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Camera Motion Estimation Using a Novel Online
Vector Field Model in Particle Filters
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Abstract—In this paper, a novel algorithm for parametric
camera motion estimation is introduced. More particularly, a
novel stochastic vector field model is proposed, which can handle
smooth motion patterns derived from long periods of stable camera
motion and can also cope with rapid camera motion changes and
periods when the camera remains still. The stochastic vector field
model is established from a set of noisy measurements, such as
motion vectors derived, e.g., from block matching techniques, in
order to provide an estimation of the subsequent camera motion
in the form of a motion vector field. A set of rules for a robust
and online update of the camera motion model parameters is also
proposed, based on the expectation maximization algorithm. The
proposed model is embedded in a particle filters framework in
order to predict the future camera motion based on current and
prior observations. We estimate the subsequent camera motion
by finding the optimum affine transform parameters so that,
when applied to the current video frame, the resulting motion
vector field to approximate the one estimated by the stochastic
model. Extensive experimental results verify the usefulness of the
proposed scheme in camera motion pattern classification and in
the accurate estimation of the 2-D affine camera transform motion
parameters. Moreover, the camera motion estimation has been
incorporated into an object tracker in order to investigate if the
new schema improves its tracking efficiency, when camera motion
and tracked object motion are combined.

Index Terms—Camera motion estimation, expectation maxi-
mization (EM) algorithm, particle filtering, vector field model.

BASIC NOMENCLATURE FOR THE PROPOSED FRAMEWORK

The unknown state of the
dynamical system.
The motion vector at the th
time (frame) of the th block.

, The observation (in our case
a matrix of all the motion
vectors ) and
the estimate produced by the
th particle.

The set of observations in a
time window between 1 and .
The system function that
calculates the unknown state
of the dynamical system.
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The system function that
calculates the observations at
time .
A particle .
The conditional probability of
the event given the event .
The system noise at (it
can be a vector or a matrix).
The observation noise at .

The weight of th particle filter
at time .
The stable component

.

for
the -coordinate, at the th
frame and for the -blocks.

for
the -coordinate, at the th
frame and for the -blocks.
The wander component

.

for the -coordinate, at the th
frame and for the -blocks.

for the -coordinate, at the th
frame and for the -blocks.
The lost component

.

for
the -coordinate, at the th
frame and for the -blocks.

for
the -coordinate, at the th
frame and for the -blocks.
The mean motion vector for

for the
stable, the wander and the lost
component for the th block at
the th frame.
The covariance matrix for
motion vectors of the th block
for one of the components

at the th
frame.
The probability density
function of Gaussian noise

.
The exponential envelope.
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Ownerships for one of the
components
for the th block at instance

and for the , and ,
respectively.
First and second order
moments for the th block
at and coordinates,
respectively for the th frame
(only for stable component).
Mixture weights for one of the
components
for the th block at instance

and for the , and ,
respectively.
Denotes the estimate of
(e.g., denotes the estimate
of ).
Robust estimate for mean
motion vector at the instance.
Robust estimate for the
covariance matrix for the
motion vectors at th instance.

I. INTRODUCTION

M OTION estimation and motion pattern classification
produce valuable information for video processing,

analysis, indexing, and retrieval. It has been extensively investi-
gated by the scientific community for semantic characterization
and discrimination of video streams. Moving object trajectories
have been used for video retrieval [1]–[3]. Camera motion
pattern characterization has been efficiently applied to video
indexing and retrieval [4]–[7]. However, the main limitation of
the latter methods is that they deal only with the characteriza-
tion of the detected camera motion patterns, without explicit
measurement of the camera motion parameters. As a result, the
acquired information is of limited interest, since it can be used
primarily for video indexing and retrieval.

The estimation of a parametric form describing the dis-
placement of the video frame content in two subsequent video
frames due to camera motion is of broader interest and has
been proved beneficial in various applications. For instance,
camera motion parameter estimation can assist in detecting and
robustly tracking moving objects [8], in motion-based video
deblurring [9], in video shots boundaries detection [10] as
well as in video abstraction [11], [12]. Apart from the general
2-D affine transformation model (that we have also adopted in
this paper), various parametric camera motion representation
methods have been proposed in the literature [4], [13]–[19].

