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Abstract

We present a new method for the incremental train-

ing of multiclass Support Vector Machines that pro-

vides computational efficiency for training problems in

the case where the training data collection is sequen-

tially enriched and dynamic adaptation of the classi-

fier is required. An auxiliary function that incorporates

some desired characteristics in order to provide an up-

per bound of the objective function which summarizes

the multiclass classification task has been designed and

the global minimizer for the enriched dataset is found

using a warm start algorithm, since faster convergence

is expected when starting from the previous global min-

imum. Experimental evidence on two data collections

verified that our method is faster than retraining the

classifier from scratch, while the achieved classification

accuracy is maintained at the same level.

1. Introduction

Support Vector Machines (SVMs) [9] have become

popular in pattern recognition problems due to their ex-

cellent generalization performance. Usually, SVMs are

trained using a batch approach which requires all train-

ing data to be available at once, so that training is per-

formed in one batch. If more training data are available

later on, the SVM classifier should be retrained from

scratch.

In this paper, we investigate the scenario where we

have obtained the optimal Lagrange multipliers that de-

fine the normal vector of each decision surface for n

base training samples and we seek the new minimizer

over an enriched dataset, where m new training pairs

were added. In such a case, assuming that the classi-

fier was initially well trained, resolving the optimization

problem from scratch is computationally inefficient. An

alternative approach is to use the initial solution and the

optimum Lagrange multipliers, obtained from the base

training dataset, as an advanced starting point to warm-

start the new optimization process. The computational

advantage of such an approach is maximized, especially

if we are adding a small amount of new training samples

in a large dataset over which the SVM classifier has al-

ready been well trained.

The main motivation in applying a warm-start strat-

egy is the expectation that two such closely related opti-

mization problems should in general share similar char-

acteristics. More precisely, the new decision surface is

expected to have minimal disturbances with respect to

its previous form.

Although various papers have been published on

SVM training, relatively few have considered the prob-

lem of incremental training and even less have treated

multiclass problems. An active set approach which in-

volves a warm start algorithm to incrementally train

SVMs was proposed in [8], while a method for incre-

mentally updating the parameters of an SVM classifier

has been applied in [10] for dynamic visual category

learning.

2. Multiclass SVMs

Crammer and Singer in [2] proposed an approach for

multiclass classification problems, by solving a single

optimization schema. Given a set of n training data

X = {(x1, y1), ..., (xn, yn)} where xi ∈ Rd, i =
1, ..., n are the input feature vectors, yi ∈ {1, ..., k} is

the class label associated with sample xi and d is the di-

mensionality of the input feature vectors, the idea is to

consider all available training data at once and construct

k two-class categorization rules where k is the num-

ber of classes. Solving this single optimization problem

leads to the construction of k decision functions where

the m-th decision surface w
T
mφ(x), determined by its

normal vector wm ∈ Rd, separates the training vectors

of the m-th class from all the others, by minimizing the

following primal problem:

min
wm,ξi

1

2

k
∑

m=1

w
T
mwm + C

n
∑

i=1

ξi, (1)
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subject to the constraints:

w
T
yi

φ(xi) −w
T
mφ(xi) ≥ bm

i − ξi, i = 1, . . . , n (2)

Here, φ(.) is a function that maps the input feature vec-

tor xi to an arbitrary-dimensional space F which usu-

ally has the structure of a Hilbert space [6], where the

data are supposed to be linearly or near linearly sepa-

rable, C is the term that penalizes the training errors,

ξ = [ξ1, ..., ξl]
T is the slack variable vector and b is a

bias vector defined for m = 1, ..., k as:

bm
i = 1 − δm

yi
=

{

1, if yi 6= m

0, if yi = m
(3)

where δm
yi

is the Kronecker delta function which is 1 for

yi = m and 0 otherwise. The decision function is:

arg max
m=1,...,k

(

w
T
mφ(x)

)

. (4)

Switching to the dual formulation and seeking for the

saddle point of the Lagrangian, while, at the same time,

requiring that the minimum over the primal variables

w and ξ should satisfy the Karush-Kuhn-Tucker (KKT)

conditions, the multiclass classification task is summa-

rized in the following single optimization problem:

min
α

W (α) =
1

2
αT

Hα + b
T α (5)

under the following linear constraints:

αm
i ≤ 0 , if yi 6= m

αm
i ≤ C , if yi = m

i = 1, . . . , n m = 1, . . . , k,

(6)

where b =
[

b1
1, . . . , b

k
1 , . . . , b1

n, . . . , bk
n

]T
and α =

[

α1
1, . . . , α

k
1 , . . . , α1

n, . . . , αk
n

]T
are the Lagrange mul-

tipliers associated with the constraints in (2). Further-

more, H is the Hessian matrix defined as H = K ⊗ I,

I is a k by k identity matrix, ⊗ denotes the Kronecker

product and K is the Kernel matrix, whose elements are

equal to Ki,j = φ (xi)
T

φ (xj). The Hessian matrix H

is symmetric and positive semidefinite, since it has been

derived by a direct product operation on the kernel ma-

trix K, which is also symmetric and positive definite.

