshold value). This curve is called receiver operating characteristic
(ROC) curve [36,37]. The performance of a verification system is
often quoted by a particular operating point of the ROC curve where
FAR = FRR. This operating point is called equal error rate (EER).

In the first scenario we have used only the WW-test scores for
verification and adopted two different threshold politics. In the first
one we have used global thresholds (GT) (i.e. common) for all the
clients. In this case, since the WW-related scores range between 0
and 20 we have created 1000 successive thresholds between these
values. In the second one we have used a threshold politic as de-
scribed above (Section 6.3) and in [38]. The obtained ROC curves
for the two different embeddings can be found in Fig. 8. As can be
seen the person-specific threshold (PST) strategy gave the better re-
sults (i.e. lower EER). This was a common trend in all the verification
scenarios, and for this reason in the performance measures reported
hereafter, person-specific thresholds are everywhere implied.

Next we measured the verification performance corresponding to
the previous verification scenario as a function of the total number
of blows T. As can be seen in Fig. 9, the EER almost monotonically
decreases with the number of RTI encountered.

Fig. 10 includes the performance measures for the 3rd and 4th
verification scenarios as a function of the degree of polynomial kernel
(Eq. (C.4)). A verification system based on a standard SVM algorithm
[33,34] is comparedwith theMCVSVM system described in Section 5.
The EER versus the degree of the polynomial kernel used is plotted for
both SVMs and MCVSVMs in Fig. 10. As can be seen the employment
of SVMs greatly enhances the verification performance. Both systems
achieved their highest performance with the degree d = 3. MCVSVMs
achieved the best EER that is 5.4%.

Fig. 11 includes the ROC curves from all verification scenarios
overlaid, while Table 1 lists the corresponding EER. The performance
of MCVSVM-based system is very satisfactory. We can easily prove
that our test set is capable for providing such a measurement in
statistical significant manner, by using a similar analysis with the one
presented in [35]. That is, since a similar circular protocol has been
used in [35] with 37 clients and 1 sample per session (we have more
clients and two samples per session) we may accept, with safety, an
EER 5%.
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Fig. 8. ROC curves for Global and Person Specific Thresholds using simply the WW-based dissimilarity as the distance measure. Left/Right panel corresponds to the particular
selected pair, shown in the left top corner, of embedding parameters (�, p).

Fig. 9. EER for the PST-scheme as a function of the total number of recorded latencies. Left/Right panel corresponds to the particular selected pair, shown in the left top
corner, of embedding parameters (�, p).

Fig. 10. The EER as a function of the degree of the polynomial kernels for the two SVM-related verification scenarios.

7. Discussion

A novel biometric was introduced that could be best described
as cognitive, since it depends on higher brain functions that can be
indirectly measured in a surprisingly simple way, Viz. the repetitive
pressing of a button in a randommanner. The signal of the registered
time intervals was found to encode the person's identity and, there-
fore, could be used as a dynamic signature impossible to be imitated.

These ideas were tested on a medium sized database (10 signals
from each of 40 persons). In a preliminary stage of the analysis (not
included here), we experimented with various signal characteris-
tics (i.e. features), like spectral descriptors and statistical moments.
However, the inter-person separation was not sufficiently high. To
overcome this shortcoming—and considering the `chaotic nature' of
the recorded signals—we borrowed form the field of nonlinear dy-
namics the idea to contrast the underlying mechanisms generating



2794 N.A. Laskaris et al. / Pattern Recognition 42 (2009) 2787 -- 2796

Fig. 11. A comparison of the ROCs for all the verification-scenarios. Left/Right panel corresponds to the particular selected pair, shown in the left top corner, of embedding
parameters (�, p).

Table 1
EER(%) for all verification scenarios.

EER (%) 1st Embedding � = 1, p = 7 2nd Embedding � = 3, p = 4

WW-test GT 19.80 14.51
WW-test PST 18.05 13.35
MDS (lo = 10) 15.42 12.35
SVMs 8.80 7.55
MCVSVMs 6.51 5.40

these TS. These mechanisms were anticipated to be idiosyncratic
and, consequently, distinguishable based on the associated recon-
structed trajectories. The between-trajectories similarity was esti-
mated by means of a flexible statistical test and the estimates were
fed in different verification-systems, of varying complexity. Themea-
sured performance reached the EER-lever of 5%, which is very en-
couraging considering the convenience in taking suchmeasurements
and the apparent advantages of dealing with 1D signals. Even the
simplest of the tested verification systems (i.e. a naive thresholding
scheme, see Fig. 11), achieved a reasonable performance indicating
that there is inherent, potentially useful information in this kind of
signals when casted in the form of reconstructed dynamics. Spectral
analysis (eigen-analysis) can help in revealing this information (see
Fig. 11, MDS-curve), while sophisticated classifiers (see Fig. 11, SVM
and MCVSVM curves) can fully exploit it. Therefore, our suggested
biometric can be added to the battery of known dynamic signatures
inspired by human physiological functions [39–46].