In this paper, we focus on the 2-D camera motion charac-
terization and the estimation of the relevant affine parametric
model. Various methods have been proposed to this end, by ex-
ploiting estimated motion vector fields. In [5], the motion vec-
tors field is used as a camera motion representation and the
detected motion pattern is classified using support vector ma-
chines (SVMs) in one of the following classes: zoom, pan, tilt,
and rotation. In [4], [6], and [18], camera motion estimation

within video shots is performed in the compressed MPEG video
streams, without full frame decompression, using the motion
vector fields acquired from the P- and B-video frames. These
methods rely on the exploitation of motion vectors distribution
or on a few representative global motion parameters. The de-
tected camera motion is then expressed in a parametric form and
is applied for video frame annotation and retrieval. One of the
main shortcomings of these approaches is that, generally, they
are neither resilient to the presence of moving objects of signif-
icant size nor to video luminance outliers.

In this work, we focus on accurate camera motion parameter
estimation using already estimated motion vectors fields. In this
approach, we assume the camera motion as a dynamic system,
whose state changes in discrete time intervals and is described
at time by the state vector

(1)

where parameters correspond to
the affine transform coefficients, containing all of the relevant
information required to describe the camera motion between
video frames. A novel stochastic vector field model is es-
tablished from a set of noisy measurements , such as the
estimated motion vectors, in order to provide an estimation
of the subsequent camera motion. Our goal is to recursively
estimate the optimal affine transform parameters, by estimating
the system state vector , so that, when applied to the current
video frame, the resulting transformed image provided by
a motion compensation algorithm accurately recreates the
already estimated motion vectors field.

To tackle this problem, we have applied the proposed sto-
chastic vector field model in a particle filters framework. Par-
ticle filters are a state-of-the-art method for the stochastic pre-
diction of dynamic system state. Stochastic approaches used for
the prediction of the future state of a dynamic system have at-
tracted considerable interest against their deterministic counter-
parts. Their ability to escape from local minima due to the fact
that the search operation is randomly driven, is a significant ad-
vantage. However, the computational load is generally more in-
tense compared with that of a deterministic algorithm. In sum-
mary, the novel contributions of this paper are the following:

• The presentation of a system for 2-D camera motion es-
timation from a video sequence that is able to perform in
real time.

• A novel stochastic vector field model. The proposed model
can handle smooth camera motion patterns derived from
long periods of stable camera motion and can also cope
with rapid motion changes (i.e., motion changes from hand
handled cameras) and periods when the camera remains
still.

• An online expectation maximization (EM) algorithm for
updating the model parameters.

The remainder of this paper is organized as follows. Section II
we provide an estimation of the affine parametric model based
on the straightforward minimization of the Least Squares Error
between the motion fields. The proposed Online Vector Field
Model and the applied particle filters framework, are presented
in Section III. In the same Section, considerations on enhancing
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its algorithmic performance and achieving computational effi-
ciency are analyzed. Section IV describes the conducted experi-
ments and summarizes the performance evaluation results. Con-
cluding remarks are drawn in Section V.

II. PROBLEM FORMULATION

Initially, we present a camera motion estimation model that
translates the motion vector field derived from two consecutive
video frames into a parametric 2-D affine transform. The 2-D
affine transformation of an image point displaced from position

to between two consecutive video frames is given
by

(2)

where the parameters control rotation and
scaling, while parameters correspond to translation
along - and -axes, respectively.

We address the camera motion detection and estimation
problem by employing low-level information such as motion
vectors. We detect the motion vectors between two successive
video frames by applying a motion estimation algorithm, such
as block matching, and represent the detected displacements
using motion vectors. A motion vector repre-
sents the displacement of the th block in relative coordinates,
with respect to its initial position, between two consecutive
video frames and as: and ,
where and are the coordinates of the th block
center at frame and , respectively.

Similarly, with the image point displacement described by
(2), we can represent the displacement of the th block in relative
coordinates by a 2-D affine transform as

(3)

where the affine coefficients are related as
.

Since we estimate the camera affine transformation by uti-
lizing the motion vector field, a model to compute the affine
transform coefficients directly from the motion vectors is re-
quired. To rephrase the problem, we seek an affine transforma-
tion matrix to perform the approximation ,
where is a matrix ( is the number of blocks that
each frame has been divided to) containing the center coordi-
nates of each block in the video frame, i.e., ,
where and . The
matrix contains the motion vectors, where

and are vectors
containing each block’s displacement in relative coordinates
along to the - and -axes, respectively. is the
3 3 affine transformation matrix, where ,

, and .
We have experimentally verified that it is preferable to seek

independently the vectors and rather than to search

directly for the matrix . The LS formulation
for the optimal takes the form

(4)

where and is the Frobenius norm.
The optimal is given by

(5)

and similarly for .
According to (5), we can compute the affine transform co-

efficients describing the camera motion directly from the mo-
tion vector field, since the pseudo-inverse matrix remains
constant. This technique, whilst being optimal for data contami-
nated by Gaussian noise, is extremely inaccurate in the presence
of motion vector outliers.