This property reveals a so called Quadratic Program

(QP) since the objective function W (α) in (5) is a con-

vex quadratic function with linear constraints and con-

sequently, its minimization problem has a global mini-

mum and no local minima. Finally, the decision surface

is given by:

arg max
m=1...k

l
∑

i=1

αm
i K (xi,x) . (7)

3. Problem Formulation

In this section, we describe how we extend the pre-

vious SVM formulation in order to cope with modifica-

tions on the data collection used for training the SVM

classifier. We also demonstrate the design of an auxil-

iary function that provides an upper bound of the objec-

tive function which summarizes the multiclass classifi-

cation task as a single optimization problem.

3.1 Extending the multiclass SVM formula-
tion

We investigate the incremental training task by ex-

amining the scenario where the SVM classifier has

been trained over a base dataset Xn of n training pairs

(xi, yi), i = 1, . . . , n and the optimum Lagrange mul-

tipliers αn,o that minimize the objective function in (5)

have been evaluated. When m new training samples

Xm = {xs, ys}, s = n + 1, . . . , n + m are added in

the original dataset, creating the so called augmented

training dataset Xn+m = Xn

⋃

Xm we want to update

the current SVM configuration and obtain a new SVM

classifier that incorporates the new training data.

In order to facilitate a dynamic adaptation of the

SVM classifier to the augmented training dataset Xn+m

we express the new training task with respect to its ini-

tial form, along with an update term corresponding to

the new training samples Xm. However, since the ini-

tial and the augmented classification problems do not

have the same number of constraints or variables, it is

required to expand vectors αn,o , bn and the Hessian

matrix Hn accordingly:

αn+m =

[

αn,o

αs

]

, bn+m =

[

bn

bs

]

(8)

Hn+m =

[

Hn K(xi,xs) ⊗ I

K(xi,xs)
T ⊗ I K(xs,xs) ⊗ I

]

i = 1, ..., n , s = n + 1, ..., n + m
(9)

where αn,o =
[

α1
1, ..., α

k
1 , ..., α1

n, ..., αk
n

]T
,

αs =
[

α1
n+1, ..., α

k
n+1, ..., α

1
n+m, ..., αk

n+m

]T
,

bn =
[

b1
1, ..., b

k
1 , ..., b1

n, ..., bk
n

]T
and bs =

[

b1
n+1, ..., b

k
n+1, ..., b

1
n+m, ..., bk

n+m

]T
. Hn is the

nk × nk Hessian matrix computed over the initial

n base training samples of Xn, while K(xi,xs) and

K(xs,xs) are the n × m and m × m kernel matrices

used in order to expand the initial Hessian matrix Hn

to Hn+m, and are computed over both the initial and

the new training pairs and over the samples of set Xm,

respectively.

The Hessian matrix Hn+m can be expressed as the

sum of the Hessian H
′
n computed over the base dataset
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Xn and an update term matrix Hm, evaluated using the

m new training samples of Xm. Both matrices are non-

negative and are defined as:

H
′
n =

[

Hn 0nk×mk

0mk×nk 0mk×mk

]

,

Hm =

[

0nk×nk K(xi,xs) ⊗ I

K(xi,xs)
T ⊗ I K(xs,xs) ⊗ I

]

,

i = 1, ..., n s = n + 1, ..., n + m,
(10)

where 0 is an all-zeros array of appropriate dimensions.

Subsequently, the objective function W (αn+m) for the

augmented minimization problem could be formulated

as:

W (αn+m) =
1

2
αT

n+m (H′
n + Hm) αn+m+b

T
n+mαn+m.

(11)

3.2 Auxiliary function

We define an auxiliary function in order to iden-

tify the global minimizer of the objective function

W (αn+m). The derivation of the auxiliary function we

have followed is similar with the one presented in [7].