A noteworthy practical issue is the sufficient number of blows
to be registered. It would be convenient if the highest performance
could be achieved with the least possible engagement of the user
(i.e. during verification, the user should accomplish the psychomet-
ric task in a very short time period). This issue has been addressed
via Fig. 9. It can be seen that performance is kept increasing with
the number of blows T. However, the right panel indicates that with
T = 80 the maximum performance has, almost, been reached al-
ready. Considering that T = 120 corresponds to an average duration
of 175 s, it is easily deduced that the random-interval generation task
is time consuming. The most straightforward way to alleviate this is
to keep the number of blows high when the person enrolls for the
first time in the system (i.e. when he provides signals for building the
training-test) and to reduce this number during the testing stage. For-
tunately, our verification-system(s) inherits from the WW-test the
necessary flexibility (sinceWW-test can readily compare TS of differ-
ent length). Under this perspective, an alternative appealing research
direction is the incorporation of recently introduced tactics from
`anytime-algorithms' theory [47,48], with the aim to avoid collecting

random-intervals beyond the number necessary for the system to
reach a secure decision.

The introduced method should be further justified based on a
larger dataset. The nature of the new biometric signature (that en-
ables registration remotely) can be fully exploited with the set up
of a server that centralises the collection of RTI-signals via WWW.
Moreover, a valuable methodological advancement is the incorpora-
tion of a test that will indicate the appropriate execution of the task
and prompt its repetition whenever RTI-generation degenerates into
isochronous tapping.

Appendix A. An introduction to MST graph

Graph theory sketches the MST structure with the following defi-
nitions. A graph is a structure for representing pairwise relationships
among data. It consists of a set of nodes V = {Vi}i = 1:N and a set of
links E = {Eij}i � j between nodes called edges. The degree di of a node
is the number of edges incident to it. When a weight eij is assigned
to each link, a weighted-graph is formed and in the particular case
that eij = eji this graph is called undirected weighted graph. A tree is
a connected graph with no cycles. A spanning tree T of a (connected)
weighted graph G(V,E) is a connected subgraph of G(V,E) such that:
(i) it contains every node of G(V,E) and (ii) it does not contain any
cycle. The MST is a spanning tree containing exactly (N−1) edges, for
which the sum of edge weights is minimum.

Appendix B. The multivariate Wald-Wolfowitz test (WW-test)

Given two multidimensional point samples {xi}i = 1:m and
{yi}i = 1:n, the hypothesis Ho to be tested is whether they are coming
from the same multivariate distribution. At first, the sample identity
of each point is not encountered and the MST of the overall sample
is constructed. Then, based on the sample identities of the points, a
test statistic R is computed. R is the total number of runs, while a run
is defined as a consecutive sequence of identical sample identities.
Rejection of Ho is for small values of R. The null distribution of the
test statistic has been derived, based on combinatorial analysis [19].

Consider samples of sizem and n, respectively, from distributions
Fx and Fy, both defined in RP. Let N = m+n, C be the number of edge
pairs of MST sharing a common node and di be the degree of the
ith node. Under Ho, the mean and variance of R can be calculated as
follows:

E[R] = 2mn
N

+ 1 (B.1)
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Var[R|C] = 2mn
N(N − 1)

{
2mn − N

N

+ C − N + 2
(N − 2)(N − 3)

[N(N − 1) − 4mn + 2]
}

(B.2)

It has been shown that the quantity:

W = R − E[R]√
Var[R]

(B.3)

approaches (asymptotically) the standard normal distribution while
E[R] and Var[R] are given in closed form based on the size of the two
samples [19]. This enables the computation of the significance level
(and p-value) for the acceptance of the hypothesis H0.

Appendix C. The classifier built over the spectral-analysis based
representations

Let r be the reference person. TheMCVSVM classifiers are defined
in the space of vectors gi as the one that optimizes the following:

min
wr ,br ,�

1
2
wT

r S
r
wwr + C

N∑
j=1

�j (C.1)

Subject to the constraints:

yi(w
T
r�(gi) + br)�1 − �i (C.2)

The within-class scatter Srw for the vectors gi is defined as

Srw =
⎛
⎝ ∑

gi∈Ur

(gi − mUr )(gi − mUr )
T

+
∑
gi∈Ur

(gi − mUr
)(gi − mUr

)T
⎞
⎠ (C.3)

where Ur is the set of the client samples for the reference person r
and Ur of the impostor samples, while m denotes the mean vector
computed for the corresponding class. Moreover, in constraints (C.2)
yi is the label of vector gi (i.e., yi = 1 if gi ∈ Ur and yi = −1 if gi ∈ Ur),
� = [�1,�2, . . . ,�N] is the vector of slack variables associated with the
allowed error, C is a given constant that defines the cost of the errors
after the classification and � is a nonlinear mapping that allows the
design of the nonlinear surfaces. In SVM theory it is not necessary
to have the closed form of the mapping �:Rl→F and we only need
the closed form for the dot product k(x,y) = �(gi)T�(gj) also known
as kernel. Specifically, we have used polynomial kernels:

k(x, y) = �(x)T�(y)T = (xTy + 1)d (C.4)

where d is the degree of the polynomial. The above constrained
optimization problem using positive kernels is solved as described
in [28,33,34] or using widely available optimization packages.

Let that a test sample (i.e. a RTI-signal not known during training)
arrives for testing, then it is `projected' in the representation space
(using the dissimilarities with the users' RTI-signals) and represented
via a new vector g. To test whether or not g belongs to the r-th client
class, the following function is employed:

f (g) = wT
r�(g) + br (C.5)

withwr and br client specific parameters computed during the train-
ing. The calculation of term wT

r�(g) is performed using the kernel
function (C.4). The value of f(g) is used as a measure of similarity by
the verification system. The more positive, the more probably that
the test sample is from the r-client. This value will be compared
against an optimized threshold for the final decision made by the
verification system.

Appendix D. Supplementary material

Supplementary data associated with this article can be found in
the online version at 10.1016/j.patcog.2008.12.028.
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