III. ONLINE VECTOR FIELD MODEL

A. Particle Filters

Considering camera motion as a dynamically varying system,
we formulate the problem as to predict the unknown state
based on a series of usually noisy motion observations (already
estimated motion vectors) , arriving se-
quentially. Moreover, we assume that the state evolution and
observation models are described, respectively, by the functions

and

(6)

(7)

where is the system noise and is the observation noise.
A particle is a weighted sample that estimates a required

posterior density function [20], [21]. In the state evolution
problem summarized in (6), a particle describes
at time the posterior distribution , where the
weight is normalized and is proportional to the posterior
probability . To initialize a particle filters framework,

we first draw samples from and,

additionally, samples from . By applying

state evolution as formed in (6), we obtain estimates
of state , which are being fed along with noise samples

, drawn from , to (7). Finally, observation esti-

mates for state are obtained. Each particle’s weight
is being evaluated with respect to the state and observation
estimations, according to the formula

(8)

where is a proposal distribution. In order for
the weights to sum up to one, they are normalized as

(9)
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Here, we model each posterior distribution using a
mixture of bivariate Gaussian density functions, while we as-
sume that noise and are also Gaussian.

B. Probabilistic Mixture Model

The proposed online vector field model is a mod-
ified version of the online appearance model (OAM) by Jepson
et al. presented in [22]. OAM is a three-part mixture model
containing the following components: the stable component de-
signed to identify slowly varying robust appearance properties
of the tracked object;the wandering component that models the
rapid variations of the object appearance; and the lost compo-
nent designed to handle data outliers that burst during occlu-
sion. The first two components have been designed to follow
the Gaussian distribution, while the data modeled by the lost
component are assumed to be uniformly distributed.

We modified this model so as to facilitate camera motion es-
timation. The proposed is a Gaussian mixture model
extending the notion of stable or rapidly changing image struc-
tures of to the description of the motion vector field.
Thus, we can identify not only reliable motion structures but
also rapid motion changes as well. Moreover, we have modified
the lost component, so as to represent the ideal stationary scene
in order to adjust the model to have a prior preference in gen-
erating stationary camera motion estimations in the presence of
data outliers as, for instance, due to motion vectors generated by
moving objects. Additionally, we handle motion outliers using
robust statistics. Finally, we combined the in a par-
ticle filter framework to estimate the camera motion parameters,
while in [22] the EM algorithm is used in order to perform ob-
ject tracking.

The previously presented fundamental types of 2-D camera
motion (in Section II) could be combined or appear in cascade
in a video sequence. However, there are temporal camera mo-
tion characteristics that could be exploited in a camera motion
estimation model. For example, in a typical video sequence, we
expect long periods of smooth camera motion towards a specific
motion direction which are also followed by extended camera
immobility periods. These two motion patterns are usually inter-
rupted by brief time intervals of rapid camera motion that could
be of arbitrary type. For the first two motion patterns, a model
that identifies slowly varying (or absence of) motion observa-
tions over a long period of time is more appropriate for their
description. In the latter case, when the camera is rapidly and
arbitrary moving, a flexible model based on two video frame
variations can better approximate the rapid changes.

In the presented , we use the motion vector field
derived either by applying of block matching algorithm or
directly from compressed MPEG video streams. The model
is time-varying and comprises of three different components

, which are combined in a probabilistic
mixture model applied in a particle filters framework, in order
to estimate the camera motion.

• The camera motion stable component
learns a smooth motion pattern that describes the camera
motion obtained from a relatively long period of the video

sequence. The component comprises the vectors
and , where

values and contain the block spatial displace-
ment of time smoothed over a predefined time window
along the - and -axes, respectively:

and , where the
smoothing factor is proportional to the temporal window
size (measured in video frames) and and are, re-
spectively, the and motion vector components referred
to the th block.

• Since the component requires a long sequence of
observations in order to construct a smoothed camera
motion vector field, we cannot have a good approximation
when severe camera motion changes occur. In order to
address this problem, we introduce the camera motion
wander component , which identi-
fies sudden motion changes, and adapts to a short time
motion field observation sequence, as a two frame motion
change model. Vectors

and contain each block
displacement between two consecutive frames, in relative
coordinates, along the - and -axes, respectively.

• Finally, the lost component is fixed and
represents the ideal stationary video scene when all of the
motion vectors are equal to zero. This is the state that is
expected to be observed more often. Moreover, it is used
for the initialization of a new camera motion estimation
process and also enables the model to have a prior pref-
erence in generating stationary camera motion estimations
when sparse nonzero motion vectors are observed, as for
instance, due to objects motion.