Similar techniques have been also used in order to es-

tablish the convergence of many statistical learning al-

gorithms e.g., the Expectation-Maximization algorithm

[3] for maximum likelihood estimation and nonnegative

matrix factorization [4]. Since the minimization prob-

lem is a QP problem and has a global and no local min-

ima, we seek to define an appropriate convex auxiliary

function F , which will provide an upper bound of the

objective function. Due to space limitations we will

just sketch the auxiliary function and will not provide

an analysis about how convergence to the global mini-

mizer is achieved. This auxiliary function should satisfy

the following properties:

1. It should bound the objective function from above:

W (u) ≤ F (u,αn+m) . (12)

2. The following equation should hold:

W (αn+m) = F (αn+m,αn+m) . (13)

Our goal is to use this auxiliary function F in or-

der to derive the update rule α′ = arg minu F (u,α),
which will never increase the objective function, since

the following inequality is valid:

W (α′) ≤ F (α′,α) ≤ F (α,α) = W (α) . (14)

The minimizer α′ can be found by computing the

derivative of the auxiliary function and setting it to

zero. By iterating this update, a series of minimizers α′

are generated that improve the objective function and

will lead to the global minimum, since the convexity

property of W (αn+m) implies that any reached local

minimum is also global. After some involved deriva-

tions one can prove that the auxiliary function F is

formed as the sum of second order functions fi of ui

as: F (u,αn+m) =
∑

i

fi (ui, [αn+m]i). Where:

fi (ui, [αn+m]i] = 1
2

[H′

nαn+m]i
[αn+m]i

u2
i + 1

2
[Hmαn+m]i

[αn+m]i
u2

i

+[bn+m]iui.
(15)

We have selected to warm start the solution process

by using the initial solution and the optimum Lagrange

multipliers αn,o as a starting point and to initialize only

the related to the new training samples Lagrange multi-

pliers αs. With this approach faster convergence is ex-

pected since in general, the new training samples of Xm

modify the decision hyperplane in a relatively smooth

manner. As a result, only a small portion of the SVM

parameters should be evaluated and only few of the old

Lagrange multipliers in αn,o would require an update.

4. Experimental Results

In our first experiment we provide evidence regard-

ing the computational efficiency of the proposed in-

cremental SVM training algorithm by comparing the

computational cost of updating the SVM parameters

through incremental training with the cost of retraining

the classifier from scratch. For our second experiment,

we have considered incremental learning applied to the

frontal face view recognition problem, where the clas-

sifier is incrementally trained on a training set which is

sequentially enriched by adding a single new example

and testing is performed on the complete test set. Our

aim is to investigate the behavior of the classifier, with

respect to the classification accuracy, as the number of

training samples increases and to derive useful insights

regarding the effect of the new samples to the decision

surface.

The experiment regarding the achieved computa-

tional efficiency has been conducted on the multiclass

Satimage database, obtained from the UCI Repository

of machine learning databases [1], while for the incre-

mental learning scenario, on facial instances derived

form the XM2VTS database [5]. Training and test data

for both experiments were randomly ordered and nor-

malized, such as to be in the [−1, 1] range with zero

mean, before applied to the proposed method.

Figure 1 shows a comparison of the measured train-
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ing time for the batch training model and the incremen-

tal training approach over the same training samples.

The increment size is m = 10 and is kept constant. On

average, the required computational time is 83.8% less

for the incrementally training approach than the equiv-

alent time required for the batch training model while,

the achieved classification performance using an RBF

kernel K(xi,xj) = eγ||xi−xj ||
2

with a fixed cost pa-

rameter value C = 0 and a Gaussian spread parameter

γ = 24 was 91.1%.

Figure 1. SVM batch/incremental training

times on Satimage dataset.
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For the incremental learning scenario the task at

hand is to distinguish the frontal views of a person face

from the non frontal ones, while he is performing var-

ious head poses. In order to form the training and test

sets, face detection and tracking were applied on the

frames of the video sequences and the resulting Regions

Of Interest (ROIs) were anisotropically scaled, so as to

have fixed size of 30×40 pixels, converted to grayscale

and was scanned row-wise so as to form a feature vec-

tor x = [f1 . . . f1200]
T (fi being the luminance of the

i-th pixel) which was used to compose the training and

test sets that are fed to the SVM classifier. In total 6862

facial images were extracted and divided in two equally

sized parts for training and testing. As it can be ob-

served from Figure 2 the classifier can effectively clas-

sify the facial images even when only a few tens of sam-

ples from each class are used for training. Moreover, the

decision surface essentially remains static, as we keep

augmenting the training set beyond 1000 training sam-

ples, since the achieved classification accuracy rate re-

mains constantly over 96%. The achieved classification

accuracy percentage using the entire 3431 training sam-

ples is 96.33%.

5. Conclusions

We described an incremental training method which

can efficiently update parameters of a multiclass SVM

classifier. We demonstrated the performance improve-

ment on a multiclass dataset and showed that our

method is much faster than retraining the classifier from

scratch while the achieved classification accuracy is

Figure 2. Frontal face view recognition

rate versus the training set size.
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maintained at the same level.
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