We model the probability density function for the ,
and components with the bivariate Gaussian distribution

, where denotes the
mean value of the th motion vector and is a 2 2
covariance matrix referred to the th component th motion
vector , as it varies during the video sequence.
We consider the general case that correlation exists between the
two random variables of the same motion vector , as it
evolves over time. It should be noted that the stable component
covariance matrices and mean values are functions of
time computed for each motion vector. The wander component,
the mean values, are the observations of the previous frame
and, for , the mean values are set to zero. Moreover, in
order to avoid some prior preference in either component, the

covariance matrices are initially set as:
(more details are given in Section II-D).

combines probabilistically the components , ,
and in a mixture model according to the formula

(10)
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where is the observation data derived for
state and is the bivariate Gaussian density
function

(11)
where

are the mixing probabilities
that regulate the contribution each component of the th motion
vector makes to the complete observation likelihood at time
, is the number of motion vectors, and are the

covariance matrix and mean value, respectively, referred to as
the th motion vector of the th component.

is embedded in the particle filter framework
evaluating each potential future state of the system. A state

estimate is generated by first drawing a noise sample
and applying the state transition function

, where is the probability density

function of Gaussian noise . Each state estimate deter-
mined by particle is evaluated with respect to the available
motion representation in , by computing the observa-
tion likelihood according to (10). Although the conventional
particle filter configuration determines the particle weight using
(8), we instead update the weights by applying the an approach
similar to the Sequential Importance Re-sampling filter (SIR)
[23], since the following assumptions hold.

• The state evolution and observation functions are
known.

• The observation likelihood function could be ap-
plied for pointwise evaluation.

As a result, we assign weights to particles as

(12)

and this basically drops the factors and
. The applied particle filters framework is

similar to the one used in [24]. The particle filters framework
generates a set of possible future states of the camera motion,
expressed in the form of affine transform matrices. Each affine
transform matrix corresponds to a motion vector field which
can be computed using (5). Consequently, each state estimate
is evaluated with respect to the available motion representation
in via (10) and is assigned a weight according to (12).
The particle that is assigned the highest weight or, differently,
the prediction that achieves the highest probability value is
selected as the system’s future state.

C. Online Model Update

In order to update the camera motion mixture model
to , describing the camera motion mixture model
in the next video frame, the new mean values, covariance
matrices, and mixture probabilities for each motion vector
contained in each component at time should be estimated.
We assume that has limited memory over the past
motion vector field observations, extended during a defined
time window, which is exponentially forgotten. When newer
information is available, previous knowledge is forgotten and
is combined with newer observations. The exponential en-
velop for is being used where

and is the envelope half lifetime, measured
in video frames that the current information is preserved in
the system’s memory. This information exponentially weakens
during time and completely vanishes after a predefined time
window. Thus, parameter is used in order to regulate
the influence of prior knowledge. Parameter is defined as

, so that the envelop weights sum to 1. The
new mixing and ownership posterior probabilities, the mean
values, and covariance matrices for each motion vector of the

and components are being updated with respect to the
envelop weights .

The posterior ownership probabilities denote the contri-
bution of each motion vector to the complete observation prob-
ability likelihood function. We favor these motion vectors that
continuously produce higher probability values by increasing
their ownership probability. On the other hand, motion vectors
that tend to produce lower probability values are penalized, and
their contribution to the complete observation likelihood is grad-
ually reduced. Ownership are evaluated by applying the EM al-
gorithm in [22], [25] as

(13)

and , ,

, where is
the normal density function. The ownerships are subsequently
used for updating the mixing probabilities (parameter is as
previously defined, )

(14)

and , , and
.

We compute the new mean values and the new covariance
matrices for each motion vector by utilizing the first and second
order data moments. First-order data moments are updated as
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(15)

Second-order data moments are updated as

(16)

The stable component is updated using the first-order data mo-
ments

(17)

The stable component new covariance matrices are evaluated as

(18)

The wander component contains the current motion vectors,
since it adapts as a two-frame motion change model

(19)

Covariance matrices for the wander and lost components are
set equal to the estimated stable component covariance matrice

. Moreover, as it has been de-
signed, component remains constant by setting

and .

D. Model Initialization

To initialize , the array is considered,
where and are vectors containing the motion vec-
tors residuals in the - and -directions obtained from the first
two frames of the video sequence. The stable, wander, and lost
components of the model are then initialized by setting

, , and .
Moreover, the covariance matrices and mixing probabilities

for each component, as well as the first- and second-order data
moments, are instantiated as follows:

where .

E. State Transition

In various particle filter applications, the quantity of the
system disturbance during state transition plays a crucial role
in the state estimation process. By measuring the system dis-
turbance during the previous states, we can infer the expected
system disturbance at a future state. This approach creates
the necessity for an adaptive state transition model. In our
approach, as will be discussed below, we have incorporated the
system disturbance momentum in order to regulate the applied
noise variance and to resize the generated particle filters set. In
[26], system disturbance is measured as the sum of the absolute
difference between the states corresponding to successive
video frames. This parameter is associated with the decision
that is acquired in order to switch between a deterministic
and a stochastic search method that is used for each particle.
Moreover in [24], the tracked object velocity is measured as
the shift in the state vector between two consecutive frames
and is computed using a first-order Taylor series expansion
around a current state estimate. The computed velocity usually
indicates the minimization direction of the difference between
the compared image patches and is exploited in order to further
stabilize the tracker by fine tuning around the state estimate
with the highest likelihood.

In this approach, the motion vector field is available (e.g.,
from block matching) when a new frame is processed, in con-
trast with the previously presented approaches, where the exact
block position inside the current video frame could only be
approximated using the state estimate . As a result, we can
evaluate our estimation error by measuring the distance be-
tween the estimated motion vector field that the
model contains and the actual motion vector field we obtain as

(20)

where the vector contains the motion vector
field.

We exploit the computed estimation error in order to dy-
namically adjust not only the applied noise variance but also
the population of particle filters that will be generated in the fol-
lowing estimation process. The complete state transition method
is summarized by

(21)

where is the applied noise. In order to reduce the compu-
tational load and enhance the robustness of the proposed algo-
rithm, we have adapted strategies that are described in the fol-
lowing two subsections.
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F. Adaptive Noise—Adaptive Number of Particles

In the applied particle filter framework, the introduced noise
variance and the generated particle filters population size, se-
verely affect the accuracy of the camera motion parameter es-
timation. Concisely, it is noted that the size of the search space
that is covered in each search iteration is proportional to the vari-
ance of the applied noise. Larger noise variance enables searches
in broader regions of the state space, thus allowing the model
to adapt to severe changes in the motion parameter state. On
the other hand, smaller noise variance enables the model to fine
tune around a persistent motion parameter state. In addition, the
accuracy of the estimation is proportional to the number of the
used particle filters. More particle filters offer greater coverage
of possible motion states while demanding greater computa-
tional effort.

We exploit these characteristics in order to find the optimal
tradeoff between the estimation accuracy and the required com-
putational effort. Our intention is to dynamically adjust the noise
variance and the number of processed particles, so as to gen-
erate fewer number of particles with small noise variance, when
small changes in the camera motion are required. When large
jumps in the motion state space need to be covered, we adjust
our settings so as to process a larger number of particle filters
with larger noise variance.

We evaluate the accuracy of our previous prediction by com-
puting the estimation error . Subsequently, the number of the
processed particle filters and the applied noise variance
are adjusted for the following prediction step proportionally to
the estimation error according to

(22)

where both the population of the generated particles as well as
the noise variance are bounded in order to ensure computational
efficiency, algorithm robustness, and optimal performance. In
our experiments the number of particles have been between
150–300.

G. Robust Parameter Estimation

Data outliers are common in motion vector fields and, in order
to further stabilize the system in such settings, an additional data
preprocessing step has been applied that enables the system not
only to statistically identify data outliers but also to reform those
motion vectors that have been obviously assigned invalid values.

To address this problem, a 3 3 spatial median filter is ini-
tially applied to the motion vector field components, thus
reducing motion vector field outliers appearing in homogeneous
video frame regions. Moreover, we use an iterative bivariate
Winsorization transform [27], [28], which provides a mecha-
nism for data outlier detection and rectification. For each mo-
tion vector , the Mahalanobis distance
is computed based on an initial bivariate covariance matrix
and mean value estimates according to the formula

(23)

where and
, where and are the robust mean

values, and and are the adjusted mean absolute de-
viations computed from the motion vector components along
the - and -axes, respectively. We treat a motion vector as
an outlier when its Mahalanobis distance , where

is a positive constant. Based on experimental evidence,
we choose , which gives 95% efficiency at the
distribution. Rectification of detected data outliers is performed
by truncating such motion vectors to the border of a 2-D ellipse
which contains the majority of the motion vectors by using the
bivariate transformation

(24)
The process is recursively executed until no more motion vector
field outliers are detected. In a final data preprocessing step, a
whitening transform is applied to the motion vector field. The
data set is transformed so that the motion vectors have zero mean
value and their covariance matrix is equal to the identity
matrix.

H. Conformal Affine Transform

The restricted 2-D affine transformation model includes four
affine parameters, thus constituting the more appropriate para-
metric model in describing the camera motion, if we neglect
the introduced lens distortion. According to this transformation,
only conformal scaling and rotation along the - and -axes
video frame deformation is performed, due to camera motion.
The 2-D affine transformation of the th block center displaced
from position to according to this model is given
by

(25)

where correspond to scaling by a factor , rotation
by degrees, and translation by and pixels along the
direction of the - and -axes, respectively.

We generate conformal scaling and rotational potential future
states, when the state estimates set is populated, by regulating
the applied noise in each particle equivalently for the respective
affine transform parameters.

IV. EXPERIMENTAL RESULTS

We evaluate the efficiency of the proposed method through
extensive experimental testing. The testing dataset comprises
of 30 edited outdoor video streams, including in total 26 245
frames, while the motion vector fields have been obtained by
applying the block matching algorithm. The dataset includes all
patterns of distinct camera motion (zoom in, zoom out, pan, tilt,
and rotation) and combinations of them. Moreover, since the
presented algorithm not only identifies the performed camera
motion pattern but also measures the motion parameters, we
have included in our test collection video streams that contain
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sequential frame regions, where the camera moves according to
a specific pattern but at a variable pace.

A. Camera Motion Pattern Classification

Acquired after each prediction process, the affine transform
parameters are used to infer the type of performed camera mo-
tion. However, due to the fact that we generate our solutions set
in each prediction step by adding random noise, our method, as
every stochastic approach, moves around the optimum solution.
This fact introduces some error in the classification of the per-
formed camera motion, when the affine transform coefficients
vary around critical boundaries, in terms of camera motion in-
terpretation. To alleviate this error in the camera motion char-
acterization, we assume that any camera motion, in order to be
classified as of a specific pattern, should have a minimum dura-
tion of five consecutive frames, otherwise, it is absorbed by pre-
ceding or succeeding dominant camera motions. Moreover, in
order to further stabilize our camera motion detection method,
we filter the obtained affine transform coefficients set by ap-
plying a temporal median filter having window size 3.

We interpret the affine transform coefficients contained in the
state vector as follows.

• If , then the detected camera motion
is classified as zoom in.

• If , then the detected displacement
is characterized as zoom out.

• If , the camera rotates in a clockwise manner.
• If , the camera rotates in an anti-clockwise manner.
• Parameters and define pan and tilt along the direc-

tion of the - and -axes, respectively.
We provide experimental results obtained by applying the

proposed method in representative video sequences for each
camera motion pattern. The variation of the affine coefficients
describing the camera motion at each video frame it is presented
at the accompanying graphs. Moreover, at key moments, when
the camera motion pattern alters, the respective video frames are
provided for visual confirmation of the obtained results.

In Fig. 1, the results that are obtained by applying the pro-
posed method in a video sequence comprised of 992 frames
where the camera performs pan and tilt are presented. The vari-
ation of the affine coefficients responsible for translation ac-
cording to the - and - axes, it is sketched in this graph, as
the test video evolves over time. As shown, the camera pans to
the right during the frame intervals 1–107 and 250–352, while
it pans to the left at the frame intervals 108–249 and 805–918.
Moreover, during the video frames 353–437 and 624–681 the
camera tilts up, while during the temporal intervals 438–560
and 919–992 the camera tilts down. Finally, during the interval
561–623 camera stands still, while from frame 718 and until
frame 804 camera moves diagonally up and to the right.

The lower graph in Fig. 1 presents the variation of the mixture
probabilities that regulate each component’s contribution to the
observation likelihood derived from the same video stream. As
it is observed, the stable component’s membership initially de-
clines, as expected, since the model has not created an accurate
motion representation during that period. On the other hand, the
wander component adapts faster than the stable, as it has been

Fig. 1. Variation of translation factors� and� according to x and y axes,
respectively. The lower graph shows the variation of the components mixing
probability as the video stream evolves. Each model component identifies a dif-
ferent type of camera motion.

designed, and as a result its contribution during the same tem-
poral interval increases. In general, the mixing probability of the
stable component reaches its highest value, at the exact moment
the camera completes a distinct motion pattern, since at that time
the stable component has the optimum smoothed camera mo-
tion representation. On the other hand, at the same moment the
wander component’s membership is assigned its lowest value.

The next examined test video sequence contains 237 frames,
in which the camera zooms in and out, while there are sequen-
tial video frame temporal regions where camera remains still.
Fig. 2 depicts the variation of the obtained scale factor .
The proposed method successfully identified and classified the
performed camera motion in three different patterns. During
the frame interval 37–114, camera motion has been classified
as zoom in, while for the frame interval 152–232, it has been
characterized as zoom out. There are three groups of sequential
frame regions (1–36, 115–152, and 232–237) where the pro-
posed algorithm has not detected any significant camera motion
and these periods have been characterized as still ones.

Fig. 3 presents a camera motion case for a video of 695
frames, where the camera rotates in a clockwise and in an
anti-clockwise manner, while there are nine video frame in-
tervals where the camera remains stationary. These labeled
video frame groups either have been successfully detected
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Fig. 2. Variation of the scale factor when the camera performs zooming in and
out. At key frames, when camera changes its motion pattern video frames are
provided.

Fig. 3. Variation of ���� which declares the affine coefficient responsible for
rotation. Nine regions are distinguished in which the camera remains stationary.

and characterized or they have been absorbed by preceding or
succeeding dominant camera motions. It should be noted that
according to the conformal affine transformation model, the
rotation coefficient corresponds to . The camera
motion has been identified and classified as follows: rotation
in a clockwise manner inside the video frame intervals 12–197
(region 2 has been absorbed), 565–615 and 625–660 and ro-
tation in an anti-clockwise manner in the video frame interval
213–564 (except from the labeled regions 4, 5, 6, and 7 which
have not been absorbed). Finally, the performed camera motion
pattern has been characterized as stationary inside the labelled
video frame intervals 1, 3, 4, 5, 6, 7, 8, and 9.

B. Camera Motion Modeling Accuracy

In each prediction step, the system state vector defined in (1)
is adjusted so as to approximate the affine transform coefficients

Fig. 4. Computed MSE error produced by the LS solution and the proposed
method.

that better fit the motion representation that contains.
On the other hand, the predicted future state determines a mo-
tion vector field which could be obtained by repositioning the
video frame block centers, as determined by the affine transfor-
mation and compute each block displacement with respect to its
previous position. Therefore, since the real motion vector field
is available when a new frame is processed, the accuracy of the
last prediction could be assessed by computing the mean square
error (MSE) between the estimated and the real motion vector
fields

(26)

where and correspond to the th
estimated and real motion vector at time , respectively.

The proposed method has been applied in a video sequence
containing 186 frames, where the camera zooms in with variable
pace, except from a temporal interval between frames 181–186,
where it remains still. Fig. 4 presents the MSE produced by the
LS solution and the proposed method. As depicted, while the
camera zooms in at a growing pace from the beginning of the
video sequence until frame 180 (during this interval the scaling
factor has tripled), the increase in the scale factor value is also
followed by an increase in the generated MSE. The radical drop
in the MSE at frame 181 occurs since the camera changes its mo-
tion pattern and remains still. As depicted, the proposed method
constantly generates lower error compared with the LS solution.
During the complete video sequence the average generated MSE
by the proposed method is , while the LS solution
produces on average almost a triple value since .

Fig. 5 shows the MSE obtained for the video sequence pre-
sented in Fig. 3. The nine video frame temporal intervals, in
which the camera remains still, are distinctive, since the ma-
jority of the contained motion vectors are equal to zero and as
a result, the generated error is minimal. The proposed method
clearly outperforms the LS solution, since the computed MSE



NIKITIDIS et al.: CAMERA MOTION ESTIMATION USING A NOVEL ONLINE VECTOR FIELD MODEL IN PARTICLE FILTERS 1037

Fig. 5. Comparison of the produced MSE between the proposed method and
the LS solution. In this video, the camera rotates while there exist nine sequential
frame regions in which it remains still.

Fig. 6. ��� computed for each video in the test dataset.

is constantly lower than 1.0. Moreover, the average MSE intro-
duced by the LS solution is , while the cor-
responding average MSE for the proposed method is

.
In Fig. 6, average MSE generated by both solutions and com-

puted over the complete test dataset is presented. As can be seen,
the proposed method clearly generates smaller values, in-
dependently of the performed camera motion pattern.

C. Compressed Video

In order to reduce the processing time, we have applied the
proposed method directly on compressed MPEG video streams
without performing full frame decompression in advance.
MPEG video streams are composed of an hierarchically orga-
nized structure [29], [30] consisting of: sequences, Group Of
Pictures (GOP), pictures, slices, macroblocks, and blocks. A
GOP consists of three different types of pictures: the I-frames
which are coded pictures using only information present in

Fig. 7. MSE computed for the same compressed MPEG and uncompressed
video stream.

the picture itself, the predicted pictures (P-frames) coded with
respect to the nearest previous I- or P-frame and the bidirec-
tionally predicted pictures (B-frames) coded using both a past
and a future I- or P-frame as a reference.

Since I-frames are intracoded and B-frames are coded bidi-
rectionally, we can neglect them and apply our method directly
to the resulting P-frames exploiting the contained motion vec-
tors. As a result of this approach, significant computational gain
is observed, since we essentially subsample over time. On the
other hand, we expect an increase in the estimation error, espe-
cially in video sequences in which rapid changes in camera mo-
tion occur frequently. Fig. 7 presents a comparison of the MSE
obtained by applying the proposed method either in the com-
plete video stream or only in P-frames. As expected, the differ-
ence in the MSE is smaller when camera moves smoothly, since
there are no radical variations in the motion vector fields across
P-frames, as for instance, during the frame intervals 1–38 and
120–177. On the other hand, we observe severe performance
difference between the two approaches, when the camera moves
faster. Moreover, the average MSE computed from the uncom-
pressed video stream is while for the com-
pressed MPEG video is .

Furthermore, the time required to perform camera motion es-
timation has been evaluated. Experiments have been conducted
on an Intel Pentium 4 processor, running at 3.0 Ghz and using
1 GB of RAM. The video under examination consists of 237
frames, sized 360 240 pixels, where 61 of them are P-frames.
Since for the MPEG coder each block is of dimension 8 8
pixels, we have applied the same settings in the block matching
algorithm in order to obtain equally sized motion vector fields.
The system requires 0.144 s to process one video frame or,
equivalently, it processes 6.93 motion vector fields per second,
which is a prohibitive amount of time for real-time systems.
However, in compressed MPEG videos of NTSC quality, coded
in a rate of 30 frames per second, 8 P-frames per second are
available, which means that such MPEG video streams can be
processed almost in real time.
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Fig. 8. (a) The tracking results where camera motion detection has not been
included. (b) Tracking results of the new schema. (c) Ground truth.

Fig. 9. Spatial overlap amount between tracks obtained with and without con-
sidering the camera motion.

D. Incorporation of Camera Motion Estimation With Moving
Object Tracking

The effectiveness of incorporating the proposed method
within an object tracker in order to separate the camera motion
from the tracked object motion has been also investigated.
We have embedded our algorithm within the object tracker
proposed in [24], which also predicts the future position of the
tracked object. We have applied the new schema in a video
sequence in which, while the camera zooms in, the tracked
object moves along the -axis. Moreover, since tracking is
performed in each frame of the video sequence, we obtain the
motion vector fields using a block matching algorithm. First,
the proposed method determines the affine transformation de-
scribing the camera motion and then launches the object tracker.
Both state vectors denote affine transformations therefore, the
generated future state estimates by the object tracker ,
determining the position of the image region of interest inside
the video frame, are transformed prior their evaluation as

. In Fig. 8, screen shots of the tracking
process with and without camera motion incorporation are
provided. Both tracking processes have been initialized to track
exactly the same regions. Fig. 9(a) presents the tracking results
where camera motion estimation has not been incorporated.
Fig. 9(b) presents the obtained results where camera motion
prevention has been included, while Fig. 9(c) shows the ground
truth for the respective video frames. Notice that the bounding
box has been scaled up during the video sequence since the

detected camera motion is zoom-in. We have quantitatively
measured the performance of the new schema by comparing
the spatial overlap amount between the highlighted by the
object tracker region and the ground truth data with and without
considering the camera motion. The obtained measurements
for each video frame have been sketched in a graph, shown
in Fig. 9. In the examined video sequence, the mean spatial
overlap with respect to the ground truth data has been increased
by 30.4%.

V. CONCLUSION

Our main aim in this study is to determine accurately the
motion parameters of the performed camera movement and not
only to identify the performed 2-D motion pattern. To do so,
a novel camera motion estimation method based on using the
motion vector field has been presented in this paper. The fea-
tures that distinguish our method from other proposed camera
motion estimation techniques are: 1) the integration of a novel
stochastic vector field model; 2) the incorporation of the vector
field model inside a particle filters framework where an online
EM algorithm for model parameters update enables the method
to estimate the future camera movement; 3) the ability to de-
tect, characterize and estimate the performed camera motion
pattern. Motivated by the fact that camera motion could be tem-
porarily characterized by rapidly varying, slowly varying, and
stationary movement patterns, we have designed the proposed
model that easily adapts to camera motion types having possibly
variable pace. Extensive experimental results have verified that
the proposed method not only successfully characterizes the de-
tected camera motion pattern but also predicts the subsequent
performed camera motion with minimal error.
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